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Abstract Multiway Decision Graphs (MDGs) are a canonical representation of a subset of many-sorted first-order logic.
This subset generalizes the logic of equality with abstract types and uninterpreted function symbols. The distinction
between abstract and concrete sorts mirrors the hardware distinction between data path and control. Here we consider ways
to improve MDGs construction. Efficiency is achieved through the use of the Generalized-If-Then-Else (GITE) commonly
operator in Binary Decision Diagram packages. Consequently, we review the main algorithms used for MDGs verification
techniques. In particular, Relational Product and Pruning by Subsumption are algorithms defined uniformly through this
single GITE operator which will lead to a more efficient implementation. Moreover, we provide their correctness proof. This
work can be viewed as a way to accommodate the ROBBD algorithms to the realm of abstract sorts and uninterpreted
functions. The new tool, called NuMDG, accepts an extended SMV language, supporting abstract data sorts. Finally, we
present experimental results demonstrating the efficiency of the NuMDG tool and evaluating its performance using a set of
benchmarks from the SMV package.
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1 Introduction

The recent complexity of semiconductor circuits has
severely increased the cost for design verification. In ad-
dition to the conventional simulation technology, formal
verification has become applicable to real-size designs.
Formal verification technology enables us to check the
behaviors of designs against given specifications exhaus-
tively. However, formal verification still suffers from
intrinsic high computational costs for accomplishing its
task. In order to circumvent this difficulty, a method
based on datapath abstraction has been proposed.

Binary Decision Diagrams (BDDs)[1] are one of the
biggest breakthroughs in computer-aided design in the
last decade. BDDs are a canonical and efficient way
to represent and manipulate Boolean functions and
have been successfully used in numerous applications
and improve the capacity of the model checker. BDDs
have several useful properties. The representation of
many common functions using BDDs is small. The
algorithms to handle BDDs are simple. Also a function
can be evaluated in linear time in a number of variables
and also can be existentially or universally quantified
(Boolean) variables in time quadratic in the size of the
BDD. Moreover, the order in which the variables appear

can be fixed and hence the BDD is a canonical repre-
sentation for Boolean function. Most BDD packages
provide an efficient implementation based on recursive
operations using a three-operand function commonly
known as If-Then-Else (ITE) formulae. Also, they pro-
vide many operations that are extensively used in auto-
mated verification methods. Unfortunately, their power
is mostly restricted to propositional logic, which is often
not sufficiently expressive. Moreover, these methods
suffer from the drawback that they require a binary rep-
resentation of the circuit. Every individual bit of every
data signal must be encoded by a separate Boolean vari-
able, while the size of ROBDD grows, sometimes expo-
nentially, with the number of variables. This leads to a
state explosion problem when ROBDD-based methods
are applied to circuits with complex datapath.

To deal with the state explosion problem of tradi-
tional Binary Decision Diagram (BDD) based model
checking methods, a Multiway Decision Graph (MDG)
based model checking approach was proposed in 1997[2].
MDG is an extended BDD-like data structure with arbi-
trary number of children for each node and with much
more powerful labeling capability for both the nodes
and the edges. BDDs can be viewed as a special case
of MDGs. In the MDG-based approach, data signals
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are denoted by abstract variables instead of Boolean
variables, and data operators are represented by unin-
terpreted or partially interpreted function symbols in-
stead of Boolean functions. Thus, the verification can
be carried out independently of data path width, which
therefore can effectively alleviate the state explosion
problem[3]. In MDG-based verification, Abstract De-
scription of States Machines (ASM) are used for mo-
deling systems. In contrast to ordinary Finite State
Machines (FSM), the ASM supports non-finite state
machines as models in addition to their intended inter-
pretations. The intent is to rise the abstraction level of
automated verification methods to approach those of in-
teractive theorem proving methods without sacrificing
automation. MDGs have been investigated from diffe-
rent angles and it culminated in an MDG tool provi-
ding Prolog-style MDG-HDL for modeling and different
verification techniques including sequential and combi-
national equivalence checking, invariant checking and a
subset of first-order LTL model checking[4-5]. This work
can be viewed as a way to accommodate the ROBBD
algorithms to the realm of abstract sorts and uninter-
preted functions.

The work presented here mainly improves upon the
previous work[2] in one respect. The set of basic ope-
rations on MDGs was implemented separately, while
ROBDD operations are implemented using a single
generic algorithm ITE. This is because the two edges
that issue from an ROBDD node labeled x span the
ranges of values {F,T} that x can take, and this makes
it possible to reason by case analysis. Consequently,
MDGs do not enjoy this property due to abstract vari-
ables. The GITE operation can be considered to be a
functionally complete three-input logic gate that imple-
ments the expression GITE = (P ∧Q) ∨ (¬P ∧H). If
P is an abstract variable, then there is no MDG repre-
senting the formula ¬P . In this paper, we claim that
it is possible to use the GITE operation to produce an
MDG R that is logically equivalent to (P∧Q)∨(¬P∧H)
except for some cases that will be discussed later. This
leads to improve the efficiency of the existing basic
MDG algorithms.

Finally, the work here is an extension to the work
presented in [6] in that we provide the correctness proof
of all our frame algorithms and implement the tool. We
also support our new tool by experimental results exe-
cuted on different benchmarks from the SMV package.
The goal here is to build a robust model checking tool
that accepts an extended SMV input language and sup-
ports an abstraction mechanism through abstract sorts
and uninterpreted functions. Indeed, the results of our
prototype shows that such an implementation offers a
considerable gain compared to the SMV model checking

tool in terms of the size of the MDG transition relation.
However, more work should be spent in developing the
tool in order to enhance the performance.

The structure of this paper is as follows. Section
2 reviews the closest related work. Section 3 intro-
duces a subset of many-sorted first-order logic that
gives MDGs and their meaning. Section 4 describes ba-
sic MDG algorithms, their optimization and their cor-
rectness proof. Section 5 introduces the architecture of
NuMDG tool and describes some experimental results.
Finally, Section 6 concludes the paper and gives some
future research directions.

2 Related Work

In using the logic of equality with uninterpreted
functions to verify hardware systems, specific characte-
ristics of the formula describing the correctness condi-
tion can be exploited when deciding its validity. Ap-
proaches that capture non-finite aspects of the sys-
tem, by using uninterpreted functions or similar notion
like first-order formulae with quantification, are more
closely related work.

In Fontaine and Gribomont[7], a BDD-based ap-
proach for the combination of theories is presented. It
is noted that BDDs, when they are used for first or-
der logic, are not canonical representations any more.
For example, BDDs representing (x ≈ y) ∧ p(x) and
(x ≈ y) ∧ p(y) are different although they are logically
equivalent. Special constraints have to be added to re-
move unsatisfiable paths. Then, Goel et al.[8] proposed
to decide equality logic formulae by replacing all equa-
lities with new propositional variables, i.e., to replace
an equality vi ≈ vj with a new variable eij . In this
approach the BDD for the resulting formula is calcu-
lated without taking into account the transitivity of
equalities, and for assignments satisfying the BDD, it
is inspected on whether they also satisfy the original
equality logic formula.

Burch and Dill[9] have proposed a verification
method that uses propositional logic, extended with un-
interpreted functions, uninterpreted predicates, and the
testing of equality to denote data operations and a de-
cision procedure as a theorem-proving search method.
Compared to MDG, their approach does not support
representation of a set of states, fixpoint calculation and
the transition relation can be applied only a given num-
ber of times. Burch and Dill’s work has generated con-
siderable interest in the use of uninterpreted functions
to abstract data operations in processor verification.
A common theme has been to adopt Boolean meth-
ods in two respects: integration of uninterpreted func-
tions into a symbolic model checkers[10-11] or developing
BDD-based decision procedures[8,12].
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More recently, Bryant et al.[13] translate a formula
with uninterpreted functions to propositional formula
within the theory of equality while preserving valid-
ity. Therefore, the resulting formula can be checked
efficiently by an either BDD or SAT solver. Later, as
founded in [14], the new efficient SAT solvers would
not have scaled for solving the Boolean formulae if not
for the property of positive equality that results in at
least five orders of magnitude speedup when formally
verifying dual-issue superscalar processors with realis-
tic features. Efficient translations from propositional
logic to CNF[15], exploiting the special structure of logic
of equality with uninterpreted functions and memories
(EUFM), formulae produced with the modeling restric-
tions, resulted in additional speedup of two orders of
magnitude. This reduction is based on Ackermann’s
approach[16] that consists of replacing each occurrence
of a function with a new (domain) variable and adding
functional consistency constraints in the formula. The
technique also exploits the polarity of equations in the
formula to restrict the range allocation. A similar ap-
proach is also proposed by Pnueli et al.[17] where the
key differences are emphasized in [13]. Rodeh et al.[18]

use the function elimination method of Bryant et al.[19]

to further restrict the domain size of the variables using
the algorithm in [17]. Shuvendu et al.[20] present a gen-
eralization of positive equality analysis of Bryant[19],
which allows the decision procedure to exploit positive
equality in situations where previous approach fails.
The new version, called robust positive equality, re-
stricts the interpretations to consider in deciding for-
mulas in Equality with Uninterpreted Functions (EUF)
to a subset of interpretations considered by the previ-
ous approach.

Partial order reduction takes the advantages of the
fact that, in many cases, when components of a sys-
tem are not tightly coupled, different execution orders
of actions or transitions of different components may
result in the same global state. Then, under some
conditions[21-22], in particular, when the interim global
states are not relevant to the query being checked,
model checkers only need to explore one of the possi-
ble execution orders. This may radically reduce model
checking complexity.

These approaches are applicable when data opera-
tions can be viewed as black-boxes, i.e., the correct-
ness of the system being modeled does not depend on
the meaning of these operations. This is usually the
form of RTL designs generated by high-level synthesis
algorithms that schedule and allocate data operations
without being concerned with the specific nature of the
operations. However, ignoring properties of data oper-
ations leads sometimes to false negatives. For example,

a multiplier can be abstracted away when one of its in-
puts is 0 or 1. In MDG, a simple rewriting system is
used to deal with such cases. In [23], Velev combines
rewriting rules and Burch and Dill’s method [9] to verify
out-of-order processors that have a reorder buffer.

3 Multiway Decision Graphs

3.1 Sorted Signature

A sorted signature Σ (V,L,S) consists of an infinite
set of variables V, partitioned into a set Vabs of abstract
variables and a set Vcon of concrete variables, a set of
symbols L, partitioned into a set LCO of cross-operators
and a set LF of function symbols and a set of sort sym-
bols S, partitioned into a set Scon of concrete sorts and
a set Sabs of abstract sorts. All these sets are disjoint.
Furthermore there is:
• An arity function that associates to each symbol

in L a natural number. Constant symbols are 0-ary
function symbols.
• A function η : V → S which gives a sort to each

variable symbol.
• A set of sort declarations for terms. A sort de-

claration for a term is a tuple t : S, where t is a non-
variable term and S ∈ Sabs is a sort symbol. We some-
times abbreviate sort declaration f(x1, . . . , xn) : S as
f : S1× . . .×Sn → S where Si is the sort of the variable
xi.
• A set of sort declaration for cross-operators. A

sort declaration for a cross-operator is of the form
p : S1 × . . .× Sn → S where Si are sorts and S ∈ Scon.

3.2 Well Sorted Terms

The set of well sorted terms T (Σ , S) of sort S in
signature Σ is the smallest set such that:
• x ∈ T (Σ , S) if x ∈ V and η(x) ∈ S;
• f(t1, . . . , tn) ∈ T (Σ , S) if ti ∈ T (Σ , Si) for i =

1, . . . , n and f : S1 × . . . × Sn → S is a term sort dec-
laration in Σ .

The set T (Σ ) of all well sorted terms is defined
as the union

⋃{T (Σ , S) : S ∈ S}. If V = ∅, then
TG(Σ , S) denotes a set of ground terms, i.e., terms
that are not containing variables. A substitution σ is
represented as a set {x1 7→ t1, . . . , xn 7→ tn} where
Dom(σ) = {x1, . . . , xn} and is defined on terms as
usual. Its extension by another substitution σ′, written
as σ ⊕ σ′, is another substitution such that:
• Dom(σ) ∩ Dom(σ′) = ∅, and
• for every variable x ∈ Dom(σ ⊕ σ′):

(σ ⊕ σ′)(x) =
{

σ(x), if x ∈ Dom(σ),

σ′(x), if x ∈ Dom(σ′).
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3.3 Well Formed Directed Formulae (DFs)

The set of well formed formulae F(Σ , S) of sort S
in signature Σ is the smallest set such that:
• x = t if x ∈ T (Σ , S), t ∈ TG(Σ , S) and S ∈ Scon;
• x = t if x, t ∈ T (Σ , S) and S ∈ Sabs;
• p(t1, . . . , tn) = t if p : S1 × . . . × Sn → S is a

cross-operator declaration in Σ , either ti ∈ T (Σ , Si)
and Si ∈ Sabs or ti ∈ TG(Σ , Si) and Si ∈ Scon for
i = 1, . . . , n and t ∈ TG(Σ , S);
• ¬P is a formula if Vars(P ) ∩ Vabs = ∅;
• P ∧Q is a formula if Vars(P ) ∩Vars(Q) = ∅;
• P ∨Q is a formula if Vars(P ) ∩ Vabs = Vars(Q) ∩

Vabs and for each variable x ∈ Vars(P ) it occurs either
as a primary or secondary occurrence but not both;
• (∃x : S)P is a formula where x can be both pri-

mary and secondary occurrence in P .
Here, further connectives like T, F, ⇒, ⇔ and ∀

are defined as the standard abbreviations. Vars(P ) de-
notes the variables occurring in P . The occurrence of
the variable x in a Left Hand Side (LHS) of the for-
mula x = t is called a primary occurrence, otherwise
it is a secondary occurrence. Note that by our syntax
definition, only abstract variables have secondary oc-
currences. We say a DF formula P is of type U → V
iff (i) the set of abstract primary variables of P is equal
to Vabs, (ii) the set of secondary abstract variables is
a subset of Uabs and (iii) the concrete variables have
occurrences in a set Ucon ∪ Vcon. Intuitively, the set U
represents the independent variables while V represents
the dependent variables.

Moreover, we call such an x a dependent variable
and the variables occurring in t independent variables.
Thus a formula P is of type U → V where U is a set
of independent variables and V is a set of dependant
variables. In the absence of abstract sorts, the sets of
variables U and V play symmetrical roles.

3.4 Semantics

A Σ -structure M consists of:
• D, a carrier set, defined as the union of the de-

notations for each sort S, i.e., D =
⋃{DS : S ∈ S}

such that if S ∈ Sabs then DS is non-empty set and
if S ∈ Scon then DS = {a1, . . . , an} where ai 6= aj for
1 6 i < j 6 n;
• an n-ary function M(f) : Dn → D for every n-ary

function symbol f ;
• an n-ary cross-operator M(p) : Dn → D for every

n-ary cross-operator symbol p.
We say a partial mapping φ : V → D is a par-

tial Σ -assignment iff φ(x) ∈ Dη(x) for every variable
x ∈ Dom(φ). We assume that the structure M is fixed
and the formal definition of the semantics relative to

the mapping φ is:

[[x]]φ = φ(x) for x ∈ V
[[f(t1, . . . , tn)]]φ = M(f)([[t1]]φ, . . . , [[tn]]φ)

[[x = t]]φ = tt iff [[x]]φ = [[t]]φ

[[p(t1, . . . , tn)]]φ = tt iff M(p)([[t1]]φ, . . . , [[tn]]φ) = tt
[[¬P ]]φ = tt iff [[P ]]φ = ff

[[P ∧Q]]φ = tt iff [[P ]]φ = tt and [[Q]]φ = tt
[[(∃x : S)P ]]φ = tt iff [[P ]]φ[c/x] = tt

for some c ∈ DS such that φ[c/x] is like φ but maps x
to c. The remaining logical connectives are interpreted
as usual.

3.5 MDG Structure

MDGs subsume the class of Bryant’s (ROBDD)
while accommodating abstract data and uninterpreted
function symbols. An MDG of type U→V can be seen
as a Directed Acyclic Graph (DAG) G with one root
and ordered edges, such that:

1) Every leaf node is labeled by the formula T, ex-
cept if G has a single node, which may be labeled T or
F;

2) For every internal node N , either
•N is labeled by T (U ∪Vcon,LCO,S) and the edges

that issue from N are labeled by TG(Scon), or
•N is labeled by a variable in Vabs and the edges

that issue from N are labeled by T (Uabs,LF ,S).
Terms are made out of sorts, constants, variables,

and function symbols. Two kinds of sorts are distin-
guished:
• Concrete sort: is equipped with finite enume-

rations, lists of individual constants. They are used
to represent control signals.
• Abstract sort: has no enumeration available. It

uses first order terms to represent data signals.
MDGs represent and manipulate a certain subset of

first order formulae, which we call Directed Formulae
(DFs) and therefore must be reduced and ordered like
ROBDD[1]. DFs can represent the transition and out-
put relations of a state machine, as well as the set of
possible initial states and the sets of states that arise
during reachability analysis. Consequently, DFs must
obey a set of well-formedness conditions given in [2]. In-
tuitively, these conditions represent pre-conditions for
some basic MDG algorithms which are mainly disjunc-
tion, Relational Product and Pruning by Subsumption.
We will investigate these algorithms in the next section.

In order to illustrate MDGs, we consider the follow-
ing example DF of type {u1, u2} → {v1, v2}, where u1

and v1 are variables of a concrete sort bool with enume-
ration {0, 1} while u2 and v2 are variables of an abstract
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sort α, g is an abstract function symbol of type α → α
and f is a cross-operator of type α → bool . Then, Fig.1
shows the MDGs representing this example as well as
its corresponding DF formula.

(f(u2) = 0) ∧ (v2 = u2))∨
((f(u2) = 1) ∧ (u1 = 0) ∧ (v1 = 0) ∧ (v2 = g(u2)))∨
((f(u2) = 1) ∧ (u1 = 1) ∧ (v1 = 1) ∧ (v2 = g(u2)))

Fig.1. Example of MDG and its corresponding DF formula.

Like for ROBDDs, a symbol order according to
which an MDG is built could be provided by the user.
This symbol order can affect critically the size of the
generated MDG. Otherwise, MDG can use an auto-
matic dynamic ordering.

The MDG model checking is based on an abstract
implicit state enumeration. The system is expressed as
an Abstract State Machine (ASM) and the properties
to be verified are expressed by formulae in LMDG

[4].
LMDG atomic formulae are Boolean constants (True
and False), or equations of the form (t1 = t2), where
t1 is an ASM variable (input, output or state variable)
and t2 is either an ASM system variable, an individual
constant, an ordinary variable or a function of ordinary
variables. Ordinary variables are defined to memorize
the values of the system variables in the current state.

The MDG operations and verification procedures are
packaged as a tool and implemented in Prolog[24]. The
MDG-tool provide facilities for invariant checking, ve-
rification of combinational circuits, sequential verifica-
tion, equivalence checking of two state machines and
model checking.

4 MDG Construction

Let P be an MDG of the form:

MDG(x, {a1, . . . , am}, {l1, . . . , ln}, {m1, . . . , mn})
then top(P ) denotes the root node x, arg(P ) denotes
the set {a1, . . . , am} (eventually empty) of the cross-
operator arguments, edges(P ) denotes a non-empty set

{l1, . . . , ln} of labels (edges), and childs(P ) denotes a
non-empty set {m1, . . . , mn} of sub-MDGs.

In an ROBDD, Boolean variables are used to encode
the enumerated types. This can be done by simply us-
ing a recursive function that divides the values into two
subsets of roughly equal size, creates a variable to dis-
tinguish between them, and then recurses on the two
subsets. It results in an Algebraic Decision Diagram
(ADD)[25] that extends BDD’s by allowing values from
arbitrary finite domain to be associated with the ter-
minal nodes. Then this ADD is translated to ROBDD.
Due to the presence of abstract sorts, this approach
cannot be used for MDG. Also, in Logic with Equa-
lity and Uninterpreted Functions (LEUF), or more pre-
cisely, Quantifier-Free First-Order Logic with Equality
and Uninterpreted Functions does not have universal or
existential quantifiers, but has the equal sign as a spe-
cial predicate. Therefore, an equation (atomic formula
with equality) is used to represent directly the MDG
without encoding the concrete domains. We will use
the notation Eq(x, {a1, . . . , an}, l) to denote an MDG
such that (i) the root node is labeled with x and the
(eventually empty) set {a1, . . . , an} (ii) the edge is la-
beled with l and (iii) the terminal node is labeled with
T.

4.1 Generalized-If-Then-Else (GITE)

Given an ROBDD b, a Boolean function f repre-
sented by b is recursively defined by:

f = (¬x ∧ fx=0) ∨ (x ∧ fx=1)

where x is the variable in b’s root node and the cofactor
function fx=0 is defined by the reachable subgraph of
b’s 0-branch child. Similarly, fx=1 is recursively defined
by the reachable subgraph of b’s 1-branch child. There-
fore an ROBDD node can be naturally represented by
an If-Then-Else statement, i.e., ITE(x, fx=1, fx=0).

Given a variable ordering and three ROBDDs f, g
and h, the ROBDD result of f, g and h is easily
constructed by Shannon’s expansion in the depth-first
manner. This expansion process repeats recursively fol-
lowing the given variable order for the Boolean variables
in f , g, and h. The base case (also called the terminal
case) is when f , g or h are representing a terminal node
(i.e., Tor F node). For example, ITE(T, g, h) can be
trivially evaluated to g. The recursive process will ter-
minate because restricting all the variables of functions
produces constant functions T or F. At the end of the
expansion phase, the uniqueness of ROBDD representa-
tion is ensured by reducing expressions like ITE(x, f, f)
to f . This bottom-up reduction phase is performed
in the reverse order of the expansion phase. Finally,
since all the Boolean connectives can be expressed as
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If-Then-Else statement, this construction provides a
uniform way to build arbitrary Boolean functions.

Similarly, our goal is to provide the same construc-
tion for MDGs. The definition of the cofactor function
is made upon the following observation. Assuming that
x ranges over {0, 1, 3} and that there could be, say, only
three edges issuing from the root, as in the following
graph:

where G1, G2 and G3 represent the formulae P1, P2 and
P3 respectively, then this MDG could represent the for-
mula

(x = 0 ∧ P1) ∨ (x = 1 ∧ P2) ∨ (x = 3 ∧ P3).

When x denotes 2, this formula is simply a false sen-
tence. Therefore, the cofactor Px=l,arg(x) with respect
to a (concrete or abstract) variable x restricted to la-
bel l and a set of the cross-operator arguments arg(x)
(possibly empty) is defined as:

Px=l,arg(x) =





P, if x < top(P ),

mi, if ∃i (l = li) ∧ (arg(P ) = arg(x)),

F, otherwise.

While concrete sorts have enumerations, abstract sorts
do not. To overcome this problem, we can collect all
the labels of the abstract variable x from the MDGs
involved in the construction. This task is achieved by
the function enum which is defined as:

enum(x, P )=
{

Scon, if x ∈ Scon and top(P ) = x,

edges(P ), if x ∈ Sabs and top(P ) = x.

This function exploits the variable ordering, hence there
is no need to traverse all the children of P to collect the
edges. Moreover, we assume that the set of edges are
ordered.

Our GITE algorithm takes as input three MDGs
P , Q and H of type Ui → Vi for i = 1..3 respec-
tively and produces an MDG R = GITE(P, Q, H)
of type

⋃
16i63 Ui → ⋃

16i63 Vi such that |= R ⇔
(P ∧ Q) ∨ (¬P ∧ H). Such an MDG R does not al-
ways exist due to abstract variables. For example, let
x be an abstract variable and a be an abstract generic
constant. Let P be x = a (i.e., an MDG with a root
node labeled x and a single edge labeled a leading to
T ), then there is no MDG representing the formula

¬(x = a). Thus there can be no algorithm for general
negation. On the other hand, it is easy to compute a
formula logically equivalent to ¬P that has no nodes
labeled by abstract variables. Similarly, there does not
always exist an MDG R such that |= R ⇔ (P ∨Q). For
example, let x and y be distinct abstract variables, and
a and b distinct abstract generic constants, then there
exists no well-formed MDG representing the formula
x = a ∨ y = b. Finally, it may be impossible to com-
pute the conjunction of two MDGs whose root nodes
have the same label, if that label is an abstract variable
(i.e., x = a ∧ x = b). Note all these formulae are not
DFs since they do not respect the syntax constraints
defined in Section 3. Moreover, we claim that the logi-
cal equivalence between R and (P ∧Q)∨ (¬P ∧H) can
be shown independent of the negation of P , particularly
when the top symbol of P is an abstract variable. For
example, it is easy to show that |= (x = a ∨ x = b) ⇔
(x = a ∧ T) ∨ (¬(x = a) ∧ x = b) in classical logic.
The detailed algorithm is given below:

Algorithm. GITE(P, Q, H)
1. if (terminal case) then
2. return (R = trivial result);
3. else
4. if (computed table has entry {(P, Q, H), R}) then
5. return R from computed table;
6. else
7. x = top variable of P , Q and H;
8. S = enum(x, P, Q, H);
9. a = arg(x);
10. l, m = ∅;
11. for (each s s.t. s ∈ S) do
12. R = GITE(Px=s,a, Qx=s,a, Hx=s,a);
13. if (R 6= F) then
14. append(l, s); append(m, R);
15. endif
16. endfor
17. if (l = ∅) then (R = F);
18. else R = find or add unique(x, a, l, m);
19. endif
20. insert (P, Q, H, R) in the computed table
21. return R;
22. endif
23. endif

The resulting MDG is constructed by recursively
performing Shannon’s expansion. This recursive expan-
sion ends when a terminal node is reached (lines 1 and
2) or when it is found in the computed table (lines 4
and 5). A computed table stores previously computed
results to avoid repeating work that was done previ-
ously. Line 7 determines the top variable of P , Q and
H. Line 8 extracts a set of labels (edges) S according
to the top variable sort. When this sort is concrete,
then S is equal to the enumeration of this sort. Other-
wise, we collect the labels from the MDGs involved in
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the construction. Lines 9 and 10 extract eventually the
arguments if the top variable is a cross-operator and
initialize the new set of labels and MDGs to be con-
structed. Lines 11∼16 recursively perform Shannon’s
expansion on the cofactor in respect to S and computes
the new edges and MDGs by discarding the elements
of S that result in a terminal MDG F. At the end of
the expansion (line 17), either the resulting MDG is F
or the reduction step and uniqueness of the resulting
MDG are performed (line 18). The reduction step is
applied only in the concrete sorts. Therefore a node
is redundant if all the edges are in the enumeration of
the concrete sort and the corresponding MDGs are the
same.

To prove the termination of a recursive call, we have
to prove that an infinite sequence of recursive calls does
not exist, i.e., the loop body executes a finite num-
ber of time. We have to define a mapping function
v = depth(P ) + depth(Q) + depth(H) which represents
the depth or size of MDGs P , Q and H. Where the
depth function represents the number of nodes in the
longest path of an MDG. It is clear from the definition
of the cofactor that v is decreasing after each call of
GITE and since the MDGs P , Q and H are finite then
the termination is guaranteed.

The correctness procedure consists of applying the
GITE algorithm over P , Q and H MDGs and get the
result R as an MDG. Then using FormulaMDG algo-
rithm shown below, we build its corresponding formula
and compare it with the formula obtained by applying
the GITE algorithm over P , Q and H.

Algorithm. FormulaMDG(P )
1. if top(P ) = 0 then
2. return F ;
3. else if top(P ) = 1 then
4. return T ;
5. else
6. x = top(P );
7. S = enum(x, P );
8. a = arg(x);
9. for (each s s.t. s ∈ S ) do
10. DF = ∨s∈S(x = s) ∧ FormulaMDG(Px=s,a);
11. endfor
12. return DF;
13. endif

To keep the formula resulted from the FormulaMDG
algorithm in DF format (disjunction of conjunction of
equations) we add a distribution rule which allows dis-
tribution of conjunction over the disjunction such that
x ∧ (y ∨ z) ⇔ (x ∧ y) ∨ (x ∧ z).

Theorem 4.1. The GITE algorithm is correct and
terminates.

Proof. SKETCH : By induction on P . The MDG
resulted from the GITE algorithm is feeded to the

FormulaMDG to get its corresponding DF and then
compared with the ite-operator result. The correctness
criteria for the proof of GITE algorithm is shown in the
following:

if R = GITE (P, Q, H) then FormulaMDG(R) ≡
(P ∧Q) ∨ (¬P ∧H)

ASSUME : P , Q and H are finite MDGs and represent
a well-formed DF.

PROVE : True
CASE 1) Induction on P :
PROOF :
1) Base Case:
• When P represents a terminal node which may be

labeled as T or F, the result R of the GITE algorithm
will be either Q or H, respectively.
• When the entry of the call memory function for

the GITE of P , Q and H in the computed table is
computed in the hash table so the function returns the
value of R from the computed table (follow the unique-
ness condition) and terminates.

The FormulaMDG will return the corresponding for-
mula for the MDG R. This result is equivalent to
the one resulted from the ite-operator algorithm (trivial
case).

2) Induction Case: P could be one of the cases be-
low:

(a) x = t if x is a concrete variable;
(b) f(t1, · · · , tn) = t if f is a cross-operator;
(c) x = t if x is an abstract variable;
(d) P1 ∧ P2;
(e) P1 ∨ P2;
(f) ¬P ;
(g) (∃x : S)P .
The most difficult case is P = (x = t), where

x ∈ Xabs is the top variable of P . We show this case in
details while the other cases are straightforward. Ap-
plying the GITE algorithm on P , Q and H results:
Qx=t,∅ in the case of (x = t) and in the negation case
where ¬(x = t), we generate a unique fresh variable t′

from the set of secondary variables (independent vari-
ables), and thus we have ¬(x = t) = (x = t′) such that
t 6= t′ and the result will be Hx=t′,∅.

Then it is easy to extract a DF from the above MDG
using the FormulaMDG algorithm such that R = ((x =
t) ∧Qx=t,∅) ∨ ((x = t′) ∧Hx=t′,∅).

This formula is the same resulted from applying the
ite-operator such that: (P ∧ Q) ∨ (¬P ∧ H) = ((x =
t) ∧ Q) ∨ (¬(x = t) ∧ H). An MDG sketch represent-
ing the formula GITE ((x = t), Q, H) is shown in the
following figure:
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To prove the correctness by induction on P , we have
two cases:
• when (x = t) then FormulaMDG(Qx=t,∅) = Q;
• when ¬(x = t) = (x = t′) then Formula-

MDG(Hx=t′,∅) = H.
Which is equivalent to the result from the GITE al-

gorithm. ¤
PROOF : Step CASE 1) and assumption.
Let us take a simple example for illustration pur-

poses, if P1 = (x = a) and P2 = (y = b), where x is
the top of P1 ∧ P2, then applying the ITE algorithm
ITE(x = a ∧ y = b,Q, H) results, x is the top variable,
S = {a} and a = ∅ then entering the first loop will
result ITE(x = a,Qx=a,Hx=a), and again y is the top
variable, S = {b} and a = ∅ then entering the second
loop will result ITE(T, (Qx=a)y = b, (Hx=a)y = b).

Then it is easy to extract a DF from the above MDG
as shown below:

R = [(x = a) ∧ (y = b) ∧Qx=a]∨
[¬(x = a) ∧H]∨
[(x = a) ∧ ¬(y = b) ∧Hx=a].

This formula is the same resulted from applying the
ite-operator and hence they are equivalent. An MDG
sketch is shown in Fig.2. ¤

Fig.2. ITE((P1 ∧ P2), Q, H).

4.2 Relational Product (RelP)

The relational product combines conjunction and

existential quantification in one step. We provide an
algorithm that extends the ROBDD relational pro-
duct. It takes the conjunction of two MDGs having
disjoint sets of abstract primary variables and existen-
tially quantifies with respect to some abstract or con-
crete variables that have primary occurrence in at least
one of the MDGs. The primary occurrence of an ab-
stract variable in one MDG can be a secondary occur-
rence in the other MDG.

For this reason, we have introduced a substitution
that includes those variables during the construction
(i.e., the secondary variables are implicitly quantified).
The substitution is applied in the reverse order of the
expansion phase on the edges labeled with secondary
occurrence variables and cross-operators arguments.
However, while the ordering of variables cannot be pre-
served in case of cross-operators, there may exist redun-
dant or contradictory MDG result during intermediate
steps.

For example, let x < m < M be an ordering of vari-
ables and let P be leq(x,m) = 1 ∧ leq(x,M) = 0 where
x, m and M are secondary abstract variables that ha-
ving primary occurrences in another MDG, say, Q, and
σ = {x 7→ x#3,m 7→ x#2,M 7→ x#1}, then the re-
sulting MDG leq(x#3, x#2) = 1 ∧ leq(x#3, x#1)) = 0
does not preserve the order① . Therefore, we will dis-
tinguish the case of the cross-operator and provide a
special construction for it.

Let E be the set of quantified variables, our algo-
rithm takes two MDGs P , Q of type Ui → Vi for
i = 1..2 and a substitution σ with Dom(σ) = E
and returns an MDG R = RelP(P, Q, E, σ) of type
(
⋃

16i62 Ui\
⋃

16i62 Vi) → (
⋃

16i62 Vi\
⋃

16i62 Ui) such
that |= R ⇔ ∃E(P ∧Q).

Algorithm. RelP(P, Q, E, σ)
1. if (terminal case) then
2. return (R = trivial result);
3. else
4. if (computed table has entry {(P, Q, E, σ), R}) then
5. return R from computed table;
6. else
7. x = top variable of P , Q
8. S = enum(x, P, Q);
9. a = arg(x);
10. l, m = ∅;
11. for (each s s.t. s ∈ S) do
12. R = RelP(Px=s,a, Qx=s,a, E,Extend(σ, x, s, E));
13. if (R 6= F) then
14. append(l, s); append(m, R);
15. endif
16. endfor
17. if (l = ∅) then (R = F);
18. else

①The variable x#i serves as a symbolic value of x at the i-th step and i < j ⇒ x#i < x#j.
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19. if (x ∈ E) then
20. R = Or(m)
21. else
22. if (a = ∅) then
23. R = find or add unique(x, a, σ(l), m);
24. else
25. R = F
26. for (each li ∈ l and mi ∈ m)
27. R = Or(R,And(Eq(x, σ(a), li), mi))
28. endfor
29. endif
30. endif
31. endif
32. insert (P, Q, E, σ, R) in the computed table
33. return R
34. endif
35. endif

Like ROBDD relational product algorithm, RelP
uses a result cache. If the entry (P, Q, E, σ) is in
the cache, then it means that a previous call to
RelP(P, Q, E, σ) returned R as result. Lines 7∼16 ap-
ply recursively the Relational Product with respect to a
top symbol x where Extend(σ, x, s, E) returns σ⊕{s/x}
if x ∈ E otherwise it returns σ. Lines 19∼31 apply ei-
ther quantification or conjunction depending whether
the variable x occurs in E or not. As explained above,
we distinguish the cross-operators case (lines 25∼28),
where we construct a new MDG that respects the or-
dering of variables, thus avoiding any contradictions.

Theorem 4.2. The RelP algorithm is correct and
terminates.

Proof. SKETCH : By induction on P . The MDG re-
sulted from the RelP algorithm is feeded to the Formu-
laMDG to get its corresponding DF and then compared
with the result of ∃E(P ∧Q). The correctness criteria
for the proof of RelP algorithm is shown in the follow-
ing:

if R = RelP(P, Q, E, σ) then FormulaMDG(R) ≡
∃E(P ∧Q)

ASSUME: P and Q are finite MDGs and represent a
well-formed DF.

PROVE : True
CASE 1): Induction on P :
PROOF.
a) The Base case:
• When P represents a terminal node which may be

labeled as T or F, the result R of the RelP algorithm
will be either ∃E(Q) or F, respectively.
•When the entry of the call memory function for the

RelP of P and Q in the computed table is computed in
the hash table so the function return the value of R
from the computed table (follow the uniqueness condi-
tion) and terminate.

The FormulaMDG will return the corresponding for-
mula for the MDG R. This result is equivalent to the
one resulted from the ∃E(P ∧Q) (trivial case).

b) The Induction case: P could be one of the seven
cases mentioned in the proof of Theorem 4.1. Then, we
construct a DF for the result obtained from the RelP
algorithm using the FormulaMDG and compare it with
the result from the formula ∃E(P ∧Q) and hence they
are equivalent. ¤

PROOF. Step 〈1〉 CASE 1) and assumption.
For the case when P = (x = t), where x ∈ Xabs is

the top variable of P . P and Q must have the same set
of abstract variables. Applying the RelP algorithm on
P , Q and E results:

x is the top variable, S = {t} and a = ∅ then enter-
ing the first loop will result RelP(x = t,Q, E, σ), then
entering the second loop will result after applying the
substitution and existentially quantifies over the vari-
ables E. RelP(T, Qx=t,∅, E, {σ ⊕ {s/x}}) = Qx=t,∅.

Then it is easy to construct a DF from the above
MDG using the FormulaMDG as: R = ((x = t) ∧
Qx=t,∅)). This formula is the same obtained from
∃E(P ∧Q). ¤

4.3 Pruning by Subsumption (PbyS)

The pruning by subsumption algorithm approxi-
mates the difference of sets represented by MDGs (i.e.,
DFs). We propose a new algorithm which uses re-
stricted operators and builds an MDG in a similar man-
ner as GITE does. The proposed algorithm improves
the original one in many ways. First, the expansion is
done only on the first argument, i.e., P rather than on
P and Q. Indeed, we can view each disjunct of DF as
a state description. Without loss of generality, we can
assume that P and Q contain only one disjunct. Then,
we can say that P is subsumed by Q if and only if there
exists a substitution σ such that the state description of
Qσ is a subset of the state description of P . Therefore
the size of P should be at least equal to the size of Q.
Next, when the top variable of Q is less than the top
variable of P , it is obvious that the state description of
Q is not a subset of P . Hence, the cofactor of Q should
be F, which improves drastically the original algorithm.
Finally, when P and Q have the same top symbol cross-
operator but there is a mismatch either on the edges or
on the arguments, the cofactor of Q is Q itself and we
discard the substitution if any resulting from the uni-
fication of their arguments. These observations lead to
a new restricted operator defined as follows.

Given an MDG Q, the restriction of Q with re-
spect to a variable x, an edge l, a set of cross-operator
arguments arg(x) and a substitution σ, written
Q|x=l,arg(x),σ, returns a pair of MDG-substitution
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〈m,σ′〉 as:

Q|x=l,arg(x),σ =



〈Q, σ〉, if x < top(Q),

〈F , σ〉, if top(Q) < x,

〈mi, σ
′〉, if (∃i)(l = liσ

′) ∧ arg(Q) = arg(x) = ∅,

〈Q, σ〉, if (¬∃i)(l = liσ
′) ∧ arg(Q) = arg(x) = ∅,

〈mi, σ
′′〉, if ∃i(l = liσ

′′) ∧ (arg(Q)σ′′ = arg(x)),

〈Q, σ〉, if ¬∃i(l = liσ
′′) ∨ (arg(Q)σ′′ 6= arg(x)),

〈F , σ〉, otherwise,

where σ′ = σ ⊕ {li 7→ l} and σ′′ = σ ⊕ {arg(Q) 7→
arg(x)}.

Our PbyS algorithm takes two MDGs P and Q of
types U → V1 and U → V2 and a substitution σ ini-
tially equal to the identity and produces an MDG P ′ of
type U → V1 such that P ′ is derivable from P by prun-
ing some paths such that |= P ∨ (∃U)Q ≡ P ′ ∨ (∃U)Q.
The paths that are removed from P are subsumed by
Q, hence the name of the algorithm. If P ′ = F then, we
can view P ′ as a logical difference of P and (∃U)Q, i.e.,
|= P ⇒ (∃U)Q. The detailed algorithm is given below:

Algorithm. PbyS(P, Q, σ)
1. if (terminal case) then return (P ′ = trivial result);
2. else if (PbyS table has entry {(P, Q, σ), P ′}) then
3. return P ′ from PbyS table ;
4. else
5. x = top(P ); l, m = ∅; a = arg(P );
6. for (each s ∈ edges(P )) do
7. P ′ = Px=s,a;
8. stack = Q|x=s,a,σ;
9. while stack is not empty;
10. 〈m′, σ′〉 = pop stack;
11. P ′ = PbyS(P ′, m′, σ′);
12. if (P ′ = F) break;
13. endwhile;
14. if (P ′ 6= F) then
15. append(l, s); append(m, P ′);
16. endif
17. endfor;
18. if (l = ∅) then (P ′ = F);
19. else P ′ = find or add unique(x, a, l, m);
20. update PbyS table ({(P, Q, σ), P ′}) ;
21. return P ′;
22. endif

The result MDG is constructed by recursively per-
forming the restricted operators introduced on P and
Q until a terminal node is reached (line 1) or when it
is found in the PbyS table (line 2). Line 5 determines
the top variable of P and the cross-operator arguments
(if possible) and initializes the new edges and children
to be constructed. Then from each edge issuing from
the node x (line 6), we extract the cofactors of P and Q

where the cofactors of Q are pairs of MDG-substitution
stored in a stack. Lines 9∼13 check whether the cofac-
tors of P , written as P ′, is subsumed by one of the Q
paths. If so (line 12) then there is no need to try the
other cofactors of Q and therefore we continue with the
remaining cofactors of P and we discard P ′. Otherwise,
the edge and this cofactor are added to the correspond-
ing table (lines 14∼16). When we have processed all
the cofactors of P (line 18) either all the paths of P are
subsumed by P and thus the result MDG is F, or the re-
duction step and uniqueness of the resulting MDG are
performed (line 20) with all or some paths of P that
are not subsumed.

Theorem 4.3. The PbyS algorithm is correct and
terminates.

Proof. SKETCH : By induction on P . The MDG re-
sulted from the PbyS algorithm is fed to the Formu-
laMDG to get its corresponding DF and then compared
with the result of P∨(∃U)Q ≡ P ′∨(∃U)Q. The correct-
ness criteria for the proof of PbyS algorithm is shown
in the following:

if P ′ = PbyS(P, Q, σ) then FormulaMDG(P ′) ≡
P ∨ (∃U)Q ≡ P ′ ∨ (∃U)Q

ASSUME : P and Q are finite MDGs and represent a
well-formed DF

PROVE : True
CASE 1): Induction on P :
PROOF:

a) Base Case:
• When P represents a terminal node which may be

labeled as T or F, the result P ′ of the PbyS algorithm
will be either T or F, respectively.
•When the entry of the call memory function for the

PbyS of P and Q in the computed table is computed
in the hash table so the function return the value of P ′

from the computed table (follow the uniqueness condi-
tion) and terminate.

The FormulaMDG will return the corresponding for-
mula for the MDG P ′. This result is equivalent to the
one resulted from the P ∨ (∃U)Q ≡ P ′ ∨ (∃U)Q (trivial
case).

b) Induction Case: P could be one of the seven cases
mentioned in the proof of Theorem 4.1.

Then, we construct a DF for the result obtained from
the PbyS algorithm using the FormulaMDG and com-
pare it with the result from the formula P ′∨(∃U)Q and
hence |= P ∨ (∃U)Q ≡ P ′ ∨ (∃U)Q and hence they are
equivalent. ¤

PROOF : Step 1) and assumption.
For example, take the case when P = (x = t), where

x ∈ Xabs is the top variable of P . P and Q must have
the same set of abstract variables. Applying the RelP
algorithm on P and Q results:
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x is the top variable, S = {t}, σ = {} and a =
∅ then entering the first loop will result PbyS(x =
t,Q, σ), then entering the second loop will result
PbyS(T,Qx=t,∅, σ) = Qx=t,∅.

Then it is easy to construct a DF from the above
MDG using the FormulaMDG as: P ′ = Qx=t,∅. This
formula is the same obtained from P∨(∃U)Q and hence
|= P ∨ (∃U)Q ≡ P ′ ∨ (∃U)Q.

5 NuMDG Tool

5.1 Overview

A high level description of NuMDG is given in Fig.3.
In the future, we will provide an open source tool with
many functionalities independent of the model checking
engine used. Like NuSMV[26], the tool will be able to
process files written in an extension of the SMV lan-
guage with abstract sort and uninterpreted functions.
In this language, finite state machines are described
by using instantiation mechanism of modules and pro-
cesses, corresponding to synchronous and asynchronous
composition respectively. The requirements are written
in CTL, LTL or in a first-order subset of temporal logic.

An (extended) SMV file is processed in several
phases. The first phase analyzes the input file with dif-
ferent layers in order to construct an internal represen-
tation of the model. The construction starts from mod-
ular description of a model M and of a set of properties
P1, . . . , Pn. The flattening step consists of eliminating
modules and processes and producing a synchronous
flat model, where each variable is given an absolute
name. The second step, called DF, maps each expres-
sion in the flat model to a directed formula, thus ob-
taining the corresponding flattened directed model Mf .
Compared to SMV-based tools, there is no Boolean
encoding. Hence, some interpreted predicates and arith-
metic functions are not supported in a straightforward
manner. The same reduction is applied to the prop-
erties Pi, thus obtaining the corresponding flattened

directed formula Pfi. By cone of influence, we restrict
the analysis of each property to the relevant parts of
the model Mf (Pfi).

After the preprocessing phase, the user can choose
the model checking engine to be used for verification.
The choice is restricted by the nature of the model be-
ing described, i.e., whether it supports abstract sorts
and uninterpreted functions or not. In the absence of
the latter, NuMDG is acting like NuSMV and should
provide the same facilities including MDG-based, SAT-
based model checking and different partitioning me-
thods. For the time being, MDG-based verification in-
cludes reachability analysis and fair CTL model check-
ing.

The rewriting engine is used during the MDG-
verification if necessary when the reachability analysis
does not terminate due to the presence of abstract sort
and uninterpreted functions. In this case we can inter-
pret partially some functions or predicates in order to
cope with this non termination[27]. The input language
supports a rewriting layer which is extracted and fed to
the rewriting engine.

5.2 Experimental Results

We consider some cases from the SMV benchmark
suites as benchmarks in order to measure the perfor-
mance of our tool. Our objective is to build a robust
and flexible symbolic model checker that accepts SMV
input and providing at the same time a better mecha-
nism for abstraction through abstract sorts and unin-
terpreted functions. We have already implemented a
prototype and presented below some experimental re-
sults based on some SMV benchmarks.

The first set consists of comparing NuMDG against
SMV and NuSMV in respect to the number of
BDD/MDG nodes allocated and to the number of
BDD/MDG nodes representing the transition relation
as shown in Table 1.

Fig.3. Internal structure of NuMDG.
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Table 1. No. BDD/MDG Nodes Comparison

SMV NuSMV NuMDG

Example No. Alloc. No. Trans. No. Alloc. No. Trans. No. Alloc. No. Trans.

Semaphore 233 69 854 67 418 53

Mutex (sync) 179 31 350 29 178 21

Mutex (async) 259 56 1 625 54 701 37

Gigamax 11 178 1 246 81 563 1 242 19 084 975

abp4 13 884 1 611 27 805 1 609 25 507 1 320

The table shows that the size of the MDG transition
relation is much smaller. This is due to the absence of
Boolean encoding, i.e., we do not encode the values of
model variables. However, the number of MDG allo-
cated nodes tends to be greater. Consequently, these
small (intermediate) MDGs have a negative impact on
computation time and memory as illustrated by Table 2
(“–” means did not terminate).

Table 2. CPU and Memory Comparison

SMV NuMDG

CPU Memory CPU Memory

Example (s) (MB) (s) (MB)

Semaphore 0.01 1.19 0.020 1.37

Mutex (async) 0.02 1.25 0.050 1.68

Gigamax 0.17 1.25 0.640 2.66

abp4 0.20 1.25 1.123 4.04

Abstract abp – – 0.070 1.49

Compared with SMV, our NuMDG consumes more
resources for the verification of the first four bench-
marks. This is due to the negative impact of the in-
termediate MDGs during the course of computation.
Including the computed cache and garbage collector
frequency will absolutely help to avoid these negative
impacts and hence improve the performance.

On the other hand, in the last row, we have used an
abstract version of an alternating bit protocol where
the bus of 16 bits is replaced by an abstract sort. The
result obtained improves drastically the previous one.
As a future work, we need to study the performances
of computed cache and garbage collector frequency to
avoid the negative impact of the intermediate MDGs
during the course of computation.

6 Conclusion and Future Work

We have described the basic MDG algorithms that
incorporated many optimizations that will yield further
improvements in the performance of MDG package.
The efficiency is achieved through the use of the gene-
ralization of the If-Then-Else (ITE) operator defined in
the BDD package. Consequently, we have redefined the
main algorithms on which the MDG verification tech-
niques are based, i.e., relational product and pruning

by subsumption. These new algorithms descriptions
are based mainly on the ROBDD ones and lifted to the
realm of abstract sorts and uninterpreted functions. We
have also provided the correctness proof for those algo-
rithms the internal architecture of NuMDG.

Moreover, we have presented the internal architec-
ture of the NuMDG tool and some experimental results
based on some SMV benchmarks. From these experi-
ments, we have identified a number of open issues and
future work directions. For example, we have confirmed
that NuMDG can be used to check SMV specifications.
Combined with abstract sorts and uninterpreted func-
tions, NuMDG will provide at least the same perfor-
mances. However, we believe that there are many op-
timizations that will yield further improvements in the
performance of NuMDG tool such as the effect of cache
and the garbage collection should be characterized ac-
cording to a rigorous evaluation methodology. We also
need to perform more performance analysis through the
verification of several case studies.

One limitation of MDG based approach is that the
reachability analysis algorithm may not terminate[2]

under certain circumstances due to the abstract rep-
resentation of data and the “uninterpreted” nature of
function symbols. This can be a severe limitation on
the use of MDGs as a verification tool. For example,
consider an abstract description of a conventional (non-
pipelined) micro-processor where a state variable pc of
abstract sort represents the program counter, a generic
constant zero of the same abstract sort denotes the ini-
tial value of pc, and an abstract function symbol inc
describes how the program counter is incremented by a
non-branch instruction. The MDG representing the set
of reachable states of the micro-processor would contain
states of the form (pc, inc(. . . , inc(zero), . . .)). Conse-
quently, there is no finite MDG representing the set of
reachable states, and hence the reachability algorithm
will not terminate.

The non-termination problem was first addressed in
[28], where a method was based on the generalization
of the state variable that causes divergence. This tech-
nique is applicable only to processor—like-loop circuit
and if the entrance of the loop does not start in the
initial state then this generalization approach may not



Sa’ed Abed et al.: NuMDG: A New Tool for MDGs Construction 151

work.
In [29], Ait-Mohamed et al. presented an approach

to dealing with the non-termination problem based on
retiming and circuit transformations. Yet this tech-
nique can only be applied to specific circuit struc-
tures and cannot provide a general solution to the non-
termination problem. An alternative way to overcome
this problem is to introduce the bounded model check-
ing technique.

Later in [27] Ait-Mohamed et al. proposed a novel
approach based on the schematization using ρ-term[30]

to solving the non-termination problem when the gene-
rated set of states, even infinite, represents a structured
domain where states share certain repetitive patterns.
In general, it is not always possible to find the ρ-term
which will be used in this generalization.

We are currently exploring and applying the above
techniques that can mitigate this problem and that they
are particularly useful in reachability analysis. Future
work will also include the study of the applicability of
these techniques to the reachability analysis in real de-
signs.
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