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Abstract. Reconfigurable memory arrays with spare rows and columns
are quite frequently used as reliable data storage components in present
age System-on-Chips (SoCs). The spare memory rows and columns can
be utilized to automatically replace rows or columns that are found to
contain a cell fault after fabrication. One of the biggest SoC design chal-
lenges is to estimate, prior to the actual fabrication process, the right
number of these spare rows and spare columns for meeting the reliability
specifications. Traditionally, computer simulation techniques are used to
perform probabilistic analysis of reconfigurable memory arrays but they
provide inaccurate results. To ensure accurate analysis and thus more
reliable SoC designs, we propose, in this paper, a probabilistic theorem
proving approach in the domain of reconfigurable memory array analysis.
We present a higher-order-logic stuck-at fault model for reconfigurable
memory arrays, based on which, we illustrate the formal verification of
some key statistical properties related to the number of stuck-at faults
and the repairability condition.

1 Introduction

Embedded memory is the most dominant component in terms of silicon area
of any System-on-Chip (SoC) these days. Applications such as mobile commu-
nication devices, medical and industrial signal processing and digital switching
systems used in computer networks all require large amounts of memory. It is
expected that by the end of this decade about 90% of the chip area on a typical
SoC will be taken up by memory of one type or the other (Static, Dynamic,
Flash, or Content addressable) [15]. These memories on a chip are usually orga-
nized in very highly optimized structures in an effort to reduce cost. Extremely
small memory cell sizes and the fact that a significant amount of the chip area is
taken by compact memory arrays, makes memories more prone to defects during
fabrication than regular logic. The defects in a memory can render the whole
SoC useless. Even in mature fabrication processes where the defect densities tend
to be small, the throwing away of any chip is considered unacceptable because of
its adverse effect on yield. Moreover, these defects may also lead to devastating
situations when the bug is not caught in the testing phase and the faulty chip is
used in a safety critical domain, such as medicine, military and transportation.
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In order to analyze the effects of memory defects, memory fault models are
constructed that describe how a fault in memory might occur and predict the
resulting device behavior. There are four main types of faults that may occur in
a memory array: stuck-at faults, transition faults, coupling faults, and neighbor-
hood pattern sensitive faults [20]. Stuck-at faults, which occur when a memory
cell never changes its state, i.e., it is always stuck in one state, is the most com-
monly used fault model for analyzing memory arrays and logic. The information
gathered from the fault models is utilized for the development of techniques for
detecting and repairing memory faults. One such widely used technique is to
add some redundancy to the memory array during the design phase. This way
even after fabrication, we can repair some of the memory faults by replacing
the rows or columns of the memory array containing faulty memory cells with
the available spare rows or columns. Memories fabricated with these spare rows
and columns are usually termed as reconfigurable memory arrays. This technique
poses an interesting solution to the memory faults problem but comes with a
bigger design challenge of estimating the right number of spare rows and columns
for meeting reliability specifications. If a combination of spare rows and columns
exists such that all faults from the memory array can be eliminated then such a
combination of spare rows and columns is called a repair solution, and the array
is called repairable. The repairability problem of a reconfigurable memory array
is similar to the vertex cover problem of the bipartite graph and is known to
be an NP complete problem [16]. Thus, probabilistic analysis and some graph
theory principles are usually utilized to obtain reasonable solutions [25,18,2].

Today, simulation is the most commonly used computer based probabilistic
analysis tool for reconfigurable memory arrays, e.g., see [21,23]. Most simulation
based memory array analysis software provide a programming environment for
defining functions that approximate random variables for probability distribu-
tions. The random elements, such as fault occurrences, in a given memory array
are modeled by these functions and the model is analyzed using computer simu-
lation techniques [5], such as the Monte Carlo method [19], where the main idea
is to approximately answer a query on a probability distribution by analyzing a
large number of samples. Statistical quantities, such as expectation and variance,
may then be calculated, based on the data collected during the sampling process,
using their mathematical relations in a computer. Due to the inherent nature of
simulation coupled with the usage of computer arithmetic, the probabilistic anal-
ysis results attained by the simulation approach can never be termed as 100%
accurate. Moreover, simulation requires an enormous amount of CPU time for
attaining meaningful estimates. We generally need to acquire hundreds of thou-
sands of samples to estimate the desired probabilistic quantities and this fact
makes the simulation approach impractical when each sample acquisition step
involves extensive computations, which is usually the case for analyzing recon-
figurable memory arrays due to their large capacities. Thus, simulation should
not be relied upon for the analysis of reconfigurable memory arrays, especially
when they are used in safety critical areas, where inaccuracies and inadequacies
in the analysis may even result in the loss of human lives.
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In the past couple of decades, formal methods [8] have been successfully used
for the precise analysis of a verity of hardware and software systems. The rigorous
exercise of developing a mathematical model for the given system and analyz-
ing this model using mathematical reasoning usually increases the chances for
catching subtle but critical design errors that are often ignored by traditional
techniques like simulation. Given the sophistication of the present age memory
reconfigurable arrays and their extensive usage in SoCs for safety critical appli-
cations, there is a dire need of using formal methods in this domain. However, to
the best of our knowledge, due to the random and unpredictable occurrence pat-
tern of memory array faults, the usage of formal methods for their analysis has
never been attempted. Some of the major reasons for this include the inability to
precisely reason about statistical properties, such as expectation and variance,
in the case of state-based approaches and the fear of huge proof efforts involved
in modeling and reasoning about random occurrence patterns of memory faults
in the case of theorem proving with expressive logics.

We believe that due to the recent developments in the formalization of proba-
bility theory concepts [14,11,12,13], we are now at the stage where we can handle
the probabilistic analysis of reconfigurable memory arrays in a higher-order-
logic theorem prover [6] with reasonable amount of modeling and verification
efforts. We illustrate the practical effectiveness of this argument by presenting
the higher-order-logic theorem proving based analysis of the repairability prob-
lem for stuck-at faults in this paper. Even though, we concentrate on stuck-at
faults here, the presented approach is quite general and can be essentially utilized
to conduct the analysis of other kinds of memory faults as well.

This paper presents a three step approach for tackling the repairability prob-
lem. We proceed by formally expressing a stuck-at fault model for reconfigurable
memory arrays in higher-order logic. Our formalization utilizes precise random
variable functions to express the random components in the model. Secondly,
we utilize our formal model to express and verify statistical properties, such as
expectation and variance of the number of faults in terms of memory array and
spare rows and columns sizes, as higher-order logic theorems. Finally, this for-
mal statistical information is utilized to formally verify a relation that ascertains
that a large square memory array is almost always repairable (with probability
1) if stuck-at faults are independent and identically distributed with a specific
probability. This result can now be used to accurately estimate the number of
spare rows and columns required for reliable operation against stuck-at faults of
any reconfigurable memory array without any CPU time constraints. We have
utilized the higher-order-logic theorem prover HOL [7] for this work. The main
motivation behind using the HOL theorem prover is the fact that it contains
most of the foundational probability theory work that we build upon.

The rest of the paper is organized as follows: Section 2 presents some related
work. Section 3 provides an overview of HOL probabilistic analysis related foun-
dations that we build upon to conduct the analysis of reconfigurable memory
arrays in this paper. In Section 4, we present our formal probabilistic model of
the number of stuck-at faults in memory arrays. This is followed by the formal
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verification of some statistical properties and the repairability condition in Sec-
tion 5. Finally, Section 6 concludes the paper.

2 Related Work

Simulation techniques are very commonly used in the yield and repairability
analysis for memory arrays. One such yield analysis tool , described in [23], for
integrated circuits containing multiple, possibly different, repairable embedded
memories. Pseudo random faults are generated based on memory area, defect
density, and fault distribution. Then, using a flexible array model, optimal num-
bers of spare rows and columns for a given memory are determined. The tool
is also used to determine the effectiveness of various repair algorithms. In [21]
a Built-in self repair (BISR) technique is presented that merges error correction
coding schemes and self repair using spare rows and columns. The technique is
validated through simulation and it is shown that for defect densities as high
as 10−2 % (or when 3% of cells are defective) near 100% memory yield can be
achieved and thus is suitable for nanometer CMOS process generations.

When memory sizes become large, analysis through simulation very quickly
becomes computationally difficult to handle. Paper-and-pencil based analytical
analysis have been traditionally used for such cases. A memory array probability
model represents either the occurrence of individual faults or the total number of
faults as a random variable and thus allows reasoning about statistical properties.
Questions, such as “given a certain fault distribution and number of faults can
almost every memory array be repaired”, or “with how many faults a memory
array can almost never be repaired”, can then be answered [2,25,18].

To the best of our knowledge, higher-order-logic theorem proving has never
been used for the probabilistic analysis of any memory reconfigurable array so
far. Though, some useful research related to the foundations of probabilistic
analysis is available in the open literature. Random variables can be formal-
ized and verified, based on their probability distribution properties, using the
methodology proposed in [14]. In fact, [14] presents the formalization of some dis-
crete random variables along with their verification, based on the corresponding
PMF properties. Building upon Hurd’s formalization framework [14], the sam-
pling algorithms of a few continuous random variables have also been formalized
and verified [11]. In [12,10], we extended Hurd’s formalization framework with
a formal definition of expectation. This definition is then utilized to formalize
and verify the expectation and variance characteristics associated with discrete
random variables that attain values in natural numbers only.

Besides theorem proving, another formal method that can be used for conduct-
ing precise probabilistic analysis of reconfigurable memory arrays is probabilistic
model checking [1,22]. The main idea behind this approach is to construct a pre-
cise state-based mathematical model of the given memory array and then utilize
this model to exhaustively verify the intended, formally represented, probabilis-
tic properties, such as the probability of number of faults being less than some
threshold value in a given memory array. Besides the accuracy of the results,
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the most promising feature of probabilistic model checking is the ability to per-
form the analysis automatically. On the other hand, it is limited to systems that
can only be expressed as probabilistic finite state machines or Markov chains.
Another major limitation of the probabilistic model checking approach is state
space explosion [3], due to which large capacity memories cannot be analyzed
using this approach. Similarly, to the best of our knowledge, it has not been
possible to precisely reason about statistical quantities, such as variance and
tail distribution bounds, using probabilistic model checking so far. The most
that has been reported in this domain is the evaluation of a small subset of
expected values in a couple of model checkers, such as PRISM [17] and VESTA
[24]. Because of the above mentioned limitations, probabilistic model checking is
not feasible for analyzing memory array repairability problem as the models are
usually large and most of the decision making in this domain is made based on
statistical quantities. Whereas, the proposed higher-order-logic theorem proving
based approach, allows us to analyze a wider range of memory arrays without
any modeling limitations, such as the restrictiveness to Markovian models or the
state-space explosion problem, and formally verify statistical properties, as will
be seen in the next section.

3 Probabilistic Analysis in HOL

The foremost criteria for implementing a theorem proving based probabilistic
analysis framework is to be able to formalize and verify random variables in
higher-order logic. Hurd’s PhD thesis [14] can be considered a pioneering work
in this regard as it presents a methodology for the formalization and verification
of probabilistic algorithms in the HOL theorem prover. Random variables can
be formalized in higher-order logic as deterministic functions with access to
an infinite Boolean sequence B

∞; a source of infinite random bits [14]. These
deterministic functions make random choices based on the result of popping the
top most bit in the infinite Boolean sequence and may pop as many random bits
as they need for their computation. When the functions terminate, they return
the result along with the remaining portion of the infinite Boolean sequence to
be used by other programs. Thus, a random variable which takes a parameter
of type α and ranges over values of type β can be represented in HOL by the
function.

F : α → B∞ → β × B∞

As an example, consider the Bernoulli(1
2 ) random variable that returns 1 or

0 with equal probability 1
2 . It can be formalized in HOL as follows

� bit = (λs. if shd s then 1 else 0, stl s)

where s is the infinite Boolean sequence and shd and stl are the sequence
equivalents of the list operation ’head’ and ’tail’. The probabilistic programs
can also be expressed in the more general state-transforming monad where the
states are the infinite Boolean sequences.
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� ∀ a s. unit a s = (a,s)
� ∀ f g s. bind f g s = g (fst (f s)) (snd (f s))

The unit operator is used to lift values to the monad, and the bind is the
monadic analogue of function application. All monad laws hold for this definition,
and the notation allows us to write functions without explicitly mentioning the
sequence that is passed around, e.g., function bit can be defined as

� bit monad = bind sdest (λb. if b then unit 1 else unit 0)

where sdest gives the head and tail of a sequence as a pair (shd s, stl s).
[14] also presents some formalization of the mathematical measure theory in

HOL, which can be used to define a probability function P from sets of infinite
Boolean sequences to real numbers between 0 and 1. The domain of P is the
set E of events of the probability space. Both P and E are defined using the
Carathéodory’s Extension theorem, which ensures that E is a σ-algebra: closed
under complements and countable unions. The formalized P and E can be used
to formally verify probabilistic properties, e.g.,

� P {s | fst (bit s) = 1} = 1
2

where the HOL function fst selects the first component of a pair and {x|C(x)}
represents a set of all x that satisfy the condition C. The above approach has been
successfully used to formalize and verify both discrete [14,13] and continuous
random variables [11] in HOL.

Expectation theory plays a vital role in the domain of probabilistic analysis
as it is a lot easier to judge performance issues based on the average value
of a random variable, which is a single number, rather than its distribution
function. Building on the above mentioned probabilistic analysis infrastructure,
[12] presents a higher-order-logic definition of expectation for discrete random
variables. This function has been used to successfully verify the average values of
most of the commonly used discrete random variables. For example, [13] presents
the verification of average value of the Binomial random variable, which will be
later utilized in this paper for memory array analysis.

Lemma 1: Expectation of Binomial(m,p) Random Variable

� ∀ m p. 0 ≤ p ∧ p ≤ 1 ⇒ expec (λs. prob bino m p s) = m p

where (λx.t) represents a lambda abstraction function in HOL that maps its
argument x to t(x) and prob bino is the HOL function for the Binomial random
variable modeled using the above mentioned approach.

The higher-order-logic probabilistic analysis approach was further strength-
ened by some additional formalization related to expectation theory in [10]. This
includes a formal definition of the variance characteristic, which is used for mea-
suring dispersion of a random variable. This definition of variance can be utilized
to verify variance characteristics of most of the commonly used discrete random
variables, e.g., [13] presents the verification of variance of the Binomial random
variable as the following theorem.
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Lemma 2: Variance of Binomial(m,p) Random Variable

� ∀ m p. 0 ≤ p ∧ p ≤ 1
⇒ variance (λs. prob bino m p s) = m p (1 - p)

The work in [13], also includes the verification of some classical properties of ex-
pectation and variance in HOL. One such property is the Chebyshev’s inequality,
which plays a vital role in verifying tail distribution bounds of probabilistic sys-
tems within the HOL theorem prover and is given below

Lemma 3: Chebyshev’s Inequality

� ∀ R a. (0 < a) ∧ (0 < variance R) ∧
(summable(λn. n P{s | fst (R s) = n})) ∧
(summable(λn. n2

P{s | fst (R s) = n}))
⇒ P {s | abs (fst (R s) - expec R) ≥ a} ≤ variance R

a2

where the HOL predicate summable is True if the infinite summation of its real
sequence argument exists [9], i.e., ∃x. lim

k→∞
∑k

n=0 f(n) = x. Thus, the summable

assumptions in the above theorem state that the theorem is only valid for a
random variable R with well-defined expectation and variance values.

In this paper, we utilize the above mentioned infrastructure for conducting
formal probabilistic analysis of reconfigurable memory arrays, a novelty that to
the best of our knowledge does not exist in the open literature so far.

4 Formal Stuck-at Fault Memory Model

In this section, we develop a formal generic stuck-at fault model for reconfig-
urable memory arrays. This model will be used to formally reason about the
statistical properties and repairability of the memory arrays in the next section.
Our formalization approach is mainly inspired by the analytical model developed
in [25] for the paper-and-pencil based analysis of reconfigurable memory arrays.

The reconfigurable memory array can be modeled as a bipartite graph (R, C,
F ). In this bipartite graph, R represents the set of nodes representing rows of
the memory array, C is the set of nodes representing the columns of memory
array, and F is a set of edges, with each edge connecting one node in the set R to
a node in the set C, and represents a fault in the memory array. It is important
to note here that the number of elements in the set F and their identities is a
random quantity as fault occurrence is an unpredictable event. Therefore, we
associate a probability p with every possible pair combination of the elements of
the sets R and C of being included in the set F . Also, the occurrence of stuck-at
faults, and thus the inclusion of a pair in the set F , is assumed to be independent
and identically distributed in this model.

For illustration purposes, consider a square memory array of size n x n
with sr spare rows and sc spare columns and four stuck-at faults, as shown in
Figure 1.(a). The corresponding bipartite graph model of the memory array is
given in Figure 1.(b). In this model, each of the four faults is represented as an
edge connecting a row and column node.
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Fig. 1. Memory Array Model

A stuck-at fault occurring at location (x, y) in the memory array can be
repaired by replacing either row x or column y with a spare row or a spare
column. Thus, in the worst case scenario when we require one row or column
to repair a single fault only, a memory array is considered to be absolutely
repairable if its total number of stuck-at faults is less than the available number
of spare columns or rows. This repairability problem is similar to the vertex cover
problem of the bipartite graph and is known to be an NP complete problem [16].
Therefore, we consider solutions to this problem using probability theory and
define the probability of repairability, using our memory array model, as follows

Pr(|F | ≤ sr + sc) (1)

where Pr and |F | represent the probability function and cardinality of a set
F , respectively. Equation (1) represents the probability of the event when the
number of stuck-at faults |F |, a random quantity, is less than the total number
of spare rows and columns sr + sc. We can express Equation (1) in terms of the
number of rows or columns of a square n x n reconfigurable memory array as

Pr(|F | ≤ (a + b)n) (2)

where a = sr
n and b = sc

n . The values of a and b are bounded in the real interval
[0, 1], since the number of spare rows and spare columns is usually a small fraction
of the total number of rows and columns in the array and can never exceed it.

In this paper, our primary goal is to formally verify that if the probability of
stuck-at fault occurrence is given by the following expression

p =
(a + b)

n
− w(n)

n
√

n
(3)

then the memory array is almost always repairable, whereas w(n) → ∞ as
n → ∞. The term almost always repairable in the above context means that
the probability of repairability tends to 1 as n becomes very very large. The
above expression for the stuck-at fault occurrence probability has been initially
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proposed and analyzed using informal techniques in [25]. Our contribution in this
paper is to formally verify the above argument using the HOL theorem prover.

We proceed in this direction by first modeling the number of faults or the
cardinality of the set F using the following higher-order-logic functions.

Definition 1: Stuck-at Fault Memory Model

� (∀ p. mem fault model helper 0 p = unit 0) ∧
∀ c p. mem fault model helper (c + 1) p =
bind (mem fault model helper c p)

(λa. bind (prob bern p) (λb. unit (if b then (a+1) else a)))

� (∀ c p. mem fault model 0 c p = unit 0) ∧
∀ r c p. mem fault model (r + 1) c p =
bind (mem fault model r c p)

(λa. bind (mem fault model helper c p) (λb. unit (a + b)))

The function mem fault model accepts three parameters: the cardinalities of the
sets R and C and the probability of fault occurrence p. It recursively manipulates
these three parameters, with the help of the function mem fault model helper
and returns the number of faults found in the memory array of size |R| x |C|.
It is important to note that the fault occurrence behavior, which is the random
component in this model, is represented by the formalized Bernoulli random
variable function prob bern [14] above. The function mem fault model basically
performs a Bernoulli trail, with the probability of obtaining a True being equal
to the probability of fault occurrence, for each cell of the memory array and
returns the total number of True outcomes obtained.

Now, in order to verify the condition of repairability, given in Equation (3),
we define the following special case of our general memory model.

Definition 2: Stuck-at Fault Memory Model for Repairability Problem

� ∀ n a b w. mem fault model rep n a b w =

mem fault model n n ( (a+b)
n

− w(n)
n
√
n
)

The function mem fault model rep accepts four parameters: the cardinality of
the sets R and C of a square reconfigurable memory array as a natural number
n, the fractions of spare rows and columns as real numbers a and b, respectively,
and the real sequence w with data type (natural → real). It utilizes the function
mem fault model, given in Definition 1, to return the number of stuck-at faults
for the specific case of a square n x n memory array with the fault occurrence
probability equal to the expression, given in Equation (3).

For simplifying the interactive proofs related to the function mem fault model
rep, it can be alternately expressed as follows

Lemma 4: Alternate Stuck-at Fault Memory Model for Repairability Problem

� ∀ n a b w.
mem fault model rep n a b w = prob bino n2 ( (a+b)

n
− w(n)

n
√
n
)
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The proof of the above lemma is primarily based on the fact that the stuck-
at fault occurrences in our memory array model are independent and identi-
cally distributed and so are the Bernoulli random variables used in the function
definition of mem fault model rep. This allows us to express the summation
of n2 Bernoulli(p) random variables in the function mem fault model rep as a
Binomial(n2, p) random variable, since Binomial(m, p) random variable basically
counts the number of successes in m independent and identically distributed
Bernoulli trials, with a success probability p [4].

5 Statistical Properties and Repairability Condition

In this section, we utilize the function mem fault model rep to formally verify
a couple of statistical properties regarding the number of faults and the almost
always repairability condition for an n x n reconfigurable memory array with
stuck-at fault occurrence probability given by Equation (3). These verification
results play a vital role in designing reliable reconfigurable memory arrays.

5.1 Average Number of Stuck-at Faults

With the probability of stuck-fault occurrence, given by Equation (3), the aver-
age number of stuck-at faults for an n x n memory array is given by

Ex[|F |] = n2(
(a + b)

n
− w(n)

n
√

n
) (4)

This property can be formally expressed in higher-order logic using our formal
definition of the number of faults, given in Definition 2, as follows.

Theorem 1: Average Number of Stuck-at Faults

� ∀ a b n w.
(0 ≤ a) ∧ (a ≤ 1) ∧ (0 ≤ b) ∧ (b ≤ 1) ∧ (1 < n) ∧
(∀ n. (0 < w(n)) ∧ (w(n) < (a + b)

√
n))

⇒ expec (λs. mem fault model rep n a b w s) = n2( (a+b)
n

− w(n)
n
√
n
)

The first four assumptions in the above theorem ensure that the fractions a and b
are bounded by the interval [0, 1] as described in the previous section. Whereas,
the precondition 1 < n has been used in order to ensure that the given memory
array has more than one cell. The last assumption is about the real sequence
w and basically provides its upper and lower bounds. These bounds have been
used in order to prevent the stuck-at fault occurrence probability p, given in
Equation (3), from falling outside its allowed interval [0, 1]. It is interesting to
note that no such restriction on the sequence w was imposed in the paper-and-
pencil based analysis of the repairability problem given in [25]. This fact clearly
demonstrates the strength of formal methods based analysis as it allowed us
to highlight this corner case, which if ignored could lead to the invalidation
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of the whole repairability analysis. The conclusion of Theorem 1 presents the
mathematical relation given in Equation (4).

The HOL proof for Theorem 1 is based on Lemma 4 and the expectation
relation for the Binomial random variable, given in Lemma 1. The proof involves
some arithmetic reasoning to verify that the probability p, given in Equation (3),
lies in the interval [0, 1], which is a precondition for Lemma 1.

5.2 Variance of the Number of Stuck-at Faults

The variance of the number of stuck-at faults for an n x n memory array, with
the probability of stuck-at fault occurrence given by Equation (3), is given by

V ar[|F |] = n2(
(a + b)

n
− w(n)

n
√

n
)(1 − (

(a + b)
n

− w(n)
n
√

n
)) (5)

This property can be formally expressed in HOL as follows

Theorem 2: Variance of the Number of Stuck-at Faults

� ∀ a b n w s.
(0 ≤ a) ∧ (a ≤ 1) ∧ (0 ≤ b) ∧ (b ≤ 1) ∧ (1 < n) ∧
(∀ n. (0 < w(n)) ∧ (w(n) < (a + b)

√
n))

⇒ variance
(λs. mem fault model rep n a b w s) =

n2( (a+b)
n

− w(n)
n
√
n
)(1− ( (a+b)

n
− w(n)

n
√
n
))

and verified using Lemma 2 just like Lemma 1 was used to verify Theorem 1.

5.3 Tail Distribution Bound for the Number of Stuck-at Faults

A tail distribution bound of the number of stuck-at faults for our n x n memory
array, with the probability of stuck-at fault occurrence, given by Equation (3),
can be expressed as follows.

Pr(|F | ≤ (a + b)n) ≥ 1 −
n2( (a+b)

n − w(n)
n
√

n
)(1 − ( (a+b)

n − w(n)
n
√

n
))

n(w(n))2
(6)

Whereas, the corresponding HOL theorem is as follows.

Theorem 3: Tail Distribution Bound for the number of Stuck-at Faults

� ∀ a b n w s.
(0 ≤ a) ∧ (a ≤ 1) ∧ (0 ≤ b) ∧ (b ≤ 1) ∧ (1 < n) ∧
(∀ n. (0 < w(n)) ∧ (w(n) < (a + b)

√
n))

⇒ (P {s | (fst (mem fault model rep n a b w s)) ≤ (a + b)n} ≥
1 - (

n2( (a+b)
n

− w(n)
n
√

n
)(1−( (a+b)

n
− w(n)

n
√

n
))

n(w(n))2 )

We proceed with the verification of this theorem by splitting its proof goal into
two subgoals using the less-than-or-equal-to transitive property as follows.
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P {s | (fst (prob bino n2 ( (a+b)
n

− w(n)
n
√
n
) s) > (a + b)n− 2

√
nw(n)) ∧

(fst (prob bino n2 ( (a+b)
n

− w(n)
n
√
n
) s) < (a + b)n }

≤ P {s | (fst (prob bino n2 ( (a+b)
n

− w(n)
n
√
n
) s))≤ (a + b)n}

1 -
n2( (a+b)

n
− w(n)

n
√

n
)(1−( (a+b)

n
− w(n)

n
√

n
))

(nw(n)w(n)) ≤
P {s | (fst (prob bino n2 ( (a+b)

n
− w(n)

n
√
n
) s)) > (a + b)n− 2

√
nw(n) ∧

(fst (prob bino n2 ( (a+b)
n

− w(n)
n
√
n
) s)) < (a + b)n }

The first subgoal can be verified using the basic probability axiom (∀A B.A ⊆
B ⇒ (Pr(A) ≤ Pr(B))) since the set on the left-hand-side (LHS) of the inequal-
ity is a subset of the set on the right-hand-side (RHS). Whereas, by rewriting the
two inequalities in the argument of the probability function of subgoal 2 using
absolute value theorem ((|y − x| < d) = (x − d < y < x + d) we get:

1-
n2( (a+b)

n
− w(n)

n
√

n
)(1−( (a+b)

n
− w(n)

n
√

n
))

(nw(n)w(n)) ≤
P { s | |fst (prob bino n2 ( (a+b)

n
− w(n)

n
√
n
) s) - ((a + b)n−√

nw(n))|
<

√
nw(n) }

Now using the complement probability law (∀A.Pr(Ā) = 1 − Pr(A)) along
with Theorems 1 and 2, we can rewrite the above sub goal as follows

P {s | |fst (prob bino n2 ( (a+b)
n

− w(n)
n
√
n
) s) -

expec (λs. prob bino n2 ( (a+b)
n

− w(n)
n
√
n
) s)| ≥ √

nw(n) } ≤
variance(λs.prob bino n2( (a+b)

n
− w(n)

n
√

n
)s)

(
√
nw(n))2

The above subgoal can now be discharged from the HOL goal stack by using
Chebyshev’s inequality, given in Lemma 3, along with some arithmetic reasoning.

5.4 Repairability Problem

Now, we use the statistical properties verified so far to analyze the repairability
problem, i.e., an n x n reconfigurable memory array with the probability of
stuck-at fault occurrence given by Equation (3), is almost always repairable.

lim
n→∞Pr(|F | ≤ (a + b)n) = 1 (7)

The corresponding HOL theorem is as follows

Theorem 4: Repairability Problem of Stuck-at Faults

� ∀ a b w. (0 ≤ a) ∧ (a ≤ 1) ∧ (0 ≤ b) ∧ (b ≤ 1) ∧
(∀ n. (0 < w(n)) ∧ (w(n) < (a + b)

√
n)) ∧

(lim (λn. 1
w(n)) = 0)

⇒ (lim (λn.
P {s | (fst (num of faults n a b w s)) ≤ (a + b) n }) = 1))
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where lim M represents the HOL formalization of the limit of a real sequence M
(i.e., lim M = lim

n→∞ M(n)) [9]. The new assumption (lim(λn. 1
w(n) ) = 0) formally

represents the intrinsic characteristic of real sequence w that it tends to infinity
as its natural argument becomes very very large.

We proceed with the verification of Theorem 4 by first splitting its proof goal
into the following two subgoals, based on some simple arithmetic reasoning.

lim(λn. P{s | fst (mem fault model rep n a b w s) ≤ (a + b)n})≤1

1≤lim(λn. P{s | fst (mem fault model rep n a b w s) ≤ (a + b)n})
The first subgoal can be verified using the basic probability axiom (∀A.Pr(A)

≤ 1). Whereas, we utilize Theorem 3 and the transitivity property of less-than-
or-equal-to for real numbers to rewrite the second subgoal as follows.

1 ≤ lim (λn. 1 -
n2( a+b

n
− w(n)

n
√

n
)(1− a+b

n
+ w(n)

n
√

n
)

n(w(n))2 )

The expression in the RHS of the above inequality can be rewritten as follows
using some arithmetic reasoning.

1 ≤ lim (λn. 1 - (( a+b
w(n) − 1√

n
)( 1

w(n) − a+b
nw(n) + 1

n
√
n
)))

This subgoal can now be verified as the limit value of the expression on the
RHS tends to 1, since all the denominator terms in this expression tend to ∞ as
n becomes very very large. This also concludes the proof for Theorem 4.

Our results clearly demonstrate the effectiveness of the theorem proving based
reconfigurable memory array analysis approach. Due to the formal nature of
the model and inherent soundness of theorem proving, we have been able to
verify the properties of interest regarding the given memory array with 100%
precision; a novelty which is not available in simulation. Similarly, due to the high
expressibility of higher-order logic we have been able to formally reason about
statistical properties of the problem that cannot be analyzed using a probabilistic
model checker. The proposed approach is also superior than the paper-and-pencil
proof methods in terms of accuracy. In the paper-and-pencil approach, the proof
checking and associated bookkeeping is an error prone process, specially when
dealing with large proofs, and thus often leads either to wasted time and effort or
a wrong result. On the other hand, in theorem proving, these complicated tasks
are done by the computer within a sound core, which is based on a very few
axioms and inference rules. Each proven theorem can be logically traced back
to these basic axioms and the associated proof steps can be linked to the basic
inference rules. Due to this inherent soundness, it is impossible to prove wrong
statements in a theorem prover.

The above mentioned additional benefits, associated with the theorem proving
approach, are attained at the cost of the time and effort spent, while formalizing
the memory array and formally reasoning about its properties, by the user.
But, the fact that we were building on top of already verified probability theory
related results helped significantly in this regard as this analysis only consumed
approximately 80 man-hours and 1200 lines of HOL code by an expert user.
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6 Conclusions

In this paper, we utilized the mathematical probability theory formalized in a
higher-order-logic theorem prover to analyze reconfigurable memory arrays in
the presence of stuck-at faults. To the best of our knowledge, this is the first
study on using these kind of techniques for such an application. We developed a
higher-order-logic based formal stuck-at fault model for reconfigurable memory
arrays, and based on this model we formally verified some key statistical proper-
ties and repairability condition. The rigorous exercise of developing a computer
based formal model for the memory array and analyzing it using mechanized
mathematical reasoning allowed us to discover a couple of critical assumptions
that are missed by almost all of the paper-and-pencil based analysis, that we
came across, of a similar problem. Due to the formal nature of the models and
the inherent soundness of theorem proving systems, the analysis is guaranteed
to provide exact answers. These feature makes the proposed approach very use-
ful for the probabilistic analysis of memory arrays that are to be used in safety
critical and highly sensitive areas.

Our approach for the probabilistic analysis of stuck-at faults in memory re-
configurable arrays is quite general and can be extended and easily adapted to
conduct precise probabilistic analysis of other kinds of fault models, like transi-
tion faults, coupling faults, and neighborhood pattern sensitive faults, as well.
The random or unpredictable elements found in these models can be represented
using an appropriate random variable from the existing library of formalized dis-
crete [14,12,13] and continuous random variables [11], and the precise statistical
quantities associated with the parameters of interest may then be verified within
the sound core of a higher-order-logic theorem prover. For example, the proba-
bilistic analysis approach for coupling faults [25] can be adapted in a theorem
prove using the formal definition of the Binomial random variable along with
the theorems regarding its expectation and variance. Similarly, other statistical
properties, such as the conditions for irrepairability and tail distribution bounds
based on Markov’s inequality, can also be verified.
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