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Abstract— Magnetic Flux Leakage (MFL) sensors are 
commonly utilized to detect defects in oil and gas pipelines and 
determine their depths and sizes. As a preprocessing step, 
MFL data are often reduced into a representative feature set 
that is capable of accurately estimating pipeline defect depths. 
However, this estimation capability may vary depending on the 
features used, which necessitates the need for selecting the 
most relevant ones. In this paper, self-organizing maps (SOMs) 
are used as feature visualization tool for the purpose of 
selecting the most appropriate features. First, a self-organizing 
map (SOM), i.e., a two-dimensional discretized representation 
of the input space of the training samples for the features, is 
produced. The SOM weights for each individual input feature 
(weight plane) are displayed then visually analyzed. Irrelevant 
and redundant features can be efficiently spotted and removed. 
The remaining “good” features (i.e., selected features) are then 
used as an input to a feedforward neural network for defect 
depth estimation. Experimental work has shown the 
effectiveness of the proposed approach. For instance, within 
±5% error-tolerance range, the obtained estimation accuracy, 
using the SOM-based feature selection, is 93.1%, compared to 
74% when all input features are used (i.e., no feature selection 
is performed); and within ±10% error-tolerance range, the 
obtained estimation accuracy, using the SOM-based feature 
selection, is 97.5%, compared to 86% when all the input 
features are used (i.e., no feature selection is performed). 

Keywords-data visualization; feature selection; self-
organizing map; neural networks; machine learning 

I.  INTRODUCTION 
Metallic pipelines, used for oil and gas transmission, are 

venerable to different metal-loss defects.  As reported in [1], 
corrosion of underground and underwater pipelines is 
responsible for an interesting part of pipeline defects. Metal-
loss defects are characterized by a considerable reduction in 
the thickness of a certain area on the pipeline surface. Under 
sufficient pressure, a thin area of a defected pipeline surface 
can cause a product leakage, which may result in 
incalculable costs in terms of damage to the environment 
and loss to human life. It has become apparent that     
reliable methods for detecting and localizing such metal-loss 
defects are greatly needed. Most of the existing methods 
employ magnetic flux leakage signals and ultrasonic waves 
to detect the presence defects such as corrosion, cracks, 
dents, etc. One interesting property of MFL signals is that 

they have a distinct signature around the center of a metal-
loss defect. It has been noticed that the amplitude of MFL 
signals gets higher as the measuring sensors approach the 
defect center. Using this useful property of MFL signals, we 
can determine the defect’s depth and length. Numerous 
machine learning techniques for the purpose of detecting 
and localizing pipeline defects are reported in the literature, 
in particular artificial neural networks. In [2], they are 
extensively trained to classify three different types of 
intentionally-induced pipeline defects. Experimental results 
show that artificial neural networks were capable of 
identifying normal signals from anomaly signals with 
classification accuracy at 94.2%. For simulated defects, they 
were able to classify them with accuracy at 92.5%. A fuzzy 
artificial neural network is proposed in [3] to assess the 
corrosion-vulnerability of aging pipelines. Several 
corrosion-related parameters are first sampled from MFL 
signals and then used to train the neural network to estimate 
the pipeline failure probability. A hybrid approach where 
image analysis and a neuro-fuzzy inference system are 
combined to classify pipe cracks is introduced in [4]. 
Variations in crack-related feature values are captured using 
fuzzy membership functions. The learning of membership 
function parameters is achieved through the use of a 
backpropagation network. In [5], an Immune Radial Basis 
Function Neural Network (IRBFNN)-based technique for 
corrosion-spot localization is presented.  Discriminant 
corrosion properties are obtained from MFL signals and 
used as a feature input to train the neural network. The 
IRBFNN recognizes the correct location of the corrosion 
spots with good accuracy.    

As stated earlier, amplitudes of MFL signals get higher as 
magnetic sensors pass right above the defect center. 
However, the defect-MFL shape relationship that can 
describe this MFL signal behavior is not known. As a result, 
an analytical model cannot be derived and used for 
estimating defect depths. This contributes handsomely to the 
suitability of using neural networks in these situations. The 
abovementioned relationship can be learned given large 
enough data. In this paper, we investigate the applicability 
of artificial neural networks in estimating defect depth based 
on MFL signals. Descriptive defect-related features are 
obtained from the raw MFL data, by using statistical feature 
extraction methods. Moreover, MFL signals are 
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approximated by using polynomial series. The coefficients 
of the polynomial series are then extracted and added to the 
feature input pattern to train the neural networks.  

II. PIPELINE INSPECTION TECHNIQUES 

A. Magnetic Flux Leakage-Based Inspection Technique 
To monitor conditions of a pipeline, a special device 

equipped with magnetic sensors is dispatched into the 
targeted pipeline, and moves along pipeline axis. The 
attached sensors are arranged around the device to allow 
them to measure any magnetic flux leakage signals (MFL) 
on the circumference of the pipeline. This process is known 
as MFL scanning. The theoretical foundation of the MFL 
scanning is explained in detail in [6], and it is briefly 
introduced as follows: a magnetic field is first initiated on the 
surface of a pipeline, using two magnets of opposite polarity. 
The magnetic field basically consists of lines of magnetic 
force (called magnetic flux) on the pipeline surface that flow 
from the south pole to the north pole. When the pipeline wall 
has a crack or a thinning (due to corrosion, for example), 
then at the edges of the crack two new poles appear. 
However, due to air resistance, the flow of the magnetic lines 
deflects outwardly and creates what is known as Magnetic 
Flux Leakage (MFL). Any magnetic flux leakage detected by 
the sensors indicates the occurrence of a defect. The valuable 
information provided by MFL signals are exploited to verify 
the existence of defects and determine their locations and 
depths.  

B. Defect Localization Using Wavelet-based Techniques 
The mathematical foundation of Wavelet tools can be 

found with great details in [13, 14, 15]. A plethora of 
successful applications are reported in the literature in 
different domains such as high-efficiency data compression 
[16], data analysis and classification [17], signal de-nosing 
[7, 8, 9].  Hybrid approaches also utilize Wavelet techniques 
in detecting the presence of metal-loss defects [10]. Since 
MFL signals take a certain shape at the location of a metal-
loss defect, Wavelet techniques can also be used to locate 
metal-loss defects and determine their length. This same 
shape occurs in a dilated form depending on the length of the 
defect. Let )(xB denote the MFL signal measured from a 
pipeline. Figure 1 shows a sample MFL scan containing 
three defects of cuboidal shape. Each of these defects has a 
different length along the x-axis of the pipeline. All three 
components of the MFL signal ( xB , yB , and zB ) are 
represented. As can be seen in Figure 1, each component of 
the MFL signal consists of a sum of curves, each of which is 
translated and dilated version of a reference pattern.  If we 
choose the reference pattern as a mother wavelet, )(xψ and 
derive an orthonormal wavelet basis �

�� )(, xkjψ from it, then the MFL scan )(xB  can be 
expressed in the basis as: 

 
Figure 1.  MFL signal signature of three metal-loss defects of cuboidal 

shape 
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,
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The non-zero coefficients kjc ,  in the above representation 
indicate that the signal contains a copy of that particular 
instance of )(, xkjψ . To detect a metal-loss defect along the 
pipeline, and estimate their length, the wavelet transform of 
the MFL scan )(xB  is first computed with respect to the 
basis �� )(, xkjψ . Next, the set of non-zero coefficients, 
which indicates the locations and dilation factors of the 
reference pattern, is determined. This in turn yields the 
location and width of all metal-loss defect along the pipeline 
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III. FEATURE VISUALIZATION AND SELECTION FOR 
DEFECT DEPTH ESTIMATION USING SOMS 

The general structure of the proposed defect depth 
estimation approach is shown in Figure 2. It has been shown 
in the literature that irrelevant and redundant features can 
degrade the performance of most learning algorithms. One 
of the practical means of determining defect depth-relevant 
features is by utilizing data visualization. However, since 
the obtained input features form usually a high dimensional 
input vector, because their number is high, they are 
projected onto a lower-dimensional space, where it is easier 
to interpret them and gain useful information about their 
correlation. We use the self-organizing map (SOM) 
approach to project the multi-dimensional input vector space 
(consisting of the obtained features) into a two-dimensional 
map.  

From the obtained SOM, the weights corresponding to 
each individual input feature are displayed as a weight 
plane. The weight planes corresponding to the different 
features are then analyzed visually in order to detect 
correlations between them and select the appropriate feature 
set that will be used as input to a neural network based 
approach for defect depth estimation.    
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A. Self-Organizing Map Neural Network  
In 1990, T. Kohonen introduced the self-organizing map 

(SOM) as an unsupervised neural network learning 
algorithm [18]. In the literature, SOMs have been used in 
different application domains [19, 20, 21], and more 
important, they are also widely used in visualization as a 
dimension (feature) reduction tool [22, 23, 24]. A two-
dimensional SOM basically consists of a two-dimensional 
lattice of neurons. The aim of the iterative training strategy 
of the SOM is to classify the input data elements into 
several categories such that similar data elements fall in the 
same category. Moreover, network weights for each input 
feature component can be visualized and examined. This 
useful property of the SOM makes it an appealing data 
visualization technique that will be effectively exploited in 
this work to identify the redundant features.  Each 
neuron, in  in the network is represented by an n-
dimensional weight vector:  

],...,,[ 21 iniii wwww = , 
The weight vectors are randomly initialized. Each 

neuron in the map is connected to its immediate neighbors. 
Given a randomly selected sample vector X from the input 
data, all the weight vectors of the SOM are calculated using 
some distance measure such as the Euclidian distance. The 
wining neuron, called the best matching unit (BMU), is the 
neuron whose weight vector is closest to X .  The weight 
vectors of the wining neuron, along with its topological 
neighbors, are updated so that they are moved closer to the 
input vector in the input space. The new weight vectors are 
updated as follows:  

))()(,,().()()1( twXtnnhttwtw iiBMUii −+=+ α  

the neighborhood function, ),,( tnnh iBMU , is 
monotonically decreasing with respect to the distance 
between the wining neuron and the neuron in in the network 
grid and the time t . The purpose of the learning rate 
parameter, 1)(0 ≤≤ tα , is to control the adjustments of 
the weight vectors according to the iterative step t . Initially, 
it is set to a large value, and then it decreases over time. 

B. Feature Extraction  
In order to efficiently train neural networks, MFL 

signals are first transformed into a smaller subset of 
representative features. Moreover, extracting signal-
descriptive features may actually enhance the network 
performance in terms of estimation accuracy of defect 
depths. Thus, five statistical features including maximum 
magnitude, peak-to-peak distance, integral of the 
normalized signal, mean average, and standard deviation are 
obtained. To expand the feature input, we also approximate 
MFL signals by using polynomial series of the 
form 01... aXaXa n

n +++ , and consider their 

coefficients, 0... aan ++  as features. The best 
approximations for the MFL components are found to be 
degree three for the xB component, and degree six for 

both yB  and zB components. We will refer to the thirty-
three obtained features by F1, F2, …, and F33.   

C. SOM-based Feature Selection 

To improve the defect depth estimation, the most relevant 
features are selected, and redundant features should be 
eliminated. As shown in Figure 2, feature selection is 
realized by the SOM approach. The features mentioned in 
the previous section will be used to train the self-organizing 
network. Four features, however, yield very small values 
and are deemed inappropriate by the Matlab neural network 
tool. Thus, these features (F3, F6, F8, and F13) are removed 
from the feature input pattern. The network structure is 
shown in Figure 3. The SOM network consists of a 
competitive layer which can classify the 29-input data 
vectors into up to 100 classes (the number of the neurons in 
the output layer arranged in a 2D topology: 10x10). The 
network is trained with 1357 data samples using the SOM 
batch algorithm. The network hits are shown in Figure 4, in 
which the number displayed in each neuron indicates how 
many of the data samples are associated with that neuron. 
For example, fifty-five data samples are associated with the 
neuron located at row 8 and column 6. The SOM is 
visualized by displaying weigh planes in Figure 5. The 
figure shows a weigh plane for each of the 29 features; 
where darker colors represent larger weights. Upon closer 
inspection, it is noticeable that several features, namely, F4, 
F11, F12, F13, F14, F15, F23, F26, and F27, exhibit similar 
connection patterns. These nine features are considered 
highly correlated and thus eight of them should be removed 
from the feature set. The remaining twenty one features 
constitute the new input feature pattern and are used to train 
the feedforward Neural Network (NN) for defect depth 
estimation.  

IV. PERFORMANCE EVALUATION 
In this section, the performance of the proposed approach 

is evaluated for three different feedforward network (FFNN) 
structures, namely static, cascaded, and dynamic. The main 
performance measure is the estimation accuracy of the 
failure depth within a certain level of error-tolerance. The 
error-tolerance levels used in this study are ±1%, ±5%, 
±10%, ±15%, ±20%, ±25%, ±30%, ±35%, and ±40%. For 
each network structure, the FFNN is experimented with 
different numbers of hidden layers, each varies in size from 
10 neurons up to 100 neurons. The mean squared error 
(MSE) performance function: 

2

1

ˆ1 �
=

−=
n

i
ii YY

n
MSE , 
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 Figure 2.  Feedforward NN-based defect depth estimation 

 
Figure 3.  SOM structure 

 
Figure 4.  SOM sample hits. The number shown in each neuron indicates 

the number of samples associated with that neuron. 

 

 
Figure 5.  SOM weights for each input feature 

and the log-sigmoid transfer function: 

)1(
1log xe

sig −−
= , 

 
 are used in the experimental work. The results of the 
experimental work are reported in the following 
subsections. 

 
Figure 6.  Architecture of the static FFNN 

 
Figure 7.  Architecture of the cascaded FFNN 

 
Figure 8.  Architecture of the dynamic FFNN 

A. Complete Feature Set 
The complete feature set (33-input features) are first 

used to train the static (Figure 6), cascaded (Figure 7), and 
dynamic (Figure 8) FFNN. Table I shows the estimation 
accuracy for each network structure with different numbers 
of hidden layers.  

B. Selected Feature Set 
The 21 features selected by the SOM approach are used 

to evaluate the performance of the three FFNN structures. 
The results for the static, cascaded, and dynamic networks 
are shown in Table II, Table III, and Table IV, respectively.  

C. Discussion 
For the complete feature set, it should be noted from 

table I that dynamic networks with a single hidden layer 
yield the best performance results for error-tolerance levels 
of ±1%, ±5%, ±10%, ±15%, and ±20% at 23%, 74%, 86%, 
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TABLE I.   
BEST ESTIMATION ACCURACY OF STATIC, CASCADED, DYNAMIC FFNN 

USING 33 FEATURES 

 

TABLE II.   
BEST ESTIMATION ACCURACY OF STATIC  FFNN USING 21 FEATURES 

 

TABLE III.   
BEST ESTIMATION ACCURACY OF CASCADED  FFNN USING 21 FEATURES 

 

TABLE IV.   
BEST ESTIMATION ACCURACY OF DYNAMIC  FFNN USING 21 FEATURES 

 

 
89%, and 90% estimation accuracies, respectively. 
Moreover, dynamic networks with 4 hidden layers yield the 
best performance for error-tolerance levels of ±25%, ±30%, 
±35%, and ±40%, at 91%, 93%, 95%, 96%, and 96% 
estimation accuracies, respectively. Cascaded networks, 
however, have performed the worst for error-tolerance levels 
of ±1%, ±5%, ±10%, ±15%, and ±20%, at 7%, 4%, 60%, 
72%, and 78% estimation accuracies, respectively. At other 
error-tolerance levels, they yield comparable results. Static 
networks performed better than cascaded networks but less 
than dynamic networks. We observed that increasing the 
number of hidden layers has not necessarily improved the 
performances of the networks. With the exception of 
dynamic networks (with 4 hidden layers, and for the error-
tolerance levels ±1% and ±5%), it has actually reduced the 
overall performance of the feed-forward neural networks. 

Based on the above discussion, for the selected feature 
set, we only focus on networks with a single hidden layer 
with different number of neurons ranging from 10 to 100. 
Based on the results reported in Tables II, III, and IV, it is 
obvious that the networks using the selected features yield a 
superior performance compared to those using the whole 
feature set. The best defect depth estimation accuracies for 
each network configuration are highlighted in red. It is also 
noted that the dynamic networks yield the best performance 
results for error-tolerance levels of ±1%, ±5%, ±10%, ±15%, 
and ±20% at 41%, 93%, 97%, 98%, and 98% estimation 
accuracies, respectively. Cascaded networks, however, have 
performed slightly better than their corresponding networks 
using the complete feature set, for error-tolerance levels of 
±1%, ±5%, ±10%, ±15%, and ±20%, at 10%, 37%, 61%, 
75%, and 78% estimation accuracies, respectively. As 
expected, static networks performed better than cascaded 
networks but less than dynamic networks. For the purpose of 
comparison, the weight-correlation-based feature selection 
method [25] is utilized to assign weights for each feature. 
Features with the highest weights are then selected to 
estimate the defect depths. The estimation accuracies for 
error-tolerance levels of ±1%, ±5%, ±10%, ±15%, and 
±20%, obtained using this method, are 0.0637, 0.3529, 
0.6225, 0.8039, and 0.8775, respectively.  Clearly, the 
performance of the SOFM is superior to that of the weight-
correlation, particularly for the dynamic networks.  

Although the self-organizing sematic map was reported 
to be more robust and better suited than principal 
component analysis (PCA) [26, 27] for some applications 
[28, 29, 30], our aim in future work is to examine the 
applicability of PCA as a feature selection technique to 
identify and remove redundant features that are degrading 
the ANN performance in estimating defect depths.    

 

V.
 

CONCLUSIONS
 

The use of self-organizing maps for feature visualization 
for the purpose of feature selection for estimating pipeline 
defect depths is investigated. Extensive experimental work 
using different levels of error-tolerance for different network 
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structures has been conducted. It has been shown that 
dynamic networks, using the proposed feature selection 
scheme, yield superior performance compared to that of their 
corresponding networks that use the complete feature set at 
93% and 97% defect depth estimation accuracy within ±5% 
and ±10% of error-tolerance, respectively. We intend in 
future work to obtain more sophisticated features and 
examine other visualization tools. Moreover, principal 
component analysis will be investigated as a feature selection 
tool. 
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