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Abstract—In recent times, Wireless Sensor Networks (WSNs)
have shown a great potential for monitoring physical or en-
vironmental conditions in a variety of safety and financial-
critical applications, ranging from medicine to transportation and
surveillance. Given the extreme conditions of most of the WSN
environments, it is very important to make WSN communication
resilient to network failures. Various data transport protocols
have been proposed in the literature to serve this purpose. The
reliability of these WSN data transport protocols is usually
assessed by using Reliability Block Diagrams (RBDs). Tradi-
tionally, RBD-based reliability analyses of WSN data transport
protocols is done using paper-and-pencil proofs or computer
simulations, which cannot ascertain absolute correctness due to
their inherent incompleteness. As a complementary approach,
we propose to use the higher-order-logic theorem prover HOL to
conduct the RBD-based reliability analysis of WSN data transport
protocols. In particular, the paper provides a higher-order-logic
formalization of series, parallel and parallel-series RBDs. These
RBDs are then used to do the formal reliability analysis of
the end-to-end (e2e) data transport mechanism, and the Event
to Sink Reliable Transport (ESRT) and Reliable Multi-Segment
Transport (RMST) data transport protocols.

I. INTRODUCTION

Wireless Sensor Networks (WSNs) [33] are wireless net-
works consisting of spatially distributed sensors and have
been increasingly utilized to monitor and collect field data
from surrounding environment (e.g. temperature, humidity) for
many safety-critical applications including, home automation,
external environmental monitoring and object tracking. To en-
sure continued transfer of field information to the remote users
and make the WSN resilient to network failures, several data
transport protocols, such as Event to Sink Reliable Transport
(ESRT) [27] and Reliable Multi-Segment Transport (RMST)
[31], are developed. Due to the safety-critical nature of some
of the WSN applications, such as aircraft control [32] and
forest fire detection [34], the reliability analysis of these WSN
data transport protocols must be carried out beforehand to
ensure the reliable delivery of information from the field to
the remote user, where appropriate decisions can be made,
to avoid catastrophic events. For instance, the summer 2008
wildfire outbreak in California forests resulted in killing 32
people, injuring at least 34 individuals and destroyed large
portions of the forests [15]. A reliable WSN could have been
used to avoid these damages.

Reliability Block Diagrams (RBDs) [30], which are graph-
ical structures consisting of blocks and connectors (lines),

are commonly utilized to model the behaviour of WSN data
transport protocols in a WSN and thus to analyze the effect of
network failures on the overall WSN reliability [28]. Tradition-
ally, this RBD-based analysis of WSN data transport protocols
has been done using paper-and-pencil proof methods and
computer simulations. The paper-and-pencil method begins by
representing the transmission of message and routing operation
of the given WSN data transport protocol by an appropriate
RBD configuration and the assignment of failure distributions
to these data transport operations. Usually, exponential or
Weibull distributions, with failure rate λ and time-to-failure
random variable, say X , are used in order to express the
reliability of these data transport operations. The reliability
of these data transport operations, along with the RBD of
a WSN data transport protocol, is then used to analytically
derive mathematical expressions for the overall WSN data
transport protocol reliability. Due to the involvement of manual
manipulation and simplification, this kind of analysis is error-
prone and the problem gets more severe while analyzing large
systems. On the other hand, RBD-based computer simulators,
such as ReliaSoft [25] and ASENT Reliability analysis tool
[4], can be utilize to provide a more scalable solution for the
reliability analysis of WSN data transport protocols. These
tools generate samples from the exponential and Weibull
random variables to model the reliabilities of the network
components. This data is then manipulated using computer
arithmetic and numerical techniques to compute the reliability
of the complete communication network. However, they cannot
ensure absolute correctness as well due to the involvement
of pseudo random numbers and numerical methods and the
inherent sampling based nature of computer simulations.

Formal methods [17], which are computer based mathe-
matical reasoning techniques, can be used to overcome the
inaccuracy limitations of the paper-and-pencil proof methods
and simulation for WSN data transport protocols. The main
idea behind the formal analysis of any given system is to
first construct a mathematical model of the given system
using a state-machine or an appropriate logic and then use
logical reasoning and deduction methods to formally verify
that this system exhibits the desired characteristics, which
are also specified mathematically using an appropriate logic.
Formal methods are mainly categorized into two mainstream
techniques: model checking [5] and theorem proving [16].
Model checking is a state-based technique in which system
behavior, specified as a state-machine, is analyzed by verifying
the temporal properties exhaustively over the entire state-space
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of the formal model of the given system within a computer.
While, theorem proving allows using logical reasoning to
verify relationships between a system and its properties as
theorems, specified in an appropriate logic, using a computer.
Both model checking and theorem proving have been used for
the reliability analysis of many real-world systems, including
power generation plants [26], aerospace systems [9] and simple
oil and gas pipelines [3]. However, due to the state-based
nature of model checking, it suits the Markov chain based
reliability analysis quite well. Whereas, in the context of RBD
based reliability analysis, model checking can be used to
analyze the properties of dynamic RBDs (DRBDs) only [26].

In this paper, given the involvement of several elements
of continuous and random nature, we propose to conduct the
formal RBD-based reliability analysis of WSN data transport
protocols [28] within the sound core of a higher-order-logic
theorem prover [16]. In particular, we formally model the
end-to-end (e2e) message delivery, Event to Sink Reliable
Transport (ESRT) [27] and Reliable Multi-Segment Transport
(RMST) [31] data transport protocols in higher-order logic. For
this purpose, we build upon the recently proposed higher-order-
logic formalization of series RBD, which has been used to
conduct reliability analysis of simple oil and gas pipeline [3].
However, this foundational formalization of a series RBD [3]
is not sufficient enough to allow the proposed modelling since
these protocols involve redundancy and thus their modelling
requires parallel RBD configurations. So, we have extended
the series RBD formalization [3] to parallel and parallel-series
RBD configurations in this paper. The paper also provides
the formal verification of the reliability expression for the e2e
message delivery and the ESRT and RMST protocols within
the sound core of a higher-order-logic theorem. To the best of
our knowledge, no formal method have been used to conduct
the RBD-based reliability analysis of these WSN data transport
protocols, where accuracy of the analysis is a dire need.

II. RELATED WORK

The probabilistic model checking tool, PRISM [24], has
been frequently used for the validation of Medium Access
Control (MAC) protocols for WSNs [13], [14], [35]. Besides
model checking, higher-order-logic theorem proving has also
been used for analyzing WSN algorithms. For instance, in
[7], a WSN algorithm is formally modelled, within the PVS
system, and the feasibility of this approach is illustrated by
manually analyzing the trace execution of the Surge algorithm
[6], and formally verifying the correctness of the message
delivery for the reverse path forwarding algorithm [7]. Re-
cently, formal probabilistic analysis of the k-set randomized
scheduling in WSNs has been conducted using the HOL
theorem prover [12]. However, these above-mentioned works
have not been primarily focused on the reliability analysis of
WSNs.

Colored Petri nets (CPN) have been used to model dynamic
RBDs (DRBDs) [26], which are used to describe the dynamic
reliability behavior of systems. CPN verification tools, based
on model checking principles, are then used to verify be-
havioral properties of the DRBDs models to identify design
flaws [26]. Similarly, the probabilistic model checker, PRISM
[20], has been used for the quantitative verification of various
safety and mission-critical systems, such as failure analysis for

an airbag system and the reliability analysis of an industrial
process control system and the Herschel-Planck satellite sys-
tem [23]. However, due to the state-based models, only state
related property verification, like deadlock checks, reachability
and safety properties, is supported by these approaches, i.e.,
we cannot verify generic reliability relationships for the given
systems using the approaches, presented in [26], [23]. Given
the safety-critical nature of WSN transport protocols and thus
the dire need of absolute accuracy, we did not choose these
model checking and numerical methods based solutions for
our work.

The foremost requirement for reasoning about reliability
related properties of a system in a theorem prover is the avail-
ability of the higher-order-logic formalization of probability
theory. Mhamdi’s probability theory formalization [21], which
is based on extended-real numbers (real numbers including
±∞), has been recently used to reason about the RBD-based
analysis of a series pipelines structure [3] and Fault Tree-based
[18] formal failure analysis of satellite’s solar array [2], which
involves multiple exponential random variables. In the current
work, we extend the formalization of [3] to formally reason
about parallel and parallel-series RBDs as well. This extension
would widen the scope of formal RBD analysis as most of the
real-world systems require parallel or a combination of series
and parallel RBDs for modeling their respective behaviors.

III. PRELIMINARIES

To facilitate the understanding of the rest of the paper, this
section provides a brief introduction to the HOL4 theorem
prover [29] and the main formalizations that we build upon,
i.e., probability theory [21] and reliability theory [3].

A. HOL4 Theorem Prover

HOL4 is a higher-order-logic theorem prover and is primar-
ily based on the Church’s type theory [11] and Hindley-Milner
polymorphism [22]. Higher-order logic [10] is an expressive
logic that can be used to formally express any system model
or mathematical expression that can be described in a closed
form. Thus, it supports the formalization of all foundations
of RBDs, such as probability theory, recursive definitions and
continuous random variables. Similarly, interactive theorem
provers allow the users to guide the computer-based proof
tools for verifying goals expressed in undecidable logic, such
as higher-order logic. The HOL4 core contains 5 axioms and 8
inference rules only and soundness is guaranteed by ensuring
that a new theorem can only be verified by applying these
basic axioms and primitive inference rules or some previously
verified theorems.

The system verification process using the HOL4 theorem
prover is generally conducted in three steps: Firstly, the system
is modelled as a higher-order-logic function. Secondly, the
system properties that have to be verified are formalized as
higher-order-logic proof goals. Finally, these proof goals are
discharged using appropriate tactics along with the existing
library of formally verified results. A number of sound and
complete first-order logic automated reasoners are available
in HOL that aid the user by automating some parts of the
proofs. To facilitate the verification involved in the formal
RBD analysis, we propose to develop a library of formally
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verified foundational mathematical results in this domain. For
this purpose, we utilized the HOL theories of Booleans, lists,
sets, positive integers, real numbers, measure and probability
in our work. In fact, one of the primary motivations of
selecting the HOL4 theorem prover for our work was to benefit
from these built-in mathematical theories. Table I provides
the mathematical interpretations of some frequently used HOL
symbols and functions, which are inherited from existing HOL
theories.

TABLE I: HOL Symbols and Functions

HOL Symbol Standard Symbol Meaning
:: cons Adds a new element to a list

++ append Joins two lists together

HD L head Head element of list L
TL L tail Tail of list L

EL n L element nth element of list L

MEM a L member True if a is a member of list L
λx.t λx.t Function that maps x to t(x)
SUC n n + 1 Successor of a num

B. Probability Theory and Random Variables

Based on the measure theoretic foundations, a probability
space is defined as a triple (Ω,Σ, P r), where Ω is a set, called
the sample space, Σ represents a σ-algebra of subsets of Ω,
where the subsets are usually referred to as measurable sets,
and Pr is a measure with domain Σ and is 1 for the whole
sample space. In the HOL4 probability theory formalization
[21], given a probability space p, the functions space and
subsets return the corresponding Ω and Σ, respectively.
Based on this definition, all the basic probability axioms have
been verified. Now, a random variable is a measurable function
between a probability space and a measurable space, which
essentially is a pair (S,A), where S denotes a set and A
represents a nonempty collection of sub-sets of S. A random
variable is termed as discrete if S is a set with finite elements
and continuous otherwise.

The probability that a random variable X is less than or
equal to some value x, Pr(X ≤ x) is called the cumulative
distribution function (CDF) and it characterizes the distribution
of both discrete and continuous random variables. The CDF
has been formalized in HOL as follows [3]:

� ∀ p X x. CDF p X x =
distribution p X {y | y ≤ Normal x}

where the variables p, X and x represent a probability space, a
random variable and a real number, respectively. The function
Normal takes a real number as its inputs and converts it
to its corresponding value in the extended − real data-type,
i.e, it is the real data-type with the inclusion of positive and
negative infinity. The function distribution takes three
parameters: a probability space p, a random variable X and a
set of extended−real numbers and outputs the probability of
a random variable X that acquires all the values of the given
set in probability space p.

Now, reliability R(t) is stated as the probability of a system
or component performing its desired task over certain interval
of time t.

R(t) = Pr(X > t) = 1− Pr(X ≤ t) = 1− FX(t) (1)

where FX(t) is the CDF. The random variable X , in the
above definition, models the time to failure of the system
and is usually modeled by the exponential random variable
with parameter λ, which corresponds to the failure rate of the
system. Based on the HOL formalization of probability theory
[21], Equation (1) has been formalized as follows [3]:

� ∀ p X x. Reliability p X x = 1 - CDF p X x

The series RBD, presented in [3], is based on the notion
of mutual independence of random variables, which is one
of the most essential prerequisites for reasoning about the
mathematical expressions for all RBDs. If N reliability events
are mutually independent then

Pr(
N⋂

i=1

Li) =
N∏

i=1

Pr(Li) (2)

This concept has been formalized as follows [3]:

� ∀ p L. mutual_indep p L =
∀ L1 n. PERM L L1 ∧
1 ≤ n ∧ n ≤ LENGTH L ⇒
prob p (inter_list p (TAKE n L1)) =
list_prod (list_prob p (TAKE n L1))

The function mutual_indep accepts a list of events L and
probability space p and returns True if the events in the given
list are mutually independent in the probability space p. The
predicate PERM ensures that its two lists as its arguments form
a permutation of one another. The function LENGTH returns
the length of the given list. The function TAKE returns the
first n elements of its argument list as a list. The function
inter_list performs the intersection of all the sets in its
argument list of sets and returns the probability space if the
given list of sets is empty. The function list_prob takes a
list of events and returns a list of probabilities associated with
the events in the given list of events in the given probability
space. Finally, the function list_prod recursively multiplies
all the elements in the given list of real numbers. Using these
functions, the function mutual_indep models the mutual
independence condition such that for any one or more events
n taken from any permutation of the given list L, the property

Pr(
⋂N

i=1 Li) =
∏N

i=1 Pr(Li) holds.

IV. FORMALIZATION OF RELIABILITY BLOCK DIAGRAMS

In this section, we present the HOL formalization of series,
parallel and parallel-series RBD configurations by utilizing list
as a basic data-type. The list data-type allows us to verify the
corresponding generic reliability expressions. Moreover, the
definitions, presented in this sections, are mainly recursive and
the proof of the theorems are inductive in nature.

A. Formalization of Series Reliability Block Diagram

The reliability of a system with components connected in
series is considered to be reliable at time t only if all of its
components are functioning reliably at time t, as depicted
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in Figure 1. If Ai(t) is a mutually independent event that
represents the reliable functioning of the ith component of a
serially connected system with N components at time t, then
the overall reliability of the complete system can be expressed
as [8]:

Rseries(t) = Pr(

N⋂

i=1

Ai(t)) =

N∏

i=1

Ri(t) (3)

Fig. 1: Series RBD Configuration

We formalized the serial RBD configuration as follows:

Definition 1: � ∀ p L.
series_struct p L = inter_list p L

The function series_struct takes a list of events L
corresponding to the failure of individual components of the
given system and the probability space p and returns the
series structure event of the complete system. The function
inter_list returns the intersection of all of the elements
of the given list and the whole probability space, if the given
list is empty. Based on this function definition, the result of
Equation (3) can be formally verified as follows:

Theorem 1: � ∀ p L. prob_space p ∧
∼NULL L ∧ mutual_indep p L ⇒
(prob p (series_struct p L) =
list_prod (list_prob p L))

The first assumption ensures that p is a valid probability space
based on the probability theory in HOL4 [21]. The next two
assumptions guarantee that the list of events, representing
the reliability of individual components, must have at least
one event and the reliability events are mutually independent.
The conclusion of the theorem represents Equation (3). It
is important to note that our series_struct definition
accepts a list of reliability events and it is thus different
from the corresponding formalization, presented in [3], which
accepts a list of random variables and is not general enough
to cater for nested RBDs.

B. Formalization of Parallel Reliability Block Diagram

The reliability of a system with parallel connected sub-
modules, depicted in Figure 2, mainly depends on the com-
ponent with the maximum reliability. In other words, the
system will continue functioning so long as at least one of its
components remains functional. If the event Ai(t) represents
the reliable functioning of the ith component of a system with
N parallel components at time t, then the overall reliability of
the system can be mathematically expressed as [8]:

Rparallel(t) = Pr(
N⋃

i=1

Ai) = 1−
N∏

i=1

(1−Ri(t)) (4)

Fig. 2: Parallel RBD Configuration

Now, the reliability of a system with a parallel structure is
defined as:

Definition 2: � ∀ L .
parallel_struct L = union_list L

The function parallel_struct accepts a list of relia-
bility events and returns the parallel structure reliability event,
where the function union_list recursively performs the
union operation on the given list of reliability events.

Based on the above definition, we first formally verify the
following lemma that provides an alternate expression for the
parallel structure in terms of the series structure:

Lemma 1: � ∀ L p. (prob_space p) ∧
(∀ x’. MEM x’ L ⇒ x’ ∈ events p) ⇒
(prob p (parallel_struct L) =
1 - prob p (inter_list p (compl_list p L))

where the function compl_list returns a list of events such
that each element of this list is the difference between the
probability space p and the corresponding element of the given
list.

Now, we can formally verify Equation (4) as follows:

Theorem 2: � ∀ p L. (prob_space p) ∧
∼NULL L ∧ (mutual_indep p L) ∧
(∀ x’. MEM x’ L ⇒ x’ ∈ events p) ⇒
(prob p (parallel_struct L) =
1 - list_prod
(one_minus_list (list_prob p L)))

The above theorem is verified under the same assumptions
as Theorem 1. The conclusion of the theorem represents
Equation (4) where, the function one_minus_list, which
accepts a list of real numbers [x1, x2, x3, · · · , xn] and returns
the list of real numbers such that each element of this list
is 1 minus the corresponding element of the given list, i.e.,
[1− x1, 1− x2, 1− x3, · · · , 1− xn]. The proof of Theorem 2
is primarily based on Lemma 1 and Theorem 1 along with the
fact that given the list of n mutually independent events, the
complement of these n events are also mutually independent.

C. Formalization of Parallel-Series Reliability Block Diagram

Most safety-critical systems in the real-world contain many
reserved sub-stages for backup in order to ensure reliable
operation. If the components in these reserved subsystems
are connected serially then the structure is called a parallel-
series structure, as depicted in Figure 3. If Aij(t) is the event
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corresponding to the reliability of the jth component connected
in a ith subsystem at time t, then the reliability of the complete
system can be expressed as follows:

Fig. 3: Parallel-Series RBD Configuration

Rparallel−series(t) =Pr(
M⋃

i=1

N⋂

j=1

Aij(t)) =

1−
M∏

i=1

(1−
N∏

j=1

(Rij(t)))

(5)

Now using Equation (5), the reliability of the parallel-series
structure can be formalized in HOL4 as follows:

Definition 3: � ∀ p L.
parallel_series_struct p L =
parallel_struct (list_inter_list p L)

The function parallel_series_struct accepts a two
dimensional list L, i.e., a list of lists, along with a probability
space p and returns the corresponding reliability event of the
system constituted from the parallel connection of the serial
stages. The function parallel_struct, given in Definition
2, is used to model the parallel connection while the function
list_inter_list is used to model the serial stages:

Definition 4: � ∀ p L.
list_inter_list p L=MAP (λa.inter_list p a) L

The list_inter_list function takes a list of lists L
and probability space p and returns a list by mapping the
inter_list function on every element of the given two
dimensional list.

Now, we define a recursive function to model the right-
hand-side of Equation (5) in HOL4 as follows:

Definition 5: � ∀ p.
list_rel_list_prod p [] = [] ∧
∀ p h t. list_rel_list_prod p (h::t) =
list_prod (list_prob p h)::
list_rel_list_prod p t

The function list_rel_list_prod accepts a two di-
mensional list of events, representing the time to failure of
individual components connected in a parallel-series structure
along with the probability space p and returns a list of
product of reliabilities of the components connected serially
at every stage. The functions list_prod and list_prob
are used to model the product of reliabilities and the events
corresponding to the component functioning reliably at the
desired time, respectively.

Now, we can formally model Equation (5) as follows:

Theorem 3: � ∀ p L. (prob_space p) ∧
(∀z. MEM z L ⇒ ∼NULL z) ∧
(mutual_indep p (FLAT L)) ∧
(∀x’. MEM x’(FLAT L) ⇒ x’ ∈ events p) ⇒
(prob p (parallel_series_struct p L) =
1 − list_prod
(one_minus_list(list_rel_list_prod p L)))

The first two assumptions in Theorem 3 are similar to the
ones used in Theorem 2. The next three assumptions ensure
that the sub-lists corresponding to the sub-stages are not empty
and the reliability events corresponding to the sub-components
of the parallel-series structure are valid events of the given
probability space p and are mutually independent. The HOL4
function FLAT is used to convert the two dimensional list
into a single list. The conclusion models the right-hand-side of
Equation (5). The proof of the above theorem uses the result
of Theorem 1 and a lemma which states that given the list of
mutually independent reliability events, the reliability event,
associated with a sub-component, is independent in probability
with the event, corresponding to the reliability of a sub-block
of the overall parallel-series structure.

The formalization reported in this paper so far took
about 200 man-hours and more then 4000 lines of HOL4
proof script, which is available for download at [1]. The
most challenging part in the reasoning process was to verify
that given the mutual independence of individual events, the
event corresponding to a sub-configuration (series, parallel or
parallel-series) is also mutually independent from other sub-
configurations and individual sub-modules. The rest of the
verification process was primarily based on probabilistic, set-
theoretic and arithmetic simplification and some parts of the
proofs were also handled automatically using various built-in
automatic provers and simplifiers in HOL4.

The formal verifications of the above mentioned theorems,
which are available in reliability textbooks, guarantee the
correctness of our formal definitions. Moreover, the formal
verification of these properties is expected to facilitate the
process of formal reasoning about RBD-based analysis of
WSN data transport protocols as will be demonstrated in the
next section.

V. FORMALIZATION OF WIRELESS SENSOR NETWORK

TRANSPORT PROTOCOLS

To ensure reliable transport of data within a WSN, several
end-to-end (e2e) data transport protocols, including Event to
Sink Reliable Transport (ESRT) and Reliable Multi-Segment
Transport (RMST), have been developed in the past few years.
These data transport protocols provide resilience to different
kinds of networking failures, such as communication failures
and message losses. In this section, we present the RBD-
based formal reliability analysis of WSN general end-to-end
message delivery mechanism and the commonly used WSN
data transport protocols, i.e., ESRT and RMST.

The ESRT belongs to the end-to-sink class of protocols,
depicted in Figure 4(a), and achieves the optimal operating
point by adjusting the reporting rate of sensor nodes depending
upon the current network load. In this approach, the sink
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Fig. 4: RBDs for the (a) General e2e Data Transport Mech-
anism (b) ESRT Data Transport Protocol (c) RMST Data
Transport Protocol

node is interested in the collective information coming from
a number of nodes instead of the individual sensor report.
Therefore, the data transport in ESRT consists of n-parallel
routing blocks and this behavior can be modeled by using
the parallel RBD configuration as shown in Figure 4(b) [28].
Similarly, RMST is an end-to-end protocol, which utilizes the
Selective Negative Acknowledgment (NACK) retransmission
mechanism to increase the reliability of data transport. There
are two main data transport operations in RMST: (i) Routing is
used to identify potential routes for data transport (ii) Message
Loss Detection (MLD) is used to retransmit transport data
and is thus an essential part of reliable data transmission. By
incorporating these operations, the reliability of the RMST data
transport mechanism, from the sensor nodes to the sink, can
be modeled by using the series-parallel RBD configuration as
shown in Figure 4(c) [28].

In order to formalize the WSN data transport protocols,
presented in Figure 4, we first need to formally model the
reliability events that are associated with operations of the
WSN data transport protocols, such as routing and MLD.
A reliability event list constructed from the list of random
variables can be formalized in HOL4 as follows:

Definition 6: � ∀ p x.rel_event_list p [] x = [] ∧
∀ p x h t.rel_event_list p (h::t) x =
PREIMAGE h {y | Normal x < y} ∩ p_space p ::

rel_event_list p t x

The function rel_event_list accepts a probability space
p, a list of random variables, representing the failure time of
individual components, and a real number x, which represents
the time index at which the reliability is desired. It returns a list
of events, representing the proper functioning of all individual
components at time x.

Definition 7: � ∀ p L x.
List_rel_event_list p L x =
MAP (λa. rel_event_list p a x) L

The function List_rel_event_list accepts a prob-
ability space p, a list of random variables, representing the
failure time of individual components, and a real number x,

which represents the time index at which the reliability is
desired. It returns a two dimensional list of events by mapping
the function rel_event_list on every element of the
given two dimensional list of random variables, which in turn
models the proper functioning of all individual components at
time x. The HOL4 formalization of the exponential distribution
for parallel-series network is as follows:

Definition 8: � ∀ p X l. exp_dist p X l =
∀ x. (CDF p X x = if 0 ≤ x then
1 - exp (-l * x) else 0)

The function exp_dist guarantees that the CDF of the
random variable X is that of an exponential random variable
with a failure rate l in a probability space p. We classify a list
of exponentially distributed random variables based on this
definition as follows:

Definition 9: � ∀ p L. list_exp p [] L = T ∧
∀ p h t L. list_exp p (h::t) L =
exp_dist p (HD L) h ∧ list_exp p t (TL L)

The function list_exp accepts a list of failure rates, a list
of random variables L and a probability space p. It guarantees
that all elements of the list L are exponentially distributed
with the corresponding failure rates, given in the other list,
within the probability space p. For this purpose, it utilizes the
list functions HD and TL, which return the head and tail of
a list, respectively. Next we model a two dimensional list of
exponential distribution functions to model nodes connected
in a series-parallel RBD as follows:

Definition 10: � (∀ p L.
list_list_exp p [] L = T) ∧
∀ h t p L. list_list_exp p (h::t) L =
list_exp p h (HD L) ∧ list_list_exp p t (TL L)

The list_list_exp function accepts two lists, i.e., a two
dimensional list of failure rates and random variables L,
corresponding to the components at each stage of a series-
parallel RBD. It calls the function list_exp recursively
to ensure that all elements of the list L are exponentially
distributed with the corresponding failure rates, given in the
other list, within the probability space p.

Now, we can verify the reliability expression of the e2e
WSN data transport mechanism, shown in Figure 4(a), by
using the formalised series RBD configuration in HOL4 as
follows:

Theorem 4: � ∀ X_fil X_aggr X_rout C_fil C_aggr
C_rout p t.
0 ≤ t ∧ prob_space p ∧
(∀x’. MEM x’
rel_event_list p [X_fil;X_aggr;X_rout] t ⇒

x’ ∈ events p) ∧
mutual_indep p
rel_event_list p [X_fil;X_aggr;X_rout] t ∧

list_exp p [C_fil;C_aggr;C_rout]
[X_fil;X_aggr;X_rout] ⇒

prob p (series_struct p
rel_event_list p [X_fil;X_aggr;X_rout] t =

exp (-list_sum [C_fil;C_aggr;C_rout]*t)
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where the function list_sum returns the sum of all the
elements of the given failure rate list. The first assumption
ensures that the variable t models time as it can acquire
positive integer values only. The next assumption ensures
that p is a valid probability space based on the probabil-
ity theory in HOL4 [21]. The next two assumptions en-
sure that the events corresponding to the failures modeled,
by the random variables X_oper_fil; X_oper_aggr;
X_oper_rout are valid events from the probability space
p and they are mutually independent. Finally, the last as-
sumption characterizes the random variables X_oper_fil;
X_oper_aggr; X_oper_rout, as exponential random
variables with failure rates C_oper_fil; C_oper_aggr;
C_oper_rout, respectively. The conclusion of Theorem 4
represents the reliability of the general e2e WSN data transport
mechanism between sensors nodes to sinks in terms of their
failure rates.

Similarly, the formally verified reliability expression for
the ESRT WSN data transport protocol, by considering n-
parallel routing nodes modeled as a parallel RBD configuration
as shown in Figure 4 (b), is as follows:

Theorem 5: � ∀ X_rout_list C_rout_list p t.
(0 ≤ t) ∧ (prob_space p) ∧
mutual_indep p
rel_event_list p X_rout_list t ∧

∀x’. MEM x’
(rel_event_list p X_routing_list) t ⇒

x’ ∈ events p ∧
list_exp p C_routing_list X_routing_list ⇒
prob p (parallel_struct
(rel_event_list p X_routing_list t)) =

1 - list_prod
(one_minus_exp t C_routing_list)

where the function one_minus_exp takes time index vari-
able t and failure rate list and returns a list of one minus
exponential function, i.e., each element of the list is of the form
1 − exp−c1∗t, where c1 is the arbitrary failure rate variable.
The assumptions of the above theorem are similar to the ones
used in Theorem 4 and the proof of Theorem 5 is based on
Theorem 2 and some basic arithmetic lemmas and probability
theory axioms.

Finally, a generic reliability expression for RMST data
transport protocol, consisting of r-retransmissions and MLD
operations, can be verified in HOL4 as follows:

Theorem 6: � ∀ X_rout X_MLD C_rout C_MLD p t.
(0 ≤ t) ∧ (prob_space p) ∧
(∀z. MEM z (List_rel_event_list p
(RMST_rv_list X_rout X_MLD) t) ⇒ ∼NULL z) ∧

mutual_indep p
(FLAT(List_rel_event_list p
([X_rout]::RMST_rv_list X_rout X_MLD) t)) ∧

PREIMAGE X_rout {y| y ≤ Normal t} ∈ events p ∧
PREIMAGE X_MLD {y| y ≤ Normal t} ∈ events p ∧
LENGTH (RMST_rv_list X_rout X_MLD) =
LENGTH (RMST_fail_rate C_rout C_MLD) ∧
list_list_exp p
([C_rout]::RMST_fail_rate C_rout C_MLD)
([X_rout]::RMST_rv_list X_rout X_MLD) ⇒
prob p (parallel_series_struct p
(list_rel_event_list p

([X_rout]::RMST_rv_list X_rout X_MLD) t)) =
1 - list_prod (one_minus_list
(list_exp_sum
([C_rout]::RMST_fail_rate C_rout C_MLD) t)

where the functions RMST_rv_list and
RMST_fail_rate_list take random variables and
failure rates associated with the routing and MLD operations
and return a two dimensional list of random variables and
failure rates, respectively, where each element of these two
dimensional lists, which is itself a list, contains the random
variables X routing and X MLD and failure rate variables
C routing and C MLD. The function list_exp_sum
accepts a two dimensional list of failure rates and a time
index variable and returns a list of negative exponentials.
The exponent of these exponentials is obtained by applying
the function list_sum, which returns the sum of all the
elements in a given list, on each member of a given two
dimensional failure rate list. For example, list_exp_sum
[[c1; c2; c3]; [c4; c5]; [c6; c7; c8] t
= [exp -(c1+c2+c3)t; exp -(c4+c5)t; exp
-(c6+c7+c8)t]. The proof of Theorem 6 involves
Theorem 3 and some basic probability theory axioms and
some properties of the exponential function exp. The
reasoning process of Theorems 4, 5 and 6 took about more
than 1000 lines of HOL4 script and was very straightforward
compared to the reasoning for the verification of Theorems 1,
2 and 3 [1], which involved probability-theoretic guidance.

The distinguishing features of the formally verified The-
orems 4, 5 and 6, compared to the reliability analysis of the
WSN data transport protocols of Figure 4 in [28], includes their
generic nature, i.e., all variables are universally quantified and
thus can be specialized to obtain the reliability for any number
of routing and MLD operations and for any given failures.
Moreover, these theorems are guaranteed to be complete and
true due to the involvement of a sound theorem prover in their
verification, which ensures that all required assumptions for
the validity of the result are accompanying the theorem. In
addition, these formally verified reliability theorems provide
useful insight to the network design engineers to compare and
correct their estimated reliability results, which are tradition-
ally either obtained through manual manipulation or computer
simulation. For instance, it is very handy to know that the
reliability of these e2e data transport protocols increases with
the increase in the number of data retransmissions. So, by
keeping this in mind, our formalization facilitates the network
design engineers to accurately determine the total number
of retransmissions, which are required to achieve a desired
level of reliability. To the best of our knowledge, the above-
mentioned benefits are not shared by any other computer based
reliability analysis approach for WSN data transport protocols.

VI. CONCLUSIONS

The accuracy of reliability analysis of WSNs has become
a dire need these days due to their extensive usage in safety-
critical applications, where an incorrect reliability estimate
may lead to disastrous situations including the loss of innocent
lives. In this paper, we presented a higher-order-logic formal-
ization of commonly used RBD configurations, i.e., series,
parallel and parallel-series, to facilitate the formal reliability
analysis of WSN data transport protocols within a theorem
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prover. Building upon the results presented in this paper, the
formalization of other commonly used RBDs, including series-
parallel and K-out-of-N, and the Weibull random variable
is underway. Besides WSN, we also plan to utilize these
foundational formalizations to conduct the formal failure and
reliability analysis of the smart grid substations communication
networks [19], which are quite similar to WSNs.
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