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Abstract—This paper investigates the energy efficiency opti-
mization in a wireless communication network where devices are
wirelessly powered via unmanned aerial vehicle (UAV) to enable
uplink data transmission. First, the path loss of the air-to-ground
channels is minimized by optimizing the position of the UAV
depending on the ground nodes’ service demands. Then, using
the optimized positioning and a closed-form expression for the
energy efficiency, a resource allocation aiming at maximizing the
energy efficiency is developed. To this end, two algorithms are
proposed, using Lagrangian optimization and gradient decent
methods. Numerical results and comparisons are provided. In
particular, the results show an enhancement in energy efficiency
and reduced wireless power charging time when the ground
nodes’ demands are taken into consideration.

Index Terms—Energy Harvesting, Energy Efficiency; MIMO;
Wireless Power Transfer; Unmanned Aerial Vehicle (UAV).

I. INTRODUCTION

Unmanned aerial vehicles (UAVs), with their high agility
and affordable cost, have been receiving significant attention
for many applications, including weather forecasting, traffic
control, cargo transport, site fire detection, emergency and
rescue situations, and communication systems [1]. Recent
reports from the federal aviation administration (FAA) show
that the number of UAVs will be increasing rapidly in the
coming years [2].

Among the wide range of applications enabled by UAVs,
their use for achieving high-speed communications is predicted
to be an essential part in wireless systems of the future.
Along with massive multiple-input multiple-output (MIMO),
millimeter wave (mmWave) communications, and energy har-
vesting, it is expected that the use of UAVs will be one
of the most important concepts for the upcoming 5G and
beyond, where high data rates shall be provided with better
reliability, lower latency, and decreased power consumption
compared to the state-of-the-art [3]. Many big corporations
started testing UAVs in their platforms. For instance, the
possibility of deploying UAVs for Internet connectivity in
remote areas has been investigated by Facebook and Google
[4]. Also, Qualcomm is exploring the integration of UAVs in
current LTE and future 5G cellular applications [5].

Although the deployment of UAVs in communication net-
works is promising, it comes with a lot of design challenges
and reliability problems. For instance, since different network
topologies can result due to the mobility of UAVs, effective
coordination schemes should be in place to ensure reliability
of the network connections, and new communication protocols
should be designed accordingly [5]. Also, one of the most

critical challenges is the management of the limited on-board
energy resources. The energy consumption of the UAV mainly
originates from two parts: the transmit/receive platform, and
the hardware and mobility [6]. Due to their adjustable altitude
and mobility, efficient line-of-sight (LoS) between UAVs and
ground nodes (GNs) could be established, thus mitigating
signal blockage and shadowing. By this feature, UAVs promise
to be an efficient solution to charge battery-limited or hard-
to-reach devices through radio frequency (RF) wireless power
transfer (WPT) [7].

Several works focus on the resource allocation to enhance
the performance of UAV-assisted networks. For instance, op-
timization of the throughput for a relay-based UAV system is
considered in [8] by jointly controlling the UAV trajectory and
the source/relay transmit powers. The work in [7] suggests
a design based on optimization of the UAVs trajectory to
enhance throughput while taking into consideration the energy
consumption of the UAV which tries to maximize the amount
of energy transferred to GNs during a finite charging period.
A placement algorithm is suggested in [9] to efficiently use
the UAV transmit power and maximize the coverage of GNs.
Throughput maximization of UAV-powered device-to-device
communication is investigated in [10], by jointly optimizing
the time and power assuring the energy causality constraint on
the transmitter side.

Most of the aforementioned works considered single-
antenna UAV in their models. Moreover, the details of the
air-to-ground channels were not taken into account in most
of them. To efficiently use the UAV as a WPT source to
charge GNs, a precise resource allocation management has to
be conducted to meet the requirements of the energy-limited
GNs.

In this work, we address the optimization of the energy
efficiency of a system where a multiple-antenna UAV powers
GNs via RF WPT, and the energy harvested by the GNs is
used for their communication with a terrestrial base station
(BS) equipped with a massive antenna array. Within a time
slot, the energy harvesting and the information transmission
are not conducted at the same time [11]. Accordingly, a time
allocation scheme should be in place to specify the optimal
timing for switching between the two operations. Moreover,
the quality-of-service of the GNs should be guaranteed. Taking
into account the said constraints, optimization of the position
of the UAV is conducted according to the demands of the
GNs, by minimizing the path loss. Afterwards, maximization
of the energy efficiency of the communication system is done
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Fig. 1. System Model.

by optimizing the transmit powers towards the GNs and their
corresponding wireless power charging time.

The sequel of the paper is organized as follows. Section
II details the system model. The optimization problem is
formulated and solved in Section III. Numerical results are
presented in Section IV. Finally, Section V concludes the
paper.

II. SYSTEM MODEL

The hovering UAV, equipped with Nu antennas, transmits
power wirelessly to GNs during a duration τ which is re-
peated every time slot T . For simplicity, the 2-user case is
considered in this work. From a time slot to the other, the
position of the UAV can vary according to the demands of
the GNs. Within a time slot, each GN harvests energy from
the UAV during time τ , and by applying the harvest-then-
transmit protocol consumes the harvested energy to transmit
its always-available data to the BS during the remaining
slot time of T − τ , according to a TDMA-based orthogonal
multiple access (OMA) scheme, as shown in Fig. 1. The BS is
equipped with a massive antenna array of Nb elements, and its
position is denoted (Xb, Yb, hb). Without loss of generality, the
positions of the GNs are set to (X1, Y1, h1) = (R/2, 0, 0) and
(X2, Y2, h2) = (−R/2, 0, 0), as shown in Fig. 1. d1 and d2 are
the distances between the UAV and each GN, respectively. A
quantized level of minimum required rate on the uplink is sent
from the GN to the UAV to indicate its power demand. Based
on this side information, the UAV determines the relative
demand of each GN, denoted µj , such that

∑
j µj = 1. Here,

if GNj has a larger value of µj , then it has a higher rate
demand which means a higher priority in the WPT.

Let hj and gj , j = 1, 2, be the complex channel vectors cor-
responding to the UAV-GNj and GNj-BS links, respectively.
hj is a row vector and gj is a column vector.

On the UAV side, we have hj = h′j/
√
Ld,j , where Ld,j

and h′j = [h′j,1, h
′
j,2, . . . , h

′
j,Nu

] denote the average path-loss
and the normalized channel fading vector corresponding to
UAV-GNj link, respectively. For the case of Rician fading,
the normalized channel vector h′j can be written as [12]

h′j = hLoS, j + hNLoS, j

=

√
K

K + 1
11×Nu

+

√
1

K + 1
hw,j ,

(1)

where K denotes the Rice factor, 11×Nu
denotes a unity row

vector, hw,j is a row vector whose elements are independent
and identically distributed (i.i.d.) complex Gaussian random
variables with zero mean and unit variance; and it is assumed
that the UAV antennas are sufficiently apart for the no spatial
correlation assumption to hold in defining hNLoS, j’s [13].
Further, the average air-to-ground (A2G) free-space distance-
dependent path loss of GNs, Lbd,j in dB, is obtained as follows
[6]:

Ld,j = pLoS, j LLoS, j + (1− pLoS, j) LNLoS, j , (2)

where the LoS and NLoS path losses are given by

LLoS, j = 10 n log10

(
4πfdj
c

)
+ ξLoS, j , (3)

LNLoS, j = 10 n log10

(
4πfdj
c

)
+ ξNLoS, j , (4)

where n denotes the path loss exponent, f is the carrier fre-
quency, c denotes the speed of light; and ξLoS, j and ξNLoS, j
are the average environment-dependent excessive path losses
in dB [14] corresponding to GNj . pLoS, j in (2) denotes the
probability that the UAV has a LoS to GNj , and is given by
[14]

pLoS, j =
1

1 + a exp
(
−b

(
180
π θj − a

)) , (5)

where a and b are constant values related to the environment,
and θj is the elevation angle in radian related to node GNj .
We have θj = arccos(hu/dj), where hu is the altitude of the
UAV and dj is the Euclidean distance between the UAV and
GNj (see Fig. 1). Using (2)–(5), we obtain

Ld,j =
ξLoS, j − ξNLoS, j

1 + a exp
(
−b

(
180
π
θj − a

))+20 log

(
4πfdj
c

)
+ξNLoS, j ,

(6)
where the distance dj is given by

dj =
√

(Xu −Xj)2 + (Yu − Yj)2 + (hu − hj)2, (7)

where (Xu, Yu, hu) indicates the position of the UAV in sky.
The unmodulated transmit signal vector xj(t) from the Nu
UAV antennas is xj(t) = <{

√
2Pjwje

i2πft}, where wj is
the energy beamforming complex vector with unit norm—
assuming availability of perfect channel state information
(CSI) on the UAV side—and Pj is the transmit power destined
for GNj . The maximum harvested energy by GNj from the
UAV during τ dedicated for WPT operation is given by

Ej = ηjPj |hjw?
j |2τ = ηjPj‖hj‖2τ = ηj

Pj
Ld,j
‖h′j‖2τ, (8)

where 0 < ηj ≤ 1 is the energy-harvesting circuit efficiency
[15]. The optimal weight vector w?

j is equal to h†j/‖hj‖ with
† denoting Hermitian transposition; thus leading to the energy
expression as in (8).

The ground nodes use the harvested energy for the uplink
communication with the BS. Without loss of generality, we
assume that the time slot duration T is unity. The received
data signal at the BS from node j is given by

yj =

√
Ej/Lb,j
1− τ gj sj + nj , (9)
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where s ∈ C is the normalized data symbol with zero mean
and unit magnitude, yj ∈ CNb×1, and nj ∈ CNb×1 is
the additive Gaussian noise with zero mean and covariance
matrix E{njn†j} = σ2

j INb
. Further, gj denotes the normal-

ized uplink small-scale fading channel vector distributed as
CN ∼ (0, INb

), and Lb,j is the distance-dependent path loss
of the GNj-BS link. With perfect CSI at the BS, maximum
ratio combining (MRC) is implemented. Assuming that the
channel coefficients hj and gj are constant during each time
slot, the transmission rate related to GNj , considering the
OMA scheme, is given by

Rj(Pj , τ, dj , θj) =
1− τ

2
Wj log2

(
1 +

2Ej‖gj‖2/Lb,j
(1− τ)Γjσ2

j

)

=
1− τ

2
Wj log2

(
1 +

2ηjPj‖h′j‖2‖gj‖2τ
Lb,jLd,j(1− τ)Γjσ2

j

)
(10)

where Wj is the bandwidth related to GNj , Γj > 1 is the
signal-to-noise ratio (SNR) gap to account for the lower per-
formance of physically realizable encoding systems compared
to the ideal Shannon-capacity reaching ones. Note that Ld,j is
itself a function of dj and θj as per (6). The UAV can also
adjust its charging power Pj and charging time duration τ .

Exploiting the idea of channel hardening [16], namely that
limNb→∞

‖gj‖2
Nb

= 1 in large-scale MIMO, (10) becomes

Rj(Pj , τ, dj , θj) =
1− τ

2
Wj log2

(
1 +

2ηjPj‖h′
j‖2Nbτ

Lb,jLd,j(1− τ)Γjσ2
j

)
.

(11)
By using the Jensen’s inequality, we can write

E

[
1− τ

2
Wj log2

(
1 +

2ηjPj‖h′j‖2Nbτ
Lb,jLd,j(1− τ)Γjσ2

j

)]

≤ 1− τ
2

Wj log2

(
1 +

2ηjPjE
[
‖h′j‖2

]
Nbτ

Lb,jLd,j(1− τ)Γjσ2
j

)
(a)
=

1− τ
2

Wj log2

(
1 +

2ηjPjNbτ

Lb,jLd,j(1− τ)Γjσ2
j

)
, (12)

where (a) in (12) gives an upper-bound for the average
transmission rate of GNj . Let us define the throughput as
the sum-rate of the system:

R(P, τ,d, θθθ) =
2∑
j=1

Rj(Pj , τ, dj , θj). (13)

where P = [P1, P2], d = [d1, d2], and θθθ = [θ1, θ2].

III. ENERGY-EFFICIENT POWER ALLOCATION

The energy efficiency of the wireless powered communica-
tion system can be evaluated by defining the energy efficiency
coefficient

ρE =
R(P, τ,d, θθθ)

P0τ + Pτ
, (14)

where P0 is the constant power consumption of the UAV which
significantly includes the electrical power to keep the UAV
moving in air, and P = P1 +P2 is the transmit power. Having

assumed spherical coordinates (dj , θj , φj) and noticing that
Ld,j does not depend on φj , we try to solve the below
optimization problem to decide first on the optimized position
of the UAV in the sky according to the demand parameters,
µ1 and µ2. Then, optimization of the transmit powers, P1,
P2, and the harvesting time τ by both nodes is tackled. The
problem is formulated as follows:

max
P,τ,dj ,θj

ρE

subject to: P1 + P2 ≤ Pu,max,
Ej

1− τ ≤ PGNj ,max, j = 1, 2,

τ < 1,

rj,min ≤ Rj(Pj , τ, dj , θj), j = 1, 2,

hu,min ≤ dj cos(θj), j = 1, 2,

(15)

where PGNj ,max and Pu,max are the maximum transmit
power of GNj and the UAV, respectively; rj,min denotes the
minimum expected transmission rate of node GNj during each
time slot, and hu,min is the minimum allowed height for the
UAV. Note that dj cos(θj) = hu.

We split the optimization problem into two sub-problems.
In the first one (OP1), we aim to find the optimum position of
the UAV, i.e., the optimal distances and elevation angles with
respect to the GNs according to their demands. In the second
problem (OP2), and after getting the optimum position of the
UAV, we determine the optimal power and switching time.

A. The UAV Positioning

In OP1, we care about θj and dj which are given in (6)
for both nodes at the same time. This can be achieved by
connecting the path losses for two A2G channels related to
each node by the parameters pertaining to the nodes’ demands.
So, OP1 will be as follows:

OP1: min
dj ,θj

µ1Ld,1 + µ2Ld,2

subject to: hu,min ≤ dj cos(θj), j = 1, 2.
(16)

This optimization problem can be solved by introducing the
vector of Lagrangian multipliers λλλ = [λ1, λ2]. The objective
function then becomes

L1(λλλ,d, θθθ) = µ1Ld,1 + µ2Ld,2 − λ1hu,min − λ2hu,min
− λ1d1 cos(θ1)− λ2d2 cos(θ2).

(17)

Exploiting the Karush–Kuhn–Tucker (KKT) conditions, one
can get the optimal position of the UAV by solving the first
derivatives of L1 with respect to dj and θj , respectively, as
follows:

∂L1

∂dj
= µj

∂Ld,j
∂dj

− λj

=
20µj

dj ln(10)
− λj cos(θj)

= 0, j ∈ {1, 2}, (18)
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∂L1

∂θj
=
∂Ld,j
∂θj

+ λjdj sin(θj)

=
ab

180

π
(ξLoS, j − ξNLoS, j) exp

(
−b ( 180

π θj − a)
)

(
1 + a exp

(
−b ( 180

π θj − a)
))2

+ λjdj sin(θj)

= 0, j ∈ {1, 2}. (19)

The new value of λj can be simply calculated using the
gradient decent method as follows:

λj(i+ 1) = [λj(i)−4λj
(hu,min − dj cos(θj))]

+, (20)

where λj(i), j ∈ {1, 2}, is the value of λj at the ith iteration,
4λj

is the iteration step, and [x]+ = max(0, x). As a starting
point, we set λj = 0 for j ∈ {1, 2} as mentioned in Algorithm
1 and then update it in each iteration. The output of the
optimization will be the optimum position of the UAV, i.e.
θ∗j and d∗j , corresponding to GNj , j ∈ {1, 2}. Algorithm 1
summarizes the procedure for finding the optimal positioning
of the UAV. Notice that the position of the GNs are known.
The results will be used in the second optimization problem.

Algorithm 1 3D Position Optimization (X∗u,Y ∗u ,h∗u)
Input: [Xj ,Yj ,hj], µj , ξLoS, j , ξNLoS, j for j ∈ {1, 2}; a, b,

hu,min, f .
Output: [X∗u,Y ∗u ,h∗u]

Initialization : [Xu0,Yu0,hu0], λj = 0 for j ∈ {1, 2}.
1: Update λj’s according to (20).
2: Solve (18) for dj , j ∈ {1, 2}.
3: Solve (19) for θj , j ∈ {1, 2}.
4: Compute the optimal [X∗u,Y ∗u ,h∗u] by solving (16)

B. Energy-Efficient Resource Allocation

In OP2, we eliminate the last constraint in (15) which is
already covered by OP1. With the remaining constraints, the
optimization problem is formulated as follows:

OP2: max
P1,P2,τ

ρE

subject to: P1 + P2 ≤ Pu,max,
Ej

1− τ ≤ PGNj ,max, j = 1, 2,

τ < 1,

rj,min ≤ Rj(Pj , τ, d∗j , θ∗j ), j = 1, 2.

(21)

From the first and second constraints in (21), and by substitut-
ing (8) in the second constraint in (21); and assuming that both
GNs have the same maximum transmit power PGN,max and
energy-harvesting efficiency η, we can deduce that τ ≤ τmax,
where

τmax =
PGN,maxLd,1Ld,2

ηPu,max(µ1Ld,2 + µ2Ld,1) + Ld,1Ld,2PGN,max
.

(22)
It is obvious that the objective function of OP2 is a fractional
optimization problem with variables P1, P2, and τ , which
is generally non-convex. Exploiting the idea in [17], the
fractional programming problem is transformed into a convex
problem by introducing the variable z∗ as the optimal energy

efficiency when we have the optimal powers and optimal
switching time, P ∗1 , P ∗2 and τ∗, respectively. Thus, OP2 is
now described as

OP2*: max
P,τ

R(P, τ,d∗, θθθ∗)− z∗(P0τ + Pτ)

subject to: P1 + P2 ≤ Pu,max,
τ ≤ τmax,
τ < 1,

Rj(Pj , τ, d
∗
j , θ
∗
j ), j = 1, 2,

(23)

Basically OP2∗ can be efficiently proved to be a convex
optimization problem by assuring that the second derivatives
of R(P, τ,d∗, θθθ∗) with respect to Pj and τ , are less than zero.

By introducing ϑ ≥ 0, ς ≥ 0, ε ≥ 0, ϕ1 ≥ 0, and ϕ2 ≥ 0 as
the Lagrange multipliers associated with the four constraints
in OP2∗, respectively, the Lagrangian function of OP2∗ can
be formulated as

L2(ϑ, ς, ε, ϕ1, ϕ2, P1, P2, τ) =

R1(P1, τ, d
∗
1, θ
∗
1) +R2(P2, τ, d

∗
2, θ
∗
2)

− z∗(P0τ + Pτ)− ϑ(P1 + P2) + ϑPu,max

− ςτ + ςτmax − ετ + ε− ϕ1r1,min − ϕ2r2,min

+ ϕ1R1(P1, τ, d
∗
1, θ
∗
1) + ϕ2R2(P2, τ, d

∗
2, θ
∗
2).

(24)

To find the optimal transmit powers P ∗1 and P ∗2 from the UAV
towards GN1 and GN2, respectively, we assume that the UAV
will use its maximum power during the WPT period, which
simply means that P ∗2 = Pu,max − P ∗1 . Our aim now is to
get P ∗1 which also implicitly means P ∗2 and the optimal WPT
time τ∗. Taking into consideration that OP2∗ is a nonlinear
programming problem, this can be done through derivation of
the Lagrangian function with respect to P1 and τ , respectively,
as follows:

∂L2(ϑ, ς, ε, ϕ1, ϕ2, P1, τ)

∂P1

= (1 + ϕ1)
∂R1(P1, τ, d

∗
1, θ
∗
1)

∂P1
+ (1 + ϕ2)

∂R2(P1, τ, d
∗
2, θ
∗
2)

∂P1

− z∗τ − ϑ

=
(1 + ϕ1)(1− τ)W1

2P1 ln 2
− (1 + ϕ2)(1− τ)W2P1

2(Pu,max − P1) ln 2

− z∗τ − ϑ
= 0, (25)

∂L2(ϑ, ς, ε, ϕ1, ϕ2, P1, τ)

∂τ

= (1 + ϕ1)
∂R1(P1, τ, d

∗
1, θ
∗
1)

∂τ
+ (1 + ϕ2)

∂R2(P1, τ, d
∗
2, θ
∗
2)

∂τ
− z∗Pu,max − z∗P0 − ς − ε

=
(1 + ϕ1)W1

2

(
(1− τ)

τ ln 2
− log2

(
η1P1Nbτ

Lb,1Ld,1(1− τ)Γ1σ2
1

))
+

(1 + ϕ2)W2

2

(
(1− τ)

τ ln 2
− log2

(
η2(Pu,max − P1)Nbτ

Lb,2Ld,2(1− τ)Γ2σ2
2

))
− z∗Pu,max − z∗P0 − ς − ε
= 0. (26)
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The updating of the Lagrangian variables ϑ, ς , ε, ϕ1 and ϕ2

can be done using the gradient method as follows:

ϑ(i+ 1) = [ϑ(i)−4ϑ(Pu,max − P )]+ (27)

ς(i+ 1) = [ς(i)−4ς(τmax − τ)]+ (28)

ε(i+ 1) = [ε(i)−4ε(1− τ)]+ (29)

ϕ1(i+1) = [ϕ1(i)−4ϕ1
(R1(P1, τ, θ

∗
1 , d
∗
1)−r1,min)]+ (30)

ϕ2(i+1) = [ϕ2(i)−4ϕ2
(R2(P1, τ, θ

∗
2 , d
∗
2)−r2,min)]+, (31)

where i is the iteration index, and the 4ϑ, 4ς , 4ε, 4ϕ1 , and
4ϕ2

are the iteration steps.
The solution of OP2, by depending on the expressions

(21)–(31) and the output of Algorithm 1, is summarized in
Algorithm 2.

Algorithm 2 Energy-Efficient Resource Allocation
Input: Output of Algorithm (1) [X∗u,Y ∗u ,h∗u], [X1,Y1,h1],

[X2,Y2,h2], [Xb,Yb,hb], hu,min, a, b, ξLoS, j , ξNLoS, j , f ,
Nu, Nb, Ld,j , Lb,j , ηj , Γj , σj , r1,min, r2,min, 4ϑ ,4ς ,
4ε, 4ϕ1 , 4ϕ2 , and z∗.

Output: [P ∗1 ,P ∗2 ,τ∗].
Initialization: [P10 ,τ0], ϑ = 0, ς = 0 , ε = 0, ϕ1 = 0,
ϕ2 = 0 .

1: Update ϑ, ς , ε, ϕ1, and ϕ2 based on (27), (28), (29), (30),
and (31), respectively.

2: Solve (25) and (26) jointly to obtain P1 and τ .
3: Compute the optimal [P ∗1 ,P ∗2 ,τ∗] by solving (23).

IV. NUMERICAL RESULTS

In the simulations, we assume the propagation parameters
to correspond to an urban environment [14], unless stated
otherwise. We choose a = 9.6, b = 0.28, ξLoS,j = 1 dB,
ξNLoS,j = 20 dB, f = 2 GHz, Γj = 1.2, Wj = 200 kHz,
ηj = 0.8, σ2

j = 1; for j = 1, 2. The coordinates of GN1,
GN2 and the BS are set to [500 0 0], [-500 0 0] and [0 100
25], respectively. The UAV position is the output of OP1 with
hu,min = 100 m. Moreover, we set P0 = 10 Watt, Pu,max = 3
Watt, Nu = 5 and Nb = 100, unless stated otherwise.

A. 3D Position of the UAV

The proposed algorithm for finding the optimal 3D position
of the UAV, i.e., Algorithm 1, efficiently converges to the
optimal position with respect to dj and θj where j = 1, 2,
after no more than 10 iterations for different initial settings.
Afterwards, this output is used in OP2.

With two GNs, we have three cases: (i) the demand of GN1

is larger than the demand of GN2, i.e., µ1 > µ2; (ii) the
demand of GN2 is larger than that of GN1, i.e., µ2 > µ1;
and (iii) both have the same demand, i.e., µ1 = µ2. These
three cases are clearly illustrated in Fig. 2, which represents
the optimal horizontal location of the UAV depending on the
values of µ1 and µ2. For instance, when µ1 = 0.8 and µ2 =
0.2, the UAV hovers at the position of [300 0 100]. In the
extreme case where the demand of one GN is at most whereas
the other has no demand, the path loss will be on its minimum

with respect to the former node and to the maximum with
respect to the latter. For example, when GN1 has maximum
demand, µ1 = 1, then the UAV will hover directly on top of it,
i.e. at the position [500 0 100]. In the case of same demands,
where µ1 = µ2 = 0.5, the path losses will be the same for
both nodes and the UAV will be at the medium point [0 0
100] between the nodes.
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Fig. 2. UAV position according to the nodes’ demands.

B. Energy Efficiency with Optimal Power and Charging Time

Figure 3 shows the transmit powers from the UAV towards
the GNs, as a function of the demand parameter of GN1, i.e.,
µ1. The figure compares P ∗1 and P ∗2 when the UAV takes the
demand parameters of the GNs into consideration and when
not. It is clear that the UAV transmit power will be divided
equally among the GNs and that the UAV will hover in the
middle between them when demand parameters are not taken
into account. For instance, when µ1 = 0.7 and the UAV takes
the GN demands into account, a power of P ∗1 = 2.45 Watt
and P ∗2 = 1.35 Watt will be allocated towards GN1 and GN2,
respectively. On the other hand, when the UAV does not take
the demands into consideration,the power levels will be fixed
to 1.5 Watt regardless of the nodes’ requirements for the data
communication on the uplink.
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Fig. 3. Transmit power towards GNs versus demand parameter of GN1.

Figure 4 shows the optimal normalized harvesting time,
τ∗/T , for different demand values, which also means for
the different optimized positions of the UAV. The results
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are plotted as a function of µ1, while recalling that the
demands are normalized such such that µ1 + µ2 = 1. The
figure illustrates the usefulness of optimizing the UAV position
according to the GNs’ demands. It is clear that in all cases,
except when the GNs have equal demands, the WPT time
will be lower when the UAV takes the GNs’ demands into
consideration. For example, when µ1 = 0.8 , i.e., µ2 = 0.2,
the normalized harvesting time is almost 0.3 while it is around
0.6 when GNs’ demands are not taken into account. With the
ensuing time savings, the UAV can be used for other missions.
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Fig. 4. Normalized harvesting time versus demand parameter of GN1.

Figure 5 displays the effect of varying demands on the
energy efficiency of the system. Similar to Fig. 4, results are
plotted as a function of µ1. The energy efficiency, when the
optimization of the UAV position does not take into account
the GNs’ demands will be fixed. The energy efficiency with
optimized UAV position based on the GNs’ demands will be
better in all cases. Obviously, the result is the same when the
GNs have the same demand. For instance, when Nb = 100 and
µ1 = 0.75, there is a considerable difference in the energy
efficiency when GNs’ demands are taken into account and
when not. Note that by increasing the number of antennas of
the BS, the energy efficiency increases in all cases.
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Fig. 5. Energy efficiency versus demand parameter of GN1.

V. CONCLUSION

In this work, we have studied the resource allocation prob-
lem in a wireless system where a multiple-antenna UAV is de-

ployed for charging ground nodes through RF wireless power
transfer so as to assist their uplink data communication with a
terrestrial base station. The optimization problem was solved
by exploiting the movement flexibility of the UAV, which
allows minimizing the path loss on the air-to-ground channels
according the nodes’ demands, and optimizing the transmit
powers towards maximization of the energy efficiency of the
system. The results show that significant energy efficiency can
be achieved by the proposed allocation scheme. In particular,
the results show that less wireless power transfer time will
be needed from the UAV to simultaneously charge GNs when
their demands are taken into account. Current investigations
include operation of the system with non-orthogonal multiple
access (NOMA) and comparisons with the OMA scenario.
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