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Abstract

Probabilistic techniques play a major role in the design and analysis of wireless systems as they contain a
significant amount of random or unpredictable components. Traditionally, computer simulation techniques
are used to perform probabilistic analysis of wireless systems but they provide inaccurate results and usually
require enormous amount of CPU time in order to attain reasonable estimates. To overcome these limita-
tions, we propose to use a higher-order-logic theorem prover (HOL) for the analysis of wireless systems. The
paper presents a concise description of the formal foundations required to conduct the analysis of a wireless
system in a theorem prover, such as the higher-order-logic modeling of random variables and the verification
of their corresponding probabilistic and statistical properties in a theorem prover. In order to illustrate the
utilization and effectiveness of the proposed idea for handling real-world wireless system analysis problems,
we present an analysis of the automated repeat request (ARQ) mechanism at the logic link control (LLC)
layer of the General Packet Radio Service (GPRS), which is a packet oriented mobile data service available
to the users of Global System for Mobile Communications (GSM).

Keywords: Formal Methods, GPRS, Higher-Order-Logic, Mechanization of Proofs, Probabilistic Analysis,
Theorem Proving, Wireless Networks.

1 Introduction

Wireless communication systems are increasingly being used these days in applica-

tions ranging from ubiquitous consumer electronic devices, such as cell phones and

computers, to not so commonly used but safety critical domains, such as automated

highways and factories, remote tele-medicine and wireless sensor networks. The cor-

rectness of operation for these wireless systems is very important due to financial

or safety critical nature of their applications. Therefore, quite a significant portion
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of the design time of a wireless system is spent on analyzing the designs so that

functionality errors can be caught and reliability and performance metrics can be

evaluated prior to production. Probabilistic considerations play a significant role in

such analysis since wireless systems usually exhibit some random or unpredictable

elements. For example, wireless channel parameters are often described in terms of

their Probability Mass Functions (PMF) instead of the actual mathematical models

for all reflection, diffraction and scattering processes that determine the different

multi-path components of a wireless channel. Similarly, probabilistic models are

used to describe the mobility of communicating stations. Randomized algorithms

and probabilistic analysis are also extensively used in the area of wireless networks.

A comprehensive survey in this regard is presented in [41].

Today, simulation is the most commonly used computer based probabilistic anal-

ysis technique for wireless systems, e.g., see [39,4,15,25]. Most simulation based

wireless system analysis softwares provide a programming environment for defin-

ing functions that approximate random variables for probability distributions. The

random elements in a given wireless system are modeled by these functions and the

system is analyzed using computer simulation techniques [11], such as the Monte

Carlo Method [31], where the main idea is to approximately answer a query on a

probability distribution by analyzing a large number of samples. Statistical quan-

tities, such as expectation and variance, may then be calculated, based on the data

collected during the sampling process, using their mathematical relations in a com-

puter. Due to the inherent nature of simulation coupled with the usage of computer

arithmetic, the probabilistic analysis results attained by the simulation approach

can never be termed as 100% accurate. Thus, simulation should not be relied upon

for the analysis of wireless systems, especially when they are used in safety criti-

cal areas, such as medicine, transportation and military, where inaccuracies in the

analysis may even result in the loss of human lives.

In the past couple of decades, formal methods [16] have been successfully used

for the precise analysis of a verity of hardware and software systems. The rigorous

exercise of developing a mathematical model for the given system and analyzing

this model using mathematical reasoning usually increases the chances for catching

subtle but critical design errors that are often ignored by traditional techniques like

simulation. Given the sophistication of the present age wireless systems and their

extensive usage in safety critical applications there is a dire need of using formal

methods in this domain. However, due to the random and unpredictable nature

of wireless systems, the usage of formal methods has been quite restricted so far.

Some major reasons for this include the restriction to handle random behaviors that

can be modeled as a Markov chain only and the inability to precisely reason about

statistical properties, such as expectation and variance, in the case of state-based

approaches and the fear of huge proof efforts involved in reasoning about random

components of a wireless system in the case of theorem proving.

We believe that due to the recent developments in the formalization of proba-

bility theory concepts in higher-order-logic [24,19,21,22], we are now at the stage

where we can handle the analysis of a variety of wireless systems with random

components in a higher-order-logic theorem prover [13] with reasonable amount of

modeling and verification efforts. The main motivation of using a higher-order-logic
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theorem prover for this purpose is the ability to formally analyze a broader range of

wireless systems by leveraging upon the high expressiveness of the underlying logic.

The foremost requirement for conducting the probabilistic analysis of wireless

systems in a higher-order-logic theorem prover is the ability to formalize commonly

used random variables in higher-order logic and reason about their corresponding

probabilistic and statistical properties in a theorem prover. In this paper, we present

a framework illustrating the use of the existing probability theory related higher-

order-logic formalizations for fulfilling this requirement and thus in turn analyzing

wireless systems. The fact that we are building upon existing formalization tends to

minimize the modeling and verification efforts associated with the higher-order-logic

theorem proving approach.

In order to illustrate the utilization and effectiveness of theorem proving for

handling real-world wireless system analysis problems, we present an analysis of

the automated repeat request (ARQ) mechanism at the logic link control (LLC)

layer of the General Packet Radio Service (GPRS) standard for Global System

for Mobile Communications (GSM) [10]. This analysis is a good representation of

a typical wireless system analysis problem that cannot be modeled as a Markov

chain and thus cannot be handled by the state based formal analysis approaches.

Therefore, the successful handling of this analysis problem clearly indicates the

usefulness of the proposed idea. The paper provides a formalization of the ARQ

mechanism at the LLC layer of the GPRS standard in higher-order-logic and the

formal verification of a couple of probabilistic properties related to the number of

LLC frame retransmissions required to successfully transmit a single LLC frame.

The work described in this paper is done using the HOL theorem prover [14],

which is based on higher-order logic. The main motivation behind this choice is the

fact that most of the work that we build upon is developed in HOL. It is important

to note here that the ideas presented in this paper are not specific to the HOL

theorem prover and can be adapted to any other higher-order-logic theorem prover

as well, such as Isabelle [35], Coq [8] or PVS [36].

The rest of the paper is organized as follows: Section 2 provides a review of

the related work. In Section 3, we present a methodology based on existing HOL

formalizations of probability theory to the analysis of wireless systems. The ARQ

analysis of the LLC layer of the GPRS standard is given in Section 4. Finally,

Section 5 concludes the paper.

2 Related Work

Probabilistic model checking [2,38] is the most commonly used formal method in the

area of probabilistic analysis of wireless systems. For example, the PRISM model

checker [26] has been used to analyze a sub protocol of the IEEE 802.11 standard

for wireless local area networks (WLANs) in [27], the IEEE 802.15.4 networking

standard in [12] and the Medium Access Control (MAC) protocol SMAC in [3].

Similarly, the ETMCC model checker [23] has been used for the dependability anal-

ysis of a variant of the central access protocol of the IEEE 802.11 standard [32].

Just like the traditional model checking, probabilistic model checking involves the

construction of a precise state-based mathematical model of the given probabilistic
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system, which is then subjected to exhaustive analysis to verify if it satisfies a set

of formally represented probabilistic properties. Besides the accuracy of the results,

the most promising feature of probabilistic model checking is the ability to perform

the analysis automatically. On the other hand, it is limited to systems that can only

be expressed as probabilistic finite state machines or Markov chains. Another ma-

jor limitation of the probabilistic model checking approach is state space explosion

[7] as has been indicated in [27,12] that increasing the number of communicating

stations is not feasible in their analysis due to this problem. Similarly, to the best of

our knowledge, it has not been possible to precisely reason about statistical quan-

tities, such as expectation and variance, using probabilistic model checking so far.

The most that has been reported in this domain is the approximate evaluation of

expected values in a couple of model checkers, such as PRISM [26] and VESTA [40].

For example, in the PRISM model checker, the basic idea is to augment probabilistic

models with costs or rewards: real values associated with certain states or transi-

tions of the model. The expectation properties can thus be analyzed in terms of

these reward or cost values by PRISM. These expectation properties are expressed

and evaluated using computer arithmetic, which introduces some degree of approx-

imation in the results. Similarly, the meaning ascribed to expectation properties

is, of course, dependent on the definitions of the costs and rewards themselves and

thus there is always some risk of verifying false properties.

Besides probabilistic model checking, rewriting logic based formal tools have

also been used for the probabilistic analysis of wireless systems. For example, Real-

Time Maude [33], which is a language and tool supporting the formal specification

and analysis of real-time and hybrid systems, has been used for the analysis of the

wireless sensor network algorithm OGDC in [34]. But the probabilistic behaviors of

the wireless system under analysis are not modeled in formal terms here. Instead,

they are analyzed using simulation based methods. Though, formal reasoning about

probabilistic specifications is listed as a potential future direction. A possible so-

lution to this aspect would be to explore a combined approach using Real-Time

Maude with methods and tools for probabilistic systems, such as PMaude [1].

The proposed higher-order-logic theorem proving based approach tends to over-

come the above mentioned limitations of state based formal probabilistic analysis

techniques. Due to the high expressibility of higher-order logic, it allows us to ana-

lyze a wider range of wireless systems without any modeling limitations, such as the

restrictiveness to Markovian models or the state-space explosion problem, and for-

mally verify analytically complex properties, such as expectation and variance. On

the other hand, higher-order-logic is an interactive approach and thus requires more

human involvement and effort than the state based probabilistic analysis techniques.

To the best of our knowledge, higher-order-logic theorem proving has never been

used for the probabilistic analysis of any wireless system so far. Though, some useful

research related to the foundations of probabilistic analysis is available in the open

literature. The foremost criteria for implementing a theorem proving based prob-

abilistic analysis framework is to be able to formalize and verify random variables

in higher-order logic. Hurd’s PhD thesis [24] can be considered a pioneering work

in this regard as it presents a methodology for the formalization and verification of

probabilistic algorithms in the HOL theorem prover. Random variables are basi-
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cally probabilistic algorithms and thus can be formalized and verified, based on their

probability distribution properties, using the methodology proposed in [24]. In fact,

[24] presents the formalization of some discrete random variables along with their

verification, based on the corresponding PMF properties. Building upon Hurd’s

formalization framework [24], we have been able to successfully verify the sampling

algorithms of a few continuous random variables [19] based on their Cumulative

Distribution Function (CDF) properties as well.

For comparison purposes, it is frequently desirable to summarize the charac-

teristic of the distribution of a random variable by a single number, such as its

expectation or variance, rather than an entire function. For example, it is easier

to compare the performance of two wireless communication protocols based on the

expected values rather than the CDFs of their message transmission delays. In

[21,18], we extended Hurd’s formalization framework with a formal definition of

expectation. This definition is then utilized to formalize and verify the expectation

and variance characteristics associated with discrete random variables that attain

values in positive integers only.

3 Probabilistic Analysis Framework

The framework given in Fig. 1 outlines the main idea behind the theorem proving

based probabilistic analysis approach. The shaded boxes in this figure represent

the fundamental requirements of conducting probabilistic analysis in a theorem

prover. Like all system analysis tools, the input to this framework, depicted by

solid rectangles with curved edges, is a description about the wireless system that

needs to be analyzed and a set of properties that are required to be checked for

the given system. For simplicity, we have divided the system properties into two

categories, i.e., system properties related to discrete random variables and system

properties related to continuous random variables.

The first step in conducting probabilistic analysis of a wireless system using a

theorem prover is to construct a model of the system in higher-order-logic. For this

purpose, the foremost requirement is the availability of infrastructures that allow us

to formalize all kinds of discrete and continuous random variables as higher-order-

logic functions, which in turn can be used to represent random components of the

given wireless system in its higher-order-logic model. The second step in theorem

proving based probabilistic analysis is to utilize the formal model of the wireless sys-

tem to express system properties as higher-order-logic theorems. The prerequisite

for this step is the ability to express probabilistic and statistical properties related

to both discrete and continuous random variables in higher-order-logic. All prob-

abilistic properties of discrete and continuous random variables can be expressed

in terms of their PMFs and CDFs, respectively. Similarly, most of the commonly

used statistical properties can be expressed in terms of the expectation and vari-

ance characteristics of the corresponding random variable. Thus, we require the

formalization of mathematical definitions of PMF, CDF, expectation and variance

for both discrete and continuous random variables in order to be able to express the

given wireless system’s probabilistic and statistical properties as higher-order-logic

theorems. The third step for conducting probabilistic analysis in a theorem prover
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Fig. 1. Theorem Proving based Probabilistic Analysis Framework for Wireless Systems

is to formally verify the higher-order-logic theorems developed in the previous step

using a theorem prover. For this verification, it would be quite handy to have access

to a library of some pre-verified theorems corresponding to some commonly used

properties regarding probability distribution functions, expectation and variance.

Since, we can build upon such a library of theorems and thus speed up the verifica-

tion process. Finally the output of the theorem proving based probabilistic analysis

framework, depicted by the rectangle with dashed edges, is the formal proofs of

system properties that ascertains that the given system properties are valid for the

given wireless system.

In order to illustrate the construction details of the framework described above,

we now describe the methodologies to fulfill its fundamental requirements.

3.1 Formalization of Discrete Random Variables and Verification of their PMF

A random variable is called discrete if its range, i.e., the set of values that it can

attain, is finite or at most countably infinite [43]. Discrete random variables can be

completely characterized by their PMFs that returns the probability that a random

variable X is exactly equal to some value x, i.e., Pr(X = x).

Discrete random variables are quite frequently used to model random phe-

nomenon in the analysis of wireless systems. For example, the Bernoulli random

variable is widely used to model the channel noise behavior [29], the Geometric ran-

dom variable is often used to model the number of retransmission required to pass a

message through a noisy wireless channel [42] and Poisson distribution is typically

adopted to model message arrival patterns in wireless network analysis [44].

Discrete random variables can be formalized in higher-order-logic as determin-

istic functions with access to an infinite Boolean sequence B
∞; source of an infinite
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random bits with data type (num → bool) [24]. These deterministic functions

make random choices based on the result of popping the top most bit in the infi-

nite Boolean sequence and may pop as many random bits as they need for their

computation. When the functions terminate, they return the result along with the

remaining portion of the infinite Boolean sequence to be used by other functions.

Thus, a random variable that takes a parameter of type α and ranges over values

of type β can be represented in HOL by the function

F : α → B∞ → β × B∞

For example, a Bernoulli(1
2) random variable that returns 1 or 0 with equal

probability 1
2 can be modeled as follows

⊢ bit = λs. (if shd s then 1 else 0, stl s)

where the variable s represents the infinite Boolean sequence and the functions shd

and stl are the sequence equivalents of the list operation ’head’ and ’tail’. The

function bit accepts the infinite Boolean sequence and returns a pair with the first

element equal to either 0 or 1 and the second element equal to the unused portion

of the infinite Boolean sequence, which in this case is the tail of the sequence.

Random variables can also be expressed in a more compact form using the gen-

eral state-transforming monad where the states are the infinite Boolean sequences.

⊢ ∀ a,s. unit a s = (a,s)

⊢ ∀ f,g,s. bind f g s = g (fst (f s)) (snd (f s))

The HOL functions fst and snd above return the first and second components of

a pair, respectively. The unit operator is used to lift values to the monad, and

the bind is the monadic analogue of function application. All monad laws hold

for this definition, and the notation allows us to write functions without explicitly

mentioning the sequence that is passed around, e.g., function bit can be defined as

⊢ bit monad = bind sdest (λb. if b then unit 1 else unit 0)

where, sdest gives the head and tail of a sequence s as a pair (shd s, stl s).

In order to be able to formally reason about probabilistic properties of random

variables, formalized according to the above methodology, we need to formalize a

measure space of infinite Boolean sequences. Such a measure space can be used

to define a probability function P from sets of infinite Boolean sequences to real

numbers between 0 and 1 [24]. Thus, the domain of P is the set E of events of the

probability. Both P and E can be defined using the Carathéodory’s Extension theo-

rem, which ensures that E is a σ-algebra: closed under complements and countable

unions. Now, the formalized P and E can be used to prove probabilistic properties

for random variables such as

⊢ P {s | fst (bit s) = 1} = 1
2

where {x|C(x)} represents a set of all elements x that satisfy the condition C.

The methodology described in this section is quite general and can be utilized

to formalize most of the commonly used discrete random variables and formally

verify their corresponding PMF relations in a theorem prover. For example, HOL

definitions and PMF theorems for the Bernoulli, Uniform, Binomial and Geometric
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random variables can be found in [24,21,22].

3.2 Formalization of Continuous Random Variables and Verification of their CDF

A random variable is called continuous if it ranges over a continuous set of numbers

[43]. A continuous set of numbers, sometimes referred to as an interval, contains all

real numbers between two limits. Continuous random variables can be completely

characterized by their CDFs that return the probability that a random variable X

is exactly less than or equal to some value x, i.e., Pr(X ≤ x).

Many wireless system models can only be constructed using continuous random

variables. Examples include the modeling of inter-arrival delays between requests

to a wireless host using the Exponential random variable [43] and the modeling of

mobile nodes displacement by the Uniform random variable [39].

The sampling algorithms for continuous random variables are non-terminating

and hence require a different formalization approach than discrete random variables,

for which the sampling algorithms are either guaranteed to terminate or satisfy prob-

abilistic termination, meaning that the probability that the algorithm terminates

is 1. One approach to address this issue is to utilize the concept of the nonuni-

form random number generation [11], which is the process of obtaining arbitrary

continuous random numbers using a Standard Uniform random number generator.

The main advantage of this approach is that we only need to formalize one con-

tinuous random variable from scratch, i.e., the Standard Uniform random variable,

which can be used to model other continuous random variables by formalizing the

corresponding nonuniform random number generation method.

Based on the above approach, [19] presents a methodology, illustrated in Fig.

2, for the formalization of all continuous random variables for which the inverse

of the CDF can be represented in a closed mathematical form. The first step

in this methodology is the formal specification of the Standard Uniform random

variable and the formal verification of this definition by proving the corresponding

CDF property. The Standard Uniform random variable can be formalized using the

methodology for the formalization of discrete random variables, described in the

last section, and the formalization of the mathematical concept of limit of a real

sequence [17] as the following sampling algorithm
∞∑

k=0

(
1

2
)k+1Xk(1)

where Xk denotes the outcome of the kth random bit; True or False represented as

1 or 0 respectively. The formalization and verification details are outlined in [20].

The second step in the methodology for the formalization of continuous prob-

ability distributions, given in Fig. 2, is the formalization of the CDF and the

verification of its classical properties. This is followed by the formal specification of

the mathematical concept of the inverse function of a CDF. This formal specifica-

tion, along with the formalization of the Standard Uniform random variable and the

CDF properties, can be used to formally verify the correctness of the Inverse Trans-

form Method (ITM) [11]. The ITM is a well known nonuniform random generation

technique for generating nonuniform random variates for continuous probability

distributions for which the inverse of the CDF can be represented in a closed math-

8



Fig. 2. Methodology for the Formalization of Continuous Random Variables

ematical form. Mathematically, it can be expressed for a random variable X with

CDF F using the Standard Uniform random variable U as follows

Pr(F−1(U) ≤ x) = F (x)(2)

and its formal proof can be found [20].

Based on the methodology of Fig. 2, the formalized Standard Uniform random

variable can now be used to formally specify any continuous random variable for

which the inverse of the CDF can be expressed in a closed mathematical form as

X = F−1(U). Whereas, the CDF of this formally specified continuous random

variable, X, can be verified, based on simple arithmetic reasoning, using the formal

proof of the ITM. Using the above mentioned methodology, [19] presents the for-

mal specification of four commonly used continuous random variables; Exponential,

Uniform, Rayleigh and Triangular. The correctness of these random variables is

also verified in [19] by proving their corresponding CDF properties in HOL.

3.3 Formalization and Verification of Statistical Properties

The third fundamental component of the wireless system analysis framework, given

in Fig. 1, is the ability to formalize and verify statistical properties for random vari-

ables. Statistical characteristics, like expectation, play a major role in performance

analysis of wireless systems as they tend to summarize the probability distribution

characteristics of a random variable in a single number that are easy to compare.

The first and the foremost step towards the ability to reason about statistical

properties in a theorem prover is the formalization of an expression for expectation in

higher-order logic. Expectation basically provides the average of a random variable,

where each of the possible outcomes of this random variable is weighted according

to its probability [6]. The expectation for a function of a discrete random variable,

which attains values in the positive integers only, is defined as follows [30].

Ex fn[f(X)] =

∞∑

n=0

f(n)Pr(X = n)(3)

where X is a discrete random variable and f represents a function of the random

variable X. The expression of expectation, given in Equation (3), has been formal-

ized in [18] as a higher-order-logic function using the formalization of the probability
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function, explained in Section 3.1 of this paper, and the higher-order-logic formal-

ization of the summation of a real sequence, given in [17]. The expected value of a

discrete random variable that attains values in positive integers can now be defined

as a special case of Equation (3) when f is an identity function.

Ex[X] = Ex fn[(λn.n)(X)](4)

Similarly, a variance function for discrete random variables can be defined in

HOL using the expectation definitions given above as follows.

V ar[X] = Ex fn[(λn.(n − Ex[X])2)X](5)

The above definitions can now be used to formally verify the classical properties

of expectation and variance, given in Table 1. The formal proofs of these properties

using the HOL theorem prover can be found in [18,22]. The formal verification of

these classical properties not only prove the correctness of the above definitions of

expectation and variance but also facilitate the verification of expectation and vari-

ance characteristics of discrete random variables in HOL. For illustration purposes,

[22] presents the formal verification of the expectation and variance relations for

four discrete random variables: Bernoulli, Uniform, Binomial and Geometric.

No. Property Mathematical Representation

1 Linearity of Expectation 1 Ex[
∑

n

i=1 Ri] =
∑

n

i=1 Ex[Ri]

2 Linearity of Expectation 2 Ex[a + bR] = a + bEx[R]

3 Markov’s Inequality Pr(X ≥ a) ≤ Ex[X]
a

4 Alternate Definition of Variance V ar[R] = Ex[R2] − (Ex[R])2

5 Linearity of Variance V ar[
∑

n

i=1 Ri] =
∑

n

i=1 V ar[Ri]

6 Chebyshev’s Inequality Pr(|X − Ex[X]| ≥ a) ≤ V ar[X]
a2

Table 1
Expectation and Variance Properties

For formally expressing and verifying statistical characteristics about continuous

random variables, we require a higher-order-logic formalization of an integration

function that can also handle functions with domains other than real numbers. To

the best of our knowledge, a mature formalization for such an integral does not

exist in the open literature so far. Thus, reasoning about statistical characteristics

regarding continuous random components of a wireless system is not possible as of

now. Though, the higher-order-logic formalization of some portions of the Lebesgue

integration theory [37] may be extended to tackle such analysis problems.

4 Analysis of ARQ at the LLC Layer of GPRS

Due to the rapid development in mobile computing devices and emerging market

of multimedia communications, the data-bearer service standard GPRS [5], which

operates in packet-switched mode, was introduced as part of GSM phase 2+. GPRS

uses the existing GSM infrastructure to provide high-speed (up to 270 kb/s) data
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communications, which is ideal for Multimedia Messaging Service (MMS) and for

Internet communication services such as email and World Wide Web access. The

biggest challenge in the design of GPRS is to maintain reliable data transfers with-

out incurring too much delays under the erroneous nature of a wireless channel

(due to distance losses, shadowing, and multipath fading). Higher layer protocols,

such as the Transmission Control Protocol (TCP), are usually designed for wired

channels that exhibit very low error rates and thus perform poorly if they are made

responsible for the reliability of data transfers using a wireless channel [28]. Hence,

the lower layers in GPRS stacks, e.g., the LLC and radio link control/medium ac-

cess control (RLC/MAC), must be designed to address these issues of high error

rates and higher layer-performance concerns.

The GPRS data transfer reliability model is as follows. A stop-and-wait ARQ

[29] mechanism is implemented at the LLC to retransmit the erroneous LLC frames

in order to ensure reliable transfers at the LLC peer-to-peer link. The LLC frames

are passed to the RLC/MAC layer first, where they are segmented into RLC/MAC

blocks of fixed size. These blocks are then transmitted through the radio channel one

by one. The RLC/MAC layer also provides an ARQ mechanism and thus provides

further error recovery over the radio channel. Our focus in this paper is to formally

prove, using the theorem proving based probabilistic analysis approach described

in Section 3, a probabilistic relation for the number of LLC frame retransmissions

required for successfully transmitting a single LLC frame in terms of the probability

of successful transmission of a single RLC/MAC block, say p, through the radio

channel and the LLC frame size in RLC/MAC blocks, say n. Such an expression

plays a vital role in estimating the LLC frame size of the GPRS, for a given channel,

to maximize performance. We also formally verify that the GPRS data reliability

model ensures successful transmission of every LLC frame with probability 1. Our

analysis approach is mainly inspired by a paper-and-pencil based analytical analysis

of a similar problem presented in [10].

The first step according to the probabilistic analysis framework, given in Fig 1,

is to describe the given system as a higher-order-logic function while representing

its random components as random variables. In case of the above mentioned GPRS

analysis problem, we need to develop a higher-order-logic function that describes

the LLC frame transmission behavior in terms of the parameters p and n. The

random component in this system is the behavior of the wireless channel, which

allows data blocks to pass through with probability p. We formalized the LLC frame

transmission behavior as a higher-order-logic predicate, i.e., a function that returns

a Boolean value. Our predicate accepts three parameters: n, p and k, where k

represents the number of transmission attempts. It returns True if all n RLC/MAC

blocks are successfully transmitted within k attempts and False otherwise. The

predicate can be expressed recursively in HOL as follows

Definition 1: LLC Frame Transmission Behavior

⊢ ∀ k p. (llc trans 0 k p = unit (True)) ∧

∀ n k p. (llc trans (n + 1) k p =

bind (llc trans n k p) (λa. bind (prob bino k p)

(λb. unit (if (b = 0) then False else a))))
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where the function prob bino represents the formalized Binomial random variable,

given in [22]. A Binomial(k, p) random variable models an experiment that counts

the number of successes in k independent Bernoulli(p) trials [9]. Thus, it is used in

the above predicate to estimate the number of successful transmissions in k trans-

mission attempts of an RLC/MAC block, as the behavior of a noisy wireless channel

with successful transmission probability p can be modeled by a Bernoulli(p) ran-

dom variable. The predicate llc trans recursively checks the number of successful

transmissions for each one of the n RLC/MAC blocks and returns False if one or

more of these blocks have no successful transmission in the k transmission attempts.

The second step according to the framework, given in Fig 1, is to utilize the

formal model of the system to express the properties of interest as higher-order-logic

theorems. In our case, we are interested in the probability that a single LLC frame

consisting of n blocks is transmitted within k transmission attempts. The HOL

theorem corresponding to this property can be expressed based on the predicate

llc trans, given in Definition 1, as follows

Theorem 1:

⊢ ∀ n k p k. (0 ≤ p) ∧ (p ≤ 1) ⇒

(P {s | (fst (llc trans n k p s))} = (1 - (1-p)k)n)

where P represents the formalization of the probability function, explained in Section

3. We proceed to verify the above theorem in HOL by performing inductance on

the variable n, which generates the following two subgoals.

P{s | fst (llc trans 0 k p s) } = (1 − (1 − p)k)0

P{s | fst (llc trans n k p s)} = (1 − (1 − p)k)n ⇒

P{s | fst (llc trans (n + 1) k p s) } = (1 − (1 − p)k)(n + 1)

The base case, i.e., the first subgoal above, can be simply proved using the definition

of the function llc trans, given in Definition 1, the probability law P (
⋃

) = 1 and

some arithmetic reasoning. Whereas, we proceed with the proof of the step case,

i.e., the second subgoal above, by rewriting it using the definition of the function

llc trans and simplifying it using some arithmetic reasoning as follows.

P{s | fst (llc trans n k p s)} = (1 − (1 − p)k)n ⇒

P{s | (fst (llc trans n k p s) ∧

¬(fst (prob bino k p (snd (llc trans n k p s))) = 0)}

= (1 − (1 − p)k)n(1 − (1 − p)k)

Now, using the statistical independence between the two events in the set on the

LHS of the conclusion of the above implication and the probability law P (A∩B) =

P (A)P (B), the above subgoal can be simplified as follows.

P{s | fst (llc trans n k p s)} = (1 − (1 − p)k)n ⇒

P{s | (fst (llc trans n k p s)}

P{s | ¬(fst (prob bino k p (snd (llc trans n k p s))) = 0)}

= (1 − (1 − p)k)n(1 − (1 − p)k)

12



Using the assumption in the above subgoal along with some arithmetic reasoning

we get the following subgoal

P{s | ¬(fst (prob bino k p (snd (llc trans n k p s))) = 0)}

= (1 − (1 − p)k)

law of the probability P (Ā) = 1 − P (A) as follows

P{s | (fst (prob bino k p (snd (llc trans n k p s))) = 0)} = (1 − p)k)

PMF relation of the Binomial random variable (prob bino), given in [22], along

with some arithmetic reasoning. This also concludes the proof of Theorem 1 in

HOL.

Next, we formally prove the correctness of the GPRS data reliability model by

verifying that the probability of successfully transmitting an LLC frame approaches

1 as the number of transmission trials becomes very very large. This property can

be expressed in HOL, based on the predicate llc trans, as follows

Theorem 2:

⊢ ∀ n k p k. (0 ≤ p) ∧ (p ≤ 1) ⇒

limk→∞ (P {s | (fst (llc trans n k p s))}) = 1

using the HOL formalization of limit of a real sequence, given in [17]. The HOL

proof of Theorem 2 is based on Theorem 1 and some classical properties of limit of

a real sequence, verified in [17].

The above example clearly demonstrates the effectiveness of the theorem proving

based wireless system analysis approach. Due to the formal nature of the model

and inherent soundness of theorem proving, we have been able to verify probabilistic

properties of the given system with 100% precision; a novelty which is not available

in simulation. Similarly, due to the high expressibility of higher-order logic we have

been able to formally reason about a problem that cannot be described as a Markov

chain and thus cannot be analyzed using a probabilistic model checker. These

additional benefits come at the cost of the time and effort spent, while formalizing

the system and formally reasoning about its properties, by the user. But, the fact

that we were building on top of already verified results in the theorem prover helped

significantly in this regard as the analysis, described in this section, only consumed

approximately 40 man-hours by an expert HOL user.

5 Conclusions

This paper advocates the usage of higher-order-logic theorem proving for the prob-

abilistic analysis of wireless systems in order to be able to precisely analyze a wide

range of problems. This approach can thus be of great benefit for the analysis of

wireless systems used in safety critical applications, such as medicine and trans-

portation. The paper provides a theorem proving based generic methodology for

the probabilistic analysis of wireless systems. For illustration purposes, we present

an analysis of ARQ mechanism at the LLC layer of the GPRS. To the best of our

knowledge, this is the first time that a theorem prover has been used to conduct

the probabilistic analysis of a wireless system.

There are many research directions in the field of using theorem provers for the

13



probabilistic analysis of wireless systems that need to be explored. A couple of

interesting ones include the ability to formalize and reason about statistical prop-

erties about continuous random variables and the ability to model Markov chains

in higher-order-logic and reason about their probabilistic and statistical properties

in a higher-order-logic theorem prover.
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