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Abstract.
In the field of probabilistic analysis, bounding the tail distribution is a major tool for estimating the failure probability of

systems. In this paper, we present the verification of Markov’s and Chebyshev’s inequalities for discrete random variables
using the HOL theorem prover. The formally verified Markov and Chebyshev’s inequalities allow us to precisely reason about
tail distribution bounds for probabilistic systems within the core of a higher-order-logic theorem prover and thus prove to be
quite useful for the analysis of systems used in safety-critical domains, such as space, medicine and military. For illustration
purposes, we show how we can obtain bounds on the tail distribution of the Coupon Collector’s problem in HOL.
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INTRODUCTION

Probability theory has become a tool of fundamental importance in modern science and engineering. The random
and unpredictable elements are mathematically modeled by appropriate random variables and the performance and
reliability issues are judged based on the corresponding probabilistic properties. Numbers such as mean or variance,
which provide valuable information about random variables, are then used for decision making. One of the major
advantages of using mean and variance is that they also allow us to obtain bounds on the tail distribution, which is the
probability that a random variable assumes values that are far from its expectation or mean value. These tail bounds
are usually calculated using the Markov’s or the Chebyshev’s inequalities [1]. Because of widespread interest in failure
probabilities, these inequalities have now become one of the core techniques in modern probabilistic analysis.

The state-of-the-art in conducting probabilistic analysis is computer simulation [2], where the main idea is to
approximately answer a query on a probability distribution by analyzing a large number of samples. The simulation
approach is easy to use as most of the analysis can be automated and really shines in handling problems that cannot
be solved analytically. On the other hand, the results are usually inaccurate and large problems cannot be handled
because of enormous CPU time requirements. McCullough [3, 4] proposed a collection of intermediate-level tests
for assessing the numerical reliability of simulation based probabilistic analysis tools and uncovered flaws in some
of the mainframe statistical packages. An alternative is to use probabilistic model checking [5, 6], which is a formal
state-based approach. Due to the formal nature of the models and analysis techniques, the results are always accurate
but, like traditional model-checking, this approach is limited to systems that can be expressed as a probabilistic finite
state machine and also suffers from the state-space explosion problem [7].

The inaccuracy of probabilistic analysis results and the inability to handle some specific cases poses a serious
problem when a safety-critical section of the system is being analyzed. To overcome these limitations, we propose to
use higher-order-logic theorem proving for the probabilistic analysis of safety-critical sections of the system. Higher-
order logic is a system of deduction with a precise semantics and can be used for the development of almost all classical
mathematical theories. Interactive theorem proving is the field of computer science and mathematical logic concerned
with computer based formal proof tools that require some sort of human assistance. Due to the high expressive nature
of the higher-order-logic and the inherent soundness of interactive theorem proving, this approach can be used to
conduct error free probabilistic analysis at the cost of significant user interaction.

In order to build upon an existing higher-order-logic formalization of some probability theory [8], we have selected
the HOL theorem prover [9] as our platform. HOL has already been successfully used to formalize discrete [8] and
continuous [10] random variables and verify their probability distribution [11] and expectation properties [12]. In this
paper, we extend the HOL libraries for probabilistic analysis with the proofs of the Markov’s and the Chebyshev’s
inequalities for discrete random variables, which allows us to reason about tail distribution bounds within the HOL



theorem prover and thus enhance the capabilities of HOL as a successful probabilistic analysis framework. We first
present the HOL definitions for expectation, variance and standard deviation, which are in turn used to express
Markov’s and Chebyshev’s inequalities in HOL. A summary of formal proofs for these properties is given in this
paper and more details can be found in [13]. In order to illustrate the practical effectiveness of our approach, we then
utilize the above results in HOL to obtain bounds on the tail distribution for the Coupon Collector’s problem [14],
which is a well known commercially used algorithm in computer science.

FORMALIZATION OF EXPECTATION, VARIANCE AND STANDARD DEVIATION

In [12], we tackled the verification of expectation properties for discrete random variables that attain values in positive
integers only. In the current paper, rather than restricting ourselves to the expected value of a random variable, we
consider the formalization of the expected value of a function of a discrete random variable, whereas the function
accepts a positive integer and returns a real value. The main advantage of this new definition is that it allows us to
formally define variance and standard deviation and thus in turn verify the Chebyshev’s inequality for discrete random
variables in HOL; a novelty that has not been available so far.

We first present the general idea of verifying random variables in HOL before going into the details of the
formal definition of expectation. Random variables can be formalized in higher-order logic by thinking of them as
deterministic functions with access to an infinite Boolean sequence B∞; a source of infinite random bits [8]. These
deterministic functions make random choices based on the result of popping the top most bit in the infinite Boolean
sequence and may pop as many random bits as they need for their computation. When the sampling algorithms for
random variables terminate, they return the result along with the remaining portion of the infinite Boolean sequence to
be used by other programs. For example, a Bernoulli( 1

2 ) random variable that returns 1 or 0 with equal probability 1
2

can be modeled as a lambda abstraction function as follows

` bit = λs. (if shd s then 1 else 0, stl s)

where s is the infinite Boolean sequences and shd and stl are the sequence equivalents of the list operation ‘head’
and ‘tail’. Using the formalization of the mathematical measure theory in HOL, a probability function P is defined
that accepts a set of infinite Boolean sequences and returns a real number between 0 and 1. The domain of P is the set
E of events of the probability. Both P and E are defined using the Carathéodory’s Extension theorem, which ensures
that E is a σ -algebra: closed under complements and countable unions. The formalized P and E can be used to prove
probabilistic properties for random variables such as

` P{s| fst (bit s) = 1} = 1/2

where fst selects the first component of a pair and {x|C(x)} represents a set of all x that satisfy condition C in HOL.
The above infrastructure can now be used to formally define a HOL function that returns the expected value of a

function of a discrete random variable.

Definition 1 ` ∀ f R. expec_fn f R = ∑∞
n=0 (f n) P{s| fst (R s) = n}

The infinite summation of a real sequence used in the above definition is formally defined in the HOL real number
theory [15]. Definition 1 includes as a special case the identity function, which covers the formalization of the expected
value of a random variable that attains values in the positive integers only.

Definition 2 ` ∀ R. expec R = expec_fn & R

where the operator & is used in HOL to convert a variable of data type positive integer to real. The above definitions
of expectation can be used to define functions for variance and standard deviation in HOL.

Definition 3 ` ∀ R. variance R = expec_fn (λn. (&n - expec R)2) R
Definition 4 ` ∀ R. std_dev R =

√
variance R

where the functions for square and square root operations have been used from the HOL real number theory [15].



MARKOV’S INEQUALITY

Markov’s inequality utilizes the definition of expectation to obtain a weak tail bound and can be expressed in HOL for
a measurable discrete random variable with a well-defined expectation as follows.

Theorem 1 ` ∀ R a.(0<a)⇒ P{s| &(fst (R s)) ≥ a} ≤ (expec R)/a

Proof: Rewriting with Definition 2 and simplifying using the real arithmetic properties in HOL, we obtain

daeP{s| f st(R s)≥ dae} ≤
∞

∑
n=0

(nP{s| f st(R s) = n} (1)

where, dae denotes the ceiling of a real number a. Using the set theory, the additive law of probability and the properties
of infinite summation of a real sequence in HOL, Equation 1 can be rewritten as follows.

∞

∑
n=dae

daeP{s| f st(R s) = n} ≤ (
dae
∑
n=0

(nP{s| f st(R s) = n}+
∞

∑
n=dae

(nP{s| f st(R s) = n}) (2)

Equation 2 can now be verified since, the expression ∑dae
n=0(nP{s| f st(R s) = n} is greater than or equal to 0 and the

expression ∑∞
n=dae(nP{s| f st(R s) = n} is greater than or equal to ∑∞

n=daedaeP{s| f st(R s) = n}.

CHEBYSHEV’S INEQUALITY

The expectation and variance can be used to derive a significantly stronger tail bound known as the Chebyshev’s
inequality, which can be expressed in HOL for a measurable discrete random variable with well-defined first and
second moments and greater than 0 standard deviation as follows.

Theorem 2 ` ∀ R a.(0<a)⇒P{s| |&(fst (R s)) - expec R| ≥ a(std_dev R)} ≤ 1/a2

Proof: Using the properties of absolute function and real numbers and the additive law of probability, we get

a2σ2(P{s|X s≤ (µ−aσ)}+P{s|X s≥ (µ +aσ)})≤ σ2 (3)

where X = (λ s. f st(R s)) and µ and σ denote the expectation and standard deviation of the random variable R,
respectively. Using the real number, set and probability theories in HOL, the LHS of Equation 3 can be simplified as

a2σ2
dµ−aσe

∑
n=0

P{s|X s = n}+a2σ2P{s|X s = (µ−aσ)}+a2σ2
∞

∑
n=dµ+aσe

P{s|X s = n} (4)

whereas the RHS can be simplified using Definition 3 and properties of summation of a real sequence as follows

dµ−aσe
∑
n=0

(n−µ)2P{s|Xs = n}+
dµ+aσe−dµ−aσe

∑
n=dµ−aσe

(n−µ)2P{s|X s = n}+
∞

∑
n=dµ+aσe

(n−µ)2P{s|X s = n} (5)

The three terms in Equation 4 can now be proved to be less than or equal to the respective three terms in Equation
5, which concludes the proof for Theorem 2.

APPLICATION: COUPON COLLECTOR’S PROBLEM

The Coupon Collector’s problem [14] is motivated by “collect all n coupons and win" contests. Assuming that a
coupon is drawn independently and uniformly at random from n possibilities, how many times do we need to draw
new coupons until we find them all? In order to formalize the Coupon Collector’s problem in HOL, let X be the number
of trials until at least one of every type of coupon is obtained. Now, if Xi is the number of trials required to obtain the
ith coupon, while we had already acquired i−1 distinct coupons, then clearly X = ∑n

i=1 Xi. The advantage of breaking



the random variable X into the sum of n random variables is that each Xi can be modeled as a Geometric random
variable [16], which is a commonly used discrete random variable.

We presented a formalization of the Coupon Collector’s problem in HOL as a function cc in [12]. The function
cc accepts the number of distinct coupons, say k, and returns the summation of k Geometric random variables. Now,
using the definitions given in the current paper and the linearity of expectation and variance properties in HOL, we are
able to verify the expected value and a variance bound for the Coupon Collector’s problem.

Theorem 3. ` ∀ n. expec (cc (n+1)) = &(n+1) ∑n+1
i=0 1/&(i+1)

Theorem 4. ` ∀ n. variance (cc (n+1)) ≤ &(n+1)2 ∑n+1
i=0 1/&(i+1)2

Next, using the formalized Markov’s and Chebyshev’s inequalities, presented in the current paper, along with some
real arithmetic properties in HOL, we can also verify the following bounds for the Coupon Collector’s problem.

Theorem 5. ` ∀ n a.(0<a) ∧ (0 < variance (cc (n+1))) ⇒
P{s| &(fst (cc (n+1) s)) ≥ a} ≤ &(n+1) ∑n+1

i=0 1/&(i+1)/a ∧
P{s| |&(fst (cc (n+1) s)) - expec (cc (n+1))| ≥ a} ≤ &(n+1)2 ∑n+1

i=0 1/&(i+1)2/a2

Thus, we have been able to conduct precise probabilistic analysis of the Coupon Collector’s problem in HOL, which
is something that cannot be achieved by any existing computer based probabilistic analysis tool.

CONCLUSIONS

In this paper, we presented the formal definitions of expectation, variance and standard deviation for discrete random
variables in higher-order-logic. Building on these definitions, we verified the Markov’s and Chebyshev’s inequalities
in HOL, which can be used to obtain bounds on the tail distribution of a random variable. To the best of our knowledge,
this is the first time that these inequalities have been verified using a mechanical theorem prover and the results are
found to be in good agreement with existing theoretical paper-and-pencil counterparts.

Based on our verification experience, we can say that formalizing mathematics in a mechanical system is a tedious
and time consuming task as one often has to deal with proof steps that are usually ignored by many authors of
mathematical texts. In return, we get the reliability and precision that is very useful for analyzing safety-critical
systems. Besides this, theorem proving may be gainful in classical mathematical research too as it can help in coping
with the explosion in mathematical knowledge and preserving mathematics from corruption.
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