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Deep datapath and algorithm complexity have made the verification of floating-point units a very hard
task. Most simulation and reachability analysis verification tools fail to verify a circuit with a deep
datapath like most industrial floating-point units. Theorem proving, however, offers a better solution
to handle such verification. In this paper, we have hierarchically formalized and verified a hardware
implementation of the IEEE-754 table-driven floating-point exponential function algorithm using the
higher-order logic (HOL) theorem prover. The high ability of abstraction in the HOL verification
system allows its use for the verification task over the whole design path of the circuit, starting from
gate-level implementation of the circuit up to a high-level mathematical specification.
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INTRODUCTION

The verification of floating-point circuits has always been an
important part of processor verification. The importance of
arithmetic circuit verification was illustrated by the famous
floating-point division bug in Intel’s Pentium® processor [1].
Floating-point algorithms are usually very complicated. They
are composed of many modules where the smallest flaw in
design or implementation can cause a very hard to discover
bug, as happened in the Intel case. Traditional approaches
to verifying floating-point circuits are based on simulation.
However, these approaches cannot exhaustively cover the input
space of the circuits. In contrast, using formal methods [2]
for verification of the correctness of hardware, sometimes just
called hardware verification, the behavior of the hardware
design is described mathematically, and a formal proof is
used to verify that it meets rigorous specifications of intended
behavior.

However, formal verification is not the golden rule in circuit
testing because of some limitations. A correctness proof cannot
guarantee that the real device will never malfunction; the
design model of the device may be proved correct, but the
hardware actually built can still behave in a way unintended
by the designer (this is the case for simulation too). Wrong
specification can play a major role in this, because it has been
verified that the system will function as specified, but it has
not been verified that it will work correctly. Defects in physical
fabrication can cause this problem too. In formal verification,
a model of the design is verified, not the real physical
implementation. Therefore, a fault in the modeling process can
give false negatives (errors in the design which do not exist).
Because of these limitations, we can consider simulation and
formal verification as complementary techniques, the methods
have to play together.
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Formal verification can be generally divided into two main
categories [3]: reachability analysis and deductive methods.
Model checkers and equivalence checkers are examples of the
first approach. Many different theorem provers (as HOL [4])
have been used for deductive verification. To verify floating-
point arithmetic circuits, model checkers would encounter some
difficulties as noted in [5]. First, the specification languages
are not powerful enough to express arithmetic properties; for
arithmetic circuits, the specifications must be expressed as
Boolean functions, which is not suitable for complex circuits.
Second, these model checkers cannot represent arithmetic
circuits efficiently in their models. It is hence to no surprise
that most related work in the area of formal specification and
verification of floating-point arithmetic circuits were done using
theorem proving.

Formal verification methods [3] have sometimes been
accused of a lack of ability to get into a whole industrial
product design cycle. Working on the same design path
of most electronic products, we discuss in this paper the
formalization and verification of the IEEE-754 [6] table-driven
exponential function in all abstraction levels of the design
flow. The IEEE-754 exponential function was first specified
formally by Harrison [7]. This behavioral specification was
written in a high-level while language, and was intended
mainly to be verified against a more abstract mathematical
description of the exponential function [8]. Starting from this
behavioral specification Bui er al. [9] developed an register-
transfer level (RTL) implementation of the design using VHDL
and Verilog. In a previous paper [10], Abdel-Hamid et al.
have introduced design changes to the code produced by Bui
et al., to be able to verify this code. They have developed a
modular specification and verified the same module, yet this
modular specification failed to connect easily to the higher-
level algorithmic specification developed by Harrison. The
goal of this work is to use formal methods in modeling and
verification of the synthesized table-driven exponential function
gate-level implementation against the higher-level algorithmic
model previously developed by Harrison. In this exercise, we
extend Harrison’s verification of the exponential function [7]
performed as an error analysis between real and algorithmic
levels, first to RTL and then to gate level, therefore closing the
gap between these levels. In contrast to [10] that reconstructed
the RTL implementation and established a modular proof
between the RTL and behavioral level, we propose a direct
verification methodology without any changes to the lower
level designs. We will explain in detail how the verification
of the synthesized gate level and RTL designs is linked to the
algorithmic level for each and every module in the system.

In this work, we use the higher-order logic (HOL) the-
orem proving system [4] for specifying and verifying the
floating-point design at hand. The HOL theorem prover is an
interactive proof assistant for HOL developed at Cambridge
university by Gordon et al. [4]. It was explicitly designed for the
formal verification of hardware, though it has also been applied

to other areas including software verification and formalization
of pure mathematics. To the best of our knowledge, this is
the first attempt to close the verification gap between abstract
mathematical specification and a synthesized gate-level imple-
mentation using one single formalism and tool, namely HOL.
The organization of the paper is as follows: Section 2 gives a
review on work related to the formalization and verification
of floating-point algorithms and designs, some of which
directly influenced our work. Section 3 describes the table-
driven exponential function algorithm, the formal specification
and implementation of which are discussed throughout this
paper. Section 4 introduces our modeling and verification
methodology and shows the main goal we are trying to reach.
Section 5 shows the formalized specification of the exponential
function in HOL. It also describes the VHDL implementation of
the algorithm and introduces its HOL formalization. Section 6
describes the formal verification of the exponential function.
We first describe the verification of the exponential function in
the transition from the algorithmic level to RTL, using one of
the building blocks, namely the floating-point multiplication.
The details of the algorithmic to RTL verification of other
blocks such as floating-point addition or rounding are given in
Appendix A. We then describe the verification of the exponential
function in the transition from RTL to gate level, using one of the
primitive building blocks, namely the n-bit Multiplier.
The details of the RTL to gate-level verification of other blocks
such as n-bit Adder and n-bit Shifter are given in
Appendix B. Finally, conclusions are drawn in Section 7.

2. RELATED WORK

There exist several related work in the open literature on the
formalization and verification of IEEE standard-based floating-
point arithmetic. For instance, Barrett [11] specified parts of the
IEEE-754 standard in Z and Miner [12] formalized the IEEE-
854 [13] floating-point standard in PVS. The latter was one
of the earliest on the formalization of floating-point standards
using theorem proving. This formal specification was then used
by Miner and Leathrum [14] to verify in PVS a general class of
IEEE-compliant subtractive division algorithms. Carreno [15]
formalized the same IEEE-854 standard in HOL. He interpreted
the lexical descriptions of the standard into mathematical
conditional descriptions and organized them in tables, which
were then formalized in HOL.

The most related work among these efforts, however, is
the one of Harrison [16] who constructed the real numbers
in HOL. He then developed in HOL a generic floating-point
library [17] to define the most fundamental terms of the
IEEE-754 standard and to prove the corresponding correctness
analysis lemmas. He used this library to formalize and verify
floating-point algorithms of complex arithmetic operations
such as the square root, the exponential function [7] and the
transcendental functions [18] against their abstract mathemati-
cal counterparts. He also used the floating-point library for the
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verification of the class of division algorithms used in the Intel
TIA-64 architecture [19].

In [20], Moore et al. verified the AMD-KS floating-
point division algorithm using the ACL2 theorem prover.
Also, Russinoff [21] has developed a floating-point library
for the ACL2 prover and applied it successfully to verify
the floating-point multiplication, division and square root
algorithms of the AMD-KS5 and AMD Athlon processors.

In most of the work described above, the scope of the
researchers was concentrated in two main fields: first, the
formalization of the IEEE floating-point standards and
the verification of their relations to the unbounded real numbers
as in [12,15,16]; second, the behavioral modeling of floating-
point algorithms and verifying their correctness against their
main mathematical models as in [7,18].

In [22], Leeser and O’Leary verified a radix-2 square root
algorithm and its hardware implementation, used in many
processors such as HP PA7200 and Intel Pentium® [21].
They used theorem proving to bridge the abstraction gap
between the algorithm and the implementation. The Nuprl proof
development system was used for proof automation. This work
discusses the proof of the above algorithm starting from RTL
and progressing down to gate-level implementation.

Another approach for verification is combining a theorem
prover with a model checker or a simulation tool, where
the theorem prover handles the high-level proofs, while the
low-level properties are handled by the model checker or
simulation. For instance, Aagaard and Seger [23] used the Voss
hardware verification system to verify the IEEE compliance
of a floating-point multiplier. O’Leary et al. [24] reported on
the specification and verification of the Intel Pentium® Pro
processor’s floating-point execution unit at the gate level using
a combination of model checking and theorem proving. Chen
and Bryant [25] used word-level SMV to verify a floating-
point adder. Cornea-Hasegan [26] used iterative approaches
and mathematical proofs to verify the correctness of the IEEE
floating-point square root, divide and remainder algorithms.
Compared with theorem proving, this approach is much more
automatic, but still requires user guidance.

More recently, Daumas et al. [27] have presented a generic
library for reasoning about floating-point numbers within the
Coq system. This library was then used in the verification of
IEEE-compliant floating-point arithmetic algorithms [28] and
hardware units [29]. Berg and Jacobi [30] have formally verified
a theory of IEEE rounding presented in [31] using the theorem
prover PVS. This theory was then used to prove the correctness
of a fully IEEE-compliant floating-point unit used in the VAMP
processor [32]. Sawada and Gamboa [33] formally verified
the correctness of a floating-point square root algorithm used
in the IBM Powerd4™processor. The verification was carried
out with the ACL2(r) theorem prover. Kaivola and coworkers
[34-36] presented the formal verification of the floating-point
multiplication, division and square root units of the Intel IA-32
Pentium® 4 microprocessor. The verification was carried out

using the Forte verification framework. Both the IBM and Intel
floating-point verification efforts use symbolic simulation (via
ACL2 at IBM and STE (symbolic trajectory evaluation) at Intel)
for verification of optimized gate-level designs against clean
RTL models. The automation provided by symbolic simulation
is a necessity to keep the amount of human effort down to a
reasonable level. However, in our case, it is difficult to describe
and verify mathematical circuits using automated tools except
for a very limited set of the generated subgoals, therefore we
opted for using HOL to solve all different goals interactively.
Nevertheless, the produced proof is highly modular and this
would allow people to use it as a general framework and change
the verification method safely for some of such subgoals. On top
of that, we want to link the correctness proof of the RTL to gate-
level transition, to the correctness proof of the algorithmic to
RTL transition, and also to the error analysis between real and
algorithmic levels, and prove a single theorem that connects
the floating-point exponential function at the gate level to its
abstract mathematical counterpart.

In summary, most openly available related work, except
for [22], discuss details of the verification of a hardware
implementation, usually at RTL, against predefined properties
for the IEEE floating-point standard. This may cover
compatibility of the floating-point implementations under
investigation to the IEEE standard, but it would not cover
the correctness of the implementation against the main circuit
behavioral specification. Also, it can be noticed that most of
these works are either concerned with the verification of the
abstract mathematical description of an IEEE floating-point
standard, or is only concerned with the RTL verification against
a higher behavioral specification. In this work, we will discuss
the formalization and verification of the IEEE-754 table-driven
exponential function in all abstraction levels of the design flow.

3. THE IEEE-754 EXPONENTIAL FUNCTION
ALGORITHM

In this section, we give an introduction to the IEEE-754
exponential function algorithm formal specification and design
of which are discussed in the rest of the paper.

Using an approximate polynomial expansion, Tang [8]
has developed an algorithm for computing the floating-
point exponential function using what he calls a table-driven
approach. In this approach, given an input argument x,
exceptional cases such as NaN (not-a-number), infinities (or
simply very large arguments) and zeros are dealt with first. For
example, exp(—oo) = +0. Furthermore, if the argument x is
small enough for this to be a satisfactory approximation, the
exponential function is calculated simply as 14-x. The main part
of the algorithm covers the remaining cases. Mathematically, the
procedure is simple. First we obtain a reduced argument  such
that for some integer n:

In(2)

XxX=n 0 +r
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and —In(2)/64 < r < In(2)/64. This n is found by rounding
x(32/In(2)) to the nearest integer. Now we decompose 7 into its
quotient and remainder when divided by 32, i.e. n = 32m + j
with 0 < j < 31. Hence

ex — e(32m+j)(ln(2)/32)+r — eln(Z)meln(Z)j/?)Zer — 2m2j/326r

Values of 2//32 for 0 < Jj < 31 are pre-stored constants, and
multiplication by 2" is fast. Hence we just need to calculate e”
for r € [—1n(2)/64,In(2)/64]. This is done by a lower-order

polynomial approximation p(r) & ¢" — 1, where:

8388676 , 11184876 ,
ro+ r

p(r)=r+ 224 226

The actual reconstruction of e*, for reasons of accuracy, is
done by: ' ‘
et = 2rn(2j/32 + 2//32p(r))

In fact, in order to achieve good accuracy, the above
mathematical description is complicated slightly. The value r
is broken down into r; + r,, where r, < r;. Similarly the
pre-stored constants 2//3% are all stored as two separate arrays
Slead and Strail with 2j/32 ~ Slead(j) + Slrail(j) and Strail(j) <
Stead (j)- This would avoid rounding errors as well as take care of
the ordering of operations, hence making the actual code look a
bit more complicated than the above mathematical description.

4. MODELING AND VERIFICATION
METHODOLOGY

The verification process for the table-driven floating-point
exponential function will be performed on many levels.
Harrison [7] formalized and verified using the HOL Light
theorem prover that a behavioral specification of the IEEE-
754 table-driven floating-point exponential function implies
its abstract mathematical counterpart. He also performed an
error analysis between these two levels. For this, he first
developed theories in HOL on construction of real numbers [16],
and formalization of IEEE-754 standard-based floating-point
arithmetic [7,17]. Then he used valuation functions to find the
real value of the floating-point exponential function output,
and defined the error as the difference between this value
and the corresponding output of the ideal real exponential
function. Then he established fundamental lemmas on error
analysis of floating-point rounding and arithmetic operations
against their abstract mathematical counterparts. Finally based
on these lemmas, he proved that the floating-point exponential
function algorithm has the correct overflow behavior and, in
the absence of overflow, the error in the result is less than 0.54
units in the last place compared with the exact mathematical
exponential function. He confirmed and strengthened the main
results of the previously published error analysis in [8], though
he uncovered a minor error in the hand proof and located a
few subtle corners in the proof that a less careful worker might

easily have overlooked. The error in postulated theorems was
related to the forgetting of special or degenerate cases in IEEE
floating-point such as NaNs and negative zeros.

After handling the transition from real to floating-point levels,
we move to the RTL design. At this point, we use the standard
HOL predicate approach to model the floating-point exponential
function at the RTL, as developed by Bui er al. [9] using
VHDL and Verilog, within the HOL environment. The last
step is to verify this level using a classical hierarchical proof
approach in HOL [37]. In this way, we hierarchically prove that
the floating-point exponential function RTL implementation
implies the high-level algorithmic specification that has already
been related to the ideal real specification through the error
analysis. The verification can be extended in HOL, following
a similar approach, down to gate-level netlist implementation,
machine synthesized using the Synopsys tool.

The overall modeling and verification process is described in
Fig. 1, where the white boxes are the material provided by [7-9],
while the shaded ones represent those developed in this work.

Let X be the input variable and E the corresponding output
of the floating-point exponential function at the gate level; then
our final goal is:

Fom ¥ X E. FP_EXP_GATE (X,E) =

valof (float (E)) = exp (valof (float (X)))
+ error (X, E) Aabs (error (X, E))
< error_bound (X, E) (D

Here FP_EXP_GATE is a predicate describing the floating-
point exponential function in gate level, and its input and output
signals X and E are Boolean words. To relate these signals
to the corresponding specifications in floating-point and real
domains, we make use of the bijection function float, and the
valuation function valof . Also, exp is the exponential function
in real domain available in HOL transcendental functions theory
(transc). The theorem states that the real value of the floating-
point exponential function in gate level is equal to the real value
of the exponential function in real domain plus an error, and
also the absolute value of the error is bounded to a certain value
that depends on the range of the input and output numbers.
This goal cannot be reached directly, due to the very high
abstraction gap between the gate and abstract mathematics
levels as described above. Therefore, the proof scheme was
changed to hierarchically prove that the gate level implies the
more abstract RTL. Then this RTL was related, by a formal
proof, to the behavioral specification. The latter was proved to
imply the high-level real specification plus the error. This can
be formalized as follows in HOL:

Fom YX E. FP_LEXP_GATE (X, E) =
FP_EXP_RTL (X,E) 2)

Fom YX E. FPEXP_RTL (X,E) =
FP_EXP_ALGORITHM (float (X), float (E)) (3)
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FIGURE 1. Overview of the specification and verification methodology.

Fomw VX E. FP_EXP_ALGORITHM
(float (X), float (E)) =
valof (float (E)) = exp (valof (float (X)))
+ error (X, E) Aabs (error (X, E))
< error_bound (X, E) “4)

In these formulas, FP_EXP RTL and FP EXP_
ALGORITHM are predicates describing the floating-
point exponential function in RTL and algorithmic levels,
respectively. Note that the inputs and outputs in RTL are still
Boolean, however, at the algorithmic level they have floating-
point type and we use the data conversion function float
to convert the variables from the Boolean type to IEEE-754
standard-based floating-point type. Also, as can be understood
from the theorems, there are no finite precision effects in the
transition from gate level to RTL, and also from the RTL
to algorithmic level; therefore, the corresponding correctness
theorems are described as purely logical implications. However,
for the transition from the algorithmic level to the abstract
mathematical real number domain, we should consider the
effects of finite precision between floating-point numbers and
real numbers and conduct an error analysis to bound the
corresponding error. Finally using Equations (2-4), we can
reach the final goal stated in Equation (1).

Due to the high modularity of the design, the goals of
Equations (2) and (3) could be extended to the specification and
implementation of sublevel modules, and then the verification
continues with these sublevel modules. These proofs were then
composed to yield the original goals.

5. FORMAL SPECIFICATION AND
IMPLEMENTATION OF THE
EXPONENTIAL FUNCTION

In this section we describe the formal specification and
implementation of the IEEE-754 floating-point exponential
function in the HOL theorem prover. The verification details
will be discussed in the next section.

5.1. Formal specification of the exponential function

The original analysis of the floating-point exponential function
in the algorithmic level was performed by Harrison [7] using
the HOL Light theorem prover. In this work, we ported the
code from HOL Light to HOL4, Kananaskis-4. We modeled
the algorithmic specification of the floating-point exponential
function as a predicate in HOL as follows:
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Faof Int_32 = Int(32)

Fm# Int_2e9 = Int(2 EXP 9)

Fdef Plus_one = float(0,127,0)
Fdef THRESHOLD_1 = float(0,134,6056890)
Fm# THRESHOLD_2 = float(0,102,0)
Faef Inv_L = float(0,132,3713595)
me Ll = float(0,121,3240448)
Faf L2 = float(0,102,4177550)
Faf Al = float(0,126,68)

Faf A2 = float(0,124,2796268)
'_def FP_EXP_ALGORITHM X E =

3 RIR2ZRPQSELNNL N2MJ S_Lead S_Trail.

TABLES_OK S_Lead S_Trail A
(if Isnan X then E = X

else (if X = Plus_infinity then E = Plus_infinity

else (if X = Minus_infinity then E = Plus_zero
else (if float_abs X > THRESHOLD_1 then
(if X > Plus_zero then E = Plus_infinity
else E = Plus_zero)

else (if float_abs X < THRESHOLD_2 then E

else
(N = INTRND (X * Inv_L)) A
N2 = % N Int_32) A

N1 =N — N2) A

(
(
(if Int_abs N > Int_2e9 then

Rl = X — Tofloat N1 * L1 — Tofloat N2 * L1

else

Rl = X — Tofloat N * L1) A
2 = Tofloat =N * L2) A

N1 / Int_32) A

N2) A

R1 + R2) A

R*R * (Al + R * A2)) A
=Rl + (R2 + Q)) A

= S_Lead J + S_Trail J) A

= Scalb (E1,M))))))

where the constant TABLES_OK is used to abbreviate a large
set of assumptions about the values of table entries taken from
Tang’s paper [8]. In addition to IEEE 754 standard single-
precision format floating-point numbers, the algorithm uses the
formalization of machine integers, which are defined as 2’s
complement 32-bit integers in HOL.

Based on Tang’s algorithm, the above HOL code implements
the exponential function in the following four steps:

Step 1. Filter out the exceptional cases. When the input
argument X is a NaN, a NaN should be returned. When X is
400, 400 should be returned without any exception. When X
is —oo, 40 should be returned without any exception. When
the magnitude of X is larger than THRESHOLD_1, a 4-00 with
an overflow signal, or a +0 with underflow and inexact signals,
should be returned. When the magnitude of X is smaller than
THRESHOLD_2, 1 + X should be returned.

Step 2. Reduce the input argument X to [—%, %].
Obtain integers M and J, and working-precision floating-point
numbers R and R, such that (up to roundoff)

log2 log2
X=(32M+J)3—2+(R1+R2), |R1 + Ry| < o1

1 =S _Lead J + (S_Trail J + S * P)) A

Plus_one + X

To perform the argument reduction accurately, do the
following:

e Calculate N as follows:

N = INTRND(X % INV_L)
N> := N mod 32
Ny =N-N,

INV_L is 103—22 rounded to working precision. Note that
N, > 0, regardless of N’s sign. INTRND rounds a
floating-point number to the nearest integer in the manner
prescribed by the IEEE standard [6].

e The reduced argument is represented in two working-

precision numbers, R; and R,. We compute them as

follows. First, the value of 1%2 is represented in two

working-precision numbers, L; and Lj, such that the

leading part, L, has a few trailing zeros and L; +
L, approximates % to a precision much higher than

the working one. If the single-precision exponential is
requested and |[N| > 29, then calculate R, by

Rl ZI(X—Nl*Ll)—NQ*Ll.
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Otherwise, calculate R| by
R, = (X — N *Ll).

R, is obtained by

R2 = —N % L2.
e To complete this step, we decompose N into M and J,
thus:
Py— N]
T3
J = Nz.

Step 3. Approximate exp(R; + R;) — 1 by a polynomial
P(R1 + Ry), where

pt) =t +111l2 —|—a2[3 + ... +antn+l.
The polynomial is computed by a standard recurrence:

R =R/ +R

O =R*Rx(Ai+R*x(Ay+Rx(...+RxA,)...)
P:=Ri+ R+ Q)

The coefficients are obtained from a Remez algorithm

implemented by Tang [8]. Our method for bounding the
approximation error in this polynomial [7] is post-hoc, and

works equally well if the polynomial is derived in other ways,
e.g. via Chebyshev expansions [39] or more delicate means [40].
Step 4. Reconstruct exp(X) via

exp(X) = 2M (2//3 4+ 2//3% p(R| + R»)).

Each of the values 2//32,j = 0,1,...,31, is calculated
beforehand and represented by two working-precision numbers
S_lead(J) and S_trail(J). The sum approximates 2//3? to
roughly double the working precision. Thus, we may consider
2i1132 = §_lead(J)+S_trail(J) for all practical purposes. The
Reconstruction is as follows:

S:=S_lead(J)+ S_trail(J)
exp :=2M % (S_lead(J) + (S_trail(J) + S * P))

5.2. Formal implementation of the exponential function

The implementation of the algorithm in RTL was done by Bui
et al. [9] using two different hardware description languages,
namely, Verilog and VHDL.

A block diagram of the whole system is shown in Fig. 2.
In this diagram, we use the same labels as in the algorithm
specification.

The part constructed using VHDL made use of the sequential
mode in contrast to the Verilog implementation that used
combinational logic. Both essentially implement the same
algorithm outlined in the previous section.

Strail

J
GETJ

TABLE
LOOK UP

;:‘ ADDER

MOD32

INV_L- N
:] MULT }—‘ ROUND }»#

N2

Slead

INPUT

ADDER
N-N2

MULT

MULT

RI1

ADDER

FIGURE 2. Floating-point exponential function main block diagram.
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The VHDL design is composed of numerous procedures that
perform IEEE-754 floating-point operations. These operations
include the addition, multiplication, division by 32, rounding
to the nearest integer, modulo 32, comparison and powers of 2.

Fdef FP_EXP_RTL Xs xe xXm outs oute outm =
3 inv temp temp2 temp3 twoe9 flag slead strail
nnln2 rl r2 11 12 al a2 el mgs pr Jj.

MULT1 invs xs stemp inve xe etemp invm xm mtemp A

ROUNDL1 stemp ns etemp ne mtemp nm A

MOD32 ns n2s ne n2e nm n2m A

ADDER1 ns (—n2s) nls ne n2e nle nm n2m nlm A
COMP F twoe9s ne twoe9e nm twoe9m flag A

(if flag = WORD [F; F; T] then

To ensure that the code is synthesizable, the program was made
primitive and the length was much greater than it needed to be.

We modeled this implementation as a predicate in HOL as
follows:

MULT1 ns 1lls stemp2 ne lle etemp2 nm llm mtemp2 A
ADDER1 (—stemp2) xs rls etemp2 xe rle xm mtemp2 rlm

else

MULTL1 ns 1lls stemp2 ne lle etemp2 nm llm mtemp2 A

ADDER1 (—stemp2) xs stemp3 etemp2 xe etemp3 mtemp2 xm mtemp3 A
MULT1 stemp2 1lls rls etemp2 lle rle mtemp2 1lm rlm A

ADDER1 (—n2s) stemp3 stemp2 n2e etemp3 etemp2 n2m mtemp3 mtemp2) A

MULT1 (—ns) 12s r2s ne 1l2e r2e nm 12m r2m A
D32 nls ms nle me nlm mm A

ADDER1 rls r2s rs rle r2e re rilm r2m rm A
MULT1 rs a2s stemp re a2e etemp rm a2m mtemp A

ADDER]1 stemp als stemp2 etemp ale etemp2 mtemp alm mtemp2 A

MULT1 rs rs stemp re re etemp rm rm mtemp A

MULT1 stemp stemp2 gs etemp etemp2 ge mtemp mtemp2 gm A

ADDER1 r2s gs stemp r2e ge etemp r2m gm mtemp A
ADDER1 stemp rls ps etemp rle pe mtemp rlm pm A
GET_J n2s n2e n2m j A

TABLES_OK j sleads sleadm sleade A

ADDER]1 sleads strails ss sleade straile se sleadm strailm sm A

MULT1 ss ps stemp se pe etemp sm pm mtemp A

ADDER1 stemp strails stemp2 etemp straile se sleadm strailm sm A
ADDER1 sleads stemp2 els sleade etemp2 ele sleadm mtemp2 elm A

TWOPOWERM ms me mm stemp etemp mtemp A

MULT1 stemp els outs etemp ele oute mtemp elm outm

The design is composed of numerous primitive building
blocks including the addition (ADDER1), multiplication
(MULT1), division by 32 (D32), rounding to nearest integer
(ROUND1), modulo 32 (MOD32), comparison (COMP), powers
of 2 (TWOPOWERM) and get J (Get_J), which will be explained
in the next section.

6. FORMAL VERIFICATION OF THE
EXPONENTIAL FUNCTION

In this section we describe the verification of the floating-
point exponential function using HOL according to the
methodology described in Section 4. We first describe the
verification of the exponential function in the transition from
the algorithmic level to the RTL, using one of the building
blocks, namely the floating-point multiplication. The details
of the algorithmic to RTL verification of other blocks such
as floating-point addition, division by 32, round to nearest
integer, modulo 32, comparison, powers of two and get J blocks
are given in Appendix A. We then describe the verification

of the exponential function in the transition from the RTL
to gate level, using one of the primitive building blocks,
namely the n-bit Multiplier. The details of the RTL
to gate level verification of other blocks such as n-bit
Adder, n-bit Subtracter, n-bit Concatenator,
n-bit Multiplexer and n-bit Shifter are given in
Appendix B.

6.1. Verification of RTL to algorithmic level

In this section we describe the algorithmic level to RTL
verification of the floating-point exponential function. The
whole RTL design is segmented into different blocks and
then modeled using HOL. The resulting model is in turn set
against the algorithmic specification and the HOL tool is used
interactively to prove its correctness.

The main theorem. We established the correctness of the
RTL implementation of the floating-point exponential function
against its algorithmic specification in HOL as the following
main theorem:
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Theorem 1: FP_EXP_RTL_TO_ALGORITHM_THM

- FP_EXP_RTL xS xe xm outs oute outm =—
FP_EXP_ALGORITHM (float (BV xs,BNVAL xe,BNVAL xm))
(float (BV outs,BNVAL oute, BNVAL outm))

where float is the bijection function that converts a triplet
of natural numbers to the floating-point type, and BV and
BNVAL are predefined functions of the HOL word library
mapping a single bit and a Boolean word into a natural number,
respectively.

e (REPEAT GEN_TAC THEN
REWRITE_TAC [FP_EXP_ALGORITHM, FP_EXP_RTL]
REPEAT STRIP_TAC THEN

As explained before, there is a high level of regularity
and modularity in the design of the floating-point exponential
function so that primitive blocks such as adders and multipliers
are used to build the larger and complicated design. Also, the
main verification goal of the whole design can be broken down to
the verification proofs of the sublevel modules. These proofs are
then composed to yield the original goals. Therefore the main
theorem FP_EXP_RTL_TO_ALGORITHM THM was proved
in HOL using the following tactic:

ARW_TAC [MULT1_RTL_TO_ALGORITHM_ Correct, ADDER1_RTL_TO_ALGORITHM_ Correct,

D32_RTL_TO_ALGORITHM Correct,
MOD32_RTL_TO_ALGORITHM_Correct,
TWOPOWERM_RTL_TO_ALGORITHM_Correct,

where lemmas such as MULT1_RTL_TO_ALGORITHM_
Correct, ADDER1_RTL_TO_AL_GORITHM_Correct,
etc. are about the correctness of the sublevel modules, which
relate the RTL implementation of each module with the
corresponding algorithmic specification.

In the following sections we will describe in detail the
verification of one of the primitive building blocks, namely
the floating-point multiplication. The rest is given in Appendix
A. For all the blocks described, the RTL descriptions, the
corresponding HOL models and parts of the proof strategy are
provided to explain the verification in its entirety.

Verification of floating-point multiplication block. Multiplica-
tion is an operation that is quite straightforward. Its algorithm is
divided into three main parts corresponding to the three parts of
the single-precision format. The first part, the sign, is determined
by an exclusive OR function of the two input signs. The expo-
nent of the output, the second part, is calculated by adding the
two input exponents. And finally, the significand is determined

Fdef MULT1_RTL sl s2 s3 el e2 e3 ml m2 m3 =

ROUND1_RTL_TO_ALGORITHM Correct,
COMP_RTL_TO_ALGORITHM_Correct,
GET_J_RTL_TO_ALGORITHM_ Correct])

by multiplying the two input significands each with a ‘1’ con-
catenated to it. The result obtained will have about twice as
many bits as the significand should normally have and so, the
result will be truncated, normalized and the implied ‘1’ will
be removed (see Fig. 3 for the block diagram). The normaliza-
tion process will be fairly simple knowing that the multiplica-
tion of two 24 bit numbers with a one at the most significant
bit position will yield a result with a one at the most signifi-
cant bit (bit 47) or at bit 46. Depending on the situation, the
result will either be shifted once or twice. At the beginning of
the algorithm, there is an IF statement that checks for excep-
tional cases where there is a zero in at least one of the inputs.

It is important to note that this implementation of the floating-
point multiplier does not handle subnormal numbers; therefore,
it is not a fully fledged floating-point multiplier. It is a perfect
block for the proposed exponential function, as the subnormal
numbers are not allowed to reach the multiplier block in this
design.

In HOL, we modeled this algorithm as follows:

3 impl imp2 count mbuffl mbuff2 mbuff3 mbuff4d mbuffs5.

(s3

(if (BNVAL el = 0) V (BNVAL e2 = 0) then

(e3 = NBWORD 8 0) A (m3 = NBWORD 23 0) A
else

(s3 = sl xor s2) A (mbuff3 = BNVAL el — 127)

(mbuff4 = BNVAL e2 — 127) A
(impl = WCAT (WORD [T],ml)) A
(mbuffl = NBWORD 48
(if BIT 47 mbuffl T then count

(mbuff5 SND (SHL F mbuffl F)) A
(m3 = WSEG 23 25 mbuff5) A

(e3 NBWORD 8 (mbuff2 — count + 127))

(imp2

(mbuff2 = mbuff3

F)

A

+ mbuffd) A

WCAT (WORD [T],m2)) A
(BNVAL impl * BNVAL imp2))
1 else count

A

2) A
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el = 00000000 YES
or
€2 = 00000000
s3=0
m3 = 00000000000000000000000
sl 3 NO €3 = 00000000
0 EXCLUSIVE-OR
mlL__ impl
CONCATENATE
1 mbuff1
MULT
m2 YES
1 CONCATENATE - mbuff1 [47] = 1
— imp2
el
SUB
COUNT = COUNT =
01111111 00000010 00000001
ADD
e2
SUB
SUB [=&
01111111 Y
SHIFTLEFT
00000010 (mbuff1 by count)
ADD
01111111 mbuffl [47...25]

e3

m3

FIGURE 3. Multiplication block diagram.

where BV and BNVAL are predefined functions of the HOL word
library mapping a single bit and a Boolean word into a natural
number, respectively. NBWORD is the reverse function mapping
anatural number into a Boolean word with a given word length.
BIT, WSEG and WCAT are the basic constants denoting the
functions of indexing, segmenting and concatenation of words,
respectively, and SHL is the generic shift left operator.

Then we established the correctness of the RTL implemen-
tation of the floating-point multiplication function against its
algorithmic specification in HOL as the following lemma:

Lemma 1: MULT1_RTL_TO_ALGORITHM_Correct

F MULT1_RTL sl s2 s3 el e2 e3 ml m2 m3 —
(float (BV s3,BNVAL e3,BNVAL m3) =
float (BV sl,BNVAL el,BNVAL ml) *
float (BV s2,BNVAL e2,BNVAL m2))

where £loat is the bijection function that converts a triplet of
natural numbers to the floating-point type. Note that we used
the conventional symbols for arithmetic operations on floating-
point numbers at the algorithmic level using the operator
overloading feature of HOL. The arithmetic operations on
floating-point numbers are defined where they first deal with
the exceptional cases, either where the arguments involve a NaN

or infinity, or are invalid for other reasons (e.g. o0 — c0) and
generate a NaN. Apart from that, they basically just take the real
value of the arguments, perform the mathematical operations
using the arbitrary precision in real domain and then round
the result according to the desired rounding mode. Therefore,
our main task in the proof of the above-mentioned theorem
was to show that the result of the operation following the RTL
algorithm is the best approximation to the real result. These are
established in HOL as the following lemmas:

Lemma 2:
= MULT1_RTL sl s2 s3 el e2 e3 ml m2 m3 =
((BV s3,BNVAL e3,BNVAL m3) =
round float_format To_nearest
(valof float_format (BV sl,BNVAL el,BNVAL ml) *
valof float_format (BV s2,BNVAL e2,BNVAL m2)))

Lemma 3:
F MULT1_RTL sl s2 s3 el e2 e3 ml m2 m3 =
((BV s3,BNVAL e3,BNVAL m3) =
closest (valof float_format) (Aa. T)
{a | is_finite float_format a}
(valof float_format (BV sl,BNVAL el,BNVAL ml) *
valof float_format (BV s2,BNVAL e2,BNVAL m2)))

where round is the floating-point rounding function,
float_format isthe floating-point format, To_nearestis
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the rounding to nearest mode, valof is the valuation function,
closest is the function that picks out the best approxima-
tion to a real value from a set of floating-point numbers and
is_finite defines the finiteness criteria for the floating-point
numbers. The proof is done by rewriting with the definition
of MULT1_RTL and a search in the range of all finite floating-
point numbers to check if the result of multiplication using this
function is the closest value to the real value resulting from mul-
tiplication of the real values of two input floating-point numbers.

Following a similar approach, we have verified other building
blocks of the floating-point exponential function such as
floating-point addition, division by 32, round to nearest integer,
modulo 32, comparison, powers of two and get J blocks in the
transition from the algorithmic level to RTL using HOL. For
more details, please refer to Appendix A.

6.2. Verification of gate level to RTL

Following a similar approach to the verification of the RTL
to the algorithmic level as described in the previous section,
we established the correctness of the gate-level implementation
of the floating-point exponential function against its RTL
specification in HOL as the following main theorem:

Theorem 2: FP_EXP_GATE_LEVEL_TO_RTL_THM
 FP_EXP_GATE xs xe xm outs oute outm =
FP_EXP_RTL xs xe xm outs oute outm

To prove this theorem, we have proved the following lemmas
regarding the correctness of each module:

Lemma 12: MULT1_GATE_TO_RTL_Correct
F MULT1_GATE sl s2 s3 el e2 e3 ml m2 m3 —
MULT1_RTL sl s2 s3 el e2 e3 ml m2 m3

Fdef CELL_MUL_SPEC a b ¢ p co po =

(BV po = (if (BV (a A b) + BV c + BV p < 2) then
(BV(a A Db) + BV ¢ + BV p)
else
(BV (a A b) + BV ¢ + BV p) — 2)) A

(co= = (BV (a Ab) + BV c 4+ BVp < 2))
Fdef ShiftLeFT_Spec n X Y = V n.

Fm# ROW_MUL_SPEC n A b C P CO PO Aout=

((Y 0 =F) A (Y (SUC n)

Lemma 13: ADDER1_GATE_TO_RTL_Correct

- ADDER1_GATE sl s2 s3 el e2 e3 ml m2 m3 —
ADDER1_RTL sl s2 s3 el e2 e3 ml m2 m3

Lemma 14: D32_GATE_TO_RTL_Correct

- D32_GATE sl s2 el e2 ml m2 =
D32_RTL sl s2 el e2 ml m2

Lemma 15: ROUND1_GATE_TO_RTL_Correct

 ROUND1_GATE sl s2 el e2 ml m2 —
ROUND1_RTL sl s2 el e2 ml m2

Lemma 16: MOD32_GATE_TO_RTL_Correct

 MOD32_GATE sl s2 el e2 ml m2 =
MOD32_RTL sl s2 el e2 ml m2

Lemma 17: COMP_GATE_TO_RTL_Correct

- COMP_GATE sl s2 el e2 ml m2 —
COMP_RTL sl s2 el e2 ml m2

Lemma 18: TWOPOWERM_GATE_TO_RTL_Correct

= TWOPOWERM_GATE sl el ml s3 e3 m3 —
TWOPOWERM_RTL sl el ml s3 e3 m3

Lemma 19: GET_J_GATE_TO_RTL_Correct

- GET_J_GATE sl el ml j —
GET_J_RTL sl el ml j

The gate-level specification of the modules is very similar
to their RTL specification so that they are composed of the
same number of sub-modules at the lower level. As can be
seen from Figs 3 and A1-A6, there are seven main primitive
building block sub-modules in these levels namely n-bit
Adder, n-bit Subtracter, n-bit Multiplier
n-bit Comparator, n-bit Concatenator, n-bit
Multiplexer, and n-bit Shifter. We use these inter-
mediate sub-modules to cover the gap between the RTL and
the gate level. In the following we describe the details of the
verification of one such sub-module, n-bit Multiplier.
The others are given in Appendix B.

Verification of n-bit Multiplier. The n-bit Multiplierin
RTL is specified as follows:

= X n))

3 c.
(BV (PO n) = if (BV ((A n) A b) 4+ BV (C n) + BV (P n) < 2) then
(BV ((An) Ab) + BV (Cn) + BV (P n))
else
(BV ((An) ANDb) + BV (Cn) + BV (Pn)) —2) A
((cn) == (BV ((An) ADb) +BV (Cn) + BV (Pn) < 2)) A

ShiftLeFT_Spec n A Aout A
ShiftLeFT_Spec n ¢ CO A
(C (SUC n) = F) A
(P (SUC n) = F)
Fdef (ARRAY_MUL_spec 0 A B C P Co Po Aout =
ROW_MUL_SPEC 0 A (B 0) C P Co Po Aout) A

(ARRAY_MUL_spec (SUC n) A B C P Co Po Aout = 3 a p c.
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ARRAY MUL_spec n A B C P
ROW_MUL_SPEC n

cpaA
a (B (SUC n)) c p Co Po Aout)

Faef MUL_SPEC n A B C P MULout
3 Co Po Aout.
ARRAY_MUL_spec n A B C P Co Po Aout A
nadd_spec ((2 *n) — 1) Co Po F MULout

Then-bit Multiplier atthe gate level is implemented
as follows:

me CELL_MUL_IMP a b ¢ p co po
3 sl.
(and2 a b sl1) A
(fa_imp s1 ¢ p po co)

me ROW_MUL_IMP n A b C P CO PO Aout =
3 c.

CELL_MUL_IMP (A n) b (C n) (P n) (c n) (PO n) A
ShiftLeFT_Imp n A Aout A

ShiftLeFT_Imp n ¢ CO A

(C (SUC n) = F) A

(P (SUC n) = F)

F4ef ARRAY_MUL_IMP 0 A B C P Co Po Aout =
ROW_MUL_IMP 0 A (B 0) C P Co Po Aout A
(ARRAY_MUL_IMP (SUC n) A B C P Co Po Aout =
Jdapec.

ARRAY MUL_IMP n A B C P cpa A
ROW_MUL_IMP n a (B (SUC n)) c p Co Po Aout)
ij MUL_TIMP n A B C P MULout =

3 Co Po Aout.
ARRAY MUL_IMP n A B C P Co Po Aout A
nadd_imp (2*n—1) Co Po F MULout (MULout (2*n))
The correctness of the n-bit Multiplier block is
proved in HOL as in the following theorems:

Theorem 3: FP_EXP_GATE_LEVEL_TO_REAL_THM

- FP_EXP_GATE xs xe xm outs oute outm A Finite (float
exp (valof float_format (BV xs,BNVAL xe,BNVAL xm))
Isnormal (float (BV outs,BNVAL oute,BNVAL outm)) A
abs (valof float_format (BV outs,BNVAL oute, BNVAL outm)
exp(valof float_format (BV xs,BNVAL xe,BNVAL xm))) <

(&54 / &100) * Ulp(float (BV outs,BNVAL oute,BNVAL outm))
(Isdenormal (float (BV outs,BNVAL oute, BNVAL outm)) V
Iszero (float (BV outs,BNVAL oute, BNVAL outm))) A

abs (valof float_format
exp(valof float_format
(&77 / &100)

(BV outs, BNVAL oute, BNVAL outm)
(BV outs, BNVAL oute, BNVAL outm)
* Ulp(float

This main theorem connects the floating-point exponential
function at the gate level to its abstract mathematical
counterpart. The specification it proves is that the function has
the correct overflow behavior and, in the absence of overflow,
the error in the result is <0.54 units in the last place (Ulp)
(0.77 if the answer is denormalized) compared with the exact
mathematical exponential function. One Ulp is defined as the
magnitude of the least significant bit of the value concerned.

(MULout

(BV xs,BNVAL xe,BNVAL xm))
< threshold (float_format)

(2 * n))

Theorem: N_MUL_GATE_LEVEL_TO_RTL_Correct
F MUL_IMP n A B C P MULout —
MUL_SPEC n A B C P MULout

This goal can be tackled by dividing it into smaller subgoals,
where every subgoal represents the verification of one of its
sub-modules. This was done by starting with verifying the cell,
then the row and then the array multiplier.

Following a similar approach, we have verified other primi-
tive building blocks of the floating-point exponential function
such as n-bit Adder, n-bit Subtracter, n-bit
Concatenator, n-bit Multiplexer and n-bit
Shifter in the transition from the RTL to gate level in HOL.
For more details, please refer to Appendix B.

6.3. Summary

Having proved the Theorems 1 and 2, which state the correctness
of the floating-point exponential function in the transition from
the gate level to the RTL and algorithmic levels, together
with the final correctness theorem proved in [7] about the

error analysis of the algorithmic level to real numbers, we
can prove the following theorem that bridges the gap between
the gate level and ideal real numbers considering the error
analysis:

A
=

i\

) <

(BV outs, BNVAL oute, BNVAL outm)))

7. CONCLUSIONS

Most verification and testing tools will fall short of verifying
a circuit with a deep datapath. The IEEE-754 table-driven
exponential function with its 32 bit input and 32 bit output
implementation would be considered an impossible task for
exhaustive simulation. For full coverage with simulation we
would have 232 cases, which means that even a 2% or 3%
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coverage would take very long simulation time. Model checking
techniques will not go a lot further as the deep datapath means
a huge state space causing a state space explosion [38], making
it impossible to verify such a circuit. The properties of the main
module and most of its sub-modules cannot be covered easily
with, for example, CTL properties [38].

In this paper, we have demonstrated the use of HOL to
establish a complete proof between the lower gate level and RTL
implementations and the higher-level algorithmic specifications
previously developed by Harrison for the IEEE-754 table-driven
floating-point exponential function. To establish this proof, we
had to formally specify and verify many floating-point smaller
modules, such as floating-point addition and floating-point
multiplication, as well as many other primitive building blocks.
The project was first defined as a two-year master thesis of the
second author and then completed by the first author as a half
man-year postdoctoral research. The whole code was composed
of nearly 5000 lines.

One of the very important advantages of the hierarchical ver-
ification lies in the fact that the change of a module or more will
not mean the re-proof of the whole system. It only means the re-
proof that the new module meets the same specification that the
older version did. This may mean a lot for tight time-to-market
requirements in a fast-moving technology like electronics. As
an example, our proof can always be used with the changing
technology as long as we prove that the lower modules, gates
for instance, are still satisfying the same properties.
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APPENDIX A. DETAILS OF RTL TO ALGORITHMIC
VERIFICATION

Verification of addition block. Figure Al shows the block
diagram of the addition function. The addition procedure covers
both the addition and the subtraction operations. The idea is

mainly the same for both but handling both cases together
brings an added degree of complexity. The algorithm puts both
numbers to the same exponent, adds or subtracts the numbers
and then normalizes. The first part of the addition procedure
checks which input is greater (onebigger). This is especially
important in cases where the inputs are of opposite signs. If
the inputs carry the same sign, the output sign will then be
the same. When the signs are different, the input with the
greater magnitude will impose its sign. The next step is to
denormalize both inputs and perform the addition. However,
before going on to that step, ‘01’ has to be concatenated to
both numbers (mbuffl, mbuff3). The reason for this is
that the 1 is the implicit 1 contained in the IEEE-754 format.
The O is there to make sure that the carry bit is not lost.
Denormalizing is done by right-shifting the smaller input by an
amount determined by the difference in exponents (Counter).
The exponent is unbiased by removing 127 (‘01111111”) from
its biased value (mbu f £ 6). Addition is then performed normally
and the last part is normalizing. It would have been more
convenient to use FOR loops for denormalizing purposes but
the code would have been more dense and significantly more
complex.
In HOL, we modeled this algorithm as follows:

3 onebigger counter count mbuffl mbuff2 mbuff3 mbuffd4d mbuff5 mbuff6.

(if BNVAL el > BNVAL e2 then onebigger = T
else
(if BNVAL e2 > BNVAL el then onebigger =
else
(if BNVAL ml > BNVAL m2 then onebigger
else onebigger = F))) A
(if s1 = s2 then
s3 = sl
else
(if onebigger = T then s3 = sl else s3 =

(if onebigger F then

counter = BNVAL e2 — BNVAL el) A

(

(mbuffl = WCAT (WORD [F; T],ml)) A
(mbuff3 = WCAT (WORD [F; T],m2)) A
(mbuff6 = BNVAL e2 — 127)

F

T

s2)) A
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onebigger=1
&8 s3=sl

onebigger=0

onebigger=1 3=sl
onebigger=1 s3=52
onebigger=0
Y
YES
onebigger=0
Counter =e2 - el
Counter =el - e2 ‘
‘ mbuffl = 01 concatenated with m1
[
mbuffl =01 concatenated with m2 mbuff3 = 01 concatenated with m2
mbuff3 = 01 concatenated with ml > mbuffo=e2- 01111111
\
Add }—‘ NORMALIZE 3
FIGURE A1l. Addition block diagram.
else
(counter = BNVAL el — BNVAL e2) A
(mbuffl = WCAT (WORD [F; T],m2)) A
(mbuff3 = WCAT (WORD [F; T],ml)) A
(mbuff6 = BNVAL el — 127)) A
(mbuff2 = SHRN mbuffl counter) A
(if s1 = s2 then
BNVAL mbuff4 = BNVAL mbuff2 + BNVAL mbuff3
else
BNVAL mbuff4 = BNVAL mbuff3 — BNVAL mbuff2) A
(if BIT 24 mbuff4d = T then
(mbuff5 = SHLN mbuff4 1) A (BNVAL e3 = mbuffé + 128) A
AN
(if BIT 0 mbuffd4d = T then
(mbuff5 = SHLN mbuff4 25) A (BNVAL e3 = mbuff6 4 104) A
else
(mbuff5 = WORD (REPLICATE 25 F)) A (BNVAL e3 = 0) A
(s3 = F) A (m3 = WSEG 23 2 mbuff5))
where SHRN and SHLN are functions that shifted right and left a
Boolean word to a given number of bits, respectively. Following
a similar approach to the floating-point multiplier, we proved Lemma 4: ADDER1_RTL_TO_ALGORITHM Correct
the foll . 1 that checks th t f the RTL  ADDER1_RTL sl s2 s3 el e2 e3 ml m2 m3 =
the following lemma that checks the correctness of the R (float (BV s3,BNVAL e3,BNVAL m3) —
implementation of the floating-point addition function against float (BV sl,BNVAL el,BNVAL ml) +
its algorithmic specification in HOL. float (BV s2,BNVAL e2,BNVAL m2))
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YES
NO ‘w
el

00000101
€2 = 00000000 SUB

FIGURE A2. Division by 32 block diagram.

Verification of division by 32 block. This function is only
required to be used on a specific type of numbers: multiples of
32. Knowing this fact, the procedure does not need to support
all possible ranges of inputs. The operations performed can be
explained as follows: the algorithm will output zero if the input
exponent is <5 and will simply subtract five from the exponent
if it is not the case. This can be seen in Fig. A2.
In HOL, we modeled this algorithm as follows:

Fdef D32_RTL sl s2 el e2 ml m2 =
(s2 = s1) A
(i1f BNVAL el > 131 then
(e2 = NBWORD 8 (BNVAL el — 5)) A
(m2 = ml)
else
(e2 = NBWORD 8 0) A (m2 = NBWORD 23 0))

Then we established the correctness of the algorithmic to RTL
transition of the division by 32 block in HOL as follows:

Fdef ROUNDL_RTL sl s2 el e2 ml m2 =

Lemma 5: D32_RTL_TO_ALGORITHM_Correct

= D32_RTL sl s2 el e2 ml m2 =
(Toint (float (BV s2,BNVAL e2,BNVAL m2)) =
Toint (float (BV sl,BNVAL el,BNVAL ml))/Int_32)

where Toint is the coercion for mapping floating-point
numbers into machine integers, and ‘/’ denotes the division
operation on 2’s complement 32 bit machine integers. The
lemma is proved by rewriting on definitions of the division
function in RTL (D32) and algorithmic (‘/’) level, and
valuations on floating-point numbers and machine integers.

Verification of round to nearest integer block. Figure A3
illustrates the round to nearest algorithm. It starts by checking
if the exponent is of the order of —2 or less. This would result
in an output of zero. The second case is to check if the exponent
is —1 in which case the output would be equal to 1. These two
IF statements are for negative exponent handling since the main
algorithm cannot deal with these cases.

The basic idea is to verify the bit at the 0.5 position. If the
bit is set, the decimal positions are filled with zero and we add
one to the resulting integer. If the bit is reset, the bits located

to the right of the decimal point will be reset. To accomplish
this, the input is first shifted right by a number of positions
corresponding to the exponent (so that all fraction bits are shifted
out). The number obtained should be an integer. This number is
then incremented by one if the bit at 0.5 is set else it should be left
the same.

In HOL we modeled this algorithm as follows:

3 mbuffl impl imp2 imp3 imp4 imp5 imp6 imp7 count.

(if BNVAL el < 126 then

(e2 = NBWORD 8 0) A (m2 = NBWORD 23 0)
else

(if BNVAL el = 126 then

(s2 = F)

e2 = NBWORD 8 127) A (m2 = NBWORD 23 0) A (s2 = sl)

else
impl = WCAT (WORD [F],ml)) A
count = 23 — mbuffl) A

imp2 = SHRN impl (count — 1)) A
BIT 0 imp2) A

SHRN imp2 1) A

(imp3
(imp4

(
s
(s2 = s1) A (mbuffl = BNVAL el — 127)
(
(
(

A

(imp5 = NBWORD 24 (BNVAL imp4 + BV imp3)) A

(i1f mbuffl < 23 then

(if BIT (mbuffl + 1) imp5 = T then

(BNVAL e2 = mbuffl 4+ 1 + 127)
(imp6 = SHLN imp5 (count — 1))

else
(BNVAL e2 = mbuffl 4+ 127) A
(imp6 = SHLN imp5 count)) A
(m2 = WSEG 23 0 impé6)

else
(e2 = el) A (m2 = ml))))
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mbuffl

SUB ]

count

oL SUB

SUB

00010111

00000001

00000000000000000000000 imp3

ml
CONCATENATE

ADD
SHIFT
RIGHT J

SHIFT imp2

AND
RIGHT imp5

— imp4

m2
NORMALIZE —»

FIGURE A3. Round to nearest integer block diagram.

Then we established the correctness of the algorithmic to
RTL transition of the round to nearest integer block in HOL as
follows:

Lemma 6: ROUND1_RTL_TO_ALGORITHM_ Correct

F ROUND1_RTL sl s2 el e2 ml m2 =
(Toint (float (BV s2,BNVAL e2,BNVAL m2)) =
INTRND (float (BV sl1l,BNVAL el,BNVAL ml)))

where the function INTRND is the composition of the
round-to-integer-value operation on floating-point numbers
(ROUNDFLOAT) and the coercion function Toint. Therefore,
our main task in the proof of the above-mentioned theorem was
to show that the result of the rounding operation following the
RTL algorithm is the best approximation to the real value of
the input number. This is established in HOL as the following
theorem:

Lemma 7:
F ROUND1_RTL sl s2 el e2 ml m2 =
((BV s2,BNVAL e2,BNVAL m2) =
closest (valof float_format) (Aa. T)
{a | is_integral float_format a}
(valof float_format (BV sl,BNVAL el,BNVAL ml)))

Fdef MOD32_RTL sl s2 el e2 ml m2 =

where is_integral checks if a floating-point number has a
finite and integer value.

Verification of Modulo 32 block. Modulo 32 is an operation
that is done by simply taking the five first bits located to the left
of the decimal point. The result will then be an unsigned 5-bit
integer that will have to be converted to the single-precision
format. For the block diagram, refer to Figure A4. The lower
right portion of the figure shows a loop that was not actually
implemented in the algorithm. It was drawn like that in order to
reduce the complexity of the diagram. The variable ‘I’ is used
as a loop variable.

The procedure is somewhat similar to that of rounding to the
nearest integer. The input is first shifted right by the number of
bits corresponding to the exponent. The result is then ANDed
with the ‘11111 bit pattern in order to isolate the five bits. The

conversion process checks where the first 1 is located starting
from the most significant position. An exponent is then assigned
accordingly and the result is shifted left to comply with the rules
of normalization.

In HOL we modeled this algorithm as follows:

3 mbuffl impl imp2 imp3 imp4 imp5 imp6 count n2 n3.

(s2 = sl) A (BNVAL mbuffl = BNVAL el — 127)

(impl = WCAT (WORD [T],ml)) A
(if BNVAL mbuffl > 23 then

(count = BNVAL mbuffl — 23) A (imp2 =
else

(count = 23 — BNVAL mbuffl) A (imp2 =
(if BIT 7 mbuffl = T then

n2 = NBWORD 24 0
else

n2 = NBWORD 24 31 WAND irﬂp2) AN
(if BIT 4 n2 = T then

(BNVAL e2 = 131) A (n3 = SHLN n2 19)
else

(if BIT 3 n2

(BNVAL e2

T then

130) A (n3 = SHLN n2 20)

A

SHLN impl count)

SHRN impl count)) A
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else
(if BIT 2 n2 = T then
(BNVAL e2 = 129) A (n3 = SHLN n2 21)
else
(if BIT 1 n2 = T then
(BNVAL e2 = 128) A (n3 = SHLN n2 22)
else
(if BIT 0 n2 = T then
(BNVAL e2 = 127) A (n3 = SHLN n2 23)
else
(BNVAL e2 = 0) A
(n3 = WORD (REPLICATE 24 F))))))) A
(m2 = WSEG 23 0 n3)

Then we established the correctness of the algorithmic to
RTL transition of the modulo 32 block in HOL as follows:

Lemma 8: MOD32_RTL_TO_ALGORITHM_Correct
 MOD32_RTL sl s2 el e2 ml m2 =
(Toint (float (BV sl1,BNVAL el,BNVAL ml))
(Toint (float (BV s2,BNVAL e2,BNVAL m2)))

%

Int_32)

where % is the modulus operation on machine integers, which
always returns a positive answer whatever the sign of its
arguments. The lemma is proved by rewriting on definitions of
the functions MOD32 and %, and valuations on floating-point
numbers and machine integers.

Verification of comparison block. Unlike the other procedures,
the comparison does not output a number in the IEEE-754
format. Instead, it outputs three bits that give a comparative

el

mbuffl

indication of the size of the first input with respect to the second.
If the first input is greater than the second one, then the most
significant bit is set. If the second input is greater than the first,
then it is the least significant bit that is set. If the two inputs are
equal, then the middle bit is set. Only one bit can be set at any
given time. In HOL we modeled this algorithm as follows:

Fdef COMP_RTL sl s2 el e2 ml m2 flag
3 sign expo magn.

(sign = WCAT (WORD [sl1],WORD [s2])) A
(1f BNVAL el > BNVAL e2 then
expo = WORD [T; F]
else
(if BNVAL e2 > BNVAL el then
expo = WORD [F; T]

SUB
01111

mbuff1

000101 11|

YES
mbuffl [7]
=1

n2 = 00000000000000000000000

SUB

0000000000000000001

AND

count
count

ml

SHIFT
LEFT

imp2

impl
CONCATENATE —

00001 |

YES

n2(4-) =1

€2 =10000011 -1

€2 = 00000000
n2 = 00000000000000000000000

n2 = SHIFTLEFT
(n2, 00010011 —T)

i

m2 =n2 [22...0]

FIGURE A4. Modulo-32 block diagram.
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else
(expo = WORD [F; F]) A else
(if BNVAL ml > BNVAL m2 then (if expo = WORD [F; T] then
magn = WORD [T; F] flag = WORD [T; F; F]
else else
(if BNVAL m2 > BNVAL ml then (if magn = WORD [T; F] then
magn = WORD [F; T] flag = WORD [F; F; T]
else else
magn = WORD [F; F1)))) A (if magn = WORD [F; T] then
(if sign = WORD [F; F] then flag = WORD [T; F; F]
(if expo = WORD [T; F] then else
flag = WORD [T; F; F] flag = WORD [F; T; FJl))))
else else
(lf expo = WORD [F; T] then (lf sign = WORD [T,‘ F] then
flag = WORD [F; F; T] flag = WORD [F; F; T]
else else
(if magn = WORD [T; F] then flag = WORD [T; F; F1)))
flag = WORD [T; F; F] ) ] )
else Figure A5 shows the block diagram of the comparison
(if magn = WORD [F; T] then function.
lflag = WORD [F; F; TI The correctness of the algorithmic to RTL transition of the
else . . . .
flag = WORD [F; T; F1)))) comparison block is established in HOL as follows:
else Lemma 9: COMP_RTL_TO_ALGORITHM_Correct
(if sign = WORD [T; T] then = COMP_RTL sl s2 el €2 ml m2 flag —
(if expo = WORD [T; F] then (if flag = WORD [T; F; F] then
flag = WORD [F; F; T] Toint (float (BV sl1,BNVAL el,BNVAL ml)) >
Toint (float (BV s2,BNVAL e2,BNVAL m2))
else
(if flag = WORD [F; T; F] then
Toint (float (BV sl1,BNVAL el,BNVAL ml)) =
sl sign
CONCATENATE
YES
expo =10 *‘
flag = 100
flag = 001
YES
expo =01
flag = 001
flag = 100
YES flag = 100
magn = 10 *‘
flag = 001
magn = 00
magn = 01
YES flag = 001
flag =010
flag =100
flag =010

FIGURE AS. Comparison block diagram.
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Toint (float (BV s2,BNVAL e2,BNVAL m2))
else
Toint (float (BV sl1,BNVAL el,BNVAL ml)) <
Toint (float (BV s2,BNVAL e2,BNVAL m2))))

Note that we use conventional symbols for comparison
operations on machine integers in the algorithmic level using
the operator overloading feature of HOL. The proof is
straightforward by rewriting on the definitions of the functions
COMP, and <, =, >, and valuation on machine integers.

Verification of Powers of Two block. The powers of two function
can be implemented by realizing that the value of the input is
the value of the output exponent. For example, placing four
as an input would result in two to the power of four, yielding
four in the exponent field. The objective of the function would
then be to convert the input, being an IEEE-754 number, to a
2’s complement number. The bias of 127 would then be added
to the result and the sum would be placed in the exponent field.
The sign and significand fields will be filled with zeros because
the result will always be positive and will always be an integer
multiple of two. A detailed block diagram of the Power of Two
function is given in Fig. A6. In this figure, there is a loop in the
lower left section that is used to provide a concise description
of the algorithm. It uses the variable ‘I’ as a loop variable.
In HOL we modeled this algorithm as follows:

Fdef TWOPOWERM_RTL sl el ml s3 e3 m3 =
3 expo magn buff buff2.

Lemma 10: TWOPOWERM_RTL_TO_ALGORITHM_Correct

= TWOPOWERM_RTL sl el ml s3 e3 m3 —
(valof float_format (BV s3,BNVAL e3,BNVAL m3) =
exp (Ival (Toint (float

(BV s1,BNVAL el,BNVAL ml))) * 1n 2))

where Ival is the valuation function on machine integers,
and exp and 1n are the exponential and natural logarithmic
functions defined in the HOL real library, respectively. The
proof is done by rewriting on the definition of the function
TWOPOWERM and valuations on floating-point numbers and
machine integers.

Verification of Get J block. The current implementation of the
exponential circuit is the table-driven implementation. The table
index should ideally be an unsigned integer to make the search
easier. The ‘Get J’ procedure takes care of this. It takes a number
in the single-precision format and transforms it to an unsigned
number. The procedure examines the exponent and extracts
the corresponding bits from the significand. Even though the
source code uses a series of IF statements, the block diagram
in Fig. A7 shows a loop that uses a variable ‘I’ to perform the
required task.

Using an unsigned number for the search makes the task
of finding a correct value for S easier (refer to the algorithm
described in Section 3).

(if el = WORD [F; F; F; F; F; F; F; F] then
(e3 = WORD [F; T; T; T; T; T; T; T]) A
(m3 = WORD (REPLICATE 23 F)) A (s3 = F)
else
((expo = NBWORD 8 (BNVAL el — 127)) A
(magn = WCAT (WORD [F; F; F; F; F; F; F; T],ml))) A
(if s1 = F then
(if expo = WORD [F; F; F; F; F; T; T; T] then
buff = WSEG 8 16 magn
else
(if expo = WORD [F; F; F; F; F; T; T; F] then
buff = WSEG 8 17 magn
else
(if ... else
buff = WSEG 8 23 magn)))))))
else
(if expo = WORD [F; F; F; F; F; T; T; T] then
buff2 = WSEG 8 16 magn
else
(if expo = WORD [F; F; F; F; F; T; T; F] then
buff2 = WSEG 8 17 magn
else
(1f . else
buff2 = WSEG 8 23 magn))))))) A
(buff = NBWORD 8 (0 — BNVAL buff2))) A (s3 = F) A

(e3 = NBWORD 8 (BNVAL buff + 127)) A

The correctness of the algorithmic to RTL transition of the
powers of two block is established in HOL as follows:

(m3

= NBWORD 23 0))
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el

SUB
[URRRRRY

ml

00000001 | CONCATENATE

s3=0
m3 = 00000000000000000000000
e3=01111111

1=0

NO

mag [(23+1)...(16+1)]

I=1+1

mag [(23+])...(16+D)]

buff2

I=1+1

00000000

buff

s3=0

e3=buff+ 01111111
m3 = 00000000000000000000000

FIGURE A6. Powers of Two block diagram.

In HOL we modeled this algorithm as follows:

l_def GET_J_RTL sl el ml j =

3 expo magn.

(BNVAL expo = BNVAL el — 127) A

(magn = WCAT (WORD [F;F;F;F;T],ml)) A

(1f expo = WORD [F;F;F;F;F;T;F;F] then
j = WSEG 5 19 magn

else

(if expo = WORD [F;F;F;F;F;F;T;T] then
j = WSEG 5 20 magn

else

(if expo = WORD [F;F;F;F;F;F;T;F] then
j = WSEG 5 21 magn

else

(if expo = WORD [F;F;F;F;F;F;F;T] then
j = WSEG 5 22 magn

else

(if expo = WORD [F;F;F;F;F;F;F;F] then
j = WSEG 5 23 magn

else
j = WORD (REPLICATE 5 F))))))

The correctness of the algorithmic to RTL transition of the
get J block is established in HOL as follows:

Lemma 11: GET_J_RTL_TO_ALGORITHM_ Correct
F GET J sl el ml j = (Int (BNVAL j) =
Toint (float (BV sl1,BNVAL el,BNVAL ml)))

where Int is the bijection function that converts a natural
number to the machine integer type. The proof is done by

el ——
SUB

0TI —

ml——

CONCATENATE

00001—

expo = 00000100 - mag [(23+1)...(19+1)]

I=1+1

FIGURE A7. Get]J block diagram.

rewriting on the definition of the function GET_J, case analysis
on the input exponent and valuations on floating-point numbers
and machine integers.

APPENDIX B. DETAILS OF GATE LEVEL TO RTL
VERIFICATION

Verification of n-bit Adder. The n-bit Adder in the RTL
level is specified as follows:
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Fdof nadd_spec n a b cin s ¢ =

(BNVAL s = ((if ((BNVAL a + BNVAL b + BV cin) < (2 EXP (SUC n))) then
(BNVAL a + BNVAL b + BV cin)
else
((BNVAL a + BNVAL b + BV cin) — 2 EXP (SUC n))))) A

(c = = ((BNVAL a + BNVAL b + BV cin) < (2 EXP (SUC n))))

The n-bit Adder at the gate level is implemented using
primitive building blocks such as AND, OR, NOT and XOR as
follows:

Fdef nadd_imp 0 a b cin suml cout =
fa_imp (a 0) (b 0) cin (suml 0) cout) A
(nadd_imp (SUC n) a b cin suml cout = 3 (cripple:bool).
(fa_imp (a (SUC n)) (b (SUC n)) cripple (suml (SUC n)) cout) A
(nadd_imp n a b cin suml cripple))

The correctness of the n-bit Adder block is proved in
HOL as in the following theorem:

Lemma 20: N_ADD_GATE_LEVEL_TO_RTL_Correct
F nadd_imp n a b cin sum cout = nadd_spec n a b cin sum cout

Verification of n-bit Subtracter. Then-bit Subtracterin
the RTL is specified as follows:

Fdef nSub_spec 0 a b bin dif bout =
fs_spec (a 0) (b 0) bin (dif 0) bout) A
(nSub_spec (SUC n) a b bin dif bout = 3 (bripple:bool).
(fs_spec (a (SUC n)) (b (SUC n)) bripple (dif (SUC n)) bout) A
(nSub_spec n a b bin dif bripple))

Then-bit Subtracter atthe gate level is implemented
as follows:

Fdef (nSub_imp 0 a b bin dif bout =
fs_imp (a 0) (b 0) bin (dif 0) bout) A
(nSub_imp (SUC n) a b bin dif bout = 3 (bripple:bool).
(fs_imp (a (SUC n)) (b (SUC n)) bripple (dif (SUC n)) bout) A
(nSub_imp n a b bin dif bripple))

The correctness of the n-bit Subtracter block is
proved in HOL as in the following theorem:

Lemma 21: N_SUB_GATE_LEVEL_TO_RTL_Correct
F nSub_imp n a b bin dif bout =— nSub_spec n a b bin dif
bout

Verification of n-bit Comparator. The n-bit Comparator
in the RTL is specified as follows:

Fw4 n_BIT COMP_Spec n A B 1f gf ef 1 g e

(1 = ((BNVAL A < BNVAL B) A ef) A
(g = ((BNVAL A > BNVAL B) A ef) gf) A
(e = ((BNVAL A = BNVAL B)A ef))
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Then-bit Comparator atthe gate level is implemented
as follows:

Fgef BIT_COMPARE Imp a b 1 g e =
3 anot bnot sl s2.
(notl a anot) A
(notl b bnot) A
(and2 anot b 1) A
(and2 bnot a g) A
(and2 a b sl) A
(and2 anot bnot s2) A
(or2 sl s2 e)
Fm# n_BIT COMP_BULID_Imp a b 1f gf ef 1 g e =
3 11 el gl sl sg.
(BIT_COMPARE_Imp a b 11 gl el) A
(and2 el ef e) A
(and2 11 ef sl)A
(and2 gl ef sg) A
(or2 s1 1f 1) A
(or2 sg gf g)

F¢# (n_BIT_COMP_Imp O A B 1f gf ef 1 g e =
n_BIT COMP_BULID _Imp (A 0) (B 0) 1f gf ef 1 g e) A
(n_BIT_COMP_Imp (SUC n) A B 1f gf ef 1 g e = 3 11 gl el.
(n_BIT_COMP_BULID_Imp (A (SUC n)) (B (SUC n)) 1f gf ef 11 gl el) A
(n_BIT _COMP_Tmp n A B 11 gl el 1 g e))

The correctness of the n-bit Comparator block is
proved in HOL as in the following theorem:

Theorem: N_BIT COMP_GATE_LEVEL_TO_RTL_Correct
F n_BIT_COMP_BULID Imp a b 1f gf ef 1 g e = n_BIT_COMP_BULID Spec a b 1f gf ef 1 g e

Verification of  n-bit Concatenator. The n-bit
Concatenator in the RTL is specified as follows:

Fm# CONCATENATE_Spec (n:num) (X:num—>bool) (Y:num—>bool) =
(BNVAL Y = 2 EXP (SUC n) 4+ BNVAL X)

The n-bit Concatenator at the gate level is imple-
mented as follows:

Fdef CONCATENATE Imp (n:num) (X:num—>bool) (Y:num—>bool) =
(Y (SUC n) = T) A
(Vn. Yn=Xn)

The correctness of the n-bit Concatenator block is
proved in HOL as in the following theorem:

Theorem: CONCATENATE_GATE_LEVEL_TO_RTL_THM
- CONCATENATE_Imp n X Y == CONCATENATE_Spec n X Y

Verification of n-bit Multiplexer. Then-bit Multiplexer
in the RTL is specified as follows:

Fdef MUX_Spec n A B s OUT =
(BNVAL OUT = (if (s = F) then BNVAL A else BNVAL B))

THE COMPUTER JOURNAL, 2009




24 B. AKBARPOUR et al.

The n-bit Multiplexer at the gate level is imple-
mented as follows:

Fdef MUX_Cell_TImp a b s out =
3 sl s2 s3.
(notl s sl1) A
(and2 sl a s2) A
(and2 s b s3) A
(or2 s2 s3 out)

me (MUX_TImp 0 A (B:num—> bool) s OUT =
MUX_Cell_Imp (A 0) (B 0) s (OUT 0)) A
(MUX_Imp (SUC n) A B s OUT =

(MUX_Cell_TImp (A (SUC n)) (B (SUC n)) s (OUT (SUC n))

(MUX_Imp n A (B:num—> bool) s OUT))

The correctness of the n-bit Multiplexer block is
proved in HOL as in the following theorem:

Theorem: MUX_GATE_LEVEL_TO_RTL_Correct
= MUX_Imp n A B s OUT = MUX _Spec n A B s OUT

Verification of n-bit Shifter. Then-bit Shifter inthe RTL
is specified as follows:

Fm# ShiftRight_Spec n M L =
((BNVAL L * (2 EXP n)) + BNVAL (WSEG n 0 M)

Fdef ShiftLeFT_Spec n M L =
(BNVAL L = (2 EXP n) * BNVAL M)

The n-bit Shifter at the gate level is implemented as
follows:

Fdef (ShiftLeFT Imp 0 M L =
) A

((L 1) = (M 0)

(LO=F) ) A
(ShiftLeFT Imp (SUC n) M L =
(L (SUC (SUC n)) = M (SUC n)) A
ShiftLeFT _Imp n M L)

Fdef (ShiftRight Tmp 0 M L =

((L 0O) = (M 1)) A

(L1 =F)) A
(ShiftRight_Imp (SUC n) M L =
(L (SUC n) = M (SUC (SUC n))) A

ShiftRight_Imp n M L)

The correctness of the n-bit Shifter blockis proved in
HOL as in the following theorems:

Theorem: SHIFT LEFT GATE_LEVEL_TO_RTL_THM
F ShiftLeFT Imp n M L, — ShiftLeFT_Spec n M L

Theorem: SHIFT RIGHT_GATE_LEVEL_TO_RTL_THM
F ShiftRight_Imp n M L = ShiftRight_Spec n M L

)

(BNVAL M) )
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