
Hasan O, Tahar S. Formally analyzing expected time complexity of algorithms using theorem proving. JOURNAL OF

COMPUTER SCIENCE AND TECHNOLOGY 25(6): 1305–1320 Nov. 2010. DOI 10.1007/s11390-010-1103-6

Formally Analyzing Expected Time Complexity of Algorithms Using

Theorem Proving

Osman Hasan and Sofiène Tahar, Senior Member, IEEE, Member, ACM,

Department of Electrical and Computer Engineering, Concordia University, Montreal, Canada

E-mail: {o hasan, tahar}@ece.concordia.ca

Received June 20, 2009; revised July 26, 2010.

Abstract Probabilistic techniques are widely used in the analysis of algorithms to estimate the computational complexity
of algorithms or a computational problem. Traditionally, such analyses are performed using paper-and-pencil proofs and

the results are sometimes validated using simulation techniques. These techniques are informal and thus may result in an
inaccurate analysis. In this paper, we propose a formal technique for analyzing the expected time complexity of algorithms
using higher-order-logic theorem proving. The approach calls for mathematically modeling the algorithm along with its
inputs, using indicator random variables, in higher-order logic. This model is then used to formally reason about the
expected time complexity of the underlying algorithm in a theorem prover. The paper includes the higher-order-logic
formalization of indicator random variables, which are fundamental to the proposed infrastructure. In order to illustrate
the practical effectiveness and utilization of the proposed infrastructure, the paper also includes the analysis of algorithms

for three well-known problems, i.e., the hat-check problem, the birthday paradox and the hiring problem.

Keywords formal method, higher-order logic, probability theory, theorem proving, birthday paradox, hat-check problem,

hiring problem

1 Introduction

An algorithm, which may be defined as a sequence
of computational steps that transforms the given input
parameters into the desired output, is the most fun-
damental component of computer programming. The
computational complexity of the underlying algorithms
greatly affects the overall efficiency of virtually all ap-
plications of computer science, ranging from combina-
torial optimization, machine learning, data streaming,
complexity theory, coding theory, to communication
networks and secured protocols. Thus, a significant
amount of time and effort is spent on analyzing sev-
eral candidate algorithms for one problem in order to
identify the most efficient solution[1]. For example,
various sorting algorithms can be analyzed to find the
fastest one for sorting n numbers. The biggest chal-
lenge in such analysis is the fact that the inputs to the
algorithms usually arrive in a random or unpredictable
fashion and thus cannot be modeled in a straightfor-
ward manner for analysis purposes. One pessimistic
solution to this problem is to analyze the algorithm
under the worst possible scenarios. However, it is an
old observation in quite a few application areas that
the worst-case input patterns are not typical and might

never occur in practice. So worst-case analysis can im-
properly suggest that the performance of the algorithm
is poor. Probabilistic techniques are thus utilized in
this endeavor. The main idea behind the probabilistic
approach is to model the input behavior of the given
algorithm by an appropriate random variable and uti-
lize this information to judge the average or expected
value of the algorithm’s computational runtime[2].

The probabilistic analysis of algorithms and the u-
sage of expectations to evaluate their complexities are
widely used concepts since their introduction about a
few decades ago[3-4]. The three mainstream approaches
for conducting such analysis are paper-and-pencil proof
methods (e.g., [5]), computer simulations (e.g., [6]), and
computer algebra systems (e.g., [7]). Due to the com-
plex nature of the present age algorithms, the tradi-
tional paper-and-pencil based proof techniques always
have some risk of an erroneous analysis due to the
human-error factor. Most simulation or testing based
algorithm analysis softwares provide a programming en-
vironment for defining functions that approximate ran-
dom variables for probability distributions. The ran-
domness and the input patterns in algorithms are mo-
deled by these functions and the system is analyzed
using computer simulation techniques[8], such as the

Regular Paper
�2010 Springer Science +Business Media, LLC & Science Press, China



1306 J. Comput. Sci. & Technol., Nov. 2010, Vol.25, No.6

Monte Carlo Method[9] where the main idea is to ap-
proximately answer a query on a probability distribu-
tion by analyzing a large number of samples. Statistical
quantities, such as expectation and variance, may then
be calculated, based on the data collected during the
sampling process, using their mathematical relations
in a computer. Due to the inherent nature of simula-
tion coupled with the usage of computer arithmetic, the
analysis results attained by the simulation approach can
never be termed as 100% accurate. Similarly, computer
algebra systems, such as Maple, Mathematica etc., have
also been used for the complexity analysis of computa-
tional algorithms[10]. Even though, computer algebra
systems yield high precision numeric results by using
exact fractions, arbitrary precision integers, and vari-
able precision floating point numbers, they also fail to
guarantee 100% precision of results. The main reasons
being the usage of computer arithmetic systems, such
as floating or fixed point representations, in computa-
tions involving real numbers and the fact that computer
algebra system are constructed using extremely com-
plicated algorithms, which are quite likely to contain
bugs. For example, the work reported in [11] clearly
highlights the inaccuracy limitations of a computer al-
gebra system, using Maple as an example.

Formal methods are capable of conducting precise
system analysis and thus overcome the limitations of
the above mentioned traditional approaches[12]. The
main principle behind formal analysis of a system is
to construct a computer based mathematical model of
the given system and formally verify, within a com-
puter, that this model meets rigorous specifications of
intended behavior. Two of the most commonly used
formal verification methods are model checking[13] and
higher-order-logic theorem proving[14]. Model checking
is an automatic verification approach for systems that
can be expressed as a finite-state machine. Higher-
order-logic theorem proving, on the other hand, is an in-
teractive verification approach that allows us to mathe-
matically reason about system properties by represen-
ting the behavior of a system in higher-order logic.

The precision and accuracy of algorithm comple-
xity analysis has become imperative these days because
of their extensive usage in safety and financial criti-
cal areas, such as medicine, transportation and stock
exchange markets. Therefore, more reliable analysis
techniques, like formal methods, are required. In fact,
they have already been used for this purpose. For ex-
ample, building upon the measure theoretic formaliza-
tion of probability theory, Hurd[15] presented an ap-
proach to formalize probabilistic algorithms and for-
mally reason about their probability distribution pro-
perties using a higher-order-logic theorem prover. A

very comprehensive account of existing methods for
formal reasoning about probabilistic algorithms is pre-
sented in [16]. The probabilistic guarded-command lan-
guage (pGCL), which is used to describe probabilistic
programs in [16], has also been formalized in higher-
order-logic in [17]. This formalization facilitates formal
analysis of distributed random algorithms in higher-
order logic. All these above mentioned existing works
have been mainly targeted towards the formal spec-
ification of algorithms with probabilistic components
and the ability to formally reason about their proba-
bility distribution properties. Though, to the best of
our knowledge, there is no existing work that explicitly
deals with the formal analysis of expected time com-
plexity of an algorithm, which is the main focus of this
paper.

The proposed approach for the formal expected time
complexity analysis is based on higher-order-logic theo-
rem proving. Higher-order logic is a system of deduc-
tion with a precise semantics and can be used for the
precise specification of almost all classical mathema-
tics theories and software systems. Interactive theorem
proving is the field of computer science and mathemati-
cal logic concerned with precise computer based formal
proof tools that require some sort of human assistance.
The foremost criteria for the development of a higher-
order-logic theorem proving based expected time com-
plexity analysis framework are (i) to be able to model
the algorithms that need to be analyzed in higher-order
logic, and (ii) to be able to formally express and ve-
rify expectation properties regarding the computational
runtimes of the given algorithms in a theorem prover.
We propose to model the algorithms in terms if indi-
cator random variables [18], which in turn can be for-
malized based on the approach given in [15]. Basically,
an indicator random variable is a random variable with
only two possible outcomes, i.e., 0 or 1. The name indi-
cator random variable is used because the value 1 is of-
ten used to indicate the presence of an event. Indicator
variables are found to be quite useful for representing
situations in which we perform repeated random trials,
and thus are very frequently used to model algorithms
in their probabilistic analysis. In order to facilitate this
step, the paper provides the higher-order logic model
for an indicator random variable and the verification of
some of its key properties. For the second step, which is
expressing and reasoning about the expectation of com-
putational runtime of algorithms, we propose to use the
higher-order-logic model of the algorithm, developed in
the first step, along with the higher-order-logic forma-
lization of expectation, given in [19].

In order to illustrate the utilization and effective-
ness of the proposed higher-order-logic theorem proving



Osman Hasan et al.: Formally Analyzing Expected Time Complexity 1307

based framework for handling real-world algorithm
analysis problems, we analyze the expected time com-
plexity of three commercially used algorithms, i.e., the
hat-check problem[20], the birthday paradox[21] and the
hiring problem[18]. The hat-check problem is a clas-
sic combinatorial question, sometimes also referred to
as the Montmort’s matching problem (since one of its
variants was first proposed by mathematician de Mont-
mort in his 1708 treatise on the analysis of games of
chance[22]). The problem is about finding the right
hat for a group of men that have checked their hats
in a restaurant where the tickets got scrambled some-
how. Because of its wide range of applications the
problem has been studied by many mathematicians
(e.g., [23-25]). The birthday paradox, or birthday prob-
lem, refers to the probability that in a set of ran-
domly chosen people some pair of them will have the
same birthday. It is a widely used characteristic in
congruity[26], combinatorics[27-28] and computer secu-
rity literature[29]. Whereas the hiring problem, some-
times also referred to as the classical secretary prob-
lem, highlights the problem of choosing the best of a
set of randomly presented candidates. The hiring prob-
lem captures fundamental issues and inevitable trade-
offs related to making irrevocable decisions under an
uncertain future. Its application spans multiple scien-
tific disciplines, such as mathematics, economics and
computer science, and thus since its introduction in the
1960’s[30], the hiring problem has been the subject of
many papers (e.g., [31-34]). In this paper, we present
the higher-order-logic formalization of algorithms for all
of the above mentioned three problems using the pro-
posed indicator random variables based approach and
the details about their expected time complexity ana-
lysis of using a theorem prover. The analysis results
have been found to be 100% precise, which to the best
of our knowledge is an achievement that has not been
reported for these or any other similar algorithms in
the open literature so far. Also, it is important to note
here that the proposed approach is not limited to the
algorithms of the above three problems and instead is
generic enough to formally analyze many other algo-
rithms. We have chosen the above three mainly be-
cause we believe that they cover many interesting and
distinct probabilistic analysis cases as will be discussed
later in the paper.

The proposed work is done using the HOL theorem
prover[35], which is based on higher-order logic. The
main motivation behind this choice is the fact that most
of the work that we build upon is developed in HOL. It
is important to note here that the ideas presented in this
paper are not specific to the HOL theorem prover and
can be adapted to any other higher-order-logic theorem
prover as well, such as Isabelle[36], Coq[37] or PVS[38].

The rest of the paper is organized as follows. Section
2 provides a review of related work. Then, in Section
3, we present a brief introduction to the HOL theorem
prover. Next, Section 4 highlights upon the two fun-
damental components that we build upon for analyzing
the expected time complexity of algorithms in a higher-
order-logic theorem prover, i.e., modeling random vari-
ables in higher-order logic and formally verifying their
expectation properties. This is followed by the descrip-
tion of our higher-order-logic definition of the indica-
tor random variable along with the formal verification
of some of its key properties in Section 5. We utilize
this infrastructure in Section 6 to analyze the hat-check
problem, birthday paradox and hiring problem. Finally,
Section 7 concludes the paper.

2 Related Work

The early foundations of probabilistic analysis in a
higher-order-logic theorem prover were laid down by
Nȩdzusiak[39] and Bialas[40] when they proposed a for-
malization of some measure and probability theories
in higher-order logic. Hurd[15] implemented their work
and developed a framework for the verification of proba-
bilistic algorithms in the HOL theorem prover. The al-
gorithms, along with their random components, can be
formalized as higher-order-logic functions and formally
verified, based on the corresponding probability distri-
bution properties, using the methodology proposed in
[15]. Random variables are fundamentally probabilistic
algorithms and thus they can also be formalized based
on Hurd’s approach. In fact, building upon Hurd’s
formalization, most of the commonly used discrete[15]

and continuous[41] random variables have been for-
malized in higher-order-logic and their corresponding
probabilistic[15] and statistical[19] properties have been
verified using interactive theorem proving techniques.
These formalized random variables can in turn be used
to express random or unpredictable phenomenon in sys-
tem models and the probabilistic analysis of these sys-
tem models can be conducted in a theorem prover using
the corresponding probabilistic and statistical proper-
ties of these random variables. Some of the higher-
order-logic theorem proving based probabilistic analy-
sis examples include the performance analysis of real-
time systems[42], communication protocols[43], wireless
systems[44] and safety analysis of fabrication faults[45].

The above mentioned results have also been used for
the probabilistic analysis of algorithms. For example,
Hurd utilized his infrastructure to analyze the symmet-
ric simple random walk and the Miller-Rabin primality
test based on the corresponding probability distribution
properties[15]. Similarly, we utilized our theories related
to the formal verification of statistical properties for the



1308 J. Comput. Sci. & Technol., Nov. 2010, Vol.25, No.6

performance analysis of the Coupon Collector’s
problem[19]. What makes the analysis presented in the
current paper different from these past endeavors is the
fact that it presents an indicator random variable based
approach for the analysis of expected time complexity
of algorithms in a higher-order-logic theorem prover,
which to the best of our knowledge is a novelty that
has not been reported in the open literature so far.

Besides theorem proving, probabilistic model check-
ing is the second most widely used formal proba-
bilistic analysis method[46-47]. Like traditional model
checking[48], probabilistic model checking involves the
construction of a precise state-based mathematical
model of the given probabilistic system, which is then
subjected to exhaustive analysis to verify if it satisfies
a set of probabilistic properties formally expressed in
some appropriate logic. Numerous probabilistic model
checking algorithms and methodologies have been pro-
posed in the open literature, e.g., [49-50], and based
on these algorithms, a number of tools have been de-
veloped, e.g., PRISM[51] and VESTA[52]. Besides the
accuracy of the results, another promising feature of
probabilistic model checking is the ability to perform
the analysis automatically. On the other hand, prob-
abilistic model checking is limited to systems that can
only be expressed as probabilistic finite state machines
or Markov chains. Another major limitation of the
probabilistic model checking approach is state space
explosion[48]. Similarly, to the best of our knowledge, it
has not been possible to precisely reason about statis-
tical relations, such as expectation and variance, using
probabilistic model checking so far. Probabilistic model
checking has been used for the analysis of randomized
distributed algorithms[53] but has been found to be in-
capable of conducting fully automated proofs of cor-
rectness mainly because of its limitedness to only com-
plete and finite-state models. Higher-order-logic theo-
rem proving, on the other hand, overcomes the limita-
tions of probabilistic model checking and thus allows
conducting formal probabilistic analysis of algorithms
but at the cost of significant user interaction.

3 HOL Theorem Prover

The HOL theorem prover is an interactive theo-
rem prover which is capable of conducting proofs in
higher-order logic. It utilizes the simple type theory of
Church[54] along with Hindley-Milner polymorphism[55]

to implement higher-order logic. HOL has been success-
fully used as a verification framework for both software
and hardware as well as a platform for the formaliza-
tion of pure mathematics.

In order to ensure secure theorem proving, the logic
in the HOL system is represented in the strongly-typed

functional programming language ML[56]. An ML ab-
stract data type is used to represent higher-order-logic
theorems and the only way to interact with the theo-
rem prover is by executing ML procedures that operate
on values of these data types. The HOL core consists
of only 5 basic axioms and 8 primitive inference rules,
which are implemented as ML functions. Soundness is
assured as every new theorem must be verified by apply-
ing these basic axioms and primitive inference rules or
any other previously verified theorems/inference rules.

HOL supports two types of interactive proof meth-
ods: forward and backward. In forward proof, the user
starts with previously proved theorems and applies in-
ference rules to reach the desired theorem. In most
cases, the forward proof method is not the easiest so-
lution as it requires the exact details of a proof in ad-
vance. A backward or a goal directed proof method is
the reverse of the forward proof method. It is based
on the concept of a tactic; which is an ML function
that breaks goals into simple subgoals. In the back-
ward proof method, the user starts with the desired
theorem or the main goal and specifies tactics to re-
duce it to simpler intermediate subgoals. Some of these
intermediate subgoals can be discharged by matching
axioms or assumptions or by applying built-in decision
procedures. The above steps are repeated for the re-
maining intermediate goals until we are left with no
further subgoals and this concludes the proof for the
desired theorem.

The HOL theorem prover includes many proof assis-
tants and automatic proof procedures[57] to assist the
user in directing the proof. The user interacts with a
proof editor and provides it with the necessary tactics
to prove goals while some of the proof steps are solved
automatically by the automatic proof procedures.

In order to facilitate reutilization of verified theo-
rems, HOL allows its users to store a collection of valid
HOL types, constants, axioms and theorems as an HOL
theory file in computers. Once stored, HOL theories
can be loaded in the HOL system and the correspond-
ing definitions and theorems can be utilized right away.
Thus, HOL theories allow us to build upon existing
results in an efficient way without going through the
tedious process of regenerating these results using the
basic axioms and primitive inference rules. Various ma-
thematical concepts have been formalized and saved
as HOL theories by the HOL users. Out of this use-
ful library of HOL theories, we utilized the theories
of Booleans, lists, sets, positive integers, real numbers,
measure and probability in this paper. In fact, one of
the primary motivations of selecting the HOL theorem
prover for our work was to benefit from these built-in
mathematical theories.

Table 1 provides the mathematical interpretations



Osman Hasan et al.: Formally Analyzing Expected Time Complexity 1309

of some frequently used HOL symbols and functions,
which are inherited from existing HOL theories and will
be used in the rest of the paper.

Table 1. HOL Symbols and Functions

HOL Symbols Meaning

∧ Logical and

∨ Logical or

¬ Logical negation

a b Multiplication (a ∗ b)

[ ] Empty list

:: Adds a new element to a list

++ Appends two lists together

el n L n-th element of list L

mem a L a is a member of list L

length L Length of list L

(a, b) A pair of two elements

fst First component of a pair

snd Second component of a pair

λx.t Function that maps x to t(x)

{x|P(x)} Set of all x such that P (x)

sum(0, k)(λn.f(n))
∑k−1

n=0 f(n)

suminf(λn.f(n)) lim
k→∞

∑k
n=0 f(n)

summable(λn.f(n)) ∃x. lim
k→∞

∑k
n=0 f(n) = x

4 Probabilistic Analysis in HOL

The foremost criteria for conducting the expected
time complexity analysis of an algorithm in a higher-
order-logic theorem prover is to be able to formalize
random variables in higher-order logic and verify their
expectation properties. This section provides some in-
formation about these capabilities with the intent of
introducing the underlying concepts along with some
notations that are going to be used in the rest of the
paper.

Hurd’s Ph.D. Dissertation[15] can be considered a
pioneering work in regards to the formalization of ran-
dom variables in higher-order-logic. Random variables
are fundamentally probabilistic functions that can be
modeled in higher-order logic as deterministic func-
tions with access to an infinite Boolean sequence B∞;
a source of infinite random bits[15]. These determinis-
tic functions make random choices based on the result
of popping the top most bit in the infinite Boolean se-
quence and may pop as many random bits as they need
for their computation. When the functions terminate,
they return the result along with the remaining portion
of the infinite Boolean sequence to be used by other
programs. Thus, a random variable which takes a pa-
rameter of type α and ranges over values of type β can
be represented in HOL by the function.

F : α → B∞ → β × B∞.

As an example, consider the Bernoulli(1
2 ) random

variable that returns 1 or 0 with equal probability 1
2 .

It can be formalized in HOL as follows:

� bit = (λs.if shd s then 1 else 0, stl s)

where s is the infinite Boolean sequence and shd and
stl are the sequence equivalents of the list operation
“head” and “tail”. The probabilistic programs can also
be expressed in the more general state-transforming
monad where the states are the infinite Boolean se-
quences.

� ∀ a s. unit a s = (a,s)

� ∀ f g s. bind f g s =

g(fst(f s))(snd(f s)).

The unit operator is used to lift values to the monad,
and the bind is the monadic analogue of function ap-
plication. All monad laws hold for this definition, and
the notation allows us to write functions without ex-
plicitly mentioning the sequence that is passed around,
e.g., function bit can be defined as

� bit monad = bind sdest

P(λb.if b then unit 1 else unit 0)

where sdest gives the head and tail of a sequence as a
pair (shd s, stl s).

Hurd[15] also formalized some mathematical measure
theory in HOL in order to define a probability function
P from sets of infinite Boolean sequences to real num-
bers between 0 and 1. The domain of P is the set E
of events of the probability space. Both P and E are
defined using the Carathéodory’s Extension theorem,
which ensures that E is a σ-algebra: closed under com-
plements and countable unions. The formalized P and E
can be used to verify the basic laws of probability in the
HOL theorem prover. For example, the additive law,
which represents the probability of two disjoint events
as the sum of their probabilities, can be formally veri-
fied as follows:

� ∀ A B. A ∈ E ∧ B ∈ E ∧ A ∩ B = ∅

⇒ P(A ∪ B) = P(A) + P(B).

The formalized P and E can also be used to prove prob-
abilistic properties for random variables such as

� P {s | fst (bit s) = 1} =
1
2

where the HOL function fst selects the first compo-
nent of a pair and {x|C(x)} represents a set of all x
that satisfy the condition C.



1310 J. Comput. Sci. & Technol., Nov. 2010, Vol.25, No.6

The measurability and independence of a probabilis-
tic function are important concepts in probability theo-
ry. A property indep, called strong function indepen-
dence, is introduced in [15] such that if f ∈ indep, then
all sets involving the function f will be both measur-
able and independent. In this approach, a set of infinite
Boolean sequences, S, is said to be measurable if and
only if it is in E , i.e., S ∈ E . Since the probability mea-
sure P is only defined on sets in E , it is very important to
prove that sets that arise in verification are measurable.
It has been shown in [15] that a function is guaranteed
to preserve strong function independence, if it accesses
the infinite Boolean sequence using only the unit, bind
and sdest primitives. All reasonable probabilistic pro-
grams preserve strong function independence, and these
extra properties are a great aid to verification.

The above approach has been successfully used
to formalize both discrete[15] and continuous random
variables[41] and verify them based on their correspo-
nding probability distribution properties. In this paper,
we utilize the models for Bernoulli and Uniform random
variables formalized as the higher-order-logic functions
ber rv and unif rv, respectively, and verified using the
following probability mass function (PMF) relations[15]:

Lemma 1 (PMF of Bernoulli(p) R.V.).

� ∀ p. 0 � p ∧ p � 1 ⇒
P {s | fst (ber rv p s) = 1} = p.

Lemma 2 (PMF of Uniform(m) R.V.).

� ∀ m x. x < m ⇒
P {s | fst (unif rv m s) = x} =

1

m
.

The function ber rv for the Bernoulli(p) random vari-
able models an experiment with two outcomes; 1 and
0, whereas the parameter p represents the probability
of obtaining a 1. Whereas, the function unif rv for the
Uniform(m) random variable assigns equal probability
to each element in the set {0, 1,..., (m-1)} and thus
ranges over a finite number of positive integers.

Expectation theory plays a vital role in the domain
of probabilistic analysis of algorithms as it is a lot easier
to judge performance issues based on the average cha-
racteristic of an algorithm, which is a single number,
rather than its distribution function. Building on the
above mentioned probabilistic analysis infrastructure,
the expectation of a discrete random variable can be
defined as a higher-order-logic function as follows[19]:

Definition 1 (Expectation of Discrete R.V.).

� ∀ R. expec R =

suminf (λn.nP {s | fst (R s) = n})

where suminf represents the HOL formalization of the
infinite summation of a real sequence[58] as outlined in
Table 1. The function expec accepts the random vari-
able R with data type B∞ → (positive integer × B∞),
and returns a real number. This function can be used
to successfully verify the expectation relation of any dis-
crete random variable that attains values in positive in-
tegers. For example, the higher-order-logic theorem cor-
responding to the expectation of the Bernoulli random
variable has been formally verified in [19] and is given
as follows.

Lemma 3 (Expectation of Bernoulli(p) R.V.).

� ∀ p. 0 � p ∧ p � 1 ⇒
expec (λs. ber rv p s) = p

where (λx.t) represents a lambda abstraction function
in HOL that maps its argument x to t(x).

The linearity of expectation property, according to
which the expectation of the sum of random variables
equals the sum of their individual expectations,

Ex
[ n∑

i=1

Ri

]
=

n∑
i=1

Ex [Ri] (1)

is one of the most important properties of expecta-
tion. It allows us to verify the expectation properties of
random behaviors involving multiple random variables
without going into the complex verification of their joint
probability distribution properties. For facilitating the
analysis of systems involving multiple random variables
in a higher-order-logic theorem prover, the linearity of
expectation property has been formally verified in [19]
as the following lemma.

Lemma 4 (Linearity of Expectation).

� ∀ L.(∀R.(mem R L)⇒((R ∈ indep) ∧
(summable(λn.nP{s|fst(R s)=n}))))
⇒ (expec (sum rv lst L) =
length L∑

n=0

(expec (el (length L - (n+1)) L)))

The predicate mem, in the above assumption, is de-
fined in the HOL list theory and it accepts an element
and a list and returns True if the given element be-
longs to the given list. Thus, the assumption in the
above theorem ensures that all random variables in the
given list L preserve strong function independence, i.e.,
they ∈ indep, and the infinite summations in their cor-
responding expectation definitions converge to a well-
defined value (using the summable function explained in
Table 1). The function length, defined in the HOL list
theory, and used in the conclusion of the above theorem



Osman Hasan et al.: Formally Analyzing Expected Time Complexity 1311

returns the length of its list argument and the function
el, also defined in the list theory, accepts a positive
integer number, say n, and a list and returns the n-th
element of the given list. Whereas the HOL function
sum rv lst, defined in [19] provides the summation of
all random variables in the given list of random vari-
ables. Thus, the left-hand-side (LHS) of the conclusion
of Lemma 4 represents the expectation of the summa-
tion of a list L of random variables. Whereas, the right-
hand-side (RHS) of the conclusion of Lemma 4 repre-
sents the summation of expectations of all elements in
the same list L.

Next, we illustrate the utilization of the above men-
tioned higher-order-logic foundations for the forma-
lization of indicator random variables, which facilitates
conducting the expected time complexity analysis of al-
gorithms in the HOL theorem prover.

5 Formalization of the Indicator Random
Variable

An indicator random variable is a special kind of
random variable associated with the occurrence of an
event. The indicator random variable IA associated
with an event A is usually defined as follows:

IA =
{

1, if the event A occurs,

0, otherwise.
(2)

In other words, IA maps all outcomes in the set A to
1 and all outcomes outside A to 0. Indicator random
variables are the fundamental building blocks of many
probability distributions. Moreover, they exhibit many
useful characteristics and allow a convenient method for
converting between probabilities and expectations[18].
Because of these features, they are quite frequently used
in the probabilistic analysis of algorithms.

Based on the approach described in the previous sec-
tion, the indicator random variable can be formalized
in higher-order logic as the following function.

Definition 2 (Indicator Random Variable).

� ∀ p. ind rv p = bind (ber rv p)

(λa. unit(if a then 1 else 0)).

The above definition models an indicator random vari-
able that is associated with an event with occurrence
probability p. For this purpose, it utilizes the formal
definition of the Bernoulli random variable (ber rv),
which is described in the previous section. The indi-
cator random variable function ind rv accepts the oc-
currence probability p as a real number and returns
the corresponding indicator random variable value as a
positive integer, which could either be a 1 or a 0.

In order to ensure the correctness of the formal de-
finition of the indicator random variable as well as to
facilitate its utilization for the analysis of algorithms,
we formally verify the following properties for it.

Theorem 1 (PMF for the Indicator R.V.).

� ∀ p. 0 � p ∧ p � 1 ⇒
P {s | fst(ind rv p s) = 1} = p.

Theorem 2 (Expectation for the Indicator R.V.).

� ∀ p. 0 � p ∧ p � 1 ⇒
expec(λs. ind rv p s) = p.

The formal proofs for the above properties are based
on the PMF and expectation relations for the Bernoulli
random variable, given in Lemmas 1 and 3, respectively,
along with some basic arithmetic and set theoretic rea-
sonings. It is important to note here that both of these
theorems are verified under the assumption that p lies
in the interval [0, 1], which is the allowed range for a
probability. According to Theorem 2, the expectation
of an indicator random variable is equal to its occur-
rence probability. This property simplifies the expecta-
tion analysis significantly and thus is one of the main
strengths of analyzing algorithms by modeling them in
terms of indicator random variables.

Indicator random variables have been found to be
quite useful for modeling algorithms in which we per-
form repeated trials as each one of such trials can be
modeled as an indicator random variable. Thus in or-
der to facilitate the higher-order-logic formalization and
analysis of such algorithms, we now define a function
that models a collection of indicator random variables
as a list.

Definition 3 (List of Indicator R.Vs.).

� (∀ ps. ind rv list 0 ps = []) ∧
∀ n ps. ind rv list(n + 1) ps

= ind rv list n ps ++ [ind rv (ps n)].

The HOL operator ++ in the above definition repre-
sents the list append operation. The recursive function
ind rv list accepts a positive integer number n and
a sequence of probabilities ps with data type (positive
integer → real) and returns a list of n indicator ran-
dom variables with respective probabilities from the se-
quence ps. Thus, if the function ind rv list is called
with arguments ps = 〈p0, p1, p2, . . . , pn−1〉 and n then
it would return a list of indicator random variables
[I(p0); I(p1); I(p2); . . . ; I(pn−1)], where, I(p) represents
an indicator random variable with success probability
p. It is important to note that the usage of a sequence
of probabilities in the above definition provides us with



1312 J. Comput. Sci. & Technol., Nov. 2010, Vol.25, No.6

the flexibility to construct a list of indicator random
variables with distinct probabilities.

Next, we formally verify the following very useful
relationship regarding the expectation of a list of indi-
cator random variables.

Theorem 3 (Expectation for the Indicator R.V.
List).

� ∀ n ps.(∀ i.0 � (ps i) ∧ (ps i) � 1)

⇒ expec(sum rv lst(ind rv list n ps))

= sum(0, n)(λi. ps i).

The assumption in the above theorem ensures that all
real values in the probability sequence ps are bounded
in the interval [0, 1] as this is the allowed range for
a probability. According to Theorem 3, the expecta-
tion of the summation of all random variables in the
list of random variables obtained by calling the func-
tion ind rv list with parameters n and ps is equal to
the summation of all corresponding probabilities in the
probability sequence ps. This result is quite important
as it allows us to simplify a complex problem of evalu-
ating the expectation of a sum of random variables to
a simple summation of probability terms.

We proceed with the verification of Theorem 3 by
rewriting its LHS using the linearity of expectation
property, given in Lemma 4, as follows:

n−1∑
i=0

Ex [el (n − (i + 1)) (ind rv list n ps)]

=
n−1∑
i=0

(ps i). (3)

The above mentioned substitution became possible be-
cause all random variables in the list of random vari-
ables generated by the function ind rv list satisfy the
preconditions for Lemma 4, i.e., they preserve strong
function independence because all of them are indicator
random variables and thus access the infinite Boolean
sequence using bind and unit operators only, as illus-
trated in Definition 3, and their corresponding expec-
tations are well-defined as given in Theorem 2. An-
other simplification that has been made in the above
substitution is the replacement of the term (length
(ind rv list n ps)), which appears in the RHS of
the linearity of expectation property, by the number
n. The justification for this simplification was also for-
mally verified in the HOL theorem prover.

The next step in proving Theorem 3 is to rewrite the
LHS of (3) as follows:

n−1∑
i=0

(ps(n− (i + 1))) =
n−1∑
i=0

(ps i) (4)

since the expectation of the i-th indicator random vari-
able in the list (ind rv list n ps) can be proved to be
equal to (ps i) using the result of Theorem 2 and some
basic list properties. Finally, (4) can be verified based
on arithmetic reasoning and the properties of summa-
tion, which also completes the HOL proof of Theorem 3.

Many computation algorithms can be simply de-
scribed as a summation of indicator random variables
for their expected time complexity analysis. Theorem
3 plays an important role in conducting their expected
time complexity analysis in a theorem prover, as it
allows us to transform the verification problem of an
expectation relation to a verification involving a sim-
ple summation over real numbers. As an example, we
present the analysis of the hat-check problem in the
next section. Besides being useful for the analysis of
this specific class of algorithms, which can be described
as a simple summation of indicator random variables,
the indicator random variable approach can also be uti-
lized for the analysis of more complex algorithms. In
order to illustrate the utilization and effectiveness of
the proposed approach for other kinds of algorithms,
we also present, in the next section, the analysis of the
birthday paradox and the hiring problem, which we be-
lieve to be representative to many algorithms frequently
used in computer science.

6 Applications

6.1 Hat-Check Problem

The hat-check problem is a classic combinatorial
question: there is a dinner party where n gentlemen
check their hats. The hat-check girl absentmindedly
throws the claim checks away rather than putting them
with the hats. When the gentlemen return for their
hats, the hat-check girl returns them randomly. What
is the number of gentleman who get their own hat back?
The algorithm for this problem is a simple counting one
and is given below.

Algorithm 1. Hat-Check Problem

Input: number of gentlemen in the party n

Output: number of gentlemen that were able to ac-
quire their hats after the party x

x← 0

for i← 1 to n

do if gentleman i has his own hat

then x← (x + 1)

It samples all the n gentlemen in the party and
counts the ones that were able to acquire their own hat.
But the implementation of this algorithm for analysis
purposes is not a very straightforward task because of
the unpredictable nature of the input, i.e., the input



Osman Hasan et al.: Formally Analyzing Expected Time Complexity 1313

could be any one of the 2n possible combinations of n
men with either their own or others hats. Thus, prob-
abilistic techniques are applied. We assume that the
hats are distributed uniformly among the men, i.e., the
probability of any man in the party to get his own hat
is the same (1/n), and we find the expected number of
people who acquire their own hats. By the definition of
expectation, we have

Ex [X ] =
∞∑

k=0

kPr(X = k) (5)

where Pr denotes the probability in the above equation.
Again, evaluating the term Pr(X = k), where X de-
notes the number of people who acquire their own hat,
above is very cumbersome as this requires the proba-
bility of each permutation. The summation over this
distribution would be even more complicated to solve.

The indicator random variable approach, described
earlier, provides a very straightforward solution to the
evaluation of the above expectation property. For each
man i of the n men in the party, where 0 � i < n, we
define the indicator random variable Xi as follows:

Xi =
{

1, if man i acquires his own hat,
0, otherwise.

(6)

The occurrence probability of the above indicator vari-
able is 1/n because of the uniform distribution of hats.
Now, the number of men that get their own hat is the
sum of these indicator random variables

X =
n−1∑
i=0

Xi. (7)

Based on the infrastructure presented in Section 5, the
above equation can be formalized in higher-order logic
as the following higher-order-logic function.

Definition 4 (Hat-Check Problem).

� ∀ n. hchkp n =

sum rv lst(ind rv listn(λi.
1

n
)).

The function hchkp accepts a positive integer n, which
represents the number of the men in the party that
checked their hats and it returns the total number of
men that were able to acquire their own hats. It uti-
lizes the function ind rv list for this purpose, which
models a list of indicator random variables and is given
in Definition 3.

The next step after the formalization of the algo-
rithm is to conduct its analysis in the theorem prover.
For this purpose, we verify the following expectation
property.

Theorem 4 (Hat-Check Expectation).

� ∀ n. 0 < n ⇒
(expec (hchkp n) = 1).

The assumption in the above theorem ensures that
the number of men in the party are more than 0. We
proceed with the verification of the above theorem by
utilizing the result of Theorem 3 to simplify it as fol-
lows:

n−1∑
i=0

(1
n

)
= 1. (8)

The above subgoal can now be discharged from the
HOL goal stack using the basic properties of real sum-
mation along with some simple arithmetic reasoning.
This also concludes the proof of Theorem 4.

According to Theorem 4, one man would be able to
get his own hat back on average. The higher-order-
logic formalization and analysis for the algorithm for
the hat-check problem was very straightforward mainly
because we were able to build upon the existing results
like Definition 3 and Theorem 3 that were presented in
the last section. Algorithms for many other commonly
known problems, which can be expressed as a simple
summation of indicator random variables like the Chi-
nese appetizer problem[20], can also be analyzed in a
similar way.

6.2 Birthday Paradox

The birthday paradox[18] or the birthday problem
refers to the problem of determining the probability
that in a randomly selected group of k people, two or
more have the same birthday. Besides being an en-
tertaining example, the birthday problem is one of the
most famous problems in combinatorial probability and
computer security applications.

The algorithm for the birthday paradox is given be-
low. All we need to do is to pick each person from the
group one by one and compare his or her birthday with
all the persons in the group that have not been picked
before, and keep track of the number of pairs with same
birthdays. But as with all algorithm analysis problems,
the input to this algorithm is unpredictable since we
could be dealing with any group of people with birth-
days distributed anywhere in the 365 days of the year.
Hence, probabilistic techniques are used to model this
random phenomenon and conduct the expected time
complexity analysis of this problem.

Algorithm 2. Birthday Paradox

Input: number of persons in the group k

Output: number of pairs of persons with the same
birthdays x



1314 J. Comput. Sci. & Technol., Nov. 2010, Vol.25, No.6

x← 0

for i← 1 to k

do for j ← i + 1 to k

do if j has the same birthday as i

then x← (x + 1)

As in most mathematical problems, we first have to
make some simplifying assumptions, and then find the
natural mathematical home for the problem. First of
all, we ignore the issue of leap years and assume that
all years have the same number of days, say n. Next,
and most importantly, we assume that birthdays are
more or less uniformly distributed across the n days of
the year. Thus, the probability that a person’s birth-
day falls on any particular day of the year is equal to
1/n and is also the same for any other day of the year.
Lastly, we also assume that the birthdays of the k peo-
ple in the group are distributed independently, i.e., the
birthday of one person does not effect the birthday of
any other person in the group in any way. All the
above three assumptions are pretty reasonable based
on our given conditions since the human birthdays are
usually independent of one another and are uniformly
distributed throughout the year[18].

Before we embark upon the higher-order-logic for-
malization of the algorithm for the birthday problem,
we first formally analyze the probability for having a
pair with matching birthdays, usually termed as the
probability of success for the birthday paradox. This
probability can be expressed formally as follows:

Definition 5 (Success Probability for the Birthday
Paradox).

� ∀ n. bdayp suc prob n =

P {s | fst(unif rv n s) =

fst(unif rv n (snd(unif rv n s)))}.

According to the above definition, the probability of
success for the birthday problem with n days a year is
equal to the probability of the event when two indepen-
dent Uniform(n) random variables generate the same
values. The two Uniform(n) random variables in the
above definition correspond to the birthdays of two per-
sons in a group based on the above mentioned assump-
tions. The independence between the two Uniform(n)
random variables is ensured because of the fact that
the second uniform random variable on the RHS of the
equality utilizes the remaining portion of the infinite
Boolean sequence from the first Uniform(n) random
variable that is on the LHS of the equality.

Next, we formally verify that the success probabi-
lity for the birthday paradox is equal to 1/n. Thus, the
probability of having the same birthday for two persons

in the group is the same as the probability that the
birthday of one of them falls on a given day. The corre-
sponding higher-order-logic theorem can be expressed
as follows:

Theorem 5 (Success Probability for the Birthday
Paradox).

� ∀ n. 0 < n ⇒
(bdayp suc probn =

1

n
).

The assumption in the above theorem ensures that
the value of n, i.e., the number of days in the year, is
greater than 0 since without this assumption there is
no point in analyzing the birthday problem. Also, it
allows us to remove the division by 0 problem for the
RHS term in the above theorem. We proceed with the
verification by first rewriting with the definition of the
function bdayp suc prob and simplifying the set that
appears on the LHS as follows:

P(
⋃
i<n

({s | fst (unif rv n s) = i}∩

{s | fst (unif rv n

(snd (unif rv n s))) = i})) =
1

n
. (9)

Now, using the additive probability law ((A∩B = ∅) ⇒
(P(A ∪ B) = P(A) + P(B))), the above subgoal can be
further simplified as follows:

n−1∑
i=0

(P({s | fst (unif rv n s) = i}∩

{s | fst (unif rv n

(snd (unif rv n s))) = i})) =
1

n
. (10)

The above subgoal can be further simplified using the
independence property between the two uniform ran-
dom variables, the product law of probability (P(A ∩
B) = P(A)P(B)) and the PMF of the uniform random
variable, given in Lemma 2, as follows:

n−1∑
i=0

(1
n

)(1
n

)
=

1

n
. (11)

This subgoal can now be verified based on the proper-
ties of real summation, which also concludes the proof
for Theorem 5.

The probability of success for the birthday paradox
can now be utilized to formalize the algorithm for its
probabilistic analysis using the proposed indicator ran-
dom variable approach. For each pair (i, j) of the k
people in the group, where 0 � i � j < k, we define the



Osman Hasan et al.: Formally Analyzing Expected Time Complexity 1315

indicator random variable Xij as follows:

Xij =
{

1, if i and j have the same birthday,

0, otherwise.
(12)

The occurrence probability of the above indicator vari-
able is 1/n as has been already verified in Theorem
5. The algorithm for the birthday paradox is a sim-
ple counting algorithm that counts the number of pairs
of individuals, present in the given group, having the
same birthday. This algorithm can now be developed
in terms of the indicator random variables as the one
that counts the values of the indicator random variable
for all possible pair combinations in the given group is
as follows:

X =
k−1∑
i=0

k−1∑
j=i+1

Xij . (13)

The formalization of the above algorithm cannot be
done using the summation of a list of indicator random
variables as was the case in the hat-check problem. So,
we formalize it, based on the infrastructure presented in
Section 5, using the following two recursive functions.

Definition 6 (Birthday Paradox).

� (∀ n. bdayp helper 0 n = unit 0)

(∀ k n. bdayp helper(k + 1) n =

bind(bdayp helper k n)

(λa. bind(ind rv (
1

n
))

(λb. unit(b + a))))

� (∀ n. bdayp 0 n = unit 0)

(∀ k n. bdayp(k + 1) n =

bind(bdayp k n)

(λa. bind(bday helper k n)

(λb. unit(b + a)))).

The functions bdayp helper and bdaypmodel the inner
and outer summations of (13), respectively. Whereas
the function ind rv, defined in Definition 2, models the
indicator random variable given in (12) with occurrence
probability 1/n. The function bdayp accepts two pa-
rameters k and n, which represent the population of the
group and the number of days in a year, respectively,
and it returns the total number of pairs of individuals
having the same birthday in the given group.

Now, for the expected time complexity analysis
of this algorithm, we verify the following expectation
property.

Theorem 6 (Birthday Paradox Expectation).

� ∀ k n. 0 < n ∧ 2 � k ⇒

(expec(bdayp k n) =
k(k− 1)

2n
).

The assumptions in the above theorem ensure that the
number of days in a year are more than 0 and the popu-
lation is at least 2 or more in order to have 1 pair
at minimum. We proceed with the verification of the
above theorem by performing induction on the variable
k, which generates the following two subgoals.

expec(bdayp 2 n) =
2

2n
(14)

2 � k ∧ (expec(bdayp k n) =
k(k− 1)

2n
) ⇒

expec(bdayp(k+ 1) n) =
(k + 1)k

2n
. (15)

The base case can be rewritten using the definition
of the function bdayp as follows:

expec
(
λs. ind rv

(1
n

)
s
)

=
2

2n
(16)

which can be simply verified using the expectation theo-
rem for the indicator random variable as 1/n lies in the
interval (0, 1] when 0 < n.

We proceed with the verification of the step case by
first rewriting the expec(bdayp(k+1) n) part as fol-
lows:

2 � k ∧ (expec(bdayp k n) =
k(k− 1)

2n
) ⇒

expec(bdayp k n) + expec(bdayp helper k n)

=
(k + 1)k

2n
. (17)

This substitution is made based on the definition of the
function bdayp, given in Definition 6, and the linearity
of expectation property, given in Lemma 4. This al-
lows us to utilize the second assumption in the subgoal
as follows:

2 � k ⇒ k(k− 1)
2n

+ expec(bdayp helper k n)

=
(k + 1)k

2n
. (18)

The above subgoal can now be further simplified by
rearranging the terms along with some arithmetic rea-
soning as follows:

expec(bdayp helper k n) =
k

n
. (19)

We verified the above mentioned subgoal, which rep-
resents the expectation of the function bdayp helper,
in a similar way as we handled the expectation pro-
perty of the function bdayp, i.e., by using induction on
variable k followed by using the linearity of expectation
property and the expectation of the indicator random



1316 J. Comput. Sci. & Technol., Nov. 2010, Vol.25, No.6

variable, given in Theorem 2, along with some arith-
metic reasoning. The verification of the above subgoal
also concludes the verification of Theorem 6.

Theorem 6 provides very useful insights into the
birthday paradox. It can be clearly observed that the
expected number of pairs of people with the same birth-
day would be at least 1 if k(k − 1) � 2n. This means
that if we have

√
2n + 1 or more individuals in a room,

then on average we can expect at least two people to
have the same birthday. For n = 365, we need at least
28 people to have one pair of people to have the same
birthday on average.

6.3 Hiring Problem

The hiring problem[18] is a combinatorial problem
that captures a fundamental issue which arises in many
applications where one must make decisions under un-
certainty. In its most general form, the hiring problem
concerns a company that wants to hire the best possible
office assistant through an employment agency. Mean-
while, the company also needs an office assistant right
away and it cannot wait for the best candidate to come
along. So they decide to contact an employment agency,
which has n candidates available for this job, and ask
them to send a new candidate for interview every day.
The company hires the first candidate to fill the vacant
position for the office assistant but continues to inter-
view new candidates. If a new applicant is found to
be better qualified than the existing office assistant, he
is hired and the existing office assistant is fired. The
employment agency charges the company a small in-
terviewing cost, say ci, associated with each candidate
interview and a comparatively large hiring cost, say ch,
associated with each hiring. The hiring problem is to
find out the cost associated with this kind of a hiring
strategy.

The cost algorithm for the hiring problem is given
below. In the given hiring strategy, n candidates are al-
ways interviewed, irrespective of the number of people
that are hired. Now, if we assume that a total number
of m candidates get hired in the above strategy then
the total cost associated with the algorithm would be
nci + mch. In the worst case, each candidate that is
interviewed is also hired and thus m becomes equal to
n as well. This happens only if the candidates come
in increasing order of quality. However, this does not
always happen in practice and the candidates arrive in
an unpredictable fashion. Therefore, probabilistic tech-
niques are relied upon to evaluate the typical or average
case cost for this algorithm.

Algorithm 3. Hiring Problem Cost

Input: number of available candidates n, hiring cost ch,
interviewing cost ci

Output: hiring problem cost chp

chp ← 0

best ← 0

for i← 1 to n

do interview candidate i

chp ← (chp + ci)

if candidate i is better than best

then best ← i

hire candidate i

chp ← (chp + ch)

For conducting the expected time complexity analy-
sis of the hiring problem, we again utilize the proposed
indicator random variable approach. For each candi-
date i, we define an indicator random variable as fol-
lows:

Xi =
{

1, if candidate i is hired,

0, otherwise.
(20)

A candidate i is hired only if it is better than each of the
already interviewed i−1 candidates. If we assume that
the quality of candidate arrival is uniformly distributed
then candidate i has a probability of 1/i of being hired
or of being better than the already interviewed i − 1
candidates. Thus, the occurrence probability of an in-
dicator random variable corresponding to candidate i is
equal to 1/i in the above mentioned indicator random
variable.

Now, the hiring problem cost algorithm can be ex-
pressed as the following summation.

X =
n−1∑
i=0

ci + chXi. (21)

The above equation does not represent a simple sum
of indicator random variables and thus cannot be for-
malized using the function given in Definition 3. Thus,
we formalized it with the following recursive function,
based on the infrastructure presented in Section 5.

Definition 7 (Hiring Problem).

� (∀ ch ci. hirep 0 ch ci = unit 0)

(∀ n ch ci. hirep(n + 1) ch ci =

bind(hirep k ch ci)

(λa. bind(ind rv (
1

n
))

(λb. unit(if b = 1

then (ch + ci + a)

else (ci + a))))).



Osman Hasan et al.: Formally Analyzing Expected Time Complexity 1317

The function hirep accepts three parameters n, ch and
ci, which represent the number of available candidates,
the cost of hiring and cost of interviewing a candidate,
respectively. Whereas, it returns the total cost associ-
ated with the hiring strategy explained in this subsec-
tion. For this purpose, it utilizes the indicator random
variable function ind rv, defined in Definition 2, with
occurrence probability 1/i for candidate number i.

The next step after the formalization of the algo-
rithm is to conduct its analysis in the theorem prover.
We verified the following expectation property in this
regard.

Theorem 7 (Hiring Problem Expectation).

� ∀ n ch ci. expec (hirep n ch ci)

= n ci + ch
n−1∑
i=0

1

i + 1
.

We proceed with the verification of the above theo-
rem by performing induction on the variable n, which
generates the following two subgoals.

expec(hirep 0 ch ci) = ch
0∑

i=0

1
i + 1

(22)

expec(hirep n ch ci) = nci+ ch
n−1∑
i=0

1
i + 1

⇒

expec(hirep (n + 1) ch ci)

= (n + 1) ci + ch
n∑

i=0

1
i + 1

. (23)

The base case can be simply verified based on the
definitions of the expectation and the function hirep,
given in Definitions 1 and 7. respectively, along with
some arithmetic reasoning. For the verification of the
step case, we first rewrite the expec(hirep(n+1) ch
ci) part using the definition of the function hirep,
given in Definition 7, and the linearity of expectation
property, given in Lemma 4, as follows:

expec(hirep n ch ci) = nci+ ch
n−1∑
i=0

1
i + 1

⇒

ch expec
(
ind rv

( 1
n + 1

))
+

ci+ expec(hirep n ch ci)

=(n + 1) ci + ch
n∑

i=0

1
i + 1

. (24)

Now the assumption, given in (24), can be used to ob-
tain the following subgoal:

ch expec
(
ind rv

( 1
n + 1

))
+

ci + nci+ ch
n−1∑
i=0

1
i + 1

=(n + 1) ci + ch
n∑

i=0

1
i + 1

. (25)

The above subgoal can now be verified by using the
expectation property of the indicator random variable,
given in Theorem 2, along with some arithmetic rea-
soning. This also concludes the proof for Theorem 7.

The term
∑n−1

i=0
1

i+1 , which appears on the RHS of
Theorem 7, is basically equal to ln n. Thus, according
to Theorem 7, even though n people are interviewed
only ln n of them are hired on average. This result
means that the average or expected cost of the hiring
problem is O(chln(n)).

6.4 Discussion

The successful handling of the expected time com-
plexity analysis of the hat-check problem, birthday
paradox and hiring problem clearly demonstrates the
effectiveness of the proposed indicator random variable
based approach for formalizing probabilistic algorithms
and conducting their analysis in a higher-order-logic
theorem prover. It is worthwhile to mention here that
the algorithm analysis results presented in this subsec-
tion are not something that is new and they have been
known for quite some time now. The real contribu-
tion of the paper lies in demonstrating the ability to
conduct the analysis of these algorithms precisely using
a computer based tool. Due to the formal nature of
the algorithm implementations and inherent soundness
of theorem proving, we have been able to verify the
expectation properties of interest regarding the given
algorithms with 100% precision; a novelty which is not
available in simulation. Similarly due to the high ex-
pressibility of higher-order logic, we have been able to
verify generic properties that are valid for all values of
algorithm inputs. The proposed approach is also su-
perior than the paper-and-pencil analysis methods in
a way as the chances of making human errors, missing
critical assumptions and proving wrongful statements
are almost nil since all proof steps are applied within
the sound core of the HOL theorem prover. These ad-
ditional benefits come at the cost of the time and effort
spent, while constructing the formal model of the algo-
rithm and formally reasoning about its properties, by
the user. But, the analysis infrastructure, presented



1318 J. Comput. Sci. & Technol., Nov. 2010, Vol.25, No.6

and developed in Sections 4 and 5 of this paper, led
to a significant reduction in the interactive verification
effort. The analysis presented here for the three algo-
rithms consumed around 1500 lines of HOL code and
approximately 100 man hours.

7 Conclusions

In this paper, we utilized the mathematical proba-
bility theory formalized in a higher-order-logic theorem
prover to develop a formal expected time complexity
analysis approach for algorithms. The main idea be-
hind this approach is to construct a higher-order-logic
model of the algorithm along with its random com-
ponents and to verify the corresponding performance
characteristics and computation complexity relations in
a theorem prover. We specifically targeted algorithms
that can be modeled using indicator random variables
and thus also presented a higher-order-logic definition
of the indicator random variable as well as the formal
verification of some of its key properties. Because of the
formal nature of the models in the proposed approach,
the probabilistic analysis is free of approximation and
precision errors, and due to the high expressive nature
of higher-order logic a wider range of algorithms can be
analyzed. Thus, the theorem proving based expected
time complexity analysis approach can prove to be very
useful for algorithms used in safety critical and highly
sensitive engineering and scientific applications.

The proposed approach was used to conduct the
analysis of algorithms for three well-known problems,
i.e., the hat-check problem, the birthday paradox and
the hiring problem. We developed higher-order-logic
based formal models for these algorithms, based on
which we formally verified the expectation relations of
some of their key characteristics. The formal definition
of the indicator random variable and its formally veri-
fied properties greatly helped us to speed up the analy-
sis process. The results obtained are 100% precise and
confirmed the results of paper-and-pencil based analysis
approaches. The successful handling of these real-world
algorithm analysis problems by the proposed approach
clearly demonstrates its feasibility for other algorithm
analysis problems. To the best of our knowledge, this
is the first study on using higher-order-logic theorem
proving for the expected time complexity analysis of
such algorithms.

The proposed probabilistic approach can be readily
applied for the analysis of many other algorithms, such
as, the balls and bins problem[18], the longest streak
of heads problem[18], the on-line hiring problem[18]

the Chinese appetizer problem[20] and the Quicksort
algorithm[5]. Similarly, besides the expectation pro-
perties, we can also verify other statistical properties

like variance and tail distribution bounds regarding the
algorithm characteristics using the formalizations pre-
sented in [19].

The time complexity of an algorithm is basically the
time that it takes to run in terms of its inputs. A com-
monly used metric for calculating time complexities of
algorithms is the big O notation, where the main idea is
to remove all multiplicative constant factors and lower
order terms from the time complexity relations. The
big O notation method is quite useful in computing the
time complexities of algorithms as their input size be-
comes very very large. In this paper, we presented an
approach to formally estimate the average time com-
plexities of algorithms. Based on these foundations, we
can also formally analyze the time complexities of al-
gorithms as their inputs become very large or possibly
infinite in a higher-order-logic theorem prover. We are
working towards this goal by building upon the higher-
order-logic formalization of limit of a real sequence[58].

References

[1] Knuth D E. The Art of Computer Programming. Addison-
Wesley Professional, 1997.

[2] Whittle P. Probability via Expectation. Springer, 2000.

[3] Kozen D. A probabilistic PDL. Journal of Computer and Sys-
tem Sciences, 1985, 30(2): 162-178.

[4] Jones C. Probabilistic Non-Determinism [Ph.D. Dissertation].
University of Edinburgh, Edinburgh, UK, 1990.

[5] Mitzenmacher M, Upfal E. Probability and Computing. Cam-
bridge University Press, 2005.

[6] Whitney M . Exploring the birthday paradox using a Monte
Carlo simulation and graphing calculators. Mathematics
Teacher, 2001, 94(4): 258-262.

[7] Hastingsr K . Introduction to Probability with Mathematica.
Chapman and Hall/CRC, 2000.

[8] Devroye L. Non-Uniform Random Variate Generation.
Springer-Verlag, 1986.

[9] MacKay D J C. Introduction to Monte Carlo methods. In
NATO Advanced Study Institute on Learning in Graphical
Models, Erice, Italy, 1998, pp.175-204.

[10] Flajolet P, Salvy B, Zimmermann P. Automatic average-case
analysis of algorithms. Theoretical Computer Science, 1991,
79(1): 37-109.

[11] Adams A, Gottliebsen H, Linton S A, Martin U. Automated
theorem proving in support of computer algebra: Symbolic
definite integration as a case study. In Proc. Symbolic and Al-
gebraic Computation, Vancouver, Canada, July 28-31, 1999,
pp.253-260.

[12] Hall A. Realising the benefits of formal methods. J. Universal
Computer Science, 2007, 13(5): 669-678.

[13] Clarke E, Grumberg O, Long D. Verification tools for finite
state concurrent systems. In Proc.REX School/Symp. A
Decade of Concurrency — Reflections and Perspectives, No-
ordwijkerhout, The Neitherlands, Jun. 1-4, 1993, pp.124-175.

[14] Harrison J. Handbook of Practical Logic and Automated Rea-
soning. Cambridge University Press, 2009.

[15] Hurd J. Formal verification of probabilistic algorithms [Ph.D.
Dissertation]. University of Cambridge, Cambridge, UK,
2002.

[16] McIver A K, Morgan C C. Abstraction, Refinement and Proof
for Probabilistic Systems. Spriger, 2005.



Osman Hasan et al.: Formally Analyzing Expected Time Complexity 1319

[17] Hurd J, McIver A, Morgan C. Probabilistic guarded com-
mands mechanized in HOL. Theoretical Computer Science,
2005, 346(1): 96-112.

[18] Cormen T H, Leiserson C E, Rivest R L, Stein C. Introduction
to Algorithms. The MIT Press, 2001.

[19] Hasan O, Tahar S. Using theorem proving to verify expecta-
tion and variance for discrete random variables. Journal of
Automated Reasoning, 2008, 41(3/4): 295-323.

[20] Grinstead C M, Snell J L. Introduction to Probability. Amer-
ican Mathematical Society, 1997.

[21] Mckinney E H. Generalized birthday problem. The American
Mathematical Monthly, 1966, 73(4): 385-387.

[22] de Montmort P R. Essay d’Analyse sur les Jeux de Hazard.
Published anonymously, 1708.

[23] Euler L. Calcul de la probabilite dans le jeu de rencontre.
Memoires de lAcademie des Sciences de Berlin, 1753, (7):
255-270.

[24] P S de Laplace. Theorie Analytique des Probabilites. Pub-
lished anonymously, 1812.

[25] Takacs L. The problem of coincidences. Archive for History
of Exact Sciences, 1980, 3(21): 229-244.

[26] Akutsu T. On determining the congruity of point sets in
higher dimensions. In Proc. International Symposium on Al-
gorithms and Computation, Beijing, China, Aug. 25-27, 1994,
pp.38-46.

[27] Flajolet P, Gardy D, Thimonier L. Birthday paradox, coupon
collectors, caching algorithms and self-organizing search. Dis-
crete Applied Mathematics, 1992, 39(3): 207-229.

[28] Gazit H, Reif J H. A randomized parallel algorithm for pla-
nar graph isomorphism. Journal of Algorithms, 1998, 28(2):
290-314.

[29] Stinson D R. Cryptography, Theory and Practice. CRC Press,
2006.

[30] Gardner M. Mathematical games. Scientific American, 1960,
202: 150-153.

[31] Freeman P R. The secretary problem and its extensions: A
review. International Statistical Review, 1983, 51(2): 189-
206.

[32] Kleinberg R. A multiple-choice secretary algorithm with ap-
plications to online auctions. In Proc. ACM-SIAM Sympo-
sium on Discrete Algorithms, Vancouver, Canada, Jan. 23-25,
2005, pp.630-631.

[33] Babaioff M, Immorlica N, Kleinberg R. Matroids, secretary
problems, and online mechanisms. In Proc. ACM-SIAM
Symposium on Discrete Algorithms, New Orleans, USA,
Jan. 7-9, 2007, pp.434-443.

[34] Broder A Z, Kirsch A, Kumar R, Mitzenmacher M, Upfal E,
Vassilvitskii S. The hiring problem and lake wobegon strate-
gies. In Proc. ACM-SIAM Symposium on Discrete Algo-
rithms, San Francisco, USA, Jan. 20-22, 2008, pp.1184-1193.

[35] Gordon M J C, Melham T F. Introduction to HOL: A The-
orem Proving Environment for Higher-Order Logic. Cam-
bridge University Press, 1993.

[36] Paulson L C. Isabelle: A Generic Theorem Prover. Springer,
1994.

[37] CoQ. http://pauillac.inria.fr/coq/, 2009.
[38] PVS. http://pvs.csl.sri.com, 2009.
[39] Nedzusiak A. σ-fields and probability. Journal of Formalized

Mathematics, 1989, 1.
[40] Bialas J. The σ-additive measure theory. Journal of formal-

ized Mathematics, 1990, 2.
[41] Hasan O, Tahar S. Formalization of the continuous probabil-

ity distributions. In Proc. Int. Conf. Automated Deduction,
Bremen, Germany, Jul. 17-20, 2007, pp.3-18.

[42] Hasan O, Tahar S. Performance analysis and functional ver-
ification of the stop-and-wait protocol in HOL. Journal of
Automated Reasoning, 2009, 42(1): 1-33.

[43] Hasan O, Tahar S. Performance analysis of ARQ protocols
using a theorem prover. In Proc. International Symposium
on Performance Analysis of Systems and Software, Austin,
USA, April 20-22, 2008, pp.85-94.

[44] Hasan O, Tahar S. Performance analysis of wireless systems
using theorem proving. In Proc. the First International
Workshop on Formal Methods for Wireless Systems, Toronto,
Canada, Aug. 19-22, 2008, pp.3-18.

[45] Hasan O, Abbasi N, Tahar S. Formal probabilistic analysis
of stuck-at faults in reconfigurable memory arrays. In Proc.
Int. Conf. Integrated Formal Methods, Düsseldorf, Germany,
Feb. 16-19, 2009, pp.277-291.

[46] Baier C, Haverkort B, Hermanns H, Katoen J P. Model check-
ing algorithms for continuous time Markov chains. IEEE
Transactions on Software Engineering, 2003, 29(4): 524-541.

[47] Rutten J, Kwaiatkowska M, Normal G, Parker D. Mathemat-
ical Techniques for Analyzing Concurrent and Probabilistic
Systems. Vol.23 of CRM Monograph Series, American Math-
ematical Society, 2004.

[48] Baier C, Katoen J P. Principles of Model Checking. MIT
Press, 2008.

[49] L de Alfaro. Formal verification of probabilistic systems
[Ph.D. Dissertation]. Stanford University, Stanford, USA,
1997.

[50] Parker D. Implementation of symbolic model checking for
probabilistic system [Ph.D. Dissertation]. University of Birm-
ingham, Birmingham, UK, 2001.

[51] Kwiatkowska M, Norman G, Parker D. Quantitative analysis
with the probabilistic model checker PRISM. Electronic Notes
in Theoretical Computer Science, 2005, 153(2): pp.5-31.

[52] Sen K, Viswanathan M, Agha G. VESTA: A statistical model-
checker and analyzer for probabilistic systems. In Proc. IEEE
International Conference on the Quantitative Evaluation of
Systems, Torino, Italy, Sept. 19-22, 2005, pp.251-252.

[53] Norman G. Validation of Stochastic Systems: A Guide to Cur-
rent Research, vol. 2925 of LNCS (Tutorial Volume), Chap-
ter Analyzing Randomized Distributed Algorithms, Springer,
2004, pp.384-418.

[54] Church A. A formulation of the simple theory of types. Jour-
nal of Symbolic Logic, 1940, 5: 56-68.

[55] Milner R. A theory of type polymorphism in programming.
Journal of Computer and System Sciences, 1977, 17: 348-375.

[56] Paulson L C. ML for the Working Programmer. Cambridge
University Press, 1996.

[57] Harrison J. Formalized mathematics. Technical Report 36,
Turku Centre for Computer Science, Finland, 1996.

[58] Harrison J. Theorem Proving with the Real Numbers.
Springer, 1998.

Osman Hasan received the
B.Eng. (Hons.) degree from the N-

W.F.P University of Engineering and
Technology, Pakistan, in 1997, and
the M.Eng. and Ph.D. degrees from
Concordia University, Montreal, QC,
Canada, in 2001 and 2008, respec-
tively. He served as an ASIC de-

sign Engineer from 2001 to 2003 in
the industry prior to joining Concor-

dia University in 2004 for his Ph.D. Currently, he is a re-
search associate at the Hardware Verification Group, Con-
cordia University. His current research interests include for-
mal methods, higher-order-logic theorem proving and prob-
abilistic analysis.



1320 J. Comput. Sci. & Technol., Nov. 2010, Vol.25, No.6

Sofiène Tahar received the
Diploma degree in computer engi-
neering from the University of Darm-
stadt, Germany, in 1990, and the

Ph.D. degree with distinction in com-
puter science from the University of
Karlsruhe, Germany, in 1994. Cur-
rently, he is a professor and research
chair in formal verification of system-
on-chip at the Department of Electri-

cal and Computer Engineering, Concordia University. His
research interests are in the areas of formal hardware verifi-
cation, system-on-chip verification, analog and mixed signal
circuits verification, and probabilistic, statistical and relia-
bility analysis of systems. Dr. Tahar, a professional engi-
neer in the Province of Quebec, is the founder and director
of the Hardware Verification Group at Concordia University.

In 2007, he was named University Research Fellow upon re-
ceiving Concordia University�s Senior Research Award.



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /All
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
    /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /NA
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles true
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /NA
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /LeaveUntagged
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


