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Abstract. This paper proposes a semi-formal reachability analysis tech-
nique based on global optimization for hybrid systems. In order to model
the hybrid system dynamics with parameter and noise disturbance, a sys-
tem of stochastic recurrence equations formalism is proposed. Then, a
reachability analysis approach is adopted to compute the reachable sets
under an interval of initial conditions and in light of system parameters
variability. The novelty of our approach is in approximating the reach-
able bounds in an intertwined forward/backward manner. The backward
corrections refine the obtained reachable bounds in the forward scheme
and so reduce the high reachability over-bounding due to the wrapping
effect. Finally, a Monte Carlo hypothesis testing based technique is per-
formed on the resultant reachable bounds to uncover the hybrid system
failure with regard to a certain specification. These failures are quan-
tified in terms of parametric yield rate which reflects the sensitivity of
the hybrid system to variations in its parameters. We demonstrate the
effectiveness of our proposed verification methodology by applying it on
a mixed analog and digital electronics building block commonly used in
communications systems.

Keywords: Hybrid systems · System of stochastic recurrence equa-
tions · Intertwined forward-backward reachability analysis

1 Introduction

Continuous and discrete systems behaviors have been extensively analyzed sep-
aretly by control theory and formal verification communities, respectively. How-
ever, the verification of their composition in the same system, termed as hybrid
system, has gained a lot of attention lately [1]. Indeed, hybrid systems are basic
blocks in embedded control systems that involve interaction between digital sys-
tems and the physical world via analog plants (e.g., sensors and actuators) [2].
The complex infinite possible behaviors that a hybrid system exhibits rend the
verification of such systems both challenging and critical, especially for safety
critical applications such as avionics, automotive engine, and medical systems [3].
Verification becomes particularly challenging with hybrid models that account
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for real system imperfections such as system parameter variations due to fab-
rication impurities along with input fluctuations. Monte Carlo simulation is a
cornerstone and perhaps the most common practice in the verification of hybrid
systems [4]. However, it is not sufficient to carry out multiple simulations when
the system is actually required to match its specifications for all possible ini-
tial conditions and process parameters. Instead, reachability analysis techniques
which refer to computing the set of all possible system behaviors emanating
from an initial reachable set are adopted to prove that they satisfy a desired
specification. Current reachability analysis techniques can be broadly classified
into three main categories. Namely, SMT-solving [5], theorem proving [6] and
flowpipe computation-based techniques [7]. Most of these reachability analysis
techniques can only handle hybrid systems with linear continuous dynamics but a
few are readily scalable to systems with nonlinear dynamics. In addition, because
reachalbility analysis is in general undecidable, over-approximation is required
to ensure the decidability of the reachability problem. This leads to verification
errors in the computed reachable set that accumulates and even blows up with
the reachable set evolution over time. This problem, known as wrapping effect,
becomes a great concern for an accurate verification of hybrid systems. Hence,
an efficient verification of these systems dictates two key requirements: (1) a
uniform modeling formalism that fully reflects the relations as well as the inter-
actions of the discrete and continuous parts of the system. With the uniformity,
the model should also provide accuracy by realistically replicating noise, para-
meters and initial conditions variation; and (2) an accurate reachability analysis
scheme that can handle nonlinear continuous hybrid systems and assess the effect
of parameter variations while reducing the wrapping effect.

In this paper, we present a novel methodology for modeling and verification
of continuous and hybrid systems under parameter and initial conditions uncer-
tainties using a system of stochastic recurrence equations formalism. We propose
an intertwined forward/backward reachability analysis technique based on global
optimization that is capable of reducing the wrapping effect. The key insights is
that for the purpose of nonlinear hybrid system verification, the reachable sets
are tracked precisely by a backward reachability correction approach and the
system failure rate is estimated using a hypothesis testing based approach.

The rest of this paper is organized as follows: in Sect. 2, we introduce some
preliminary definitions of hybrid system modeling, including Latin Hypercube
sampling and hypothesis testing techniques. Section 3 then discusses our pro-
posed methodology for hybrid systems modeling and verification. In Sect. 4, we
demonstrate the effectiveness of our methodology by applying it on a common
analog and mixed signal design used in communication systems. Finally, conclu-
sions and future work are given in Sect. 5.

2 Preliminaries

In this section, we define the terminology that will be used for hybrid systems
modeling. We also present some background on the Latin Hypercube Sampling
technique, and statistical hypothesis testing along with their definitions.
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2.1 Hybrid System Modeling: System of Stochastic Recurrence
Equations

Hybrid systems contain two different types of components: those with continuous
dynamics and those with discrete dynamics. Despite their heterogeneous nature,
a careful time domain discretization allows a unified description of all the hybrid
systems components. Due to the statistical behavior that hybrid systems exhibit
in the presence of uncertainties (such as noise and parameter variability), we
are interested in modeling hybrid systems as a System of Stochastic Recurrence
Equations (SSRE) [8], which is a formalism that allows to capture the statistical
properties of the system in a unified discrete-time description. Moreover, the
temporal properties of these hybrid components and their interactions can be
expressed as SSRE. In what follows, we explain the SSRE notations and detail
the conversion process of system equations and properties to SSREs. A system
of recurrence equations is a set of relations between consecutive elements of a
sequence. The notion of recurrence equations to describe discrete systems using
the normal form: generalized If-formula was first proposed by Al-Sammane [9].
In addition, a stochastic recurrence equation can be generated for the case of
continuous systems using the discrete version of their Stochastic Differential
Equation (SDEs) [10]. In the following, we briefly present the SSRE theory. An
SSRE is a set of SREs with stochastic processes. Let us consider the following
Itô process {Xt, 0 ≤ t ≤ T} SDE [11]:

dXt(ω) = f(Xt(ω))dt + σ(Xt(ω))dWt(ω) (1)

where the stochastic variable Wt is a Brownian motion [12] (see Definition 1),
the initial condition (Xt0 = X0) and the diffusion coefficient σ are deterministic
variables.

Definition 1. (Brownian Motion) A scalar standard Brownian process, or
standard Winer process over [0,T] is a random variable Wt that depends contin-
uously on t ∈ [0, T ] and satisfies the following conditions:

Condition 1. W (0) = 0 with probability 1.

Condition 2. For 0 ≤ s < t ≤ T the random variable given by the increment
Wt −Ws is normally distributed with mean zero and variance (t−s) (Wt −Ws ∼√

t − sN (0, 1)).

Condition 3. For 0 ≤ s < t < u < v ≤ T the increments Wt−Ws and Wv −Wu

are independent.
By integrating Eq. (1) between s and s + Δs, we will have:

dXs+Δs(ω) = Xs(ω)+

∫ s+Δs

s

f(Xs+Δs(ω))dt+

∫ s+Δs

s

fσ(Xs+Δs(ω))dWs+Δs(ω) (2)

The Euler scheme [13] consists in approximating the integral Eq. (2) by the
following iterative scheme:

X̄s+Δs(ω) = X̄s(ω) + f(X̄s(ω))Δs + σ(Ws+Δs(ω) − Ws(ω)) (3)
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Definition 2. (Generalized If-formula) The generalized If-formula is a class
of symbolic expressions that extend recurrence equations to describe discrete sys-
tems. Let i and n be natural numbers. Let K be a numerical domain in (N,Z,Q,R
or B), an If-formula is one of the following:

– A variable Xi(n) or a constant C that takes values in K

– Any arithmetic operation � ∈ {+,−,×,÷} between variables Xi(n) that take
values in K

– A logical formula: any expression constructed using a set of variables Xi(n) ∈
K and logical operators: not, and, or, xor, nor, . . . , etc.

– A comparison formula: any expression constructed using a set of variables
Xi(n) ∈ K and comparison operators � ∈ {�=,=, <,≤, >,≥}

– An expression If(X,Y,Z), where X is a logical formula or a comparison
formula and Y,Z are any generalized If-formula.

Here, If(X,Y,Z) : B × K × K −→ K satisfies the axioms:

1. If(true, X ,Y) = X
2. If(false, X ,Y) = Y

Definition 3. (SSRE) Consider a set of variables Xi(n) ∈ K,
i ∈ V = 1, . . . , k, ω ∈,R, an SSRE is a system of the form:

Xi(ω) = fi(Xj(ω)γ)), (j, γ) ∈ εi,∀ω ∈ R (4)

where fi(Xj(ω)γ)) is a generalized If-formula of the recurrence stochastic
differential equation given in Eq. (3). The set εi is a finite non empty subset of
1, . . . , k × N. The integer γ denotes the delay.

2.2 Latin Hypercube Sampling

To study parameter variation effects on the behavior of hybrid systems, an opti-
mal exploration of the variation domain of the parameter values is very important
in order to achieve a good accuracy and avoid non-informative verification runs.
Traditional sampling techniques (e.g., Pseudo Random Sampling (PRS), Frac-
tional Factorial, Central Composite, etc.) only arrange parameter values at some
specific corners in the parameter space and can not handle multivariate stochas-
tic parameters especially in terms of correlation. Consequently, when performing
verification, it cannot mimic the system behavior in a global system parameter
space. We first look at PRS as applied in the estimation of system failure in order
to justify the use of Latin Hypercube Sampling (LHS). It has been demonstrated
that the LHS technique gives samples that could reflect the integral distribution
more effectively with a reduced samples variance [14]. Figure 1 illustrates the
differences while using Monte Carlo PRS and Gaussian Monte Carlo LHS of a
random normal parameter of transistor width for 1000 trials.

In the sequel, we explain the Latin Hypercube Sampling (LHS) main steps
to generate a sample size N from n hybrid system parameter variables ξ =
[ξ1, ξ2, . . . , ξn] with the probability distribution function fξ(.).
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Fig. 1. Sampling differences between Monte Carlo PRS and LHS

First, the approach involves the partitioning of the range of each system
parameter variable into N non overlapping intervals on the basis of equally
probability size 1

N . One value from each interval is randomly selected w.r.t. the
conditional probability density in the variation interval defined by the technology
library. The N values thus obtained for ξ1, are paired in a random manner with
the N values of ξ2. These N pairs are combined in a random manner with the N
values of ξ3 to form N triplets, and so on, until a set of N × n-tuples is formed.
The choice of this sampling technique can be justified by its variance sampling
reduction, which results in a better sampling coverage and consequently a better
verification coverage [15].

2.3 Hypothesis Testing

Hypothesis testing [16] uses statistics to make decisions about the acceptance
or the rejection of some statements based on the data from random samples. In
this technique, the property of interest is formulated as a null hypothesis (H0)
which is tested against an alternative hypothesis (H1). If we reject H0, then the
decision to accept H1 is made.

Definition 4. Given the property P within the ambit of a null hypothesis H0,
a significance level α, and a test statistic T , hypothesis testing is the process of
verifying whether a system S satisfies H0 with a probability greater than or equal
to α (i.e., S |= Pr(T ) ≥ α).

As depicted in Fig. 2, Hypothesis testing can be a one side test (upper test or
lower tes) or two sided. In the case of a two sided test for example, we can verify
if a variable X is within a bounded region [x1, x2] as follows:

H0 : P (x1 < X < x2) = P (X < x2) − P (X < x1) = 1 − α (5)
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Fig. 2. Hypothesis testing concept

Following are the central steps to carry out hypothesis testing:

1. Elucidate the property to be verified and formulate it as H0 and H1.
2. Specify the appropriate level of significance α and determine the type of the

test, namely, upper test, lower test or two sided test.
3. Select the appropriate test statistic.
4. Compute the critical region or p-value of the test statistic.
5. Compute the test statistic of the observed value for the original data.
6. Make the decision of accepting or rejecting the null hypothesis H0. If the

computed test statistic falls in the critical region, then the null hypothesis is
rejected, otherwise H0 is accepted.

The performance criteria of this approach is related to two types of errors as
shown in Table 1:

Table 1. System verification classification

Passed Failed

Good System � Type I error

Failed System Type II error �

Type I error (α) or false positive, the null hypothesis H0 is true but the
decision based on the testing process erroneously rejected it. In other words, it
represents the probability of accepting H0 when H1 holds.
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Type II error (β) or false negative, the null hypothesis H0 is false but the test-
ing process concludes that it should be accepted. In other words, it corresponds
to the probability of accepting H1 when H0 holds.

3 Proposed Methodology

An overview of the proposed methodology for intertwined forward/backward
reachability analysis is shown in Fig. 3. Given a nonlinear hybrid system descrip-
tion, SSREs that express its stochastic behavior under noise perturbation are
generated. The proposed SSRE formalism features a sound treatment of noise.
It actually allows a consistent consideration of the noise effect to which the
system is incurred during the reachability analysis process. More details about
the system uncertainties modeling can be found in [17]. Then, parameter values
from a certain distribution of the parameter space are derived using the efficient
LHS technique. Next, reachability bounds of the hybrid system for a continuous
set of initial conditions, and under the derived system parameters are generated
using a novel intertwined forward/backward reachability analysis technique. The
reachability computed using SSRE system model with parameters selected by
the LHS procedure and for initial conditions that are defined within intervals
(n-cubes) is based on the global optimization theory. The SSRE is not solved for
every initial condition value but it employs the reachability analysis algorithm
to optimize the search for the global extremum.

The output of this step is a refined reachability set generated from the back-
ward reachability correction that includes all possible actual behaviors (trajec-
tories) of the system. The main advantage of the proposed verification scheme
is its generality and scalability. In fact, it does not make any assumption about
the nature of the hybrid system dynamics: it works for any hybrid system with
linear and nonlinear behavior. Next, appropriate null and alternative hypothe-
ses are formulated from a certain SSRE specification of the hybrid system under
verification. For each selected system parameters in the reachability iteration,
Hypothesis Testing based Monte Carlo (MC) technique is conducted to estimate
the system parametric failure which refers to failures caused by the deviation
between manufactured system parameter values and intended parameter values.
Each time the null hypothesis H0, which represents the desired system prop-
erty, is rejected, we draw a conclusion that the system fails to comply with its
property and so we increment the number of system failures Nfailure. Finally,
the system yield rate is computed based on the probability of failure PFailure as
follows:

PFailure =
Nb. of Rejected H0

Total Nb. of MC Trials

Y ield = 1 − PFailure
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Fig. 3. Proposed verification methodology

3.1 Forward-Backward Reachability Analysis

Definition 5. (Reachability Analysis) Reachable set (or bounds) is the collec-
tion of all possible trajectories or states of the hybrid system dynamical behavior
originated from an interval of initial conditions. Mathematically, this can be
defined as follows:

XReachable set = {x ∈ R
Nx | XL ≤ x ≤ XU} (6)

where XL is the lower reachable bound of the reachable set (or region) and XU

is the upper bound of the reachable set.

The proposed intertwined reachability analysis approach is shown in Fig. 4.
The definition of reverse time dynamics of the SSRE model allows the for-
ward/backward reachability exchange. The detailed implementation of the inter-
twined reachability analysis approach is summarized in Algorithm 1. Hybrid
dynamical systems: An introduction to control and verification. Given an inter-
val system of stochastic differential equations (an SSRE whose initial conditions
are intervals), the algorithm defines the region of uncertainty of the system as an
hypercube (n-cube) at time t0 (Lines 3 and 18). Hence, the reachability analysis
problem at a given simulation time point t∗ for each system output (or state
space) is equivalent to finding the maximum and minimum bounds of the SSRE
model. In the proposed algorithm, the reachability analysis problem is so cast
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Algorithm 1. Intertwined Forward/Backward Reachability Analysis
Require: SSRE : Hybrid System Model, X0 : Interval of Initial Conditions, P : System parameters,

Nx : Number of state variables, t0 : Initial time, tf : Final time
1: for t∗

1 ← t0 to tf do
2: for j ← 1 to Nx do
3: Xext(t

∗
1) = Generate(X0) � external surface of the uncertainty region

4: Xmax(t
∗
1 , j) = −∞

5: Xmin(t
∗
1 , j) = ∞

6: for each state variable Xext(j) ∈ Xext do
7: Const = UpdateConstar(j, SSRE, P, Xext)
8: Grad = UpdateGrad(j, t∗

1 , SSRE, P, Xext))
9: [Xmax(t

∗
1), Xmin(t

∗
1)] = Global Opt(SSRE, j, t0, t∗

1 , P, Xext), Grad, Constr)
10: end for
11: BLForward

(t∗
1) ← Xmin(t

∗
1)

12: BUForward
(t∗

1) ← Xmax(t
∗
1)

13: update forward(t∗
1 , Δt)

14: end for
15: end for
16: for t∗

2 ← tf to t0 do
17: for j ← 1 to Nx do
18: Xext(t

∗
2) = Generate(BLForward

(t∗
2), BUForward

(t∗)) � external surface of the
approximate reachability bounds

19: Xmax(t
∗
2 , j) = BUForward

(t∗
2 , j)

20: Xmin(t
∗
2 , j) = BLForward

(t∗
2 , j)

21: for each state variable Xext(j) ∈ Xext do
22: Const = UpdateConstarB(j, SSRE, P, Xext)
23: Grad = UpdateGradB(j, t∗

2 , SSRE, P, Xext))
24: [Xmax(t

∗
2), Xmin(t

∗
2)] = Global OptB(SSRE, j, tf , t∗

2 , P, Xext), Grad, Constr)
25: end for
26: BLcorrected

(t∗
2) ← Xmin(t

∗
2)

27: BUcorrected
(t∗

2) ← Xmax(t
∗
2)

28: update backward(t∗
2 , Δt)

29: end for
30: end for

into a constrained multivariable nonlinear global optimisation problem. It was
proven that under continuity condition, it is sufficient to compute the evolution
of the external surface of the uncertainty region [18]. This means that to calcu-
late the reachable bounds, it is sufficient to compute the trajectories emanating
from the external surface of the region of the uncertainty region.

The extreme functions (Max and Min) at a specific time t∗ of the system
equations SSRE(t∗, j,Xext),∀j = 1, . . . , Nx, which bound the system behavior,
are first computed using the forward reachability analysis. We used the MAT-
LAB Optimization solver [19] based on trust regions (Lines 1 to 15) to get
these extreme functions of SSRE(t∗, j,Xext),∀j = 1, . . . , Nx by fixing the time
variable to t∗ and constraining the system behavior to evolve over the external
uncertainty region (Line 7). The computed optimization point is then passed to
the SSRE model, which uses Xext as initial conditions and generates a partial
derivatives (gradient) values that are used to control the stability of the reach-
ability analysis (Line 8). The algorithm terminates if the optimisation method
considers SSRE(t∗, j,Xext),∀j = 1, . . . , Nx as an extremum;

Otherwise the gradient values are used to select new points from the external
uncertainty region Xext and the above described steps are repeated. Athough
this step guarantees the completeness of the reachability set, the upper and lower
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Fig. 4. Intertwined reachability analysis concept

obtained reachable sets are highly overbounded due to the wrapping effect. One
way to tighten the reachability space is to conduct a backward reachability
(Lines 16 to 30). Starting from the final computed set (Line 18), the backward
optimization algorithm is now performed on the hybrid system SSRE reversed in
time in order to compute backwards the reachability bounds and consequently
correct the overbounded forward reachability set.

4 Application: PLL Frequency Synthesizer

In this section, we validate our proposed intertwined forward reachability analy-
sis with backward correction methodology on a Phase Locked Loop (PLL) mixed
signal design. More details about PLL case study as well as the results of another
application are reported in [17]. All computation and hybrid system models
were integrated in MATLAB environment and were run on a 64-bit Windows 7
machine with 2.8 GHz processor and 24 GB memory. The hypothesis testing is
conducted for a level of significance α = 5%.

The PLL based frequency synthesizer is a basic and essential block of modern
communication systems. It is basically a feedback circuit that tries to reduce the
phase error between the input and the reference signals. In this case study, we
consider a simple frequency synthesizer, that generates an output signal whose
frequency is N times the frequency of the reference signal. We consider for this
application a Sine wave reference signal with a frequency of ω0, the PLL output
is a Cosine wave signal with frequency N × ω0.
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Fig. 5. PLL design block diagram

Figure 5 shows a block based description of a second order PLL based fre-
quency synthesizer. It consists of a reference oscillator, a Charge Pump (CP), a
Low Pass Filter (LPF), and a Voltage Controlled Oscillator (VCO). In order to
model this PLL using SSREs notation, we need to model each block separately
and then link them according to the PLL architecture in Fig. 5. The noise consid-
ered in this case study is the random temporal variation of the phase (a.k.a jitter)
in the reference oscillator and the VCO block. It is well-known that jitter is the
most dominant and critical noise metric in PLL because large jitter can modulate
the oscillator signal both in frequency and amplitude. These modulation effects
can cause a deviation in the phase from targeted locking range and hence results
in a design failure. The efficient verification of PLL for a certain design specifi-
cation has always been a challenge for circuit designers. We apply the proposed
methodology to verify the locking property of a second order PLL design shown
in Fig. 5. The lock time property is a safety property that expresses how fast the
frequency synthesizer switches from one frequency to another. The verification of
this property is achieved by checking that the PLL reaches the proper DC value
within the lock time parameter range which is ∈ [0.002, 0.0024] seconds.

This property is defined within the ambit of an SSRE model in Eq. (7), where
the SSRE concatenation operator (∧) indicates that the two Boolean expressions
hold simultanuously.

Property PLL = If(Filter out(Lock timemin + n) ∈ DC level range ∧ (7)
Filter out(Lock timemax − n) ∈ DC level range, true, false)
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The verification property is For a given confidence level α, and N Monte Carlo
trials, what is the probability that the PLL meets the lock-time requirement?.

In this case, the PLL has been designed with a lock-time in the range of [0.002 ,
0.0024] sec. Hence, the null hypothesis H0 and the alternative hypothesis H1 of
the Property in Eq. (7) can be, respectively, expressed as:

H0 : lock time ∈ [0.002, 0.0024]
H1 : lock time /∈ [0.002, 0.0024]

Fig. 6. PLL Output with and without phase noise (Color figure online)

Figure 6 depicts a comparison between the locking property of the PLL design
whose parameter values are listed in Table 2 with and without jitter. A compari-
sion of the same reachability algorithm without backward refinement [20] for the
PLL design is given in [17]. It can be remarked that in the case of jittery PLL
(red dotted line), the low pass filter outputs do not stabilize to the tolerated DC
level and keep fluctuating outside the tolerated range. As a result, the PLL lock-
ing property is violated and the verification fails. Therefore, the verification of
the PLL with consideration of jitter is very important when performing reach-
ability analysis. Now, we validate our proposed intertwined forward/backward
reachability technique on the jittery PLL design for an entire range of initial con-
ditions and with consideration of parameter variations. The derived forward and
backward reachable bounds are shown in Fig. 7, in which the forward reachabil-
ity bound is painted in red and the backward reachability bound in green. In the
forward iteration, the reachable set is highly over-approximating the PLL behav-
ior. By performing the backward correction, we were able to tighten up this over-
approximation and trace back the circuit dynamics down to the initial condition.
The results of the PLL yield estimation using a variant of statistical Monte Carlo
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Table 2. PLL frequency synthesizer parameters

Name Value Unit

RC 0.0001 s

α exp( −108

0.0001
) -

Vc 5 V

ω0 π × 106 rad.Hz

ωvco 2π × 106 rad.Hz

Kvco
2ωvco

Vc
rad.Hz

DClevel 2.5 V

technique [21] called Monte Carlo-Jackknife (MC-JK) and our proposed inter-
twined reachability technique are summarized in Table 3. It is worth mentioning
that our technique converges in one iteration only while Monte Carlo technique
requires thousands of runs. From Table 3, it can be noticed that our proposed
method finds a lower yield percentage compared to the statistical Monte Carlo
scheme in [21]. This can be explained by the fact that our verification approach
can weed out PLL locking failures that were not covered in [21].

Fig. 7. Intertwined forward/backward reachability analysis of PLL under jitter
(Color figure online)

In addition, the presence of combined jitter, initial conditions and process
variations (Columns 8−10) have substantially decreased the PLL yield, meaning
the PLL presents more probability of lock failure.

The presence of jitter alone has shown a lower yield rate. This can be justified
by the high sensitivity of the VCO block to jitter. The failure of the PLL is not
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Table 3. Verification results for the PLL Lock-Time property

N= Phase noise only Parameter variation only Phase noise & P.V

[21] Our method RE [21] Our methodRE [21] Our methodRE

Yield (%) Yield (%) (%) Yield (%) Yield (%) (%) Yield (%) Yield (%) (%)

1000 82.4 74.1 8.3 84.7 79.2 5.5 80.6 71.5 9.1

83.3 71.7 11.6 80.9 76.3 4.6 78.2 68.9 9.3

81.7 69.8 11.9 79.2 72.7 6.5 77.5 67.3 10.2

5000 83.6 73.1 10.5 85.8 81.6 4.2 81.8 72.3 8.7

80.2 72.3 7.9 81.9 77.8 4.1 78.2 70.1 8.9

79.8 70.8 9 80.7 74.4 6.3 78.2 68.6 9.6

10000 81,7 69.9 11.8 83.6 79.7 3.9 80.2 66.1 14.1

79.6 67.1 12.5 80.3 74.4 6.1 78.1 62.6 15.3

78.1 65.9 12.2 81.9 71.8 10.1 76.8 60.1 16.7

due to lock up (non oscillation) of the VCO but, due to either an “ugly” (i.e.,
fluctuates outside the tolerated region) or delayed oscillation.

The Relative Error (RE) between our proposed approach and the MC tech-
nique (Columns 4, 7 and 10) becomes more pronounced when the number of
Monte Carlo trials is increased due to the high MC sampling variance.

5 Conclusion

This paper presents a novel methodology for modeling and verification of non-
linear hybrid systems by computing reachable sets of possible state-space tra-
jectories in the presence of uncertainties. In contrast to methods that use solely
forward reachability, the refinement of the reachable state space is carried out
in an intertwined forward/backward manner. The resulting set, which contains
all periodic and aperiodic time bounded behaviors of the system under para-
meter variation and initial condition disturbance, can be used to verify critical
properties such as bounds on voltages, currents, and cycle time (frequency) of
embedded designs. Statistical verification based on hypothesis testing is then
conducted on the resultant corrected reachable sets for an accurate parametric
system failure estimation. Experimental results show that our intertwined for-
ward/backward reachability analysis can succeed in accurately estimating the
system failure rate (a.k.a yield) by reducing the highly over-approximation of
the forward scheme in the presence of noise and process variations. Experimental
results of a second order PLL application, our algorithm outperforms existing
methods by providing up to 17% more reliable yield estimation of the locking
time property. However, the computational cost of the proposed methodology
highly increases with the number of process parameters and system properties
to be verified. In our future research, we will further investigate the possibility
of adopting efficient heuristics and parallelization techniques that may address
the computational time issue. We plan to verify complex systems in presence of
transient faults uncertainty [22] and that involve multiple performance metrics.
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