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Abstract. Scheduling sensor nodes in Wireless Sensor Networks (WSN)
for lifetime management purposes is a simple and intuitive approach.
However, it is also crucial to not compromise on the main performance
requirements of the considered application. For mission-critical WSN ap-
plications, different Quality of Service (QoS) requirements on network
performance have to be satisfied. Nevertheless, traditional techniques
usually focus on the average performance values without considering the
targeted QoS requirements. In this paper, we provide rigorous formaliza-
tions in higher-order logic of the network lifetime maximization problem,
under QoS constraints, for randomly-scheduled wireless sensor networks.
We also use natural deduction based reasoning to verify the desired prop-
erties using theorem proving. In particular, we build upon our earlier
developments on coverage and detection analysis to formally analyze the
lifetime maximization problem for a border monitoring application.

Keywords: Wireless sensor networks, Performance analysis, Theorem
proving, Nodes Scheduling, Network lifetime, Border monitoring

1 Introduction

Wireless Sensor Networks (WSNs) have emerged as a key enabler technology for
various surveillance applications [41] including environmental monitoring and
object tracking. Since sensors are basically battery-powered, energy saving arises
as the most critical requirements. In a WSN for forest fire detection, where
sensors are randomly and densely deployed, the network should be able to ensure
the monitoring of the area while being functional for a long period. As a wild fire
occurs occasionally, some sensors can be intuitively deactivated by partitions to
save the whole network energy, and thus extend the network lifetime [35]. In this
context, the k-set randomized scheduling [21] is an efficient scheduling approach,
which mainly consists in randomly organizing the set of nodes into k subsets.
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Scheduling sensors for lifetime management is surely a simple approach, how-
ever, it is also crucial to not compromise on the performance of the application.
For mission-critical WSN applications, different Quality of Service (QoS) require-
ments have to be usually satisfied [5, 37]. More generally, QoS is regarded as “the
capability of providing assurance that the service requirements of applications
can be satisfied” [5]. For example, in a forest fire application, where alarm packets
are vital, the WSN should not only cover the whole area, but, ensure also that the
fire outbreak is detected within the shortest time with a high probability. Hence,
besides the network lifetime, the coverage and the detection performances are
critical requirements. Nevertheless, for the k-set randomized scheduling, these
performance metrics are completely probabilistic [21, 39]. Hence, some fire out-
breaks may not be effectively covered if the surrounding nodes are inactive, due
to random scheduling.While the probabilistic aspect poses real challenges on the
analysis of WSNs, missing fire intrusion, can have devastating consequences.

The performance of the randomized scheduling has been generally analyzed
using paper-and-pencil based probabilistic technique followed by some simula-
tions [33, 18, 20]. However, both paper-and-pencil proof and simulation methods
cannot be regarded as completely accurate mainly due to the error proneness of
the former and the in-exhaustive nature of the later. Compared with traditional
simulation, formal methods are less frequently used for the validation of WSNs.
Based on mathematical techniques, formal methods [14] rigorously analyze the
theoretical model of the given system. Recently, formal methods have gained a
growing interest in the context of WSNs to analyze their functional or quan-
titative correctness [29, 3, 42], but most of the existing work is focused on the
validation of their functional aspects only. Nevertheless, reliable performance
evaluation of WSNs constitutes also an extremely challenging aspect.

In this paper, we provide an accurate formal analysis of the network lifetime
for randomly-scheduled WSNs. In particular, we are interested in the higher-
order-logic formalizations of the lifetime maximization problem, given in [39],
under QoS constraints. The main performance requirements here are associated
to the network coverage, the detection probability and the detection delay. In
earlier work [6, 9], we have presented a formalization of the k-set randomized
scheduling algorithm and its main performance properties based on the recent
probability theory formalizations [27] in the HOL theorem prover. The practical
interest of these developments has been illustrated through the formal analysis of
various WSN applications [7–9]. We build upon these theoretical developments to
formally show that the optimal solution for the lifetime maximization problem
exists, and give the conditions under which the optimal solutions exist. This
formal analysis is illustrated through a border security monitoring application.

The rest of this paper is organized as follows. Section 2 reviews some related
work. We summarize, in Section 3, the main requirements of this work. Section 4
describes the lifetime maximization problem under QoS requirements. In Section
5, the higher-order-logic formalizations of this problem are provided for a WSN
application for border monitoring. Section 6 is devoted to discussions, before
concluding the paper in Section 7.
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2 Related Work

Theoretical analysis, also known as paper-and-pencil based probabilistic tech-
nique, has been widely used to validate randomized scheduling algorithms for
WSN. Such analysis consists in constructing a pure theoretical model where the
required random variables are determined together with the associated perfor-
mance metrics. Afterwards, an accurate probabilistic based study is achieved.
For validation purposes, simulation, using the Monte Carlo method [24], is fi-
nally carried out. The analysis of the randomized scheduling has been usually
done using the paper-and-pencil based probabilistic technique [36, 18, 21, 40, 23],
followed by simulations on some network scenarios for the main performance
metrics. For example, Mamun [25] evaluated the coverage using a pure mathe-
matical model while simulations have been run with specific network sizes and
sensing ranges.

Model checking technique [2] has been successfully explored for the validation
of various aspects in the WSN context. In [29], the formal analysis of the Optimal
Geographical Density Control (OGDC) algorithm, which is a kind of randomized
scheduling algorithm, has been performed within the RT-Maude rewriting tool
[30]. Several other prominent works reported on the use of model checking for the
analysis of WSN protocols include [34, 11, 22], or for the development of formal
frameworks [15, 43]. While the main strength of all these works is their formal
models and automatic verification, they suffer from the common model checking
related problem of state space explosion [2]. Hence, the analysis of the OGDC
algorithm [29] has been limited for WSNs with only 6 nodes within a monitored
region of 15m × 15m. On the other hand, none of the previous works provided
a sound modelling of the randomness aspect in WSNs, which constitutes a real
limitation since most of the WSN algorithms are probabilistic. In [29], a random
function, assumed to be ’good’, has been used to model the probabilistic behavior
of interest. For Uniform distributions, a sampling value generated by the same
random function on a given interval is selected.

To cope with these major problems, probabilistic model checking [31] has
also been used for the probabilistic functional analysis of wireless systems [11,
12, 42]. Probabilistic model checking captures the probability modelling for both
the system and the property of interest. Nevertheless, the reasoning support
for statistical quantities in most of model checkers suffers from many shortcom-
ings. Indeed, expected performance values are usually obtained through several
runs on the built model [3, 42]. The obtained results can hardly be termed as
exhaustive and thus formally verified.

On the other hand, very few works based on theorem proving [13] exist in the
open literature. A synchronization protocol for WSNs, has been analyzed using
the Isabelle/HOL theorem prover [16]. The work in [4] built a theorem proving
based framework for WSN algorithms based on the PVS system. Nevertheless,
the randomness aspect in this work has been characterized by a pseudo-random
generator, while the nodes mobility specified through a simple recursive function.
Furthermore, the uniform probability, considered for link quality changes, has
been just instantiated by a given value throughout the analysis. The analysis
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results using the PVS framework can not be hence considered as reliable versus
the probability modelling.

Unlike previous works, we provide rigorous formalizations of the network life-
time maximization problem [39], under QoS constraints, for randomly-scheduled
WSNs, and use natural deduction based reasoning to verify the desired prop-
erties. Traditionally, the simulation-based analysis is usually made for different
performance metrics to validate their average values without considering their
potential relationship and the desired QoS requirements. In the open literature,
few works deal with the formal analysis of QoS properties in WSN. In [34], the
authors analyzed Biomedical Sensor Networks (BSN) in terms of QoS require-
ments on packet delivery ratio, network connectivity and end-to-end delay. Using
the model checker UPPAAL, they validate worst-case scenarios of these metrics,
and compare the soundness of their results to a well-known WSN simulator. The
work in [10] verified the same QoS properties, while focusing on decreasing the
power consumption. Although the scalability of the built model is acceptable for
BSN, the probabilistic aspect is not considered at all. Due to the sound formal-
ization of probability and its reasoning support available in the HOL theorem
prover, the formalizations, given in this paper, are rigourous. In addition, the
presented formalizations are generic and completely valid for all values.

3 Preliminaries

In this section, we introduce the probabilistic analysis in the HOL theorem
prover. Then, we briefly describe the k-set randomized scheduling algorithm.

3.1 Probabilistic Analysis in HOL

In this work, we utilize the recently developed and most generic probability the-
ory developed by Mhamdi [26], within the HOL theorem prover. By including
a Borel space, Mhamdi generalized the previous HOL formalization of measure
theory. After specifying the extended real numbers in HOL, he formalized mea-
sure, Lebesgue, probability and information theories. The formalization of prob-
ability theory in HOL is hence based on the Kolmogorov axiomatic definition
of probability. Such formalization thus provides a unified framework for discrete
and continuous probability measures.

A probability measure P is a measure function on the sample space Ω and an
event is a measurable set within the set F of events which are subsets of Ω. Thus,
(Ω,F, P ) is a probability space iff it is a measure space whose measure is 1, i.e.,
P (Ω) = 1. A random variable is a measurable function, satisfying the condition
that the inverse image of a measurable set is also measurable (Definition 1).

Definition 1.

` ∀X p. real random variable X p =

prob space p ∧
(∀x ∈ p space p ⇒ X x 6= NegInf ∧ X x 6= PosInf) ∧
X ∈ measurable (p space p,events p) Borel.
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where X designates the random variable, p is a given probability space, NegInf
and PosInf are the higher-order-logic formalizations of negative or positive
infinity. Borel is the HOL definition of the Borel sigma algebra which is the
smallest sigma algebra generated by the open sets.

The probability distribution of a random variable is the function that accepts
a random variable X and a set s and gives the probability of the event {X ∈ s}.

Definition 2.

` ∀X p.

distribution p X = (λs. prob p (PREIMAGE X s ∩ p space p)).

The expectation of a random variableX is defined in HOL [26] as its Lebesgue
integral with respect to the probability measure p.

E[X] =

∫
Ω

Xdp. (1)

which has been formalized in HOL, in the discrete case, as follows.

Theorem 1.

` ∀X p. (real random variable X p) ∧ FINITE (IMAGE X (p space p))

⇒ (expectation p X =∑
IMAGE X (p space p) (λr. r × Normal (distribution p X {r}))).

where (IMAGE X (p space p)) designates the values of the random variable X
over the sample space (p space p). In the discrete case, this list has to be finite,
i.e., (FINITE (IMAGE X (p space p))). The HOL function Normal allows the
conversion of the real-valued distribution to its corresponding extended real.

3.2 The k-set Randomized Scheduling Algorithm

Consider a WSN that is formed by randomly deploying a set Sn of n sensor nodes
over a field of interest of size a. Every sensor can only sense the surrounding
environment and detect events within its circular sensing area of size r. We
suppose that the nodes are uniformly and independently deployed. During the
setup stage, the k-set randomized scheduling is run in parallel on every node
as follows [19]. Each node starts by randomly picking a number, denoted by i,
ranging from 0 to (k−1), where k is the number of subsets or partitions. A node
sj is thus assigned to the ith sub-network, designated by Si, and will activate
itself only during the scheduling round of that subset. At the end, k disjoint
sub-networks are created to work alternatively.

Fig. 1 shows a small WSN of eight sensor nodes, which is randomly portioned
into two sub-networks; S0 and S1. Each node randomly chooses a number 0 or
1 in order to be assigned to one of these two sub-networks. Suppose that nodes
0; 2; 5, randomly choose the number 0 and thus join the subset S0, whereas
nodes 1; 3; 4; 6; 7, select the number 1 and will be in the subset S1. These two
sub-networks will work by rounds, i.e., once the nodes 1; 3; 4; 6; 7, illustrated
by the dashed circles, will be active, the remaining nodes 0; 2; 5, will be at the
sleep state, and vice-versa.
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Fig. 1. The k-set randomized scheduling for (n = 8) nodes and (k = 2) subsets.

4 The Optimal Lifetime Problem under QoS Constraints

In the context of a WSN using the randomized scheduling, the network lifetime is
“the elapsed time during which the network functions well” [38, 39]. The network
lifetime, denoted by TNlife, has been mathematically defined as follows [38, 39].

TNlife = k × TSlife (2)

where k is the number of subsets and TSlife is the average lifetime of a sensor.
In [6, 9], we developed the higher-order-logic formalizations of the k-set ran-

domized scheduling and three of its performance aspects within the sound core
of the HOL theorem prover. The relevant metrics of interest are the network
coverage, the detection probability and the detection delay, denoted as Cn, Pd,
and D, respectively. In particular, we formally analyzed the minimum number
of nodes to deploy in order to ensure a network coverage intensity Cn of at least
t, denoted here as Cnreq, for a given number of sub-networks k [6].

n ≥

[
ln(1− Cnreq)

ln
(
1− q

k

) ]
. (3)

where n is the total number of nodes, k; the number of subsets and q designates
the probability that a given event is covered by at least one sensor.
While a coverage of Cnreq is achieved, the other detection metrics, are not guar-
anteed. Hence, deploying this lower bound nmin nodes may lead to worst values
for the detection metrics, which is not desired.

Since the main goal of the k-set randomized scheduling is extending the net-
work lifetime [19, 21], most related performance metrics should have appropriate
values. These appropriate values, designated as Quality of Service (QoS) con-
straints, mainly depend on the application requirements, and are set according
to some pre-defined values.

The lifetime problem [38, 39] initially consists in maximizing the network life-
time TNlife while minimizing the delay D, maximizing the detection probability
Pd and the network coverage intensity Cn.
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1. D ≤ QoSDD
2. Pd ≥ QoSDP
3. Cn ≥ QoSCn

4. n = c.

(4)

where QoSDD, QoSDP , and QoSCn
are predefined QoS constraints associated

to the detection delay D, the detection probability Pd, and the network coverage
Cn, respectively, and c is a constant value.

According to Equation (2), maximizing the network lifetime TNlife is to
maximize the number of subsets k. Nevertheless, the detection delay D will in-
tuitively increases when k is growing, which is not suitable for WSN applications.
There is thus an upper bound on the k-values so that a good coverage Cn can
be ensured with acceptable delay D and detection probability Pd. Consequently,
the main issue rather consists in optimizing the network lifetime to find the set
of k-values that satisfy the main QoS constraints.

5 Application: Border Security Monitoring

Continuous surveillance along country borders is usually a high-priority concern,
especially given the critical terrorism world context. Deployed along the bor-
ders, smart sensors can thus stop intruding objects including illegal immigrants,
terrorists, and forces or vehicles in a military context [17]. Due to the safety-
critical feature of the target application, sensors should have a smart behavior
regarding the power availability while satisfying the main QoS requirements.
Deployed WSNs for border monitoring usually suffer from limited lifetime [1],
e.g, a REMBASS sensor can be operational for 30 days only [17]. Thus, the k-set
randomized scheduling algorithm has been proposed for use to save energy for a
border monitoring application [40].

In [9], we presented our higher-order-logic formalizations of the detection
performances for randomly-scheduled WSNs. The practical effectiveness of these
developments, have been then illustrated, through analyzing a WSN for border
surveillance [40, 32]. In this paper, we focus on formally analyzing the optimal
lifetime problem, presented in Section 4, for the same WSN-based application for
border security monitoring. Hence, the nodes have a sensing range of 30m, and
are deployed into an area of size a = 10000m2, whereas, the success probability
q of a sensor covering a point, is q = 0.28. In the context of this application,
the detection probability should be very high (Pd > QoSDP = 0.95), whereas
the detection latency as the shortest possible (D < QoSDD = 15s) [1]. The QoS
value for the network coverage intensity Cn, is not given in the reference paper,
and is thus kept as generic for the considered application.

According to the definition of the network lifetime, given in Equation (2),
optimizing TNlife basically depends on optimizing the corresponding k-values.
An optimal solution exists, if there exist values of k satisfying the three first
conditions of the problem, presented in Equation (4), for a given number of
nodes (n = c) [38, 39].
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In Theorem 2, we formally verify the main condition so that the lifetime
problem, has an optimal solution [38, 39].

Theorem 2.
Sa ={k | D ≤ QoSDD <

(Q− 1 + s)(Q2 − 1 + s)

2Q(Q+ 1)
[1− (1− q)n] ,

1− (1− q)n ≥ Pd ≥ QoSDP > 0,

1 ≤ k ≤ q

(1− (1−QoSCn)
1
n )
, 0 < QoSCn

< 1, n = c} (5)

is bounded and non-empty.
where L is the duration of an occurring event, T is the length of a scheduling
cycle, Q =

⌈
L
T

⌉
, and s is the remainder of the intrusion period L in terms of the

number of slots T . The parameter s = L
T + 1−

⌈
L
T

⌉
.

Proof. Each condition of the problem (Equation (4)) produces a set of k-values,
which has to be proved as bounded and non-empty. The term bounded, used
here, basically means “bounded above”. Unfortunately, the reference textbooks
[38, 39] provide a very abstract proof deducing that the big set Sa is bounded
and non-empty. Larger investigations from the mathematical view as well as the
WSN one, has been necessary to be able to understand the whole reasoning and
switch it into the HOL theorem prover.

It is worth mentioning that, for space constraints, we will only involve the
main mathematical assumptions related to the used variables. The interest reader
can refer to [6, 9] for further details.

5.1 The Detection Delay

The optimization problem (Equation (4)) generates the following set of k-values
for the detection delay.

SD = {k | D ≤ QoSDD <
(Q− 1 + s)(Q2 − 1 + s)

2Q(Q+ 1)
[1− (1− q)n] , n = c} (6)

To prove that the set SD is bounded on k, the first intuitive way is to look for
these concrete bounds. However, given the complexity of the delay expression
[9], such bounds are seemingly very hard to obtain. Through a deeper analysis,
we find out that the main proof depends on two main results. Indeed, if we can
find the limit of the set sequence (Here D(k)) versus the parameter k, then we
can get that this set is finite (Theorem 3). The second result states that if the
set is finite then it is obviously bounded (Theorem 4).

Theorem 3 (Finite set upon a limit). If a given sequence Un → a, then
∀ε > 0, there are only finitely many n for which | Un − a |≥ ε.
` ∀U (ε:real) (a:real). (0 ≤ ε) ∧ (U → a)

⇒ FINITE {(n : num) : ε ≤ | U(n)− a |}.

Proof. Consider ε > 0, and the set Aε = {n ∈ N : | Un − a |≥ ε}. Using the
definition of the limit for the real sequence Un, we have: ∀ε > 0, there exists N
such that ∀n. n ≥ N , we have | Un− a |< ε. The set of n for which | Un− a |≥ ε
will be contained in the set {1, 2, ..., N}, and hence finite.
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Theorem 4 (Upper bound of a finite integer set). Every finite set of
integer s is bounded.

` ∀(s:num->bool). FINITE s ⇒ BOUNDED s.

where the HOL function BOUNDED specifies a bounded set of integers.

Lemma 1 (The set SD is bounded).

` ∀n k q s L Ts QoSDD. (0 < s < 1) ∧ (0 < L) ∧ (0 < Ts)

⇒ (BOUNDED {k | DD p D n k q ≤ QoSDD }).

Proof. We require the limiting value of the detection delay D versus k (Lemma
2), as well as the asymptotic behavior of the delay D on k (Lemma 3). Then,
considering Theorem 3 for the sequence D(k), with the right value of ε, we can
get that the set SD is bounded. Indeed, since D(k) is increasing (Lemma 3), the
maximum possible values is limk→∞D, which is given in Lemma 2. We thus get
QoSDD < limk→∞D. Plugging in Theorem 3 with ε = (limk→∞D)−QoSDD =
(Q−1+s)(Q2−1+s)

2Q(Q+1) [1− (1− q)n]−QoSDD, we can obtain that the set SD is finite.

Finally, based on Theorem 4, we deduce that SD is bounded.

Lemma 2 (Limit of the detection delay when k is very large).

` ∀n q s L Ts. (1 ≤ n) ∧ (0 < s < 1) ∧ (0 < L) ∧ (0 < Ts) ∧
(0 < q < 1)

⇒ (limk→∞ DD =
(Q−1+s)(Q2−1+s)

2Q(Q+1) [1− (1− q)n]).

where Q =
⌈
L
T

⌉
.

Proof. We verified Lemma 2 using an alternate proof since the original proof,
based on the Mean Value Theorem (MVT), was not possible in HOL. Indeed,
while the MVT theorem in HOL is available for constant real bounds, these
bounds are considered as variables in the paper-and-pencil proof [39].

Lemma 3 (The detection delay is increasing as k increases).

` ∀n q s L Ts. (1 ≤ n) ∧ (0 < s < 1) ∧ (0 < L) ∧ (0 < Ts) ∧
(0 < q < 1)

⇒ (mono incr (λk. real (DD p D n k q))).

where the HOL function mono incr denotes an increasing natural sequence.
Proof. The proof of the above lemma is based on the derivative of the cor-
responding real functions. The reasoning thus involved a large amount of real
analysis with very complicated mathematical expressions including summations
and using various properties of sequences and series of real numbers. It is im-
portant to note that the original proof of the above lemma in [39] was missing
a whole fraction term, which is fortunately positive and thus does not finally
affect the validity of the function monotonicity.

We conclude that SD is non-empty, using the monotonicity of D(k) on k
(Lemma 2), along with some reasoning on the quality of service constraints. In-
deed, D(k), increasing versus k, means that the minimum delay value, is induced
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for (k = 1), i.e, D(1). The values of D(k); including QoSDD, cannot go below
D(1). Hence, we always have D(k) > D(1), which gives QoSDD > D(1). This
ensures that (k = 1) ∈ SD, and hence SD is non-empty.

5.2 The Detection Probability

Based on the lifetime problem (Equation 4), we have:

SPd = {k | Pd|k=1 = (1− (1− q)c) ≥ Pd ≥ QoSDP > 0, n = c} (7)

which is required to be verified as bounded and non-empty.

Lemma 4 (The set SPd is bounded).

` ∀q n s L Ts QoSDP. (1 ≤ n) ∧ (0 < s < 1) ∧ (0 < L) ∧
(0 < Ts) ∧ (0 < q < 1) ∧ (∀k. L < k×Ts) ∧ (0 < QoSDP < 1)

⇒ BOUNDED {k | QoSDP ≤ Pd p n k s L Ts q}.

Proof. We first achieve the proof that SPd is finite using Theorem 3 such that
A = 0 and ε = QoSDP which is > 0. For that, the behavior of the detection
probability Pd regarding the parameter k is required (Lemmas 5 and 6). We
finally establish that the set SPd is bounded using Theorem 4 together with the
latter result.

Lemma 5 (Limit of the detection probability as k is infinite).

` ∀q n s L Ts. (1 ≤ n) ∧ (0 < s < 1) ∧ (0 < L) ∧ (0 < Ts) ∧
(0 < q < 1) ∧ (∀k. L < k×Ts)
⇒ lim

k→+∞
(λk. Pd p n k s L Ts q) = 0.

Lemma 6 (The detection probability is decreasing versus k).

` ∀q n s L Ts. (1 ≤ n) ∧ (0 < s < 1) ∧ (0 < L) ∧ (0 < Ts) ∧
(0 < q < 1) ∧ (∀k. L < k×Ts)
⇒ (mono decr (λk. Pd p n k s L Ts q)).

Since the detection probability is decreasing with k (Lemma 6), the best
detection probability value is ensured for (k = 1). So, we have Pd(1) > Pd(k).
The QoSDP values cannot go above Pd(1), i.e, Pd(1) > QoSDP . Hence, (k =
1) ∈ SPd, which guarantees that the set SPd is non-empty.

5.3 The Network Coverage

Unlike the detection metrics, the upper bound of the k-values for the coverage
set; SCn, can be obtained through some mathematical operations.

SCn = {k | 1 ≤ k ≤ q

(1− (1−QoSCn
)

1
n )
, n = c} (8)
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Theorem 5 (The set SCn is bounded).

` ∀p q n s QoSCn. (1 ≤ n) ∧ (0 < q < 1) ∧ (0 < QoSCn < 1)

⇒ BOUNDED {k | QoSCn ≤ Cn p X k s C n q}.

Proof. The proof is mainly based on Theorem 4, together with some real analysis
about the floor function and subsets.

The set SCn can be simply deduced as non-empty. Similarly, as the network
coverage is decreasing versus the parameter k [7], the best coverage is then
achieved for (k = 1). We hence target a good QoS value for coverage, but which
can not exceed Cn(1).

Finally, we can deduce that the big set with the generic QoS values;

Sa = SD ∩ SPd ∩ SCn
is bounded and non-empty, using the above reasoning on the three sets SD, SPd
and SCn, i.e, Theorems 1, 4, and 5, respectively, together with the fact that
(k = 1) is shown to be in each of the three sets, and hence in their intersection.

Based on that, we can easily establish that, for our border security monitoring
application, we have:

Sapp ={k | D ≤ (QoSDD = 15) <
(Q− 1 + s)(Q2 − 1 + s)

2Q(Q+ 1)
[1− (0.72)n] ,

1− (0.72)n ≥ Pd ≥ (QoSDP = 0.95) > 0,

1 ≤ k ≤ 0.28

(1− (1−QoSCn)
1
n )
, 0 < QoSCn

< 1, n = c} (9)

is bounded and non-empty.
In this section, we formally illustrate the analysis of the optimal lifetime

problem, given in Equation (2), for a border security monitoring WSN applica-
tion [1] such that (QoSDP = 0.95) and (QoSDD = 15s). It is worth to mention
that the formal developments of lifetime can be quite valuable to analyze any
randomly-scheduled application like a general surveillance framework for WSN.

6 Discussion

In this paper, we have been able to formally analyze, within the HOL theorem
prover, the optimal lifetime problem (Equation 4) under Quality of Service (QoS)
constraints, for wireless sensor networks using the k-set randomized scheduling.
These QoS constraints are associated with the key performance metrics, i.e.,
the network coverage, the detection probability and the detection delay. More
particularly, there are two main conditions on the k-values, under which the
optimal lifetime solution exists for such problems. These conditions require that
the big set Sa of k-values, shown in Equation (5), is non-empty and bounded. For
that, we built upon our higher-order-logic foundations, developed in [6, 8, 9], to
verify this minimal set of conditions, and illustrate this analysis through a bor-
der security monitoring application with concrete QoS values for the detection
probability and the detection delay.
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The current lifetime analysis, presented in this paper, primarily illustrates
the great value of the existing higher-order-logic developments for the other per-
formance metrics. Indeed, the lifetime verification has been possible thanks to
the sound and complete formalizations of the network coverage, done in [6–8],
together with the detection probability and delay, presented in [9]. The success-
ful verification of the lifetime optimization problem thus clearly highlights the
main advantages of our theoretical developments of the coverage and detection
attributes in terms of precision and coherence. Hence, it would not have been
possible to effectively achieve the main lifetime proof if, for example, there was
a missing assumption on one of the design parameters in the detection part.

While the main goal of the previous formalizations on coverage and detection
[6, 9] was to formally verify the expressions associated with the probabilistic
attributes of interest, the lifetime problem is considered in a completely different
way. Indeed, the lifetime definition of a randomly-partitioned wireless network,
as specified in the paper-and-pencil probabilistic models [38, 39], is very simple
(Definition 2) and does not require any investigation from the formalization side.
However , it was found to be quite interesting to tackle the formal analysis of the
lifetime optimization problem (Equation 5) under quality of service constraints.
Clearly, the higher-order-logic formalization process for the network lifetime is
quite different from the three other performance metrics, where the main idea
was to formally analyze the conditions under which the optimal network lifetime
exists, rather than verify the lifetime in itself.

Comparably to the other performance aspects, many difficulties have been
implied in the lifetime verification. Although the lifetime proof seems simple,
there were many hidden steps making the understanding of the main proof quite
challenging. Hence, except for the coverage set where the concrete bounds on k
were simple to get, the other sets on the delay D and the detection probability Pd
have been directly deduced to be non-empty and bounded. These deductions,
based on some missing steps in the corresponding paper-based proof [38, 39],
involved significant mathematical investigations. No indication was given about
which mathematical result is applied. Nevertheless, it is very common that some
details which seem obvious for mathematicians turn out to be very hard to follow
from the reader’s side.

Secondly, the high degree of interactivity required within a theorem prover in
general and in HOL, in particular, was also a huge obstacle for a quick formaliza-
tion. Hence, tedious mathematical efforts may be needed to prove a basic result
or just to correctly handle complicated summations. For instance, the proof of
Lemma 3, which occupied about half a page in the original textbook [39], took
about 12 pages of HOL code. For the same lemma, we discovered that a whole
fraction term was missing in the original mathematical analysis [39]. This dis-
crepancy would have had a crucial impact on the final result if the term was of
opposite sign. On the other hand, it is clear that it would not have been possible
to catch this error based on a manual inspection unless the proof is redone step
by step. Such interesting finding clearly highlights the main strength of formal
methods guaranteeing accurate and complete results.
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7 Conclusions

In this paper, we presented a reliable approach for the formal analysis of the
the network lifetime for randomly-scheduled WSNs. Hence, based on our ear-
lier work [6, 9], we provided the higher-order-logic formalizations of the lifetime
maximization problem [39], under Quality of Service (QoS) constraints related to
the network coverage and the detection performances. These formalizations en-
able us to formally verify the network lifetime related characteristics of a border
security monitoring application using the k-set randomized scheduling.

Compared with the existing approaches such as traditional paper-and-pencil
probabilistic modelling, simulation and probabilistic model checking, our theorem-
proving based approach allows a generic formal verification of randomly-scheduled
WSNs regardless of the values of the design parameters. Besides, due to the
sound support of probability theory available in the HOL theorem prover, our
approach enables much more reliable validation of the probabilistic performance
attributes of interest including statistical quantities. Finally, unlike most of the
previous work focusing on the validation of the functional aspects of WSNs, our
work is distinguishable by addressing the performance aspects.

As future work, the formalization of the optimal detection probability [28],
can be also investigated in the same way of the network lifetime, achieved in this
paper. The whole proposed approach, described in [8], can be also generalized to
tackle the formal analysis of a variant of the k-set randomized scheduling [18].
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