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Abstract—The performance of Wireless Sensor Networks
(WSNs) is traditionally analyzed using simulation or paper-
and-pencil proof methods. However, such methods cannot
ascertain accurate analysis, which is a serious drawback for
safety and financial-critical applications. In order to overcome
this limitation, we propose to use a higher-order-logic theo-
rem prover (HOL) to formally analyze the performance of
WSNs. In particular, this paper presents a generic formal
performance analysis methodology for WSNs using the k-set
randomized scheduling as an energy saving approach. The
proposed methodology is primarily based on the formalized
theories of measure and probability. For illustration purposes,
we formally analyze the performance of a WSN deployed for
volcanic earthquake detection.

Keywords-Wireless Sensor Networks, k-set Randomized
Scheduling, Probabilistic Analysis, Formal Verification, The-
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I. INTRODUCTION

Wireless Sensor Networks are being increasingly used

in many safety-critical applications, like natural disasters

monitoring, railways, and military [1]. Such networks are

basically composed of a collection of battery-powered and

wirelessly-connected tiny devices. In this context, extending

the network lifetime is very critical [1], and thus randomized

nodes scheduling [2] is commonly applied. The main idea

here is to make an efficient collaboration between the nodes

so that they randomly organize themselves into alternatively

working subsets and hence preserving the overall energy

consumption of the system.

The un-deterministic and unpredictable nature of random

scheduling makes it very challenging to analyze for all pos-

sible cases. Traditionally, paper-and-pencil and simulation

based probabilistic techniques have been used to analyze the

performance of random scheduling for WSNs [3,4]. In such

analysis, a mathematical model is built by first identifying

the required random variables and the corresponding perfor-

mance attributes. Then, a rigourous analysis based on the

theoretical foundations of probability is done. Simulation,

using the Monte Carlo method [5], is finally used to validate

the analytical results. Due to the inherent incompleteness of

simulation coupled with the rounding errors of computer

arithmetics, we cannot term these analysis as 100% reliable,

which is a serious limitation for mission-critical WSNs.

Formal methods [6] can overcome the limitations of

simulation and have been used to validate a wide range of

hardware and software systems. Such methods enhance the

analysis reliability using rigorous mathematical techniques

to model and verify the given system. Formal methods

have also been explored for analyzing WSNs but most of

the existing work is focused on analyzing their functional

aspects only. However, given the wide application of WSNs

in safety and financial-critical domains, there is a dire need

to accurately assess their performance as well. The current

paper is mainly focused on fulfilling this requirement.

We propose to use a higher-order-logic theorem prover

(HOL) [7] for the formal performance analysis of any WSN

using the k-set randomized scheduling [3] as an energy

saving approach. The main motivation behind using higher-

order logic is its high expressiveness that can be leveraged

to model any system including its random and unpredictable

components using appropriate random variables [8,9]. The

proposed methodology is primarily based on the formalized

theoretical foundations of the k-set randomized scheduling

and the most relevant performance properties including

coverage, detection and lifetime [2]. This paper provides a

detailed description of the different steps and requirements to

conduct the formal performance analysis of any randomly-

scheduled WSNs. The practical effectiveness of the proposed

methodology is illustrated by presenting the formal perfor-

mance analysis of a WSN deployed for volcanic earthquake

detection. Thanks to the proposed approach, this is the first

time, to the best of our knowledge, that the performance

analysis of this kind of a WSN application is analyzed in a

complete formal manner.

The rest of the paper is organized as follows. We first

survey some related work in Section II. Then, we briefly

present, in Section III, the k-set randomized scheduling for

WSNs. In Section IV, we describe in detail the proposed

methodology for the formal performance analysis of WSNs.

Section V presents some of the already developed for-

malization, including the k-set randomized scheduling and

the coverage property. Section VI presents the illustrative

application for the volcanic earthquake detection. We finally

conclude the paper in Section VII.
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II. RELATED WORK

In [3,4], a coverage-based random scheduling algorithm

has been analyzed using a mathematical model. Then, eval-

uations have been done using a Java simulator by setting

the monitored region to 200m×200m, the detection range

to 10m, and the number of subsets to 6. These simulations

are done using the Monte Carlo method [5]. This widely

used validation method is based on approximately answering

a query on a probability distribution by analyzing a large

number of samples. Statistical quantities, such as expectation

and variance, may then be calculated, based on the data

collected during the sampling process, using their mathe-

matical relations in a computer. Due to the inherent nature

of simulation coupled with the usage of computer arithmetic,

these probabilistic analysis results cannot be termed as 100%

accurate. Moreover, the analysis results are not generic, i.e.,

they are specific to a region, range and number of subsets.

Formal verification has also been used for analyzing

Wireless Sensor Networks. In [10], the state-based formal

verification method, model checking [11], is used to verify

WSNs security aspects in the SLEDE framework. The

effectiveness of this framework has been shown by verifying

two commonly used security protocols and some known se-

curity flaws have been detected. Similarly, a model checking

based framework, called NesC@PAT [12], is also used for

verifying WSNs implementations in NesC. However, in both

of these works, the size of the state-based model increases

exponentially as the complexity of the given WSN grows

leading to the well-known state-space explosion problem.

For example, in [12], it is reported that over 1 million states

are generated in order to verify a single property. In addition,

the two mentioned works do not allow capturing randomness

of WSNs into account, which is a strict limitation since most

of the WSN algorithms are probabilistic.

Besides model checking, HOL theorem proving [7] has

also been used for analyzing WSN algorithms. In [13], a

WSN algorithm is formally modelled, within the PVS sys-

tem, by utilizing a library of mathematically specified sub-

blocks, like nodes, network structure, communication primi-

tives and protocols. Furthermore, the resulting framework is

enriched by some theories expressing probabilistic scenarios

like nodes mobility and link quality changes. The feasibility

of this framework is illustrated by manually analyzing the

trace execution of the Surge algorithm [14], and formally

verifying the correctness of the message delivery for the

Reverse Path Forwarding algorithm [13]. Nevertheless, the

randomness here is modeled by using a pseudo-random

generator, which compromises the accuracy of the analysis.

In [15], the probabilistic analysis foundations developed

in the HOL theorem prover [8,9] have been used to formally

verify some performance characteristics of the k-set ran-

domized algorithm. The results in [15] have been found to

be absolutely accurate since a measure theoretic probability

theory is used to analyze the WSN algorithm within the

sound core of a theorem prover. However, the scope of

this work is limited to performance related to coverage

aspects only. Whereas, there are many other widely used

performance metrics, such as detection probability, detection

delay and lifetime. In the current paper, we extend the ideas

presented in [15] to cater for the formal verification of these

missing performance characteristics.

III. THE K-SET RANDOMIZED SCHEDULING

ALGORITHM FOR WSNS

Consider a WSN that is formed by randomly deploying

n nodes over a field of interest. Every sensor in this WSN

can only sense the environment and detect events within its

sensing range r. During the initialization phase, the k-set

randomized scheduling [3] is run on every node as follows.

Each node starts by randomly picking a number ranging

from 0 to (k − 1). We denote the selected number by i.
Now, the node is assigned to the sub-network Si and will be

turned on only during the working time slot Ti of that subset.

During the other time slots, it will be in the idle state. Hence,

during the time slot Ti, only the nodes belonging to the sub-

network Si will be active and can detect an occurring event.

The scheduling algorithm terminates by creating k disjoint

sub-networks that work independently and alternatively so

that the energy over the whole network can be preserved.

It is important to note that each node joins a single subset

with the same probability 1/k since nodes are uniformly and

independently deployed over the area.

Figure 1. An Example of the k-set Randomized Scheduling for 8 Nodes.

Fig. 1 shows how the k-set randomized scheduling algo-

rithm splits arbitrarily a WSN of eight randomly-deployed

nodes to two subsets. Each node randomly chooses between

0 or 1 in order to be assigned to one of the two subsets, i.e.,

S0 or S1. Suppose that nodes 0; 2; 5 select the number 0

and join the subset S0 and nodes 1; 3; 4; 6; 7; choose the

number 1 and join the subset S1. These two sub-networks

will work alternatively, i.e., when nodes 0; 2; 5, with sensing

ranges denoted by the solid circles, are active, nodes 1; 3;

4; 6; 7, illustrated by the dashed circles, will be idle and

vice-versa.
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IV. PERFORMANCE ANALYSIS METHODOLOGY

The k-set randomized scheduling, as previously described,

is very effective in prolonging the network lifetime of

randomly-deployed WSNs by organizing the nodes into

subsets that work alternatively. Thus, the lifetime of a

WSN is one of its most interesting performance aspect. The

network lifetime, denoted by TNlife, is defined as follows

[16]:

TNlife = k × TSlife (1)

where TSlife is the average lifetime of a typical sensor and

k represents the number of sub-networks.

According to Equation (1), in order to maximize the

network lifetime TNlife, we have to maximize the number

of sub-networks k. Based on the theoretical analysis done

in [16], other performance attributes such as the detection

delay D, the detection probability Pd, and the network

coverage intensity Cn, also depend on the values of k. For

example, a very large k will imply an infinite detection

delay D and a worse coverage Cn, which is not desired.

Consequently, the maximization on the values of k has to

be done accurately while taking into account the bounds of

the main QoS constraints. Thereby, there is an upper bound

on the values of k so that a good coverage can be ensured

with an acceptable delay D. The lifetime maximization is

viewed hence as an optimization problem under Quality of

Service (QoS) constraints and is defined as [16]:
⎧⎪⎪⎨
⎪⎪⎩

1. D ≤ QoSDD

2. Pd ≥ QoSDP

3. Cn ≥ QoSCn

4. n = c.

(2)

where QoSDD, QoSDP , and QoSCn
are predefined QoS

constraints associated to the delay D, the detection probabil-

ity Pd, and the network coverage intensity Cn, respectively,

n is the number of nodes, and c is a constant value.

These QoS constraints mainly depend on specific application

requirements for which the WSN is designed.

The main objective of our work is to develop the founda-

tional formalization to formally verify the key performance

attributes of any WSN using the k-set randomized schedul-

ing as an energy saving approach. For that purpose, the

higher-order-logic formalizations of the the network cover-

age Cn, detection delay D and detection probability Pd, are

required to be developed first. Based on these formalization,

we can then formally verify the optimal lifetime solution

for the above optimization problem, as formulated in (2).

Fig. 2 depicts the basic building blocks of the proposed

methodology while the formalization requirements are repre-

sented by the dark grey shaded boxes. The proposed formal

performance analysis methodology can be summarized as

follows:

Figure 2. Formal Performance Analysis Methodology

1) Formalization of the k-set randomized scheduling al-

gorithm using the HOL definition of the Uniform

random variable [9].

2) Formalization of the coverage attribute and the formal

verification of some of its key properties, including

some asymptotic results, using the existing HOL for-

malizations of expectation [8].

3) Formalization of the detection aspect including the

detection probability of an intrusion, the average delay

spent for a detection and its limiting behavior.

4) Formal specification of the lifetime property as de-

scribed in Equation (1).

5) Formal verification of the optimal lifetime proper-

ties (2) in HOL under QoS requirements depending

on coverage and detection. Here, we mainly require

the coverage and detection theories along with the

corresponding asymptotic analysis developed in the

previous steps.

It is worthy to note that the formalizations steps, men-

tioned above, are mainly based on the paper-and-pencil

probabilistic analysis of the k-set randomized algorithm

available in the open literature [3,16]. Whereas, our main

contribution is to formalize them in higher-order-logic to

facilitate the formal performance analysis of WSNs within

the sound core of the HOL theorem prover.

Due to the wide applicability of the k-set randomized

algorithm to prolong the lifetime of randomly-deployed

WSNs, the proposed methodology can be used for analyzing

the performance of various real-world applications, such as,

environmental outdoor monitoring [17] or enemy intrusion

detection.

In summary, we believe that the proposed methodology

for the formal performance analysis of WSNs is distin-
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guishable from previous works done by simulation or model

checking in several aspects. Indeed, it

• allows the formal performance analysis of a variety of

critical aspects associated with the k-set randomized

scheduling, due to its modularity,

• provides the verification of generic, universally quanti-

fied, theorems,

• ensures accurate results due to the mathematical nature

of the models and the soundness of theorem proving,

• facilitates analyzing a wide range of real-world WSN

applications.

V. FOUNDATIONAL HOL FORMALIZATIONS

In this section, we present the HOL formalization related

to the first two steps of the proposed methodology, depicted

in Fig.2.

A. Formalization of the k-set Randomized Scheduling

The main idea of the randomized scheduling of nodes, as

described in Section III, is to randomly assign a sub-network,

out of the k available options, to each node. This assignment

is done uniformly in order to have a fair distribution of

nodes. We modeled this behavior in higher-order logic as

follows:

Definition 1.
� (∀ k. rd_subsets 0 k = []) ∧

(∀ c,k. rd_subsets (c+1) k =
(prob_uniform k)::(rd_subsets c k)).

The function rd_subsets generates a list of Uniform

random variables, and accepts two parameters: c, the number

of sensors that covers a specific point inside the field, and k,

the number of sub-networks. In this definition, we use the

predefined HOL function prob_uniform [9] which takes

as input a natural number k and generates a Uniform (k)

random variable.

B. The Coverage Theory

Since the assignment of the sensor nodes to the k sub-

networks is randomly done, it may happen that some of

the sub-networks are empty. Moreover, due to the random

deployment of nodes, the random scheduling can lead to a

situation where certain parts of the area are not monitored

at all or simultaneously monitored by many sensors. While

analyzing nodes scheduling schemes, we are usually inter-

ested in finding the probability that an occurring event can

be detected at each point of the region by at least one active

sensor. Each point of the area is hence characterized by a

coverage intensity Cp, which is defined as the average time

during which the point is covered in a scheduling cycle [3].

Cp =
E[X]× T

k × T
(3)

where E[X] denotes the expectation of the random variable

X describing the total number of non-empty subsets, i.e.

X =
k−1∑
j=0

Xj (4)

where Xj is the Bernoulli random variable which value is

1 in case of a non-empty subset.

The coverage intensity of a WSN using the k-set ran-

domized scheduling can be formalized in higher-order logic

as a function cvrge_intsty_pt [15] that accepts two

parameters, i.e., the number of sub-networks k and the

number of nodes c covering a specific point inside a field.

It utilizes the formalized Uniform and Bernoulli random

variables to return the coverage intensity of a point using

Equations (1) and (2).

Based on this formalization, we formally verified the

following mathematical expression for the coverage intensity

of a point.

Theorem 1.
� ∀ c,k. cvrge_intsty_pt c k =

1 - (1 - (1/(k+1)))c.

where the variable c above is a Binomial random variable

with success probability q, i.e., the probability that a sensor

covers a given point. Using this fact, the coverage intensity

of the whole WSN with n nodes can be formally defined

as:

Definition 2.
� ∀ q,n,k. cvrge_intsty_network q n k =

expec_fn (λx. 1 + -1×(1 - 1/(k+1))x)
(prob_binomial_p n q).

The HOL function prob_binomial represents the Bino-

mial random variable with n trials and success probability q
[9] and the function expec_fn represents the expectation

of a function of a random variable [9]. While the functions

of type (λx.C x) represent the lambda abstraction functions

in HOL that accept a parameter x and return Cx.

We also verified the following alternate mathematical

expression for cvrge_intsty_network.

Theorem 2.
� ∀ n,q,k. (0 ≤ q) ∧ (q ≤ 1) ∧ (1 ≤ n)
⇒ (cvrge_intsty_network q n k =

(1 - (1-(q/(k+1)))n)).

The assumptions of the above theorem ensure that the

probability q lies in the interval [0,1] and the number of

nodes is at least 1.

The formalization and verification details of the defini-

tions and theorems, presented in this section, are available

in [15]. It is important to note that this was a very tedious

effort, consuming 200 man hours and 1500 lines of code,

mainly due to the un-decidable nature of higher-order logic.

However, these results greatly facilitate the formal analysis

of real-world WSNs as will be illustrated in the next section.
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VI. FORMAL ANALYSIS OF WSN FOR VOLCANIC

EARTHQUAKE DETECTION

In this section, we are interested in formally analyzing

the coverage performance of a WSN for volcanic earthquake

monitoring inside the crater of Mount St. Helens in north-

western U.S [18]. Indeed, due to the safety-critical feature

of the target application and the harsh nature of the field of

interest, it is very important that the deployed WSN remains

alive as long as possible while ensuring a good coverage.

The k-set randomized scheduling algorithm is thus applied

to preserve energy. Hence, the deployed nodes, based on

iMote2 sensors [18], are airdropped into the crater of the

Mount over a radial distance of 100m from the vent [18].

The total size of the area is thus a = 31400m2 while the

sensors have a sensing range r = 40m.

We can formally specify the given volcanic earthquake

application by specializing Definition 1 since it describes

the generic coverage intensity of a WSN. In the specified

application, the success probability q of a sensor covering a

point is given by the ratio of the radius covered by a sensor

with the total area, i.e., q = r/a = 0.127×10−2. Thus, the

coverage network intensity of the given volcanic earthquake

monitoring application can be formalized as follows:

Definition 3.
� cvrge_intsty_volc_WSN n k =

cvrge_intsty_network 0.127×10−2 n k.

The above definition accepts two parameters, i.e., the total

number of sensor nodes n and the number subsets k. It

returns the coverage intensity of the system as the average

value using Definition 1.

The next step in the probabilistic analysis using the

theorem proving approach is to specify the properties of

interest as higher-order-logic proof goals and verify them in

a theorem prover. For our given volcanic earthquake detec-

tion application, we verify the following theorem related to

its coverage intensity by using Theorems 1 and 2.

Theorem 3.
� ∀ n,k. (1 ≤ n) ⇒

(cvrge_intsty_volc_WSN n k =
(1 - (k+0.873×10−2/(k+1))n)).

Based on the formal verification done in Theorem 3, we

now conduct a formal asymptotic analysis of the probabilis-

tic coverage based on WSN parameters n and k. Hence, we

formally verify, in Theorem 4, that the network coverage

intensity Cn is an increasing function of n.

Theorem 4.
� ∀ n,k. (0 < k) ⇒
(mono (λn. cvrge_intsty_volc_WSN n k)).

where mono is the HOL function specifying a monotone

function. Theorem 4 can be used to deduce useful results for

the given application. For example, we can deduce that under

the randomized scheduling, which divides the network into

a given number k of sub-networks, any network coverage

intensity Cn can be achieved by increasing the number of

deployed nodes n.

Besides, we formally verify in Theorem 5 that when n is

very large, Cn tends to its ideal value 1.

Theorem 5.
� ∀ n,k. (0 < k) ∧ (1 ≤ n) ⇒
((λn. cvrge_intsty_volc_WSN n k) --> 1).

where ((λn. f n) → c) indicates that the sequence f tends

to the value c when n is very large.

After the nodes deployment, the number of nodes be-

comes known and fixed. Enhancing the coverage perfor-

mance of the network by increasing the number of nodes n,

as stated in Theorem 4, may not be usually feasible. Indeed,

a second deployment can be very costly in the context

of inhospitable fields, where nodes are usually airdropped.

Contrarily, in the case of the WSN deployed for volcanic

earthquake detection using the k-set randomized scheduling,

it is possible to increase the coverage by adjusting the

number of disjoint subsets k by a suitable value. We can

formally deduce that for a given n and a network coverage

intensity of at least t, the upper bound on the number of

disjoint subsets k is given as follows:

Theorem 6.
� ∀ n,k. (1 ≤ n) ∧ (0 < k) ∧ (t ≤
cvrge_intsty_volc_WSN n k)

⇒ k ≤ 0.127× 10−2

1− e
ln(1−t)

n

.

From the above theorem, we notice an interesting de-

pendency between the number of sub-networks k and the

required coverage. It is hence very interesting to study the

limiting behavior of the network coverage intensity Cn based

on the parameter k. For this purpose, we have been able to

formally verify, in Theorem 7, that Cn decreases with an

increase in the value of k.

Theorem 7.
� ∀ n,k. (0 < k) ∧ (1 ≤ n) ⇒
(mono (λk. cvrge_intsty_volc_WSN n k)).

Consequently, for the volcanic earthquake monitoring ap-

plication, increasing k surely saves more energy, a significant

increase in k may lead to several sub-networks, which in

turns translates to a poor network coverage intensity Cn.

Hence, we formally confirm, in Theorem 8, that given a

number of nodes n, the network coverage intensity Cn goes

to 0 when k becomes very large.

Theorem 8.
� ∀ n,k. (0 < k) ∧ (1 ≤ n) ⇒
((λk. cvrge_intsty_volc_WSN n k) --> 0).
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The analysis described above consumed only 150 lines

of HOL code and thus clearly indicates the effectiveness

of the formal development, presented in Section V. Unlike

the unreliable results from classical analysis techniques, like

paper-and-pencil based analysis or simulation, our results for

this WSN for volcanic earthquake detection are guaranteed

to be accurate. This distinguishing feature is due to the

inherent soundness of theorem proving and its generic

nature, e.g., the coverage intensity for any given values

of n and k can be computed by instantiating Theorem 3

with appropriate values. In addition, the formal verification

of the limiting behavior of Cn allows accurate asymptotic

reasoning of the deployed WSN. Finally, for each of the

formally verified theorems, the set of required assumptions

is clearly stated so there is no doubt about missing a critical

assumption. This feature is not available in classical analysis

techniques where many assumptions can be implicitly taken

into account without explicitly mentioning them.

VII. CONCLUSION

This paper presents a methodology for formally analyzing

the performance of Wireless Sensor Networks that use the

k-set randomized scheduling algorithm to preserve energy.

The main idea of the proposed methodology is to formally

model the given WSN using appropriate random variables

functions and then reason about its coverage, detection and

lifetime properties in the sound core of the HOL theorem

prover. The paper also presents a formal generic model of

a WSN using the k-set randomized scheduling algorithm

and the verification of some widely used coverage aspects.

The usefulness of the proposed approach has been already

shown by verifying the scheduling performance of a real-

world WSN for forest fire detection [19]. In this paper, we

provided, for the first time, a reliable probabilistic analysis

of the design of a WSN for volcanic earthquake detection.
We are currently working on extending the formal reason-

ing support for detection and lifetime aspects as well. This

way, the performance of other interesting case studies, such

as underwater monitoring can also be formally analyzed.
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