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ABSTRACT Dynamic Fault Trees (DFTs) are increasingly being used for modeling the failure behaviors of
systems, particularly dynamic behaviors that cannot be captured using conventional combinatorial models.
Traditionally, paper and pencil or simulation are used for the analysis of DFTs. While the former can provide
generic expressions for the probability of failure, its results are prone to human errors. The latter method is
based on sampling and the results are not guaranteed to be complete. Leveraging upon the expressive and
sound nature of higher-order logic (HOL) theorem proving, it has been recently proposed for the analysis of
DFTs algebraically. In this paper, we propose a novel methodology for the formal analysis of DFTs, based on
the algebraic approach, while capturing both the qualitative and probabilistic aspects using theorem proving.
In this paper, we further enrich the DFT library in HOL by providing the formalization of spare gates with
a shared spare and the verification details of their probabilistic behavior. To demonstrate the utilization of
our methodology, we apply it for the formal analysis of two safety-critical systems, namely, a drive-by-wire
system and a cardiac assist system.

INDEX TERMS Dynamic fault trees, qualitative analysis, quantitative analysis, higher-order logic, theorem

proving, HOLA4.

I. INTRODUCTION
Fault trees (FTs) have been widely used in modeling the
causes of failure of systems [1]. The undesired system failure
is modeled as the top event of the FT, while the basic events
of faults that lead to the occurrence of this top event are
modeled as FT inputs. The relationship among the basic
events in leading to the occurrence of the top event are repre-
sented as FT gates. FTs can be categorized into Static Fault
Trees (SFTs) and Dynamic Fault Trees (DFTs) depending
on the modeled failure behavior [2]. In SFTs, the sources of
failure are considered only without any specific order and
the top event is modeled as a Boolean function. In DFTs,
the failure dependencies are captured by introducing DFT
gates that consider the time of failure of system components
in affecting the failure of others [3].

Fault Tree Analysis (FTA) [1], including qualitative
and quantitative aspects [1], is primarily used to provide
information about the conditions required for the system
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failure as well as some numeric failure measures. In the quali-
tative analysis, the sources and factors contributing to system
failure are identified. This is performed by first expressing
the structure function of the top event, then the cut sets
and cut sequences are identified. The cut sets represent the
combinations of basic events that lead to the occurrence of the
top event [1]. The cut sequences, on the other hand, identify
the sequences of basic events that cause the occurrence of
the top event [1]. The quantitative analysis is conducted by
providing information about reliability metrics, such as the
Mean Time To Failure (MTTF) as well as the probability
of failure of the top event, which can be used to evalu-
ate system reliability and thus devise appropriate recovery
plans.

Several methods exist for conducting the DFT analysis,
including Markov chain based approaches [4] and the alge-
braic approach [5]. In the Markov chain based analysis,
the DFT is converted first into its equivalent Markov chain,
and then analyzed using simulation methods, such as Markov
chain Monte Carlo simulation [6]. However, the number of
Markov chains states grows exponentially with the number
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of system components, and thus would need a lot of com-
putational resources for meaningful analysis. To overcome
this issue, modularization can be applied to divide the DFT
into static and dynamic parts [7]. The static part can be
analyzed using any of the traditional methods, such as Binary
Decision Diagrams [8]. While the Markov chain of the
dynamic part can be analyzed using simulation. This way,
the resulting Markov chain will be smaller and thus easier
to handle. However, due to the sampling based nature of
simulation, the analysis results cannot be guaranteed to be
complete.

In the algebraic approach, the top event of the DFT is
expressed as a function of basic input events. Temporal oper-
ators are then defined in the algebraic approach to capture
the failure dependencies. In addition, several simplification
rules are applied to obtain a simplified structure function
that is used for the qualitative and probabilistic analyses
of a DFT [9]. Although the algebraic approach generates
a reduced form of the DFT’s structure function as well as
generic expressions of probability of failures that are inde-
pendent of the distribution of the basic events [9], its results
are prone to human errors, particularly if the underlying
math of this approach is not formally verified. Simulation
can be combined with the algebraic approaches for DFT
analysis [10], but this hybrid approach also suffers from the
same shortcomings as simulation.

Formal methods [11], which are computer based tools
that analyze systems based on their mathematical models,
can overcome the previously mentioned accuracy problems
of simulation based analysis. Two main formal methods,
i.e., model checking and theorem proving have been used
in the context of DFT analysis. Model checking [12] is
used to automatically analyze systems modeled as state
machines, while higher-order-logic (HOL) theorem prov-
ing [13] verifies the properties of systems using interactive
proofs based on deductive reasoning. Probabilistic Model
Checkers (PMCs), such as STORM [14], have been suc-
cessfully used for the analysis of DFTs [15]. Using PMCs
in the analysis is appealing, as it is an automatic verifica-
tion method. However, complex systems with large Markov
chains cannot be handled unless some reduction algorithms
are invoked. Usually the implementations of such reduc-
tion algorithms are not formally verified, which may lead
to discrepancies between the reduced Markov chain and
the original DFT. Moreover, PMCs have not been used in
determining the cut sets and cut sequences of a DFT. More
importantly, PMCs cannot be used to verify generic math-
ematical expressions for the failure probabilities, and thus
whenever the failure rates of system components change,
the whole analysis has to be repeated to reflect the impact
of such a change. Leveraging upon the expressive and sound
nature of HOL theorem proving, it has been recently proposed
for the analysis of DFTs based on the algebraic approach,
qualitatively [16] and quantitatively [17]. We believe that
HOL theorem proving has a great potential to overcome the
soundness related shortcomings of the non-formal algebraic
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analysis and thus can provide a complementary approach to
existing techniques.

In this paper, we propose a methodology to perform formal
qualitative and probabilistic analyses based on the algebraic
approach [9] using HOL theorem proving. In particular,
we verify a reduced form of the DFT structure function that
can be used to obtain a formally verified simplified form of
the cut sets and cut sequences as well as a generic expression
for the probability of failure. Our proposed methodology can
be used to provide the reliability engineer with the confidence
that the obtained results using the non-formal techniques,
such as paper-and-pencil or simulation, are correct. This is
of utmost importance since wrong analysis results may lead
to disastrous consequences, including the loss of human life.
An accurate and complete dependability analysis could avoid
such consequences.

Itis important to note that the proposed methodology is pri-
marily based on the formalization of the algebraic approach
presented in [9]. However, a distinguishing feature of our
formalization is that it allows us to conduct computer based
proofs of the probability of failure expressions for DFT gates
within the sound environment of a theorem prover software.
These proofs are either unavailable in [9], or we are able to
conduct them in a simpler manner. In addition, we explicitly
provided a definition for DFT events that is used to provide
the set of time to perform the probabilistic analysis. More-
over, as we are providing the formalization in a theorem
prover, data-types should be carefully handled to capture both
the behavior of DFT gates and the probability of their failure.
These details are not provided in [9], which signifies the
importance of the proposed methodology.

To highlight the importance of our methodology, we report
our own experience in locating a flaw in one of the pro-
posed algebraic approaches for DFT analysis, which affects
the correctness of the reported results. Namely, in the work
published in [18], a simple algebra for the analysis of FTs
is proposed, which includes introducing new definitions for
DFT gates and events as variables. In addition, temporal
operators are defined to capture the order of inputs. Using
these temporal operators, many simplification theorems are
introduced to simplify the structure function of the top event.
Using HOL theorem proving, we have been able to identify a
flaw in one of the simplification theorems that is also used in
the application section of the paper, which affects the integrity
of the reported results. This further strengthens our claim
that it is necessary to formally verify the correctness of the
algebraic approach to preserve the integrity of the analysis.

A. NOVEL CONTRIBUTIONS OF THE PAPER
The main contributions of the paper can be summarized as
follows:

o A comprehensive methodology for the formal analysis
of DFTs based on the algebraic approach using theorem
proving.

o The HOL formalization of the failure behavior of spare
gates with a shared spare.
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o The identification of a flaw in the fault tree algebra
published in [18].

o The formal analysis of two safety-critical systems.

The proposed methodology provides complete formal
qualitative and probabilistic analyses in the form of generic
expressions of probability of failure using HOL theorem
proving. Due to the involvement of a theorem prover in
the analysis, it is mandatory to explicitly mention all of
the required assumptions or conditions along with the cor-
responding theorems. We argue that this kind of assurance
is not guaranteed by any other analysis technique for DFT.
Given the safety-critical nature of the systems requiring DFT
analysis, this assurance can be very useful to ensure the
reliability of these systems. For example, the flaw that we
were able to identify in [18] is a missing assumption in one of
the simplification theorems. The authors of [18] assumed that
this theorem can be used without any previous assumption
or condition, which is not valid as we have been able to
verify that this theorem is only true under certain conditions.
Using such theorem without the required condition leads to
wrong simplification results that can affect the results of the
qualitative and the quantitative analyses.

In addition, we present a HOL formalization of the proba-
bilistic behavior of a spare gate with a shared spare, which
represents one of the common configurations in DFTs of
real world-systems. This formalization allows us to formally
analyze the corresponding DFTs that use this gate. Finally,
to demonstrate the utilization of our framework, we apply our
formal analysis to three DFT examples and two safety-critical
systems. The first system is a drive-by-wire system [19],
which represents an important component in modern cars that
provides electrical control to the brakes and throttle systems
of a car. The second system is the cardiac assist system [20],
which is a device that provides cardiac assistance to patients
with heart problems. Both systems require sound analysis as
any flaw in the analysis may lead to losses in lives.

B. ORGANIZATION OF THE PAPER

The paper is structured as follows: The related work is pre-
sented in Section II. Some preliminaries that are required
for the understanding of the proposed methodology are
presented in Section III, including the DFT theory in
HOL. In Section IV, we present our proposed methodol-
ogy. Section V provides the HOL formalization of the spare
gate with a shared spare. We use three DFT examples,
in Section VI, to illustrate the usage of the proposed method-
ology. Section VII provides details about the flaw detected in
one of the DFT algebras. The formal analyses of the drive-by-
wire and cardiac assist systems are presented in Section VIII.
Finally, we conclude the paper in Section IX.

Il. RELATED WORK

There are several techniques to analyze DFTs based on
the underlying model. For example, Markov chain based
approaches are widely used for this purpose as the state
based nature of the Markov chain can easily capture the
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dynamic failure behavior of DFTs. Since this analysis is
state based, the size of the state-space grows exponentially
with the number of components. This leads to an exponential
growth of the state space, where it becomes impossible to
exhaustively analyze a large state space given the limited
amount of computational power and memory. These issues
are usually catered for by using modularization [21]. The
DFTCalc tool [22] analyzes the DFT using an Input/Output
Interactive Markov Chain, an extension of Continuous Time
Markov Chains (CTMCs), which is built based on a compo-
sitional aggregation technique [4]. Similarly, other stochastic
approaches, like [23], have been used to evaluate the proba-
bility of failure of DFTs. However, they cannot guarantee the
completeness of analysis as the computations are performed
using stochastic computational models.

Formal methods have also been used for DFT analysis
using Markov chains. Petri nets, for instance, are used for
the analysis of DFTs by first converting the given DFT into
a Generalized Stochastic Petri Net (GSPN) [24]. This Petri
Net can then be converted into a CTMC using a tool that
transforms a GSPN into its equivalent CTMC, like Great-
SPN [25]. The generated CTMC can be analyzed using a
formal method, like model checking (e.g., PRISM [26]), or
using simulation. However, the problem in analyzing DFT's
using Markov chain based approaches lies mainly in the
fact that no generic expressions for the system reliability
are obtained, which would require repeating the analysis
when modifying the failure rates of the system components.
In addition, state-space problems are usually encountered that
require some reduction techniques [27]. However, as these
reduction techniques are usually not formally verified, it is
not very straightforward to ascertain that the obtained results
correspond to the original system model.

Since the formalization of the probability theory in
higher-order logic [28]-[31], theorem proving has also been
used for reliability analysis. For example, some proper-
ties for continuous random variables were verified to for-
mally reason about some system reliability properties, such
as MTTF [32]. Moreover, some reliability theory elements
were formally verified and used in the formal analysis of
a reconfigurable memory array with stuck-at and coupling
faults [33]. Although, in [34], a complete framework for the
analysis of FTs using theorem proving has been proposed and
used to formally analyze some real-world applications, like
an air traffic management system [34] and a solar array for a
satellite system [35], this HOL formalization cannot handle
or be extended to verify the dynamic properties of DFTs.

So far, no framework for the analysis of DFTs using the-
orem proving exists, which is the scope of the current work.
We propose a HOL formalization of DFT foundations, which,
to the best of our knowledge, provides the first HOL theory
for DFT analysis in the HOL theorem proving system. This
formalization in turn can be used to formally analyze DFTs of
real-world applications that would be very useful in the con-
text of safety-critical applications. Moreover, higher-order
logic allows universally quantification over functions and
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predicates, which makes developments in the HOL system
generic for general use.

Generic expressions for the system failure behavior can be
obtained using the algebraic approach [9]. In [5], the authors
provided a framework for the analysis of DFTs based on
algebraically expressing the structure function of the top
event. However, the analysis results of this framework are
based on analytically verified expressions using paper-and-
pencil proof methods, which are prone to errors. In [16],
we proposed an integrated methodology to perform DFT
qualitative analysis using theorem proving, and probabilistic
analysis using a PMC. We formalized using HOL theorem
proving the DFT gates and the simplification theorems of the
proposed algebraic approach in [9]. This integrated method-
ology provides sound DFT qualitative analysis. However,
since a PMC is invoked, this integrated methodology cannot
provide generic expressions of probability of failure. In [17],
we provided enhanced HOL formal definitions for DFT gates
and temporal operators that cater for the probabilistic analysis
of DFTs and provided the details of the formal verification of
probabilistic analysis of FT gates, static and dynamic ones
using HOL theorem proving. Based on the formalization of
DFTs in [17], in this work, we extend the library of DFT gates
with spare gates with shared spare. Furthermore, we propose
a thorough methodology to perform both DFT qualitative
and probabilistic analysis in the form of generic expressions
of probability distributions and density functions. Moreover,
we extend the mathematical formalization to handle more
complex mathematical models than in [17], which allows us
to provide the formal analysis of two real-world case studies.

IIl. PRELIMINARIES

In this section, we present some preliminaries related to
HOL4 theorem proving [36], probability and DFT theories
to facilitate the understanding of our proposed methodology.

A. HOL4 THEOREM PROVING

Theorem proving is one of the formal methods techniques
that uses a computerized program, i.e., a theorem prover,
to carry out mathematical proofs of theorems based on deduc-
tive reasoning. The level of expressiveness of these theorems
depends on the type of logic used, like first-order logic and
higher-order logic (HOL). There are several HOL theorem
provers that are available such as HOL4 [36], Isabelle [37]
and Coq [38], which vary in the availability of the supported
libraries.

HOLA4 is an interactive theorem prover, which is capable
of verifying a wide range of hardware and software systems
as well as mathematical expressions constructed in HOL.
Being an interactive tool, HOL4 requires the guidance of
the verification engineer to complete the verification process.
In order to verify certain properties of a system, a mathemat-
ical model for this system should be created first, then based
on this model, HOL4 can be used to verify several system
properties in the form of theorems. This makes HOL4 an
expressive platform for the verification of any system that
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can be described mathematically. The main characteristic of
HOL theorem proving is its soundness, i.e., no wrong proof
goal can be proved. The core of HOL4 consists only of five
axioms and eight inference rules. Soundness is assured as
any new theorem should be verified based on these axioms
and rules, or based on previously proven theorems. In addi-
tion, no approximation is involved in the models, as their
behavior, such as the failure in the case of DFTs, is captured
in mathematical terms. These features make HOL4 suitable
for carrying out the DFT based analysis of safety-critical
systems that require sound verification results. The term
formalization means to mathematically model the behavior
of a system in an appropriate logic. A proof goal consists
of a list of assumptions of type Boolean and a conclusion.
For example, “V (x:real). 0 < x = 0 < x 17 isa
proof goal, which can be formally verified as a theorem
in HOL4. A theory in HOLA4 is a collection of definitions,
constants and theorems that can be included in the working
environment to be used in verifying other proof goals.

B. PROBABILITY AND LEBESGUE INTEGRAL
THEORIES IN HOL4
A measure space is a triple ( @, X, u), where Q is the
sample space, X is a o -algebra subsets of the sample space €2,
and p is a measure with domain X. The probability theory
in HOL4 is defined based on the measure theory, where a
probability space is a measure space with a triple (€2, X, Pr).
For this triple, Pr is the measure, where the Pr of the sample
space is 1 [30]. For a probability space p, the functions
p_space, events, and prob correspond to 2, ¥ and Pr,
respectively [30]. For example, p_ space is formally defined
as [30]:

Definition 1:
p_space = m_space
where m_space returns the space €2 of the measure space.
One of the main concepts while dealing with the probability
of events is the statistical independence (s-independence)
of these events. In probability theory, the probability of the
intersection of any two s-independent events equals the mul-
tiplication of the probability of the individual events, i.e.,

Pr(ANB) = Pr(A) x Pr(B) (1)

Random variables are used in probability theory to math-
ematically describe random or unpredictable events such as
the outcome of dice rolling. These random variables are
defined as measurable functions that map the outcomes of the
probability space into another space that returns quantities;
numbers for example. Random variables have been defined in
HOLA4 as measurable functions that map from the probability
space to another o -algebra space [30].

The probability distribution function is defined in HOL4 as
the distribution function, which returns the probability
of a random variable X for a given set in the probability
space. This distribution function is used to define the
cumulative distribution function (CDF) of a random variable,
which is the probability that the value of the random variable
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FIGURE 1. Fault Tree Gates: (a) AND (b) OR (c) PAND (d) FDEP (e) SPARE.

is less than or equal to a certain value ¢. This is formally
defined as [35]:
Definition 2: Cumulative Distribution Function
F Vp X t.CDF p X t
distribution p X {y |

y < (t:real)}
where p is the probability space, X is the random variable and
t is the value that we are finding the CDF for, i.e., Fx(%).

It is quite common in DFT analysis to find the probability
of an event that is composed of the union of several events
corresponding to multiple random variables. In these cases,
the probabilistic Principle of Inclusion and Exclusion (PIE)
can be used, which has been formally verified in [35] as:

2

t#(L1S(1,2,...,n}

(=D Pr( 4

Jet

Pr(U A) = 2
i=1

The Lebesgue integral is defined in HOL4 using posi-
tive simple functions [39], which are measurable functions
defined as a linear combinations of indicator functions of
measurable sets representing a partition of the space [40].

In this paper, we are integrating the probability density
functions (PDFs) over the real line. Therefore, we will use
the Lebesgue-Borel measure with the Lebesgue integral. The
Lebesgue-Borel (1borel) measure is a measure defined
over the real line. As with any measure, 1borel should
have a space and measurable sets. For 1borel, the real line
represents its space and the borel sets represent the 1borel
measurable sets [41]. The reliability [33] and probability [40]
related theories in HOL4 are quite rich, which makes HOL4 a
more natural choice to build DFT theories.

C. DFT THEORY IN HOL4

We provide a brief description of DFTs and our formalization
of DFT gates and simplification theorems [17] based on the
algebraic approach presented in [9]. Since all the events are
defined based on the time of failure, we will refer to the time
of failure of any event A as d(A) [9].

1) DFT GATES FORMALIZATION

Two identity elements are defined to model an event that
always fails (ALWAYS = 0) and a fail safe event that can
never fail (VEVER = +o00). The mathematical expressions
as well as the formal definitions of these two elements are
listed in Table 1 [17], where ext real is a HOL data-type for
extended-real numbers that include real numbers and +oo.
This data-type is chosen to be able to model the NEVER event
using +oo [17].
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TABLE 1. Identity elements and temporal operators.

[ Mathematical Expression | Formal Definition

ALWAYS
F ALWAYS =
d(ALWAYS) = 0 (As. O:extreal)
NEVER
d(NEVER) = +o0 [F NEVER = (As. PosInf)
Before
2. (X < AY) FVX Y. XY=
d(qu):{-%—oo,’ AX) > a(y) (As. if X s < Y s then X s
else PosInf)
Simultaneous
_ FVvx Y. X Ay =
d(XAY):{i(;:)’ Zg;;jg; (As. if X s = Y s then X s
else PosInf)
Inclusive Before
FVXy. xdy=
d(XﬁY):{j_(;:‘)‘ Zzﬁiijzii (As. if X s < Y s then X s
else PosInf)

Three temporal operators are defined in the algebraic
approach [9] to represent the sequences of failure of input
events, i.e., the first input event occurs before, at the same
time or before or at the same time of the second input
event for the Before (<), Simultaneous (A) and Inclusive
Before () operators, respectively. If the required condition
of the operator is not satisfied, then the output event can never
occur [9]. It is assumed that for any two basic events that
exhibit continuous failure distributions, they cannot fail at
the same time [9], i.e., d(XAY) = NEVER. Table 1 lists the
mathematical expressions of the temporal operators [9] along
with our HOL formal definitions [17].

Fig. 1 shows the common FT gates including static
ones; AND and OR, as well as the dynamic ones;
Priority-AND (PAND), Functional DEPendency (FDEP) and
Spare gates [3]. Table 2 shows their mathematical expressions
based on the algebraic approach [9] along with our formal
definitions [17], where max and min are HOL functions that
return the maximum and minimum values of their arguments,
respectively.

The output event of the PAND gate occurs with the occur-
rence of both inputs as long as the occurrence of the input
events is in sequence, conventionally from left to right. The
FDEP gate is utilized when one system component triggers
the failure of another component. For example, for the FDEP
gate in Fig. 1(d), the occurrence of input X is triggered by
the occurrence of input 7. Therefore, variable X7 is used to
model the global behavior of the input of the FDEP, where
the behavior is modeled using the minimum of both inputs
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TABLE 2. Fault tree gates definitions.

[ Mathematical Expression |

AND

F VX Y. D_AND X Y =
(As. max (X s) (Y s))

OR

F VX Y. DOR X Y =
(As. min (X s) (Y s))

PAND

d(Y), d(X)<d(Y) F (vi(stf'igA)h(]DngYY:s then Y s

+oo,  d(X)>d(Y) else PosInf)

FDEP

F VX T. FDEP X T =
(As. min (X s) (T s))

HSP

F VX Y. HSP Y X =
(As. max (Y s) (X s))

CSP

Formal Definition |

d(X-Y)=maz(d(X),d(Y))

d(X+Y)=min(d(X),d(Y))

d(QPAND):{

d(X7)=min(d(X),d(T))

d(Qusp)=maz(d(Y),d(X))

d(chp):{d(X>’ d(Y)<d(X) " Y§SY1§S§ g i X s then X s
+oo, d(Y)>d(X) else PosInf)
wSsP
d(Qwsp)=d(Y - (Xq<Y)+ F VY Xa Xg. WSP Y X, Xq =
Xo(Y<Xa)+ Y o (Xg < Y)+ Xa (Y < Xa)+

YAXq,+YAXy) Y A Xy + Y A Xy

T and X. In this work, we treat the FDEP gate as an OR
gate as proposed in [42], [43]. Finally, the Spare gate models
spare parts in systems, where the spare part replaces the active
part after failure. For the spare gate, shown in Fig. 1(e), Y is
the main part and X is the spare. The spare gate has three
forms depending on the failure behavior of the spare part
in its dormant mode: (1) The Hot SPare (HSP) gate, where
the spare has the same probability of failure in both active
and dormant states. (2) Cold SPare (CSP) gate, where the
spare part cannot fail in the dormancy state. (3) The Warm
SPare (WSP) gate, where the spare part can fail in both
its states but with different probabilities of failure. Usually,
the probability of failure for the dormant state is attenuated
by a dormancy factor from the probability of failure of the
active state. Therefore, it is required to distinguish between
both states while performing the analysis. Thus, the spare part
X of Fig. 1(e) can be denoted by X, and X; for active and
dormant states, respectively. The WSP is modeled in Table 2
using the temporal operators, AND and OR. Details about the
formalization of the DFT gates can be found in [17].

In [9], many algebraic simplification theorems are intro-
duced that enable the simplification of the structure function
of the top event, such as the commutativity of the OR and
AND. This will result in having a reduced form that facilitates
the probabilistic analysis. We formally verified these simpli-
fication theorems [17] in HOLA4, and identified the required
conditions for these theorems to hold. More details about the
corresponding formally verified simplification theorems can
be found in [44] and [17].

2) FORMAL PROBABILISTIC BEHAVIOR OF DFT GATES
The foremost requirement for formally conducting the prob-
abilistic analysis of DFTs is to have verified expressions for
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the probability of failure of DFT gates. A set of probabilistic
expressions for the gates and operators were proposed in [9].
However, these expressions were not formally verified, and
thus they cannot be used in a sound environment for the
formal DFT analysis as such. We formalized the probabilistic
expressions of all gates and operators that form the basis of
any DFT [17]. In this section, we present a brief overview
of this formalization for the probabilistic failure behavior of
DFT gates with s-independent and s-dependent events.

We formally define a DFT event that represents the set of
time until which we are interested to find the probability of
failure at, and verify that it is equal to Fy (). We formally
defined a DFT event as [17]:

Definition 3: DFT Event
F Vp X t. DFT_event p X t =

{s | X s < Normal t} N p_space p
where p is the probability space, X is the random variable
that we need to create the event for, which can be replaced
with the function of a gate or a DFT, and finally ¢ is the
time until which we are interested in finding the probability
at. The function Normal typecasts its argument from real
to an extended-real value. The return type of DFT gates
and operators is extreal. However, we chose time ¢ to
be real since the integration is over the real line. Therefore,
in all our theorems we have to typecast time ¢ from real
to extended-real data-type using the Normal function, and
have to typecast the random variables from extended-real to
real using the real function to integrate the density and
distribution functions over the real line.

When dealing with DFT gates, it is usually assumed that
the input events are s-independent. However, sometimes this
condition fails to hold when dealing with the WSP and
CSP gates, as will be explained in the sequel. In the case
of s-independent input events, we have four probabilistic
expressions [45], in which we are interested in finding the
probability of failure until time ¢. Our verified theorems
for the four expressions are listed in Table 3 [17] (first
four), where the theorems are presented in a mixed standard
and formal math notations to facilitate their understanding.
In Table 3, Fx and Fy are the CDFs of random variables X and
Y, respectively, and fx and fy represent their corresponding
PDFs. The first expression, in Table 3, represents the proba-
bility of failure of the top event of the AND and HSP gates,
which is mainly based on the probability of the intersection of
two s-independent events. The second expression in Table 3
represents the failure probability for the OR and FDEP gates,
which is the probability of the union of two s-independent
events. The following two expressions represent the proba-
bility of the after and before events, respectively. The former
event expresses the probability of Y failing after X until
time ¢. The latter expression represents the probability of X
failing before Y until time 7, so it is not necessary that Y fails
in this case. The after event represents the PAND gate event,
if the input events are basic events.

In Table 3, prop_space p is a predicate that ensures
that p is a probability space and rv_gtO_ninfinity
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TABLE 3. Formally verified probability of DFT gates.

Probability of AND & HSP gates
F Vp t X Y. rv_gtO_ninfinity [X; Y] A
indep_var p lborel (As. real (X s))
lborel (As. real (Y s)) =
(prob p (DFT_event p (X - Y) t) = Fx(t) X Fy(t))
Probability of OR & FDEP gates
F Vp t X Y. rv_gtO_ninfinity [X; Y] A
All_distinct_events p [X;Y] t A
indep_var p lborel (As. real (X s))
lborel (As. real (Y s)) =
(prob p (DFT_event p (X + Y) t) =
Fy(t) + Fy(t) - Fx(t) X Fy(t))
Probability of PAND gate & after event
F VXY pfy,t. rv_gtO_ninfinity [X; Y] A 0 < t A
prob_space p A
indep_var p lborel (As. real (X s))
lborel (As. real (Y s)) A
distributed p lborel (As. real (Y s)) f, A
(Vy. 0 < £5(v)) A
cont_CDF p (As. real (X s)) A
measurable_CDF p (As. real (X s)) =

(prob p (DFT_event p (Y- (X<Y)) t) = / fy (y) Fx(y) dy)
Q

Probability of before event
VX Y p fy t. rv_gtO_ninfinity [X; Y] A 0 < t A

prob_space p A
indep_var p lborel (As. real (X s))

lborel (As. real (Y s)) A
distributed p lborel (As. real (X s)) fx A
(Vx. 0 < f,(x)) A
measurable_CDF p (A s. real (Y s)) =
(prob p (DFT_event p (X < Y) t) =

t

fx (x) (1-Fy (x)) dx)

0
Probability of CSP gate
F Vp X Y fyy fy fy )y t. rv_gtO_ninfinity [X; Y] A 0 < t A
(Vy. cond_density lborel lborel p
(As. real (X s)) (As. real (Y s)) y fuy
£y fxaiv) A
prob_space p A den_gtO_ninfinity f,, £, fx v =
(prob p (DFT_event p (CSP Y X) t) =

t t
/ (/ Fxarv=y) (x) dx ) fyly) dy
0

y
Probability of WSP gate
F Vp Y X4 Xg t £y fiy fy,y. prob_space p A
(Vs. ALL_DISTINCT [X., s; Xq s; Y s]) A
DISJOINT_WSP Y X, Xg t A
rv_gtO_ninfinity [Xa; Xq; Y] A0 < t A
(Vy. cond_density lborel lborel p
(As. real (Xi s))(As. real (Y s)) y fyy
£y fxaiv) A
den_gtO_ninfinity fi, £y fx_ vA
indep_var p lborel (As. real (Xg s))
lborel (As. real (Y s)) A
cont_CDF p (As. real (X4 s)) A
measurable_CDF p (As. real (X4 s)) =
(prob p (DFT_event p (WSP Y X, Xgq) t) =

t t
/ (/ Faivey) (%) dx) fy(y) dy +
Ot Yy

/ £y (y) Fxy (y) dy
(0]

ascertains that X and Y are greater than O but not equal
to +00, indep_var ensures that the random variables
X and Y are s-independent. The HOL function real is
used in this context to type-cast the functions X and Y
from extended-real data-type to real as explained previ-
ously. distributed is required to ensure that the ran-
dom variable X has a density function f;. The same applies
for random variable Y. Finally, the functions cont_CDF
and measurable_CDF ensure that the CDFs are contin-
uous and measurable, respectively. More details about the
verification steps of these theorems can be found in [17].
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It is worth mentioning that the inputs of these gates can be
s-dependent in case of having a common cause of failure.
In this case the probability of intersection should be han-
dled using conditional probabilities. For the WSP and CSP
gates, it is required to deal with dependent events, as the
failure of the main part affects the probability of failure of
the spare part since it is activated after the failure of the
main part. Therefore, their probability expressions involve
conditional density functions. Table 3 shows the formally
verified probability of failure theorems of CSP and WSP
gates [17], where f(x,|y=y) is the conditional density function
for the active state of the spare part (X,) given that the
main part (Y) failed at time y. The probability of failure
for the WSP gate encompasses the behavior of both the
CSP and the after event, since the behavior of the WSP
includes the behavior of both [17]. For the expression of the
WSP gate in Table 3, (DISJOINT_WSP Y X5 - Xgq t)
indicates that until time ¢, the spare part X can only fail
in one of its states. f,,, fy and fx_|y correspond to the
joint, marginal and conditional density functions of X and Y.
cond_density defines the conditional density function
fx.|v=y and ensures that X, and Y are random variables
that map from the probability space p to the Lebesgue-Borel
measure (1borel) and with a joint density function f,,.
Finally, den_gt0_ninfinity is a predicate that ensures
the allowable values of the density functions such as 0 < fi,.
Since the WSP gate encompasses the behavior of the CSP
gate and the after event, it inherits the required conditions for
both expressions.

The given conditions in Table 3 are not explicitly men-
tioned as a part of the final theorems of each gate in [45].
Knowing the exact list of conditions for the theorems to hold
is quite imperative to perform correct analysis, as missing any
of these conditions may lead to some corner cases, which may
falsify the results of the overall reliability analysis.

IV. DFT ANALYSIS METHODOLOGY

The proposed methodology, shown in Fig. 2, allows us to use
HOL4 theorem prover to conduct both DFT qualitative and
quantitative analysis.

As with any other DFT analysis tool, the analysis starts by a
system description that can be used to build a DFT model and
some reliability requirements that are related to the qualitative
or quantitative analyses of the system. The main objective
of the proposed methodology is to check if the given system
model satisfies these requirements.

The first step in the proposed methodology is to develop
a HOL formal DFT model of the given system. This step
requires the formal definitions for DFT gates. Then, the struc-
ture function of the DFT’s top event has to be reduced and
we propose to formally verify this reduction based on a
library of generic formally verified simplification theorems.
This ensures that the reduced formal DFT model corresponds
to the original DFT model. This verified reduced structure
function is then used in the qualitative analysis to produce a
reduced form of the cut sets and cut sequences that satisfy
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FIGURE 2. DFT analysis methodology.

the requirements. The cut sets can be defined as a group of
sets, where each set has the inputs that their combined failure
leads to the occurrence of the top event. The cut sequences,
on the other hand, is a group of lists, where each list has a
certain sequence of inputs that their failure in this particular
sequence leads to the failure of the top event. The quantitative
analysis is conducted by utilizing the reduced structure func-
tion to generate formally verified generic expressions of prob-
ability of failure. This last step requires invoking the available
verified probabilistic behavior of DFT gates, which in turn
requires DFT gates definitions and simplification theorems as
well as some existing libraries in HOL4 such as the measure,
Lebesgue integral, probability and probabilistic PIE. We are
providing probabilistic expressions that are generic by using
universally quantified probability density and distribution
functions. The distribution and density functions and the
variables in these generic expressions can be instantiated and
evaluated in any other tool, such as MATLAB [46], to evalu-
ate the probability of failure of a given system.

In order to make the methodology useful in practice for
real-word systems, we need to consider spare gates with
shared spare. Therefore, in the next section, we describe its
formalization in HOL that enables the verification of a wider
range of systems. Furthermore, in the following sections,
we provide an illustration of the application of this method-
ology in the analysis of three small DFT examples, where the
conditions required for correct analysis are clearly identified.
To further highlight the need to identify the required condi-
tions, we present a flaw in one of the published DFT alge-
bras that is identified using HOL theorem proving. Finally,
we describe the main blocks in the proposed methodology
and how it is applied to perform the formal analysis of two
safety-critical systems.

V. PROBABILISTIC BEHAVIOR OF A SPARE GATE

WITH A SHARED SPARE

In real-world systems, sometimes it is required to have a spare
that can replace one of two main parts in case of failure.

VOLUME 7, 2019
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FIGURE 3. Spare Gates with Shared Spare.

This can be modeled as shown in Fig. 3 [45], where Y and
Z are the main parts sharing the same spare X.

The output Q; of the first gate can occur in three different
cases: (1) Y occurs, then the spare X occurs in its active state.
(2) X occurs in its dormant state, then Y occurs. (3) Z occurs
before Y, so it will be replaced with X, then ¥ occurs and
finds no spare to replace it. Based on the definition of Q;
in [9], we formally define it in HOL as [17]:

Definition 4: Shared Spare Q1
F VY 2 X5 Xg.

shared_spare Y Z Xz Xg =
Y o (Xg QYY) + X5 - (Y <9Xa) +Y - (29Y)

It is worth mentioning that the definition in [9] does not
allow the simultaneous failures of the main parts and thus we
use the same constraint.

Q1 is represented as a sum of disjoint products in order to
express its probability. This is accomplished by introducing
the complement of an input event to be able to create the
disjoint events. Thus Q1 can be expressed as [45]:

O1=Xq- Y <QZ)-(Z<Xy)
+Z- (Y <Xy (X, <Z)
+X,- (Y <9Xo)- Z
+Z- Xg<Y)- (Y Q2)
+Y - Xy <QY)-Z +Y-(Z<QY) 3)

where, Z indicates the event when Z cannot happen. We for-
mally verify this as:
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Theorem 1:
F VXa X4 Y 2 p t.
rv_gtO_ninfinity [Xs; Xg; Y; Z] A
(Vs. ALL_DISTINCT[Y s; X5 S; Xgq S; 2 s])A
DISJOINT_WSP Y X5 Xg t A
DISJOINT_WSP Z X5 Xg t A

(Vs. ((Z2 < Xq)-(Xq < Y)) s = NEVER s) A
(Vs. ((Y < Xq)-(Xq < Z)) s = NEVER s)A
(Vs. ((Xa < Y)-(Xa < 2)) s = NEVER s) =
(

DFT_event p Q) t =

DFT_event p (Xa- (Y < Z)-(Z < X5)) t U
DFT_event p (Z-(Y < Xa)-(Xa < Z)) t U
DFT_event p (Xa:- (Y < Xg5)) t N
(p_space p DIFF DFT_event p Z t) U
DFT_event p (Z2-(Xg < Y):-(Y < Z)) t U
DFT_event p (Y- (Xg < Y)) t N

(p_space p DIFF DFT_event p Z t) U
DFT_event p (Y- (Z < Y)) t)

The first two conditions ensure that the time of occurrence
of any event is always greater than or equal to 0 but not equal
to 400 and are not equal. While the remaining conditions
are required to ensure the proper behavior of the spare gates.
For instance, the first two conditions mean that until time ¢,
the spare part can fail in either the active or the dormant
state. While the last two conditions indicate that the spare
part cannot fail after any of the main parts while it is dormant.
Since after the failure of one of the main parts, the spare part
will be activated (working in the active state) and in case it
fails it will be in the active state and not the dormant state.
Similarly, the spare part cannot fail in its active state before
the failure of both main parts, as it will be in its dormant state.

The difference between the expression in (3) and the ver-
ified expression in Theorem 1 is that we formally verified
the DFT event of (3) based on the DFT event of the inputs.
We decided to deal with the sets of the input events as
there is no gate that can exhibit the behavior of Z in the
algebraic approach. This is due to the fact that in the alge-
braic approach, we are dealing with extended-real numbers
and there is no possibility to implement a NOT gate using
extended-reals. This means that instead of ANDing with Z,
we intersect with the complement of DFT_event p Z t,
i.e., space — DFT_event p Z t or more formally
p_space p DIFF DFT_event p Z t. As a result,

instead of verifying (3), we verified that the event of the left
hand side is equal to the union of the events of the six products
on the right hand side, and whenever we encounter (- Z) we
use (N p_space p DIFF DFT_event p Z t).

Since Qg is represented as the sum of disjoint products,
the probability of Q; is expressed as the sum of the probabili-
ties of the individual products as given in (4), as shown at the
bottom of this page, [45]. We verified that these products are
disjoint to be able to sum the individual probabilities. Some
of these probabilistic expressions utilize our existing verified
expressions for DFT gates, while the rest requires handling
three iterated integrals while dealing with conditional density
functions in addition to verifying the probability of a comple-
ment of a DFT event.

We have been able to verify (4), but as the final form of
our verified theorem for (4) is quite long, we will explain
some details about the proof and the theorem here and the
complete theorem can be accessed from [47]. Since this
theorem combines many previous formalized expressions,
it requires the conditions for those expressions, such as hav-
ing a conditional density of X, given Y = y, having a density
function for Y and Z. Also, the CDF of Z is measurable and
continuous, beside the obvious conditions such as 0 < t.
The proof of the first term of the six terms in (4) is quite
similar to the proof of the CSP gate. However, in this case,
we are dealing with three iterated integrals which makes
things a bit complex, since each time we need to prove
that the single integral and the double iterated integrals are
measurable. In addition, the s-independence of the random
variables that correspond to the input events should be han-
dled appropriately, i.e., Z should be s-independent of the joint
random variables of (Y, X,;). The proof of the second term is
conducted in a similar way to the first term since it consists
of three iterated integrals with conditional density function.
However, the density function lies this time in the inner inte-
gral. The proof of the third term is primarily based on prov-
ing that Pr(p_space p DIFF DFT_event p Z t)=
1 — Fz(t). The proof of the fifth term also requires the same
result. The fourth term corresponds to finding the probabil-
ity of a cascaded PAND gate for three inputs (this will be
explained in the following section). Finally, the last term
corresponds to the probability of the after event. The size for
this proof script is around 7700 lines.

Fren® ./0 </ </ J2@@) dz)ﬁXaY=y)(x) dx)fy(y) dy
y y
/(; </0 ’ </ vf‘(Xg|Y=y)(x) dx)fy(y) dy)f‘z(z) dZ
y

t t t z
+(1—Fz(t))/0 (/ﬂxaw:y)(X) dx)fy(y) dy + /0 </0 JrMFx,(y) dy)fz(Z) dz
y

t t
+(1—Fz(t))/0fY(y)de(y) dy + /OfY(y)Fz(y) dy “
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So far, we have presented our formalization for the proba-
bilistic expressions of DFT gates. In the following section,
we use some examples to show how the DFT definitions
and theorems are utilized in the qualitative analysis of some
DFTs.

VI. ANALYSIS OF DFT EXAMPLES

In this section, we apply our methodology to conduct both
the qualitative and quantitative analyses of the DFT examples
given in Fig. 4; (1) Cascaded PAND gates (CPAND) [5],
(2) AND with FDEP gate (AND-FDEP) and (3) WSP with
OR gate (WSP-OR).

/N 5
A .

CgFDEP
@ © ® OO,

(a) CPAND (b) AND-FDEP

/\

WSP
o6
(c) WSP-OR

FIGURE 4. DFT examples.

A. QUALITATIVE ANALYSIS OF DFT EXAMPLES
Using our proposed methodology, we have been able to build
a HOL formal DFT model and formally verify the reduction
of the given DFT examples as in the following three theorems.
We assume that all inputs are basic events, i.e., they cannot
fail at the same time. This condition can be relaxed if we are
modeling a system with a common cause of failure for the
inputs.
Theorem 2: Reduced CPAND
F VX Y 7.
(Vs. ALL_DISTINCT [X s; Y s; Z s]) =
(PAND (PAND Z Y) X =
X - (2 QYY) (Y € X))
Theorem 3: Reduced AND-FDEP
F VX Y Z. X-(FDEP Y Z) = X - Y + X - Z
Theorem 4: Reduced WSP-OR
F VY X5 Xgq Z.
(Vs. ALL_DISTINCTI[Y s; X5 S; X4 S; Z s])=>

VOLUME 7, 2019

((WSP Y Xa Xq) + Z =
Xag + (Y <9 Xg) + Y - (Xg <Y) + 2)

As mentioned previously, each theorem can have a list
of required conditions and a conclusion. For Theorem 2,
the condition ensures that all random variables that represent
system components are not equal, i.e., these random vari-
ables represent basic events. This is accomplished using the
HOL4 function ALL_DISTINCT. The left hand side of the
conclusion of this theorem represents the formal DFT expres-
sion for the given DFT, while the right hand side represents
the verified reduced structure function. This applies also to
Theorems 3 and 4. Using these verified reduced expressions,
one can determine the cut sets and cut sequences to conduct
the qualitative analysis. For example, the CPAND has only
one sequence that can cause the occurrence of the top event
which is [Z; YV; X]. Similarly, the AND-FDEP DFT has only
two cut sets {X; Y} and {X; Z}. Finally, the WSP-OR DFT has
two cut sequences [Y; X,] and [Xy; Y] and one cut set repre-
sented by the single element {Z}. This indicates that using
our proposed methodology, we have been able to formally
conduct the qualitative analysis and determine the cut sets and
sequences of a given DFT.

B. PROBABILISTIC ANALYSIS OF DFT EXAMPLES
In this section, we perform the failure probabilistic analysis
of the three DFT examples shown in Fig. 4.

We verify the probability of failure for the CPAND as in
Theorem 5. The verification steps are similar to the after
event. However, we are dealing now with three inputs instead
of two. Hence, X is assumed to be s-independent of the joint
random variable (Y, Z) using indep_CPAND in Theorem 5,
where it is defined for X over the 1borel measure and
(Y, Z) over the two dimensional 1borel.

Theorem 5: Probability of CPAND
F Ve XYzt fy, fx.

prob_space p A 0 < t A

indep_CPAND X Y Z p A

rv_gtO_ninfinity [X; Y; Z] A

(Vs. ALL_DISTINCT [X s; Y s; Z s]) A
distributed p lborel (Ax. real (X x)) fx A
distributed p lborel (Ax. real (Y x)) fy A
(Vy. 0 < fy(Y)) A (Vx. 0 < fx(x) A

)
cont_CDF p (Ax. real (Z x)) x)) =
(prob p (DFT_event p (Q1) t) =

o (f5 £v(v) Fz(y) dy) fx(x) dx

We verify the probability of failure of AND-FDEP DFT
as in Theorem 6. The main idea of this proof is to replace
the FDEP gate by an OR gate as they are equivalent. Then,
the probability of the union of two events, each of which is the
intersection of two basic events, {X; Y} and {X; Z} is verified.
These two events represent the cut sets of the AND-FDEP
DFT. For this proof, it is required to ensure that the random
variables are s-independent using indep_vars3 and that
the events of the two cut sets of the DFT are not equal using
All_distinct_events.
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Theorem 6: Probability of AND-FDEP
FVX Y Z p t.

rv_gtO_ninfinity [X; Y; Z] A

All_distinct_events p [X'Y; XZ] £t A

indep_vars3 X Y Z p =

(prob p (DFT_event p (Q2) t) =

Fy (£) XFy (t) +Fx (t) XFz (£) Fx (t) XFy (t) xXFgz (t)

Finally, we verify the probability of the top event of the
WSP-OR DFT as in Theorem 7. The top event is com-
posed of the union of the WSP event and the basic event Z.
Hence, the final form of the probability is the probability
of the union of two events; the WSP and Z. Therefore, it is
required to include the conditions needed for expressing the
probability of the WSP event in the list of assumptions, and
ensure that the WSP event is s-independent of event Z using
indep_var_set_WOR.

Theorem 7: Probability of WSP-OR
FVY Xa Xa 2 p t fxy £y fx |v-

DISJOINT_WSP Y X5 Xg t A
(Vs. ALL_DISTINCT [Y s; X5 S; X4 S; Z s]) A
All_distinct_events p [WSP Y X5 Xg; 2] t A
rv_gtO_ninfinity [Y; Xg; Xa; 2] A0 <t A
(Vy. cond_density lborel lborel p

(As. real (X5 s)) (As. real (Y s))

y fxy fy fx.1y) A
den_gtO_ninfinity fxy fy fx v A
cont_CDF p (As. real (Xg s)) A
measurable_CDF p (As. real (Xg s)) A
indep_var_set_WOR Y X5 X4 Z p t =
(prob p (DFT_event p (Q3) t) =
Jo (fy foivmy (0 dx)fy(y) dy +
f(’ £y (y) Fxg(y) dy + Fz(t)-

f(g(fyt £ (% 1v=y) (¥) dx)fy(y) dy+

S

JoEx (v) Fx, (v) dy
After having the verified generic expressions for the prob-
ability of failure of the three examples, these expressions can
be used to evaluate the probability of failure for any integrable
distribution functions that represent the failure distribution of
the system components. For example, assuming exponential
distributions for the inputs with failure rates: 2 x 1072,
3 x 1073, and 1 x 1072 for X, Y and Z, respectively,
we evaluated the probability of failure using MATLAB until
400 working hours with a dormancy factor of 0.1. The results
are shown in Fig. 5.

X Fgz(t)
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2
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38 2
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FIGURE 5. Probability of Failure of CPAND, AND-FDEP and WSP-OR.
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To sum up, in this section, we have demonstrated the appli-
cation of our methodology in the formal probabilistic analysis
of three DFT examples, which included listing the required
conditions to formally conduct the proofs. Next, we show the
importance of identifying the required conditions by listing a
flaw that we detected in a published DFT algebra.

VII. FLAW DETECTED IN THE ALGEBRAIC

APPROACH OF [18]

In order to emphasize on the importance of formally verifying
the underlying math of the algebraic approach and the sig-
nificance of knowing the required conditions for the analysis
results to be valid, we provide more details regarding the flaw
in one of the algebraic approaches mentioned in Section L.
In [18], a new simple algebra is introduced that provides
definitions and simplification theorems for DFTs. We have
been able to identify an error in one of the simplification
theorems, which is the distributivity property of the sequence
operator over the OR operator, i.e.,

AB+C)=AB+A.C 5)

where . and + represent the sequence and OR operators,
respectively. The sequence operator indicates that its output
occurs if the input events occur in sequence from left to right,
i.e., the time of occurrence of the left input event is less
than that of the right input event. While the OR operator
is represented by the minimum time of occurrence for the
input events. Now, assuming that the time of occurrence of
the input events A, B, and C are d4, dp and dc, respec-
tively, the left hand side of (5) occurs only if dy is less than
min(dp, dc). While, the right hand side of the same equation
occurs if d4 < dp or da < dc. This property fails to
hold when d4 > min(dg, dc) but at the same time dy <
max(dp, dc), i.e., da falls in the middle between dp and d¢.
In this particular case, the left hand side of (5) will not occur
because dj is not less than the minimum of dg and dc,
however, one of the terms of the right hand side occurs. For
this property to hold, it is required to have the condition
ds < min(dp, dc). We have been able to identify this flaw
using theorem proving, as the property was not verifiable
for the aforementioned case unless this particular condition
is added. As a consequence, using this property without the
required condition in any application, including the applica-
tion part of the mentioned paper [18], would lead to erroneous
results, which is serious specially for safety-critical systems
that cannot tolerate any error in the analysis. These findings
emphasize on the importance of having a formal rigorous
framework for DFT analysis, that would allow building the
analysis on a sound basis to be used with systems, specially
the safety-critical ones. In the next section, we will apply our
methodology on two real-world case studies.

VIIl. CASE STUDIES

In this section, we apply our methodology on two
safety-critical systems, i.e., a drive-by-wire system to control
the brakes and throttle systems of modern vehicles [19] and a
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cardiac assist system that provides care to patients with heart
failure [20]. The analysis of these systems should be carefully
conducted as any error may lead to even the loss of life in
extreme cases.

In order to facilitate the analysis of these systems and
any similar systems, we verified several generic properties
that can be used to reduce the manual interaction of the
verification engineer in the theorem proving related tasks. For
example, for any group of s-independent random variables,
we verified that the probability of the preimage of any two
random variables out of the original set equals to the multi-
plication of the individual probabilities as :

Theorem 8:

FVp M X ii A s t. s # t A prob_space p A

indep_vars p M X i1 A {s; t} C ii A

(Vi. 1 € {s; t} =
A i1 € measurable_sets (M i))=
(prob p
(PREIMAGE (X s)
(PREIMAGE (X t) (A t) N p_space p)) =
prob p (PREIMAGE (X s) (A s) N p_space p)*
prob p (PREIMAGE (X t) (A t) N p_space p))

The formal DFT analysis now requires proving the
required conditions for this property to hold only. As an
example, consider that we have a group of 10 random vari-
ables, and we need to prove that the probability of the
preimages of the 6” and the 8" random variables equals
the multiplication of their individual probabilities. Therefore,
in Theorem 8, s = 6, t = 8 and ii equals the set of numbers
from 0 — 9. We just need to verify the following properties
for this proof:

e« 6£8

o {6;8} C{0;1;2;3;4;5,6;7;8;9}

o The sets of the preimages are measurable

These requirements can be easily verified using various
built-in arithmetic tactics in HOL4. Similarly, we verified the
same property for up to ten random variables out of a group
of independent random variables. These properties are very
helpful in the verification process of the probabilistic analysis
of DFTs, in particular when applying the probabilistic PIE.
We also verified several additional properties that allow the
direct usage of the PIE in its final form with a system that can
be represented as the union of six elements as the behavior
of both case studies can be represented as the union of six
events. However, our formalization can be extended easily to
verify larger systems, as the flow of the proofs will remain
the same but will extend to a larger number of inputs.

(A s) N p_space p N

A. FORMAL VERIFICATION OF DRIVE-BY-WIRE SYSTEM

The DFT of the drive-by-wire (DBW) system is shown
in Fig. 6 [19]. We chose to analyze the brake and the throttle
parts of this system, which consists of the following parts:
the brakes control unit (BC), the throttle (TF), two sensors;
the brake sensor (BS) and the throttle sensor (7S), the engine
(EF) and finally the primary central control (PC) unit with
its spare part (SC; and SC, for both the dormant and active
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FIGURE 6. DFT of Drive-by-wire system.

states, respectively). We modeled the spare part of the central
control unit as a warm spare, as this is the general case for the
spare. In addition, this is the most convenient way to model
it as the spare control unit can be working in the sleep mode,
and it will only be activated after the main unit fails.

We proceed with the analysis of the drive-by-wire system
following the steps outlined in our proposed methodology.
We first start by verifying the reduction of the structure
function of the top event to utilize it in both the qualitative
and quantitative analyses.

Lemma 1: Reduced DBW
F VBS TS PC SC5; SCq BC EF TF.

(Vs. ALL_DISTINCT
[BS s; TS s; PC s; SCs; s; SCq s;
BC s; EF s; TF s]) =
((TF + EF) + WSP PC SC, SCq + BC +
(TS + BS) =
TF + EF + BC + SC, -(PC < SCa) +
PC - (SCq < PC) + TS + BS)

From this expression, we can find a reduced form of the

cut sequences:

[PC7 SCa]a [SCd,PC]

which means that the top event can fail due to two different
sequences of input failures. The first one is the failure of the
main control unit (PC) followed by the failure of the spare in
its active state (SC,). The second sequence is when the spare
part fails in its dormant state (SC;) followed by the failure of
the main control unit.

In a similar way, a reduced form of the cut sets can be
extracted from the reduced top event expression as:

{TF}, {EF}, {BC}, {TS}, {BS}

We choose to use a single event for the WSP as this will
reduce the intermediate steps required to reach our final goal
for the probabilistic expression and would result in expressing
the top event as the union of six events. We verify that the
DFT_event of the drive-by-wire is equal to the union of six
events as:
Lemma 2: DBW Union of Events
F VBS TS PC SC5; SCq BC EF TF p t.
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DFT_event p ((IF + EF) + WSP PC SC, SCq +
BC + (TS + BS)) t =
union_list
[DFT_event p TF t; DFT_event p EF t;
DFT_event p (WSP PC SC, SCq) t;
DFT_event p BC t;
DFT_event p TS t; DFT_event p BS t]

We apply the probabilistic PIE to perform the formal
quantitative analysis of the top event, by incorporating the
existing verified properties. We verify the probabilistic failure
expression of the drive-by-wire system as Theorem 9. In the
following, we are presenting the formalization in mixed for-
mal and standard math notations to make the results more
understandable for the reader.

Theorem 9: Probability of Failure of DBW
F VBS TS PC SCy; SCq BC EF TF p t

fec f(sc.ipc) fsc,pce 0 = € A

All_distinct_events p

[TF; EF; BC; WSP PC SC; SCq; BS; TS] t A
rv_gt0O_ninfinity [BS; TS; PC; SCsi; SCg;
BC; EF; TF] A
DISJOINT_WSP PC SCs SCq t A
(Vy. cond_density lborel lborel p

(As. real (SCz s)) (As. real (PC s))

y fsc.ec frc f(sc,ipc)) A
den_gtO_ninfinity fsc.pc fepc f(sc,|pc) A
cont_CDF p (As. real (SCq s)) A
measurable_CDF p (As. real (SCq s)) A
indep_vars_sets_drive

[BS; TS; PC; SCs; SCq; BC; EF; TF] p t =
(prob p (DFT_event p Qppy t) =
Frp(t) + Fer(t) + Fpc(t) +

t t
/ frc (pc) X/ f(sc.ipc=pc) (SCa) dsca dpc +
0 pc

t
/ fpc(pc) X Fseq (pc) dpc + Fps(t) + Frs(t)-
0

+ ... — Frp(t) X Fgrp(t) X Fpc(t) X

t
[(/ frc (pc) X
0
t
( /f(sca\PC:pc) (sca) dsca ) dpc > +
pc

fpc(pc) X Fgeq4 (pPC) dPC]XFBS (t) XFrs (t))

where 0All_distinct_events ensures that all event
sets are distinct. As listed earlier, since the events of the
WSP are disjoint, we used the WSP event directly to
reduce the proof steps. It is necessary that all random
variables that represent the input events to be positive or
equal to 0, since they represent the time of failure. This
condition is added by rv_gtO_ninfinity. It is also
required to ensure the proper behavior of the WSP by
adding the condition DISJOINT_WSP PC SC, SCq t,
which ascertains that the events of the WSP are disjoint,
i.e., until time ¢, the spare part can fail in one of its states
only. A conditional density f sc_|pc) of SC, given that

t
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PC = pc is defined using cond_density. The function
indep_vars_sets_drive adds the condition that the
input events and their sets are s-independent, and finally
we need to ensure that the CDF of SCy; is continuous and
measurable. It is worth mentioning that since the union list
of the drive-by-wire system has six events, applying the PIE
results in the generation of 63 different terms, and a truncated
version of the final expression is given above.

The verification engineer working on the analysis of the
drive-by-wire system just needs to ensure that the mentioned
conditions hold in order to use the results of the analysis.
After formally ensuring that the probability of failure expres-
sion is correct, this expression can be used to evaluate the
probability of failure using any tool with any distribution and
density functions that satisfy the listed conditions. Assum-
ing exponential distributions for the inputs with failure rates
as listed in Table 4 [19], we evaluated the probability of
failure using MATLAB until 1,000,000 working hours with
dormancy factor of 0.5, as shown in Fig. 7. The proof script
for the drive-by-wire system is around 4950 lines long.

TABLE 4. Failure rates for the DBW system (x10~7).

TF|EF|BC|PC|SC|TS|BS

[14]5]2[3]1]2]

Probability of Failure

[} 100 200 300 400 500 600 700 800 900 1000
Time (hours x 10%)

FIGURE 7. Probability of Failure of the Drive-by-wire System.

B. FORMAL VERIFICATION OF CARDIAC ASSIST SYSTEM
The DFT for the cardiac assist system (CAS) is shown
in Fig. 8 [20]. The system consists of three sub-systems:
pumps, motors and CPUs. There are two main pumps
PA and PB. After the failure of one of these pumps, a shared
spare PS replaces the failed one. There are two motors MA
and the spare MB and a switch MS. The motor sub-system
fails if MS then MA fail in sequence or if MA and the spare
MB fail. Finally, there is one main CPU P and its spare B. Both
CPUs are functionally dependent on the union of a crossbar
switch (CS) and the system supervisor (SS).

We consider here different variations of spare gates,
to make this case study more general and inclusive to all the
formalized gates, as shown in Fig. 8. A simplified version of
this DFT, where we assumed that all spare gates are HSPs
gates, was verified in [17]. However, the variations that we
assume here for the spares allow modeling and verifying the
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FIGURE 8. DFT of Cardiac Assist System.

-

probability of failure of the given system, while the indepen-
dence of some of the events does not hold anymore.

We start first by verifying a reduced version of the structure
function of the top event. This enables us to perform both the
qualitative and quantitative analyses on a reduced function.

We formally verify this reduction in HOL4 as:

Lemma 3: Reduced CAS
F VPA PB PS MS MA MB B, By CS SS P.

(Vs. ALL_DISTINCT

[MA s; MS s; PA s; PB s; PS s;
MB s; P s; Bg s; Bz s; CS s; SS s] A
(Ba < P = NEVER) =
((shared_spare PA PB PS PS)
(shared_spare PB PA PS PS) +
((PAND MS MA) + (CSP MA MB)) +
(WSP (FDEP (CS + SS) P) (FDEP (CS + SS) Bj)
(FDEP (CS + SS) Byg)) =

CS + SS + MA - (MS < MA) + MB - (MA < MB) +

By - (P < Ba) +P - (Bg < P) + PA - PB - PS)
where ALL_DISTINCT ensures that the inputs do not occur
at the same time, and (B; <1 P = NEVER) ascertains that
the spare part B in its active state cannot fail before P. This
ensures the proper behavior of the WSP gate. It is worth
mentioning that such condition is not required for the HSP
gate as the spare part exhibits the same failure behavior in
both of its states.

It is important to mention that since the inputs of the WSP
gate are functionally dependent on the union of CS and SS,
we use (FDEP (CS+SS) P), (FDEP (CS+SS) Bjy)
and (FDEP (CS+SS) Bg) for the main, the spare in its
active state and the spare in its dormant state, respectively.

From the verified reduced top event, we can conclude a
reduced form of cut sequences as follows:

[MS; MA], [MA; MBY], [P; B4], [Ba: P] (6)
Moreover, a reduced form of the cut sets is deducted as:
{CS}, {SS}, {PA, PB, PS} @)

In a similar way to the drive-by-wire system, we verify that
the DFT_event of the cardiac assist system equals the union
of events as:
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Lemma 4: CAS Union of Events
FVPA PB PS MS MA MB CS SS P B Bg p t.
DFT_event p
(CS + ss + MA -

(MS < MA) + MB - (MA < MB) +

Ba - (P < Bg) + P (Bgq < P) +
PA - PB - PS) t =
union_list
[DFT_event p CS t; DFT_event p SS t;
DFT_event p (MA - (MS < MA)) t;
DFT_event p (MB - (MA < MB)) t;
DFT_event p
(Ba - (P < Ba) + P - (Bg < P)) t;

DFT_event p (PA - PB - PS) t]

Verifying a generic expression of the probability of failure
for the cardiac assist system requires dealing with different
conditions of s-independence for the input events, where we
considered different configurations for the spare gates in the
cardiac assist system from [17]. In particular, the outputs
of the PAND and the CSP gates are no longer indepen-
dent because of having MA in common. Therefore, it is
required to use conditional probabilities to verify the prob-
ability of intersection that results from applying the proba-
bilistic PIE. We verify the probability of failure of this system
in HOL4:

Theorem 10: Probability of Failure of CAS
F VCS SS MA MS MB P B, By PA PB PS p t

fva fe.p frp fp,|p fmeva fypjva fums.
0 < t A prob_space p A (By < P = NEVER)A
DISJOINT_WSP P By Bg t A
ALL_DISTINCT_RVg
[PA; PB; PS; MS; MA; MB; CS; SS; P;
Ba; Bal p t A

indep_vars_setsg
[PA; PB; PS; MS; MA; MB; CS; SS; P;
Baj Bal p t A

(Vy. cond_density lborel lborel p

(As. real (Bz s)) (As. real (P s))

y fs.p fp fp p) A
(Vy. cond_density lborel lborel p

(As. real (MB s)) (As. real (MA s))

v fmeva fma fupima A
den_gtO_ninfinity fgp fp fp |p A
den_gtO_ninfinity fmeua fma fupjma A
cont_CDF p (As. real (Bg s)) A
measurable_CDF p (As. real (Bg s)) A
(Vz. 0 < fus(z)) A (Vx. fupma (x) # PosInf)A
distributed p lborel (Ax. real (MS x)) fusA

cont_CDF p (As. real (MS s)) A
measurable_CDF p (As. real (MS s)) =
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(prob p (DFT_event }? Qcas t)=

Fes(t) + Fss(t) + fya (ma) X Fyg (ma)dma +

0

t t
/fMA (ma) X ( / fuB | MA=ma (Mb)  dmb ) dma +
0 ma

t t
(/ fr (pp) X ( / fBa|P=pp (ba) dba) dpp +
0 PP

t
/ fp (pp) X Fp, (pp) dpp ) +
0

Fpa(t) X Fpp(t) X Fpg(t) — ...+ ...-

Fes X Fgs X

t t
/ fua (ma) X Fys (ma) X (/ fuB | MA=ma (MD) dmb) X
0 m

a

t t
[/ fr (pp) X < / fBa\Pzpp (ba) dba) dpp +
0 pp

t
/ fr (pp) X Fgy (PP) dpp] X
0

Fpa(t) X Fpr(t) X Fps(t)
where (B < P = NEVER) ADISJOINT_WSP P B,

By t are required to ensure that the spare part B, cannot
fail before the main part P and that the events of the WSP
are disjoint, i.e., until time ¢, the spare part can fail in either
the dormant or the active states. ALL,_DISTINCT_RVq is
a predicate required to ascertain that the inputs and their
event sets are not equal and that the inputs are greater than
or equal to 0 but not equal to +00. indep_vars_setsg
ensures the s-independence of the random variables and the
event sets. It is also required to define conditional density
functions for fg_|p and fyp s using cond_density.
den_gtO_ninfinity ensures the proper values for
the joint, marginal and conditional density functions that
are used with cond_density. For example, the con-
ditional density functions cannot be equal to 0. In addi-
tion, the density functions cannot equal to 4-o00. It is also
required to ensure that the CDFs of random variables By
and MS are continuous and measurable using cont_CDF
and measurable_CDF, respectively. distributed p
lborel (Ax. real (MS x)) fug is used to indicate
that MS has a density function fys. It is worth mentioning
again that the usage of the function real is required here
as the random variables return extreal, while they are
required to be used with the Lebesgue-Borel measure, which
is defined over the real line. The first six elements of the
conclusion of Theorem 10 represent the probability of the
individual terms of the union list of Lemma 4, which result
from applying the probabilistic PIE. While the rest of the
elements represent the probability of the intersection of all
the combination of the events. The last term represents the
probability of the intersection of the six elements of the
cardiac assist system. It took around 8000 lines of proof script
to prove the probability of failure of the cardiac assist system.

As with the drive-by-wire system, we assume exponential
distributions for the inputs of the cardiac assist system with
failure rates listed in Table 5 [45]. We evaluated the proba-
bility of failure for this generic expression using MATLAB
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TABLE 5. Failure rates (x10~6).

[CS[SS[P|[B|MS|MA]|MB]|PAJPS]PB|
4141 1 [ S TS T5T5[5]

0.6
0.4
0.2

0

Probability of Failure

0 40 80 120 160 200 240 280 320 360 400
Time (hours X 107)

FIGURE 9. Probability of Failure of the Cardiac Assist System.

with a dormancy factor of 0.5 for the spare part MB until
400,000 working hours, as shown in Fig. 9.

We have illustrated in this section the application of our
proposed methodology to conduct the formal failure analysis
of the drive-by-wire and the cardiac assist systems. We have
created the HOL formal DFT models for these systems and
verified a reduced form of the structure functions utilizing
the verified simplification theorems. We then conducted the
qualitative and the probabilistic analyses to generate formally
verified expressions of probability of failure. Building upon
the expressive and sound nature of HOL theorem proving,
generic intermediate lemmas are verified that are valid for
the analysis of systems similar to the drive-by-wire and the
cardiac assist systems. Leveraging upon the current formal-
ization of DFTs, the existing lemmas and theorems can be
extended to analyze more complex systems. In addition,
the results obtained using our methodology, in particular
the generic expressions, cannot be obtained formally using
a PMC. Moreover, our proposed methodology overcomes
the vulnerability of the paper-and-pencil analysis results due
to human errors, as it inherits the soundness of HOL theo-
rem proving. Although, providing the formalization of this
methodology is costly in terms of time and lines of script,
the results obtained are usable by the verification engineer
without the need to go through all the steps of the formaliza-
tion. The verification engineer only needs to use the results
of the theorems after ensuring that all the required conditions
hold, which provides him/her with a formal proof that the
analysis results can apply to his system if the conditions
are met.

IX. CONCLUSION

In this paper, we proposed a novel methodology to conduct
the formal analysis of DFTs using HOL theorem proving.
This methodology supports accurate qualitative and quantita-
tive analyses of DFT's based on the soundness and expressive
nature of HOL theorem proving. The proposed approach
represents a complementary one that overcomes the short-
comings of ordinary DFT analysis methods, such as the
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approximation based nature of simulation that results from
sampling. Based on the proposed methodology, we identified
an error in one of the proposed DFT analysis approaches.

In this paper, we described our HOL formalization of
DFT gates, simplification theorems and probabilistic failure
behavior of these gates. In addition, we presented our new
HOL formalization of the probabilistic failure behavior of the
output of a spare gate with a shared spare, which represents
another novel contribution. Furthermore, we have been able
to verify several intermediate generic lemmas that can be
used in the analysis of DFTs based on our formalization in
a quite straightforward manner. Finally, we utilized our for-
malization to conduct both the qualitative analysis in the form
of reduced cut sets and cut sequences and the quantitative
analysis of two safety-critical systems to generate generic
expressions of probability of failure that can be instantiated
later to evaluate the probability of failure. As a future work,
we plan to develop some machine learning algorithms in
order to facilitate the user interaction in the theorem proving
process for the formal DFT analysis.
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