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Abstract. In the context of wireless sensor networks (WSNs), the ability to detect an intrusion event is the most
desired characteristic. Due to the randomness in nodes scheduling algorithm and sensor deployment, probabilistic
techniques are used to analyze the detection properties of WSNs. However traditional probabilistic analysis
techniques, such as simulation and model checking, do not ensure accurate results, which is a severe limitation
considering the mission-critical nature of most of the WSNss. In this paper, we overcome these limitations by using
higher-order-logic theorem proving to formally analyze the detection properties of randomly-deployed WSNs
using the randomized scheduling of nodes. Based on the probability theory, available in the HOL theorem prover,
we first formally reason about the intrusion period of any occurring event. This characteristic is then built upon to
develop the fundamental formalizations of the key detection metrics: the detection probability and the detection
delay. For illustration purposes, we formally analyze the detection performance of a WSN deployed for border
security monitoring.

Keywords: Theorem proving, Wireless sensor networks, Scheduling, Performance analysis, Detection probability,
Detection delay

1. Introduction

Wireless sensor networks (WSNs) [YMGO8] guarantee a continuous and automated monitoring of a given field
without any human presence. This distinguishing feature is attained trough deploying a collection of battery-
powered and wirelessly-connected miniature devices over the area of interest. The main task of such devices
is to take measurements of the surrounding environment, to a base station to perform a centralized decision
mechanism. Nowadays, wireless sensor networks are extensively being deployed in a wide range of real-world
applications, such as home automation, detection of natural disasters, biological attacks and military tracking.
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Since nodes are usually stand-alone and battery powered, extending the network lifetime is very critical
[YMGOS]. Therefore, the k-set randomized nodes scheduling [JS07, LC08, LWXS06, XCW*10] is commonly
applied to preserve energy. The main idea of such approach is to randomly organize the nodes into alternatively
working sub-networks. Hence, during a given time slot, only the nodes belonging to the current active sub-network
are powered up and may report an occurring event while all the other nodes are inactive and thus contribute to
the power saving of the overall system.

In general, a wireless sensor network is expected to always report occurring events at any point of the monitored
area to a base station with a short delay. This feature determines the detection abilities of the whole network and
is measured through two key performance attributes: the detection probability and the detection delay. More
specifically, the detection probability is the probability of detecting an occurring event within the monitored area
[XCW™10]. Due to the randomness in the nodes scheduling approach coupled with the unpredictable deployment
of sensors, the detection characteristic cannot be usually ensured. Indeed, there is a possibility that an occurring
event may not be detected if there are no nodes deployed in its surrounding area or the deployed nodes are inactive,
due to random scheduling. Such situations will also lead to an infinite detection delay which is not desired at all.
However, in most WSN applications, the network has to react according to intrusions detection. For example, in a
WSN deployed for forest fire detection, the outbreak of a fire should be simultaneously reported with the highest
probability and the minimum delay, in order to alert the user. Consequently, missing an intrusion event can be
really disastrous in the context of mission-critical WSN applications. Thus, probabilistic techniques are used to
judge the detection properties of WSNs with the goal to maximize the probability of detection and minimize the
detection delay.

Traditionally, paper-and-pencil proof based probabilistic techniques have been used to analyze the perfor-
mance of random scheduling for WSNs [LWXS06, LC08]. Simulation, using the Monte Carlo method [Mac9§],
is then used to validate the analytical results, which can be error-prone. Due to the inherent incompleteness of
simulation coupled with the rounding errors of computer arithmetics, such results cannot be considered as 100 %
accurate, which is a serious limitation for mission-critical WSNs.

Formal methods [Abr09] can overcome the limitations of simulation and have been used to validate a wide
range of hardware and software systems. Such methods enhance the analysis reliability using rigorous mathe-
matical techniques to model and verify the given system. Formal methods have also been explored for analyzing
WSNs but most of the existing work is focused on analyzing their functional aspects only. However, given the
wide application of WSNs in safety and mission-critical domains, there is a dire need to accurately assess their
performance as well. With this motivation, this paper provides a formal approach for an accurate performance
analysis of the probabilistic detection properties of WSNs using the k-set randomized scheduling.

We primarily build upon the recently developed probability theory available in the HOL theorem prover
[Mhal2], to formally analyze the detection properties of the k-set randomized scheduling algorithm. The choice
of using higher-order-logic allows us to model any system including its random and unpredictable components
[Mhal2]. In [EHTAT11], we presented the HOL formalization of the coverage property in WSNs. The efficiency
of our higher-order-logic developments have been shown on a real-world WSN application for forest fire detec-
tion [EHTA13]. In this paper, we provide a development regarding detection properties in WSN, which include
the detection probability and the detection delay. The practical effectiveness of the developed formalizations is
illustrated through formally analyzing the asymptotic detection behavior of a real-world WSN for border surveil-
lance. Thanks to the proposed approach, this is the first time, to the best of our knowledge, that the performance
analysis of this kind of a WSN application is analyzed in a complete formal manner.

The rest of this paper is organized as follows: Sect. 2 reviews related work on the validation of WSN algorithms.
We briefly present, in Sect. 3, the main HOL requirements that we build upon in this work. The k-set random-
ized scheduling algorithm is introduced in this section as well. In Sect. 4, we describe our higher-order-logic
formalizations of the key detection properties: the detection probability and the detection delay. The practical
effectiveness of these formal results is illustrated, in Sect. 5, through a WSN application for border monitoring
security. Section 6 is devoted to discuss the main results of our work. Finally, Sect. 7 concludes the paper.
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2. Related work

Due to its wide applicability, the random scheduling algorithm has been analyzed using various approaches in
the open literature. Paper-and-pencil analysis is indeed the most commonly used approach for the performance
analysis of this algorithm. In such analysis, a mathematical model is built by first identifying the required random
variables and the corresponding performance attributes. Then, a rigorous analysis based on the theoretical foun-
dations of probability is done. In order to validate the theoretical analysis, simulations are done using the Monte
Carlo method [Mac98]. In [LWXS06, LC08], a coverage-based random scheduling is analyzed using a mathe-
matical model. Evaluations are done using a Java simulator by setting the monitored region to 200 mx200 m,
the detection range to 10 m, and the subsets to 6. In [XZP*09], theoretical analysis is conducted to validate the
coverage performance of randomized scheduling in the context of an hybrid surveillance framework for environ-
mental monitoring. Results are validated through simulation on a circular surface of a radius R = 10000, where
up to n = 2000 nodes are uniformly deployed. Due to the inherent nature of simulation coupled with the usage
of computer arithmetic, these probabilistic analysis results cannot be termed as 100 % accurate. Moreover, the
analysis results are not generic, i.e., they are specific to a region, range and number of subsets.

Most of the existing literature in the formal analysis of WSNs utilizes traditional model checking [CGP00] to
validate many aspects of WSNs. In [OT07], the authors performed the formal analysis of the Optimal Geographical
Density Control algorithm (OGDC) in the RT-Maude rewriting tool [RTM] by verifying the network coverage
intensity and lifetime. In [HRZ08], model checking is used to verify WSNs security aspects in the SLEDE
framework. Similarly, a model checking based framework, called NesC@PAT [ZSL*11], is also used for verifying
WSNs implementations in NesC.

In addition to its accuracy, the main advantage of model checking is its mechanization. However, model
checking also suffers from some major shortcomings, like the common problem of state-space explosion [CGP00],
where the size of the state-based model increases exponentially as the complexity of the given WSN grows. Such
problems have been noticed in most of the works [HRZ08, ZSL*11]. For example, in [ZSL*11], it is reported that
over 1 million states are generated in order to verify a single property. Moreover, in [HRZ08], additional temporal
abstractions and some parameters reduction have been applied to enhance the scalability of the analysis. Finally,
the mentioned works do not allow capturing randomness of WSNs into account, which is a strict limitation since
most of the WSN algorithms are probabilistic. The authors of [OT07] have besides suggested the use of PMaude
[AMSO06] to enhance their probabilistic analysis.

Probabilistic model checking [RKINP04] has also been successfully used for the probabilistic functional analy-
sis of wireless systems. Probabilistic model checking has the same principles as traditional model checking: the
mathematical model of the probabilistic system is exhaustively tested to check if it meets a set of probabilistic
properties. The probabilistic model checker PRISM [PRI] has been used quite frequently for the verification of
Medium Access Control (MAC) protocols for WSNs [FHMO07, Fru06, ZBA10]. Nevertheless, the accuracy of
probabilistic model checking is very limited when reasoning about statistical properties. For example, in [ZBA10],
the expected values of latency and energy have been verified by running several experiments. The obtained results
were hence specific to the chosen configurations and can never be considered as generic.

Besides model checking, higher-order-logic theorem proving [GM93] has also been used for analyzing WSN
algorithms. In [BMP09], a WSN algorithm is formally modelled, within the PVS system, by utilizing a library
of mathematically specified sub-blocks, like the nodes, the network structure, communication primitives and
protocols. Furthermore, the resulted framework is enriched by some theories expressing probabilistic scenarios
like nodes mobility and link quality changes. The feasibility of this framework is illustrated by manually analyzing
the trace execution of the Surge algorithm [BMP08], and formally verifying the correctness of the message delivery
for the reverse path forwarding algorithm [BMP09]. Nevertheless, the randomness here is modeled by using a
pseudo-random generator, which compromises the accuracy of the analysis results.

While most of the previous works on the formal analysis of WSNs have clearly recognized their inherent
modelling limits regarding the probabilistic feature, we used the probabilistic analysis foundations available in the
HOL theorem prover to formally verify the coverage performance properties of the k-set randomized algorithm
in [EHTAT11]. The results have been found to be absolutely accurate since a measure theoretic probability theory
is used to analyze the WSN algorithm within the sound core of a theorem prover. In [EHTA13], we demonstrated
the practical effectiveness of these results on a real-world WSN application for forest fire detection. Nevertheless,
the network coverage reflects the detection characteristics of the network only in the case of long events. In the
current paper, we are interested in formally analyzing the detection characteristics of wireless sensor networks
using the k-set randomized scheduling for any kind of events.
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Table 1. HOL symbols

HOL symbol Standard symbol Meaning

A and Logical and

SUCn n+1 Successor of n

count n {m|m < n} Set of all m strictly less than n
PREIMAGE f s {z|fzes) The inverse image of the subset s

{z | P(z)} {Az.P(x)} The set of all = that satisfy the condition P

3. Preliminaries

In this section, we first give an overview of the HOL theorem prover and the main required notations. Then,
we briefly present the probability theory to conduct the probabilistic analysis in the HOL theorem prover. Some
probability formalization results that we developed in HOL, are also provided in this section. The description of
the k-set randomized scheduling algorithm is finally introduced to facilitate the understanding of the rest of the

paper.

3.1. HOL theorem prover

The HOL theorem prover [HOL] is a proof assistant of higher-order logic. The verification approach of HOL
is composed of three main steps: describing the system to be verified in higher-order logic, formalizing the
properties of interest as proof goals of higher-order-logic and finally verifying these goals as theorems within
HOL. Furthermore, the HOL theorem prover includes a very rich library of theories. A theory can be defined
as a set of pre-verified theorems for a given domain, function or operation. When needed, a HOL theory can
be loaded and used, which greatly aids the verification process. Additionally, users may be assisted by automatic
proof procedures [GM93], which are a collection of steps in a single command. Despite the existence of all these
theories and automatic procedures, most of the time, proofs in HOL are interactive and require the intervention of
user. Various proof techniques, such as rewriting, simplification, specialization, generalization and mathematical
induction, are available in HOL to aid the verification process. Table 1 summarizes some of the HOL symbols
used in this paper and their corresponding mathematical interpretation [GM93].

3.2. Probabilistic analysis in HOL

Several works on the higher-order-logic formalization of probability theory exist in the open literature, (See
e.g. [Hur02, Les07, Has08, APM09, HH11, Mhal2]). In this work, we utilize the recently developed and most
generic probability theory developed by Mhamdi [Mhal2], within the HOL theorem prover. Unlike [HT08, HT07,
HAA™09], such formalization has the merit of generalizing the previous HOL formalization of measure theory
by including a Borel space [Bog06]. Through defining the extended real numbers in HOL, he formalized measure,
Lebesgue, probability and information theories. Thus, the formalization of probability theory in HOL is based on
the Kolmogorov axiomatic definition of probability. Such formalization has distinctly the advantage to provide
a unified framework for discrete and continuous probability measures. In what follows, we give an overview of
the foundational formalizations of the HOL probability theory.

A probability measure P is basically a measure function on the sample space 2 and an event is a measurable
set within the set F’ of events, which are subsets of Q. Thus, (2, F', P)is a probability space iff it is a measure space
and P(2) = 1. A real random variable is specified in HOL in the following definition using the HOL function
real _random variable.
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Definition 3.1

VX p. real_random variable X p = prob_space p A
Vx € p_space p = X x # NegInf A X x # PosInf) A
X € measurable (p_space p,events p) Borel.

where X designates the random variable which is by definition a real-valued measurable function (measurable) on
a given probability space p (prob_space) [MHT10]. A measurable function satisfies the condition that the inverse
image of a measurable set is also measurable. The functions (p_space p) and (events p) are the definitions of
the sample space ©2 and the set of events F', respectively. The HOL symbols Neglnf and PosInf, used in the
above definition, are the higher-order-logic formalizations of negative infinity or positive infinity, whereas Borel
is the HOL definition of the Borel sigma algebra. Mathematically, a Borel sigma algebra on a given space A is
the smallest sigma algebra generated by the open sets of A [Bog06].

The probability distribution of a random variable is specified as the function that accepts a random variable
X and a set s and returns the probability of the event {X € s}. It has been formalized in HOL [MHT11] in
Definition 3.2.

Definition 3.2
F VX p. distribution p X = (As. prob p (PREIMAGE X s N p_space p)).

The expectation of a random variable X is defined in HOL as its Lebesgue integral with respect to the
probability measure p [MHT11].

E[X]= | Xdp. (1)
/

The conditional probability has been also formalized in HOL [Liul3] according to the following mathematical
definition.
Pr(AN B)

Pr(A| B) = B ()

where A and B are two events of the set F' of events.
Accordingly, the following useful results have been formally verified in HOL [Liul3].

e Ifthe events A and B are independent such that (Pr(B) # 0) , then

Pr(A| B) = Pr(A). 3)
e The conditional probability of the event (A U B), given the event C'is

Pr(AUB | C)=Pr(A| C)+Pr(B| C)— Pr(ANB| C). 4
e If A and B are disjoint, then the above equation becomes

Pr(AUB | C)=Pr(A| C)+ Pr(B | C). (5)
e The conditional probability of the event (A N B) given the event C' is

Pr(ANB| C)=Pr(A| BN C) x Pr(B | C). (6)
e Given that {B,, i € s}, is a finite partition of the entire sample space €2, the law of total probability states that

Pr(A)=>_Pr(A| B, x Pr(B,). (7)

€S

The above equation has been formalized in HOL as follows.
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Theorem 3.1

 Vp B A s. (prob_space p) A FINITE s A (A € events p) A
(Vx. x € s = B x € events p) A
(Vab. aes Abes A (as# b)) = DISIOINT (B a) (B b)) A
(BIGUNION (IMAGE B s) = p_space p)
= (prob p A =)  (Ai. (prob p (B i)) x (condprob p A (B i)))).

where

— Theassumption (Vx. x € s = B x € events p) specifies a finite partition (FINITE s) of the whole
outcome space €2, i.e., a collection of events, which is pairwise disjoint (Va b. a € s A b € s A (a
# b) = DISJOINT (B a) (B b)), and whose union is 2 (BIGUNION (IMAGE B s) = p_space p).

— cond_prob is the HOL formalization of the conditional probability.

Based on the above probability formalizations, we develop in HOL further mathematical notions required
for the work described in this paper.

e Conditional independence: Two events A and B are conditionally independent given the event C, iff:

Pr(ANB| C)=Pr(A| C)x Pr(B| C). ®)
e The conditional independence is also equivalent to
Pr(A|BNnC)=Pr(A| C). )

e Discrete conditional expectation: The conditional expectation of the discrete random variable X given the
event (Y = y), denoted by E(X | Y = y), is the expected value of X with respect to its conditional probability
distribution, and is mathematically specified as follows

EX|Y=y=> axPr(X=z|Y=y) (10)

The concept of conditional expectation can be also extended to multiple events. In the current work, we will
basically require the conditional expectation of X given two events, i.e., F(X | Y = y, Z = z), which is
mathematically defined as

EX|Y=yZ=2=) axPr(X=z|Y=yNZ=2). (11)

where 7 is a discrete random variable. Definition 3.3 gives the higher-order-logic formalization of the condi-
tional expectation E(X | Y =y, Z = 2).

Definition 3.3

VXY Zyzpsx. condexpec2 XY Zy zpsx-=
> space sz (Ax. x x Normal (cond prob p (PREIMAGE X {x} N p-space p) (PREIMAGE Y {y} N

p_space p N (PREIMAGE Z {z} N p_space p)))).

where the HOL function Normal is used to convert a real value to its corresponding value in an extended real.
Based on the above definition, we can easily verify, in HOL, that E(X | Y = y) = E(X | Y =y, 1g = 1),
where 1g is the indicator function on the probability space €.

e The conditional expectation of a function of a random variable is formally verified in HOL as

E(@X)|Y=y)=) glx)x Pr(X =z]Y =y) (12)

e The law of total expectation: By analogy to the law of total probability (Eq. 7), we formally verify that
E(X)=> E(X|Y=y)x Pr(Y =y) (13)

Y
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Fig. 1. An example of the k-set randomized scheduling for 8 nodes and 2 subsets

3.3. The k-set randomized scheduling algorithm

The k-set randomized scheduling has been separately proposed by [AGP04, Liu04]. The main idea of this al-
gorithm can be summarized as follows. Consider a WSN that is formed by randomly deploying n sensor nodes
over a two-dimensional field of interest. Every sensor can only sense the environment and detect events within
its circular sensing area. During the initialization phase, the k-set randomized scheduling is run on every node
as follows. Each node starts by randomly picking a number ranging from 0 to (k£ — 1). We designate the selected
number by 7. Now, the node is assigned to the sub-network ¢, denoted by S;, and will be turned on only within
the working time slot 7; of that subset. During the other time slots, it will be in the idle state. Hence, during
the time slot 7}, only the nodes belonging to the subset S, will be active and can detect an occurring event. The
scheduling algorithm terminates by creating £ disjoint sub-networks that work independently and alternatively
so that the energy over the whole network can be preserved. Intuitively, when the wireless sensor network is quite
dense, each subset alone can cover most of the area. Finally, it is important to note that each node joins a single
subset with the same probability (%) since nodes are uniformly and independently deployed over the area of
interest.

For illustration purposes, Fig. 1 shows how the k-set randomized scheduling algorithm splits arbitrarily a
small WSN of eight sensor nodes to two sub-networks. The eight nodes, randomly deployed in the monitored
region, are identified by IDs ranging from 0 to 7. The two sub-networks are denoted Sy and S;. Each node
randomly chooses a number 0 or 1 in order to be assigned to one of these two sub-networks. Suppose that nodes
0; 2; 5, select the number 0 and join the subset Sy and nodes 1; 3; 4; 6; 7, choose the number 1 and join the subset
S1. These two sub-networks will work alternatively, i.e., when the nodes 0; 2; 5, with sensing ranges denoted by
the solid circles, are active, the nodes 1; 3; 4; 6; 7, illustrated by the dashed circles, will be idle and vice-versa.

4. Formalization of the detection properties

In a wireless sensor network, an occurring event of any length is expected to be detected with a given probability
by one or more active nodes within a given delay. The detection behavior of the network is hence a key feature
whose performance is measured through two widely used metrics which are the detection probability and the
detection delay [YMGOS]. In this section, we first formally reason about some properties related to the intrusion
period of any occurring event. Next, we exploit this analysis to develop the higher-order-logic formalization of
the main detection metrics in WSNs using the k-set randomized scheduling.
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Fig. 2. Detection analysis [XCW*10]

4.1. Formalization of the intrusion period

According to the description of the k-set randomized algorithm, given in Sect. 3, the k£ formed subsets of nodes
{S;,1 < i < k} are disjoint and work alternatively within their scheduling time cycles/slots {7';, 1 < i < k}. In
a wireless sensor network, an event, e.g., the outbreak of a fire in a forest, happens randomly at any time. The
duration of this event, denoted L, will obviously overlap with a number of scheduling cycles T (see Fig. 2). We
are interested in formally verifying the average number of overlapping cycles with an intrusion period L.

According to the analysis done in [XCW™10], the number of overlapping cycles with an intrusion event
depends mainly on s, which is the remainder of the intrusion period L in terms of the number of slots 7. Let &
be any reference time and ¢, the beginning of the intrusion event. Figure 2 shows how the interval [{y, &, + T] is
split into two regions according to s. Hence, if £, belongs to the interval

e [ty to + (1 — ) x T, then L overlaps [ %] with the probability (1 — s).
o Jto+ (1 —s) x T, T[, then L overlaps ([ 4] + 1) with the probability s.
More specifically, by expressing L in terms of T, the variable s has been defined by the following Eq. [XCW*10].

L L

s=—+1-|= (14)
T T

As an example, let us take an intrusion event which lasts for a duration L = 2.87, as illustrated in Fig.

2. Hence, L overlaps either [£] = [28L] = 3 cycles with the probability (1 — s = 0.2), or 4 cycles with the

probability (s = 0.8). g g

We can now formalize in higher-order logic the average number of overlapping cycles with an intrusion period
L. For this purpose, we proceed by first formally specifying the corresponding random variable which describes
the number of overlapping cycles within an intrusion period L. Based on the above description, we model this
behavior by a random variable denoted by /7. This random variable can be characterized in higher-order logic
by the following predicate intr_distr_rv that accepts five parameters: I7: a random variable that returns an
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extended real number, p: the probability space, s: the variable specified in Eq. (14), L: the length of the intrusion
period, and T's: the length of a time slot. Please note that for the sake of simplicity, we take s as a separate variable,
although it depends only on L and Ts.

Definition 4.1

F VIT p s (L:real) (Ts:real). intr_distr.rv IT p s L Ts
(real random variable IT p) A
(IMAGE IT (p_space p) = {[#]; [&£]|+1PD A
(distribution p IT {[#=]} =1 - s).

=~

The definition above specifies /7" as a real random variable on the probability space p such that the image of IT
on (p_space p) isin {[£]; [&] + 1}, and its probability distribution over {] £ |} is (1 — s).

Next, we formally verify, in Theorem 4.1, the average number of overlapping cycles with an intrusion period
L, which is the expectation of the random variable /7.

Theorem 4.1

FVITpsLTs. (0<Ts) A (0 <L) A (intr_distrrv IT p s L Ts)
= (expectation p IT = Normal(% +1))).

where the function expectation, used in the above theorem, designates the higher-order-logic formalization of
the expectation of a random variable that returns an extended real, whereas, the HOL function Normal is used
to convert a real value to its corresponding value in an extended real. The proof of Theorem 4.1 is based on the
verification of the probability distribution on {[ |} and {([ %] + 1)}, along with some analysis on extended real.

4.2. Formalization of the detection probability

The probability of detecting an intrusion event (D) is usually specified using the probability of the event “being
unable to detect an intrusion (UD)” [XZSC07, XCW™10]. Thus, using the probability rule of complement, we
have:

Pr(D)=1— Pr(UD) (15)

The detection performances of a wireless sensor network mainly depends on the number of nodes covering the
occurring events. In [EHTA11], we demonstrated that the number of nodes covering a point where the intrusion
event happens is a Binomial random variable (c¢) with the following probability.

; T\J T\\ "I
Pr(c=74)= CJ x (f) X (1 - (*)) (16)
a a

where C7 is the binomial coefficient indexed by the number j of nodes covering an occurring event and the total
number n of deployed nodes. The parameters r and a, used in Eq. (16), are the size of the sensing area of each
sensor and the size of the monitored area, respectively, and (%) is the probability that each sensor covers a given
point. The Binomial random variable with n trials and success probability ¢ = (g) is specified in the following
definition [EHTAT11].

Definition 4.2

VX p g n. binomial distr_rv X p q n = (real_random variable X p) A
(IMAGE X (p_space p) = IMAGE (Ax.&x) (count (SUC n))) A
(Vm. &m IN (IMAGE X (p_space p)) =
(distribution p X {&m} = &(binomial n k) x g* x (1—q)®7¥)).

where X is a real random variable defined on the probability space p, and IMAGE (Ax.&x) (count (SUC n))
generates the support of the Binomial, while the operator & allows the conversion of the natural number m into
its extended number counterpart. The function binomial, used in the above definition, is the higher-order-logic
formalization of the binomial coefficient for reals, which we specified in HOL in Definition 4.3.
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Definition 4.3

 Vn k. binomial n k = (binomial n 0 = (1:num)) A
(binomial 0 (SUC k) = (O:num)) A
(binomial (SUC n) (SUC k) = binomial n (SUC k) + binomial n k).

Given that the events {¢ = j,0 < 7 < n} form a partition of the entire sample space (2 = p_space p), we
can establish from Eq. (15), using the law of total probability (Eq. 7), that

Pr(D)=1- z”: Pr(UD | ¢ =j) x Pr(c=1j) (17)
§=0

where Pr(UD | ¢ = j) is the conditional probability of being unable to detect the intrusion event given that
(c=7).

Based on the analysis done in [XCW™10], we discuss the probability Pr(UD | ¢ = j) according to the values
of j, 1.e., the number of sensor nodes covering a point when the intrusion event happens, and L, i.e., the intrusion
period.

e Case 1. (j = 0) and for any duration L, Pr(UD | ¢ = 0) = 1.
Given that there is 0 covering nodes, it is sure that an intrusion event can never be detected.

e Case2. (0 <j<n}nN{L>(k—-1)x T}, Pr(UD|c=4)=0.
Since there are k£ working rounds, each of length 7', an event lasting more than (k — 1) x T, and having at least
one covering active node (0 < 7) will be always detected.

e Case3. {0 <j<ninN{L<(k—=1)x T)}, Pr(UD | ¢ = j) # 0. An event lasting less than (£ — 1) x T with at
least one covering active node (0 < 7), will be usually detected with a given probability which is not null.

By extracting the first term (j = 0) of the summation in Eq. (17), we obtain

Pr(D)=1—=(Pr(UD|c=0)x Pr(c=0)+ iPr(UD | ¢ =j) x Pr(c=1j)) (18)
j=1

According to case 1, we have Pr(UD | ¢ = 0) = 1, and we hence can rewrite Eq. (18), using Eq. (16), as

Pr(D)=1—((1—¢)"+Y_ Pr(UD | c=j)x Pr(c=j)) (19)
j=1

In the following, we are interested in formally verifying the detection probability Pr(D) for occurring events
of any length L. More particularly, we focus on the formalization of the summation term of Eq. (19). For that
purpose, we distinguish two cases, i.e., {L < (k — 1) x T)}and {L > (k — 1) x T)}.

4.2.1. Detection probability for events such that {L. < (k — 1) x T)}.

The mathematical model for the performance analysis of the detection probability has directly given the final
result of Eq. (19). Only few explanations related to pure mathematical steps can be found in [XZSC07]. However,
in order to achieve accurately the higher-order-logic formalizations of Eq. (19), we require to reason about all
the implicit steps related to the probabilistic analysis.

According to the intrusion period analysis, done in Sect. 4.1, we know that the intrusion period L may overlap
either [%] or ([%] + 1) scheduling cycles 7. Thus, an intrusion event which lasts L, cannot be detected either

when L overlaps [ 4] cycles, or when L overlaps ([ %] + 1) cycles. Using the following events

e Aj; = The intrusion period L overlaps [ %] cycles.

e A = The intrusion period L overlaps ([ %] + 1) cycles.
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It is possible to express the whole event of non-detection, denoted by UD, as follows
UD =UDN(App U Ap) (20)

Now, applying Egs. (4) and (6) to Pr(UD | ¢ = j) in Eq. (19), along with the fact that the events A, and Ay,
are disjoint, we get the following result.

Pr(UD | ¢ =j) = Pr(UD | ApN(c =j)) x Pr(Az | ¢ =)
+Pr(UD | Ay N(c=j)) x Pr(An | c=7j) @1

Intuitively, for a given intrusion event of length L, the occurrence of the event (A1, = L overlaps [%W cycles),
and the event (¢ = j) describing that there are j covering nodes, are governed by distinct and noninteracting
physical processes [Fel68]. Hence, the two events turn out to be independent. According to Eq. (3), we get hence

Pr(Ap | ¢ = j) = Pr(Ap) = Pr(IT = [-%]), where IT is the intrusion random variable as specified in

Definition 4.1. Similarly, we obtain Pr(As | ¢ = j) = Pr(IT = (T%] + 1). This allows us to rewrite the RHS of
Eq. (21) as

Pr(UD | AN (c =j)) x Pr(Ap) + Pr(UD | A N (c =j)) x Pr(Ax) (22)

On the other hand, the event “UD | A1, N(c = j)” indicates the event of “being unable to detect an intrusion

event” given that “the intrusion period L overlaps [%} cycles” and “there are j covering nodes”. Indeed, if an

event, covered with j nodes and overlapping (h = [%£]) rounds, is not detected, then it means that all the j
covering nodes miss the 4 consecutive subsets. In other words, the sequence of £ subsets do not contain covering

nodes. Such event is expressed by the following equation.

h
Bhe=H  NH N . 0H N.0H,, = <ﬂ H) (23)
i=1
where H; . is the event that none of the ¢ covering sensor nodes belongs to the working subset i, i.e., H; . is
empty, and the set of events {H ., H> ., ..., Hp .} is mutually independent. We say that a finite set of events is
mutually independent if and only if every event is independent of any intersection of the other events [Fel68].
The probability of the above event (Eq. 23) has been proved in [EHTA11], to be equal to (£2)°, where £ is the
number of disjoint subsets.
Accordingly, Eq. (19) becomes

Pr(D) =1~ ((1— )"+ S [Pr(Ai) x Pr(Bj7,) + Pr(An) x Pr(B141,)) (24)
j=1

Based on the above reasoning, we successfully verify, in Theorem 4.2, the final expression of the detection
probability Pr(D) for events lasting {L < (k — 1) x T'}.

Theorem4.2 + Vp X IT UD_rv k q n s L Ts. (prob_space p) A
(1 <k) A1 <n)A(O<qgq<1) A (sncoverspXpgn A (0 < Ts) A
(0 <L) A (L < &k-1)xTs) A (0 < s < 1) A ((udset n k s L Ts q) € events p) A
(intr_distr_rv IT p s L Ts) A (sbst_empty_sch rv (UD_rv (SUC i)) p k ¢ (SUC i)) A
(indep_rv p IT X Borel Borel) A
(cond_prob p (udset n k s L Ts q) (PREIMAGE X {0} N p_space p) = 1) A
(A12 = PREIMAGE IT {[{|} N p_space p) A (A22 = PREIMAGE IT {[£]+1} N p_space p) A
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(Hic = IMAGE (Ai. PREIMAGE (UD_rv (SUC i)) {1} N p_space p)) A
(Vx. x € count (SUC n) =
(cond prob p (udset n k s L Ts q) (A12 N (PREIMAGE X {&x} N p_space p))

prob p (ﬂ(K(%DHic) A

(cond_prob p (udset n k s L Ts q) (A22 N (PREIMAGE X {&x} N p_space p))
prob p (ﬂ(iqgﬂ)HiC)))

= (prob p (p_space p DIFF (udset n k s L Ts q)) =

1—-(1—-s)x (1—@ xq)n—sx (1—7((%1]“) xq)n).

where

e sn_covers_p is the Binomial random variable (Definition 4.2).

e intr_distr_rv is the intrusion random variable (Definition 4.1).

e sbst_empty_sch rv is the higher-order-logic formalization of an empty sub-network in HOL. We modelled
such behavior by a Bernoulli random variable with success probability (1 - %) ¢, and the corresponding HOL
function is as follows [EHTA11]

F VX p pr. bernoulli distr.rv X p pr = (real_random variable X p) A
(IMAGE X (p_space p) = {0;1} A
(distribution p X {1} = pr).

e The assumption (indep_rv p IT X Borel Borel) ensures the independence between the two random vari-
ables X and I7T.

e The HOL function (udset n k s L Ts q) models the main event of non-detection UD, as specified in
Eq. (15). This function depends on various design parameters, i.c., n: the number of sensor nodes, k£: the
number of sub-networks, L: the intrusion period, T's: the scheduling time slot, and s: the remainder of L in
terms of 7.

e The assumption (cond prob p (udset n k s L Ts q) (PREIMAGE X {0} N p_space p) = 1) reflects
the first case, discussed at the beginning of this subsection.

e Theevents A12, A22, and Hic are the HOL formalizations of the same events used throughout our mathematical
reasoning.

e The last assumption is the probability equality discussed just after Eq. (22).

e The event ((p_space p) DIFF (udset n k s L Ts q)) formalizes the complement event of UD.

The proof of the above theorem is primarily based on the application of the total probability law (Eq. 7) which
further requires the verification of the corresponding assumptions regarding the partition of the events (Theorem
3.1). Moreover, various conditional probability rules (Egs. 3, 4, 5, 6 and 7), have been used as well. For that purpose,
the proof utilizes the measurability of the different events and the verification of the probability distributions of
the events Ay and Aj,, and a lot of real analysis. In particular, a considerable amount of real analysis related to
Theorem 4.3 formalizing the Binomial theorem for reals, and to the summation function has been necessary to
achieve this proof.

Theorem 4.3
I V(a:real) (b:real) n. (a+b)® = >0 (Ai. &(binomial n i) x a®™? x bi).

4.2.2. Detection probability for events such that {L > (k — 1) x T}.

According to the second case, discussed at the beginning of this subsection, we simply verify that the detection
probability Pr(D) is equal to
Pr(D)=1—-(1-¢)" (25)

using Theorem 4.2. Such result is very significant since it illustrates the linking between our coverage formaliza-
tions, done in [EHTAT11], and the new results on the detection probability Pr(D). In general, a point in the area
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is covered if any occurring event at this point can be detected. Such feature is measured through the network
coverage intensity C,,, which determines how well the monitored area is covered [LWXS06]. When an event lasts
for a duration (L > (k—1) x T), it means that a full working cycle, lasting &£ x T, is spent at least one time, and all
the sub-networks {.5;, 0 < ¢ < n} have been hence working at least once. The intuition is that such event is surely
detected within one of the working subsets, and its detection probability is equal to the coverage measurement of
the network, when the whole network is assimilated to one sub-network, i.e, C,, for (k¢ = 1). The above equation
formally confirms this intuition, and shows how the behavior of the detection probability Pr(D) for events lasting
(L > (k — 1) x T) matches the one for network coverage intensity C,, for (k = 1).

4.3. Formalization of the average detection delay

Within a wireless sensor network, the average detection delay is generally defined as the expectation of the time
elapsed from the occurrence of an intrusion event to the time when this event is detected by some sensor nodes
[XCW™*10, LWXS06]. In this part, we target the formal verification of this average detection delay, denoted by
E(D). Mathematically, E(D) is specified as the expectation of the random variable D describing the detection
delay. We suppose that E(D) is finite.

Let DT; the average time that the intrusion is detected in the i** round. For the first round (i = 1), the delay
is obviously zero (DT} = 0). Since the subsets of nodes are working by rounds (cf. Fig. 2), it is thus intuitive that
the delay for detecting an intrusion depends on the detection round <. In addition, the DT; values depend also
on the starting time, ¢, of the intrusion, i.e., A1, and A,;. Hence, for the second round (i = 2), based on Fig. 2,
we can find that

o Ift, €[ty, to + (1 —8) x T], then (DT, = T—W)-

o Ift, elio+(1—3s)x T, T[, then (DT, = SXQT)-

More generally, according to the original specification [XCW™*10, LWXS06], if ¢, € [ty, tp + (1 — s) x T, i.e.,
given Aj,, then:

0 ifi=1
DL = (G-n-952) x T if1 <i<[4] (26)
However, when ¢, € [ + (1 — s) x T, T[, we have
0 ifi=1
DTi|A22:{((i—2)+§)xT if1<i<[L]+1 @7

Note that the notations (DT | Ajp) and (DT, | Ajy) refer to the values taken by the random variable D given
Ayp and Ajy, respectively.

Based on Egs. (26) and (27), we notice how the detection delay values depend on the detection round .
Consider the random variable DR; that describes the detection round. Conditioning on the events A, and A»s,
the values of DR; are

L

DR; | A, ={i+1]0< 1 < phl —1} where phl = min (k, [T—D (28)
. . . L

DR; | Ay ={i+1,0 < i < ph2 — 1} where ph2 = min (k‘, {T—‘ + 1> (29)

The minimum values for the variables phl and ph2 are considered since we have at most k£ detection rounds
(cf. Fig. 2). As an example, consider a WSN which is randomly scheduled into (k = 3) sub-networks, and two
intrusion events £'1 and E2 whose starting time ¢, is in [y, t + (1 — s) x T, and lasting (L1 = 1.8 x T') and
(L2 = 3.2 x T), respectively. In the case of event E1, (%] = 2, and the possible rounds of detection would be
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1 = {1, 2}. For event E2, [%W = 4, but the potential detection rounds are 7 = {1, 2, 3}, i.e., at most 3 which is
equal to k.

According to the two above equations, we formally define a general HOL function that describes the detection
round random variable in Definition 4.4.

Definition 4.4

= VDR p ph. delay_rnd rv DR p ph =
(real random variable DR p) A
(IMAGE DR (p_space p) = IMAGE (Aj. &SUC j) (count ph)).

The main expected detection delay £ (D) has been formalized in HOL using the function delay_wsn, which
is specified as follows

Definition4.5S — Vp D n k q. delaywsn p D n k q = expectation p (D n k q).

where p is the probability space, D is a random variable, n is the number of deployed nodes, k is the number of
disjoint subsets, and q is the probability that each sensor covers a given point. The expected detection delay F (D)
can be mathematically written, using the total expectation law (Eq. 13) and Eq. (16), as

E(D)=Y E(D|c=j)x Pr(c=j)
j=1

zgw o=y Cix (L) x (1= (5))" (0)

where E(D | ¢ = j)is the conditional expectation of the real random variable D with respect to the event (¢ = j).
Notice that the case (¢ = 0) is not considered in Eq. (30). Indeed, if there is no covering node, then an intrusion
can never be detected, and the delay E(D) will be infinite which is not desirable.

In higher-order logic, we model the detection delay behavior, in Definition 4.6, as a real random variable with
a finite image on the space Q.

Definition 4.6

= VD p. delay rv D p = (real random variable D p) A
FINITE (IMAGE D (p_space p)).

In the following, we focus on the formal verification of the term E(D | ¢ = j) in Eq. (30) for occurring events of
any length L. Based on the definition of conditional expectation (Eq. 10), E(D | ¢ = j) can be mathematically
expressed as

E(D|c=j)=Y (D=d)x Pr(D=d|c=j) (31
d

Applying the total probability law (Eq. 7) on the partition { A}, A2}, and given the independence of the random
variable IT and ¢ (Eq. 3), we can establish, using Eq. (6), that

E(D|c=j)=(1—s)xZ(D=d)xPr(D=d|Alzﬂ(c=j))+
d

sx Y (D=d)x Pr(D=d| AnN(c=j)) (32)
d



Formal probabilistic analysis of detection properties of wireless sensor networks 93

The RHS of Eq. (32) can be now rewritten, using the reverse definition of conditional expectation for two events
(Eq. 11), as

(I=s)x BE(D | A, (c=j)) + s x E(D | Ap, (¢ =) (33)

Based on the above equation, we can clearly distinguish two distinct conditional expectations given the events
Ayp and Ap. According to the analysis done at the beginning of this subsection, these conditional expectations
can be established as

ED | A, (¢ =j)) = E(DC1 | ¢ =) (34)

E(D | Axn,(c=j)) = E(DC2| c =) (35)

where DC'l and DC?2 are the random variables describing the detection delay when (A4, = L overlaps [%W cycles)

and (A, = L overlaps ((%W + 1) cycles), respectively. More specifically, based on Egs. (26) and (27), DC'1 and
DC(C'?2 can be written as

DC1 = (m. <g;— % +;) x T) o DRI (36)
S
DC2 = (Ax. <$—2+ 5) x T) o DR2 (37)

where the o operator denotes the function composition, and DR1 and DR?2 are the delay round random variables
given Ay, and Ajy, respectively, as described in Egs. (28) and (29).

Plugging the above two equations, into Egs. (34) and (35), and applying the conditional expectation of a
function of a random variable (Eq. 12), we derive, from Eq. (33), that the conditional expectation of D given
(¢c=7), E(D | ¢ = j), equals

phl 3 s
(l—s)x§<i—2+2> x T x Pr(DR1 =i | AN (c = §))
ph2 s
sxg(z 2 2)xT><Pr(DR2 il Ap (e =) (38)

Now, analyzing the relationship between the random variables, we can establish that DR1 and IT are condi-
tionally independent given the random variable c. Indeed, in terms of events, the information A4, does not add
anything about (DR1 = i) if we already know that (¢ = 7). Similarly for (DR2 = i) and Aj; given (¢ = 7). Using
Eq. (8), we can simplify Eq. (38) into

phl 3 s
E(D|c=j)=(1—s)x§<i—2+2> x T x Pr(DR1 =i | ¢ =)
ph2 s
+ '—2+7) TxPr(DR2=i|c=j 39
sx;<z > x T x Pr( il ec=1j%) (39)
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Developing the terms Pr(DR1 = i | ¢ = j) and Pr(DR2 = i | ¢ = j), in the above equation, according to
the definition of conditional probability (Eq. 2) along with Eq. (7), we get the following result.

phl . 3 s 1 ]
. (i—35+3)x T x Pr((DR1 =14)N(c=7j))
E(D ===
Dle=j)=( s)xiz:; P D (DRI = i) (¢ = 7))
phz(i—%+§)xTxPr((DR2=i)ﬂ(c:j))

e 2 PhY Pr((DR2 = i) N (¢ = 7))

We formally verify, in Theorem 4.4, the HOL theorem formalizing Eq. (40).
Theorem 4.4

HVp XDngq IT s L Ts DC1 DC2 DR1 DR2 phl ph2.
(prob_space p) A (events p = POW (p_space p)) A (delay.rv D p) A (1 < k) A
(0O<g<1)AO<L) A<Ts) A(O<s < 1) A (intr_distrrv IT p s L Ts) A
(sn_coversp X p q n) A (indep_rv p IT X Borel Borel) A (1 < phl) A (1 < ph2) A
(delay_rnd_rv DR1 p phl) A (delay DC_rv DC1 DR1 p % s Ts) A
(delay_rnd_rv DR2 p ph2) A (delay DC_rv DC2 DR2 p 2 s Ts) A
(cond_indep_rv p DR1 IT X Borel Borel Borel) A
(cond_indep_rv p DR2 IT X Borel Borel Borel) A
(Vi. 1 < i) A (1 € SUC n) = .

((cond_expec_2 D IT X (ﬂ (&1i) p Dsx = cond_expec_2 DC1 IT X H] (&1) p DCisx) A

(cond_expec_2 D IT X ([ﬂ + 1) (&i) p Dsx =
cond_expec_2 DC2 IT X ([%|+1) (&i) p DC2sx)))
= (Vi. (1 € j) A (j < SUC n) =
AN (1 pht (i—2+£)xTsxPr((DR1=1)N(c=j))
EDle=3)=01-8) x5, S pr((ORI=D)N(e=3)
ph2 (i—2+%)xTsxPr((DR2=1)N(c=j))
s X 2is >0 Pr((DR2=1)N(c=3J)) )

(40)

where

e The assumptions (cond indep_rv p DR1 IT X Borel Borel Borel) and (cond indep_rv p DR2 IT X
Borel Borel Borel) ensure the conditional independence between the different random variables.
e The variables DC1 and DC2, as described in Egs. (36) and (37), are characterized through the HOL function
(delay DC_rv DC DR p a s Ts) which is defined as follows
I VDC DR p a s Ts. delay DC.rv DC DR p a s Ts =
(Vx. x € (p_space p) = (0 < DC x)) A
(DC = ((x. (x - a + ")y » (Normal Ts))) o DR).

e ThevariableDsx = (IMAGE D (p_space p), POW (IMAGE D (p_space p))),and thesameequality applies
to DC1sx and DC2sx for the corresponding variables DC1 and DC2, respectively.

The proof of Theorem 4.4 is quite similar to the proof of Eq. (40) from Eq. (31). In particular, the reasoning was
primarily based on the specification of the above function (delay_DC_rv DC DR p a s Ts) by considering only
positive values, given that it describes the detection delay behavior which can never be negative. In this case, the
terms (7 — % + 3)and (i — 2 + 5) can be shown to be equal 0 for (i = 1), and the correct summation index of the
numerator can be hence proved. Moreover, a lot of reasoning associated with the use of summation including the
proof of injectivity for some functions, and real analysis, was also required.

In Eq. (40), the event “(DR1 = ) N (¢ = j)” indicates that “the intrusion event is detected in the i*" round”
and “there are j covering nodes”. Indeed, if an event, covered with j nodes, is detected in the i** round, then it
means that all the j covering nodes miss the (¢ — 1) consecutive subsets, and the first covering nodes belong to
the subset ¢. Such event is exactly the same as the following event.
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(i=1)
A= (ﬂ Hyj N Hi,j>

m=l1
= (Bi—1; N Hij) (41)
where

e H,, ; and B;_; ; are the same events used in Eq. (23).
o the set of events {B;_1 j, H, 7} is mutually independent.

The probability of the above event (Eq. 41) has been already formally verified in [EHTAI1], and is equal to
(=) = (5]

At the end, we establish that the final average detection delay £(D) (Eq. 30) is

E(D) = f:E(D | c=4)x CJ x (g)j x (1 _ (2))’” w)
j=1
where
E(DIC=j)=(1—s)x§(2_3+2i}:TX[( — ()]

=2 z 1 ( k ) ( )

P2 (i =2+ 35)x T x [(k : 1) _ (k;)]}
h2 i —i\J

S S -
It is important to note that, for space constraints, the final HOL theorem for the verification of the main function
of the average detection delay delay_wsn (Definition 4.5) has been omitted from this paper but an interested
reader can access it from [Ell13].

In this section, we detailed the higher-order-logic formalizations of the detection performances of wireless
sensor networks using the k-set randomized scheduling. The corresponding HOL code is available at [EIl13].

In the next section, we will demonstrate how the resulting universally quantified theorems greatly facilitate the
formal analysis of real-world WSN applications.

+5 % (43)

5. Formal analysis of WSN for border surveillance

Wireless sensor networks have been widely explored for border monitoring applications [ADB*04]. The main goal
of a WSN deployed for border monitoring is to continuously detect intruding elements with a high probability
and a small delay. These systems are useful for the detection of forces or vehicles in a military context [Hew01], or
the prevention of illegal intrusions of migrants or terrorists along a country border. In this context, the potential
harsh nature of the field of interest makes a random deployment by air-dropping sensors much more practical.
In this section, we are interested in formally analyzing the detection performances of a wireless sensor network
deployed for a border monitoring application [XZP*09, SWV*11].

Due to the safety-critical feature of the target application, the deployed WSN has to remain alive as long as
possible while ensuring an efficient detection. Nevertheless, as stated in [ADB*04], most of the existing WSNs
for border monitoring suffer from lifetime limitations, e.g., a REMBASS sensor node, once deployed, can be
functional for 30 days only [HewO1]. In case of using the WSN to monitor terrorist intrusions along a mountainous
border, it is obviously not required to monitor the whole area at all times. Thus, we can use the k-set randomized
scheduling algorithm to preserve energy in a given border monitoring application [XZP*09]. In the specified
application, the nodes have a sensing area r = 30, and are deployed into an area of size a = 10000 m?, whereas,
the success probability ¢ of a sensor covering a point, is ¢ = £ = 0.28.
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In the previous section, we analyzed the detection probability Pr(D) according to the intrusion length L by
distinguishing 2 cases: {L < (k — 1) x Ts)} and {L > (k — 1) x Ts)}. It is important to note that, in the current
application analysis, we focus on the first case; {L < (k — 1) x T's)}, which reflects transient events, that may not
be detected, and is thus the most pertinent part of this analysis. For the other case, i.e., {L > (k — 1) x Ts)},
we have already discussed that the detection probability Pr(D) equals the network coverage, and its asymptotic
behavior has been investigated in [EHTA13].

Based on our theoretical development done in the previous section, we now conduct a formal asymptotic
analysis of the probabilistic detection and delay based on the parameters » and k. For that, we are going to tackle
the generic case and then instantiate it for the given border monitoring application. Hence, we simply denote
(prob p (p_space p DIFF (udset n k s L Ts q))) by (Pdwsn pn k s L Ts q) and (delay_wsn p D
n k g) as (D_wsn p D n k q). In the context of our application, we basically verify two main properties of
interest related to the detection probability of the events of interest and the detection delay. Thus, we easily check
in HOL that (prob p (p_space p DIFF (udset n k s L Ts (0.28)))) equals

L " L "
1—(1—s)x (1 - w x (0.28)) —sx (1 - (Hl”) x (0.28)) (44)

and, the expected detection delay, (delay wsn p D n k (0.28)),is

Zn:E(D | c=3j)x C7 x (0.28) x (1 —(0.28))"~ (45)

J=1

where E(D | ¢ = j) represents the expression specified in Eq. (43). Next, we simply denote Eqs. (44) and (45),
by (Pdsurv pnk s L Ts (0.28)) and (D_surv p D n k (0.28)), respectively. It is important to note
that, for space constraints, and in all the asymptotic analysis below, we only mention the main mathematical
assumptions related to the used variables in the detection probability and delay. Whereas, the complete HOL
code for these asymptotic analysis can be found in [Ell13].

Hence, we formally verify that the detection probability is an increasing function of n, i.e., a larger n value
leads to a better detection probability.

Lemma 5.1

FVYVpkqgqsLTs. (1 <k)A(O<s<1)AO<L A(O<Ts) AL < &k-1)xTs) A
(0 < q < 1) = (mono_incr (An. Pdwsn pn ks L Ts q))).

where mono_incr is the HOL definition of an increasing sequence, which we define as follows.
Definition 5.1
 Vf. mono_incr f & Vn. f n < f (SUC n).

Besides, we formally verify, in Lemma 5.2, that the probability of detecting an intrusion event approaches 1
as the number of deployed nodes becomes very very large.

Lemma 5.2

FVpkqgqsLTs. (1 <k) A(O<s<1) A<L AO<Ts) AL < &k-1)xTs) A
(O<q<1)$lirll (An. Pdwsn pnk sL Ts q) = 1.
n— +0oo

where 1im is the HOL formalization of limit for real sequences.

Similarly, it is also very useful to investigate the delay behavior of the randomized scheduling. Thus, we
formally verify, in Lemma 5.3, that the detection delay D_wsn starts to be decreasing versus the number of
nodes n from a given range, denoted ny. Consequently, D_wsn becomes smaller when a large number of nodes
is deployed. In this case, an intrusion is expected to be detected more quickly, since it is likely that many more
covering nodes are deployed in the surrounding area.
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Lemma 5.3

FV¥YpkqgsLTs. 1 <k)A(O<s<1) AO<L AO<Ts)AO<qg=<1
= (mono_decr_range (An. (real (Dwsn p D n k gq))))).

where the function real is used to convert the detection delay of type extended real to its corresponding real
value, and the HOL function mono_decr_range is specified in Definition 5.2.

Definition 5.2
=V f. mono_decr_range f < (dn0. Vn. n > n0 = f (SUC n) < f n).

Based on Lemmas 5.1 and 5.2, we establish that any target detection probability Pd_wsn can be achieved
by increasing the number of deployed nodes n, for any values of the input variables k, ¢, s, L, and Ts. More
specifically, these results can be easily verified for the detection probability, Pd_surv, in the context of the given
border monitoring application (Lemmas 5.4 and 5.5).

Lemma 5.4

FVpksLTs. (1 <k)AO<s<1)AO<L) AO<Ts) AL < &(k-1)xTs)
= (mono_incr (An. Pd_surv pn k s L Ts (0.28)))).

Lemma 5.5

FVpksLTs. (1 <k)AO<s<1) AO<L) AO<Ts) A(L < &(k-1)xTs)
= lim (An. Pdsurv pn k s L Ts (0.28)) = 1.

n— +o0o

In addition, we reconfirm the result of Lemma 5.3 using Lemma 5.6, i.e., increasing the number of deployed
nodes n gives smaller detection delays and thus a better performance of the deployed application.

Lemma 5.6

FVpksLTs. (1 <k)A(O<s<1)A(O<L) A< Ts)
= (mono_decr_range (An. (real (D_surv p D n k (0.28))))).

According to Lemmas 5.1 and 5.3, enhancing the detection capacities of the deployed WSN, is possible
through the deployment of more nodes. However, random deployment is known to be very costly for most WSN
applications. In the context of a WSN using the k-set randomized scheduling, it is usually possible to improve the
whole detection capacity of the network by simply updating the number of disjoint subsets & by a suitable value.

Based on the parameter &k, we perform now an interesting study of the limiting behavior of the detection
performances. First, we formally verify, in Lemma 5.7, that a smaller £ value induces a larger detection probability
Pd_wsn, i.e., Pd_wsn decreases while increasing the value of k.

Lemma 5.7

FVpkgnsLTs. (1 <n) AO<s<1 AO<L) AO<Ts) AO<qg<1) A
(Vk. L < &(SUC k)xTs) = (mono_decr (Ak. Pdwsn pnk s L Ts q)).

where the HOL function mono_decr defines a decreasing sequence as follows.
Definition 5.3
 Vf. mono_decr f <& Vn. £ (SUC n) < f n.

We formally confirm, in Lemma 5.8, that given a number of nodes n, the detection probability Pd_wsn goes
to 0 when k becomes very large.

Lemma 5.8

F¥YWwkgnsLTs. (1 <n) AO<s<1 AO<L)AO<Ts) AO<qg<1)A
(Vk. L < &(SUC k) xTs) :>klirp (Ak. Pdwsn pnk sL Ts q) = 0.
— +00

Furthermore, we show, in Lemma 5.9, that the detection delay of the randomized scheduling, D_wsn, increases
as the value of £ increases. In other words, the detection delay D_wsn increases when the WSN is divided into a
quite large number of sub-networks k. Indeed, the allocated time slot for each subset would be small, so that the
active nodes do not have enough time to detect the occurring intrusion.
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Lemma 5.9

FVpgqnsLTs. (1 <n)AO<s<1)AO<L) AO<Ts) AO<qg<1)
= (mono_incr (Ak. real (D_wsn p D n k q))).

It is important to note that the original proof of the above lemma in [XZSC07, XCW*10] was missing a whole
fraction term, which is fortunately positive and thus does not finally affect the validity of the function monotonic-
ity.

Now, it is possible to confirm, in the following 2 lemmas, the validity of the generic results given in Lemmas
5.7 and 5.8 for our WSN application.

Lemma 5.10

FVpknsLTs. (1 <n) AO<s<1)A(O<L) AO-<Ts) A ((Vk. L < &(SUC k) xTs)
= (mono_decr (Ak. Pd_surv pn k s L Ts (0.28))).

Consequently, for the border monitoring application, increasing & surely saves more energy, but a significant
increase in £ may induce several sub-networks, which in turns translates to a poor detection probability (Lemma
5.11).

Lemma 5.11

FVpknsLTs. (1 <n)A(O<s<1)A(O<L) AC-<Ts) A (Vk. L < &(SUC k)xTs)
= lim (Ak. Pdsurv pn k s L Ts (0.28)) = 0.
k— +00
Similarly, we check in Lemma 5.12, that a significant increase in £ leads to larger detection delays, i.e., a poor
performance.

Lemma 5.12

FVpnsLTs. (1 <n)A(<s<1)A(O=<L A< Ts)
= (mono_incr (Ak. real (D_surv p D n k (0.28)))).

The randomized scheduling is thus a dynamic approach which provides performance adjustments of the deployed
WSN application according to the value of k.

The randomness in the nodes scheduling approach leads to sub-networks of different sizes with respect to the
number of nodes. Obviously, the ideal case arises when the algorithm makes a fair split of the network so that
all the subsets have the same size, i.e., the same number of nodes which we denote by m. The number of nodes n
can be written hence as k£ x m. In what follows, we closely investigate the asymptotic performance behavior of
the k-set randomized algorithm in the case of a uniform split of the nodes.

In particular, we successfully verify, in Lemma 5.13, the upper limit of the detection probability Pd_wsn when
n = k x m and k goes to infinity.

Lemma 5.13

FVvpmgsLTs. (0<s < 1) AO<L AO<Ts) A (Vk. L < &(SUC k)xTs) A
0 <qgqg<1 :>k1irP (k. Pdwsn p (kxm) k s L Ts q) =
—+00

1—(1—s)><e_(TL*sW qum—sxe_((%ﬂ“)qum.

The proof of the above lemma is based on the important mathematical result limy_,+,,(1 + %)k = e*, which we
have proved beforehand.

Based on Lemma 5.13, the analysis of the above limit versus various parameters such as the intrusion period
L, and the number of nodes per subset m, is now feasible. We hence verify that when m is very large, the detection
probability will surely approach 1. Such result is considered as a second verification of Lemma 5.2 in the specific
case where n = k x m.

Lemma 5.14

FVpgqsLTs. (0<s < 1) AO<UL) AO<Ts) A (Vk. L < &(SUC k)xTs) A
(0 <g< 1 = lim Omn. lim (k. Pdwsn p (kxm) k s L Ts q)) = 1.

m— +00 k— +00
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Finally, we show that the above mentioned two results are also valuable for the given application for border
surveillance through a simple instantiation of the input parameter ¢ by its value. The corresponding HOL analysis
is given in the following 2 lemmas.

Lemma 5.15

FV¥pmsLTs. (0<s < 1) AO<L) A(O<Ts) A (Vk. L < &(SUC k) xTs)
= khIP (Ak. Pd_surv p (kxm) k s L Ts (0.28)) =
—+00

1—(1—s)xe 5 x(0.28) xm—s x e ([£1"1) x (0.28) x m.
Lemma 5.16

FVWpsLTs. (0<s<1) A <L) A <Ts) A (k. L < &(SUC k)xTs)
= lim (Am. lim (ik. Pd_surv p (kxm) k s L Ts (0.28))) = 1.
m— +0oo k—+oo

Unlike traditional analysis techniques for the validation of a WSN for border surveillance, using the k-
set randomized scheduling algorithm, our approach is much more efficient. Indeed, while paper-and-pencil
based analysis or simulation [XZP*09] cannot guarantee the correctness of the scheduling performance results,
the reported theorems in this paper are absolutely accurate. This distinguishing feature is due to the inherent
soundness of theorem proving and its generic nature, e.g., the detection probability for any given values of n
and %k can be computed by instantiating Theorem 4.2 with appropriate values. Contrarily, simulation is usually
restricted to specific network configurations, while probabilistic model checking is frequently using parameter
abstraction in order to cope with the state-space explosion problem. Moreover, for each of the formally verified
theorems, the set of required assumptions is clearly stated so there is no doubt about missing a critical assumption.
Such aspect can never be ensured in simulation and model checking where many assumptions can be taken into
account without explicitly mentioning them.

6. Discussion

In this work, we provided a completely rigourous method for the performance evaluation of the randomized
scheduling algorithm for WSNs through theorem proving. Indeed, the probabilistic feature of the randomized
nodes scheduling algorithm makes its analysis challenging for all possible cases. Since the assignment of the sensor
nodes to the k sub-networks is randomly done, it may happen that some of the sub-networks are empty. Moreover,
due to the random deployment of nodes, the random scheduling can lead to a situation where certain parts of the
area are not monitored at all or simultaneously monitored by many sensors. Rigorous performance evaluation
of such algorithm is a non-trivial task, especially given the non-exhaustive nature of traditional performance
analysis techniques.

Throughout this paper, we developed the formalizations of the detection properties of wireless sensor net-
works using the k-set randomized scheduling within the HOL theorem prover. In Sect. 4, we have been able to
achieve accurate formalizations of the intrusion period of any occurring event, upon which we have built our
formal developments of the detection probability and delay. The practical effectiveness of these higher-order-logic
developments, have been then illustrated, in Sect. 5, through analyzing a WSN for border surveillance, using the
k-set randomized scheduling algorithm.

Due to the undecidable nature of higher-order logic, the development of the detection properties consumed
approximately about 260 man hours and 2,400 lines of code. On the other hand, the formal analysis of our
application took only 400 lines of HOL code for the verification of Lemmas 5.1, 5.2, 5.7 and 5.8. Whereas, the
proofs of the monotonicity of the detection delay versus the two parameters n and k£ in Lemmas 5.3 and 5.9
have been quite tedious and long, and took at their own 1500 lines of HOL code. Indeed, given the complexity
of the mathematical expressions of the detection delay, the HOL analysis of these 2 lemmas was requiring a lot
of real reasoning on the convergence of series and the properties of infinite sums. More specifically, to prove
Lemma 5.3, we have been obliged to consider another mathematical solution since the initial paper-and-pencil
proof [XCW™10] includes some mathematical aspects which were not available in the HOL theories. In addition,
looking for the range from which the detection delay starts to be decreasing versus n, was somewhere tricky.
Regarding the proof of Lemma 5.9, it has been based on computing the derivative of the corresponding real
functions and applying the mean value theorem. Similarly, the proofs of Lemmas 5.13 and 5.14 have been quite
lengthy consuming in total 600 lines of HOL code. Indeed, as we previously mentioned, these proofs required
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the mathematical theorem limy_, 4o (1 + %)k = &%, which was missing in HOL. The latter is based on a lot of real
analysis associated to the definition of the exponential function as a power series and many properties related to
the sequences convergence.

Thanks to the sound support of the probability theory [MHT11] available within the HOL theorem prover,
we have been able to provide an accurate formalization of the detection performance of the k-set randomized
scheduling through an appropriate modelling of its inherent randomness. Based on the discussion, given in Sect. 2
of this paper, it is clear that other analysis techniques can never have this efficiency. Indeed, previous simulation
works are mainly based on pseudo-random modelling. Similarly, compared to probabilistic model checkers, a
major novelty provided in this paper is the ability to perform formal and accurate reasoning about statistical
properties of the problem. Hence, it was possible to verify the detection delay as a statistical measure. Moreover,
the generic nature of theorem proving and the high expressibility of higher-order logic, allows us to set up theorems
for any values for the number of nodes n, the number of disjoint subsets &, the success probability ¢, the intrusion
period L, and the scheduling time slot 7'. Obviously, such generality can never be achieved by simulation and
model checking. Finally, because missing a critical assumption can lead to verification failure within the theorem
prover, the current approach is distinguishable by its completeness regarding the minimum set of assumptions.

On the other hand, the formal performance analysis of the detection behavior of the border surveillance
application distinctly show the usefulness of the theoretical higher-order-logic developments. Furthermore, such
verification enables reliable asymptotic reasoning of the deployed WSN. For example, the missing term in the
proof of Lemma 5.9 clearly highlights the main strength of formal methods guaranteeing accurate and complete
results. It is also important to note that the presented application is a simple case study illustrating the feasibility,
but these results can be valuable for any other WSN application as well.

The above mentioned additional benefits, associated with the theorem proving approach, are attained at the
cost of the time and effort spent, while formalizing the randomized scheduling algorithm and formally reasoning
about its detection properties, by the user. We believe that the main challenge incurred in our work was to
map a probabilistic model of a real WSN algorithm [XCW™*10, LWXS06], which is far from a pure mathematical
problem, into higher-order logic. Indeed, many difficulties were faced in this work. The mathematical modelling of
real-world systems is commonly very intuitive. The initial theoretical model [XCW*10, LWXS06] hence included
many hidden steps with few attached explanations either when considering the random variables or when applying
the probability rules. We have thus to reason correctly about all missing steps so that we can first understand the
flow of the theoretical analysis, and achieve then the higher-order-logic formalizations of the detection attributes.
At this stage, a good background on probability and a solid knowledge of the WSN context is usually required
for a deep understanding of the probabilistic reasoning. Additionally, the assumptions of the original model are
never presented exhaustively, whereas, a complete set is essential for a successful verification. Nevertheless, the
fact that we were building on top of already verified probability theory related results helped significantly to keep
the amount of proof efforts reasonable.

7. Conclusions

This paper presents an approach for the formal analysis of the detection performances of wireless sensor networks
using the k-set randomized scheduling to preserve energy. In particular, we formalized the notions of intrusion
period, detection probability and delay using the measure theoretic formalization of probability theory in the
HOL theorem prover. This formalization allows to formally verify the detection related characteristics of most
WSNs using the k-set randomized scheduling. In order to illustrate the practical effectiveness of our foundational
results, we utilize them to perform the formal probabilistic analysis of a WSN application for border surveillance.
The obtained results are exhaustive and completely generic, i.e., valid for all parameter values; a result which
cannot be attained in simulation or probabilistic model checking based approach. Moreover, unlike most of
the existing work that focuses on the validation of the functional aspects of WSN algorithms, our work is
distinguishable by addressing the performance aspects. Finally, the proposed approach described in this paper
can be generalized to tackle the formal analysis of the same randomized scheduling under other assumptions,
or even other probabilistic problems in the WSN context. Indeed, the presented formalizations can be valuable
for formally verify the same algorithm with, for example, a modified shape of the intrusion object [XZP*09]. In
addition, the higher-order-logic formalizations of some common random variables such as Bernoulli or Binomial
can be very useful for the formal analysis of any probabilistic analysis problem.
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This work lays also an interesting foundation for our future work on the higher-order-logic formalization
of the lifetime properties of WSNs using the k-set randomized scheduling. Similarly, once the formal reasoning
support of the lifetime aspect is developed in the HOL theorem prover, the performance of other interesting WSN
applications, such as underwater monitoring, can also be formally analyzed.
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