
Formal Methods in System Design, 27, 173–200, 2005
c© 2005 Springer Science + Business Media, Inc. Manufactured in The Netherlands.

Formalization of Fixed-Point Arithmetic in HOL

BEHZAD AKBARPOUR behzad@ece.concordia.ca
SOFIÈNE TAHAR tahar@ece.concordia.ca
ABDELKADER DEKDOUK dekdouk@ece.concordia.ca
Department of Electrical and Computer Engineering, Concordia University, 1455 de Maisonneuve W., Montreal,
Quebec, H3G 1M8, Canada

Abstract. This paper addresses the formalization in higher-order logic of fixed-point arithmetic. We encoded
the fixed-point number system and specified the different quantization modes in fixed-point arithmetic such as
the directed and even quantization modes. We also considered the formalization of exceptions detection and their
handling like overflow and invalid operation. An error analysis is then performed to check the correctness of the
quantized result after carrying out basic arithmetic operations, such as addition, subtraction, multiplication and
division against their mathematical counterparts. Finally, we showed by an example how this formalization can
be used to enable the verification of the transition from floating-point to fixed-point algorithmic level in the signal
processing design flow.

Keywords: fixed-point arithmetic, floating-point arithmetic, theorem-proving, HOL

1. Introduction

Modern signal processing chips, such as integrated cable modems and wireless multimedia
terminals, are described with algorithms in floating-point precision. Often, the architectural
style with which these algorithms are implemented is precision-limited, and relies on a fixed-
point representation. This requires a translation of the specification from floating-point to
fixed-point precision. This implementation is optimized following some application specific
trade-offs such as speed, cost, area and power consumption of the chip. The optimization
task is tedious and error prone due to the effects of quantization noise introduced by the
limited precision of fixed-point representation. An overview of a conventional digital signal
processing (DSP) design flow is depicted in figure 1 [23].

Usually the conformance of the fixed-point implementation with respect to the floating-
point specification is verified by simulation techniques which cannot cover the entire input
space yielded by the floating-point representation. The objective of this work is to formalize
the fixed-point arithmetic in higher-order logic as a basis for checking the correctness of the
implementation of DSP designs against higher level algorithmic descriptions in floating-
point and fixed-point representations.

Unlike floating-point arithmetic which is standardized in IEEE-754 [18] and IEEE-854
[19], current fixed-point arithmetic does not follow any particular standard and depends on
the tool and the language used to design the DSP chip. Examples of such tools are SPW
(Cadence) [7], Matlab-Simulink (Mathworks) [25], CoCentric (Synopsys) [37], and DSP
Station (Mentor Graphics) [27]. For instance, in SPW (Signal Processing Worksystem), a



174 AKBARPOUR, TAHAR AND DEKDOUK

Figure 1. DSP design flow.

fixed-point number is defined as a binary string and a set of attributes. Attributes specify
how the binary string is interpreted using three arguments for the total number of bits, the
number of integer bits, and the sign format. For arithmetic operations, it supports three kinds
of exceptions such as loss-of-sign or overflow, two overflow modes, and five quantization
modes. In Matlab Simulink Fixed-Point Blockset [26], fixed-point numbers are stored in
data types that are characterized by their word size (up to 128 bits), a radix point, and whether
they are signed or unsigned. The radix point is used to support integers, fractionals, and
generalized fixed-point data types. The Matlab Blockset provides four quantization modes
corresponding to those supported by SPW. It also supports saturation and wrapping to deal
with overflow for all fixed-point data types. Another example is the Synopsys CoCentric
tool, which uses fixed-point as described in the SystemC language [33]. It supports signed
and unsigned fixed-point data types, as well as limited precision (53 bits mantissa) fixed-
point, called fast fixed-point to speed up simulation. SystemC supports seven quantization
modes, of which four correspond exactly to the quantization modes of SPW. The other
three modes are specific to SystemC and are not supported by the other tools. SystemC
supports five overflow modes covering those of SPW. With the objective of providing a
general methodology for the formalization and verification of fixed-point arithmetic using
higher-order logic, we define in this paper a complete common set of fixed-point arithmetic
as supported by most of the DSP tools, in particular SPW and SystemC.



FORMALIZATION OF FIXED-POINT ARITHMETIC IN HOL 175

Based on higher-order logic, we propose to encode a fixed-point number by a pair com-
posed of a Boolean word, and a triplet indicating the word length, the length of the integer
portion, and the sign format. Then, we formalize the concepts of valuation and quantization
as functions that convert respectively a fixed-point number to a real number and vice versa,
taking into account different quantization and overflow modes. Fixed-point arithmetic oper-
ations are formalized as functions performing operations on the real numbers corresponding
to the fixed-point operands and then applying the quantization on the real number result.
Finally, we prove various lemmas regarding the error analysis of the fixed-point quantiza-
tion and correctness of the basic operations like addition, multiplication, and division. The
higher-order logic formalization and proof were done using the HOL theorem prover [12].
They were developed into a full fixed-point arithmetic library, which was recently included
in the last release of HOL (HOL4, Kananaskis-3).

The rest of the paper is organized as follows: Section 2 gives a review on work related to
the formalization of floating-point arithmetic, some of which directly influenced our work.
Section 3 describes the fixed-point arithmetic definitions adopted in this paper including
the format of the fixed-point numbers, arithmetic operations, exceptions detection and their
handling, and the different overflow and quantization modes. Section 4 describes in detail
their formalization in HOL. In Section 5, we discuss the verification of basic fixed-point
arithmetic operations, such as addition and multiplication. Section 6 presents an illustrative
example on how this formalization can be used through the modeling and verification of an
Integrator circuit. Finally, Section 7 concludes the paper.

2. Related work

There exist several related work in the open literature on the formalization and verification
of IEEE standard based floating-point arithmetic. For instance, Barrett [2] specified parts
of the IEEE-754 standard in Z, and Miner [29] formalized the IEEE-854 floating-point
standard in PVS. The latter defined the relation between floating-point numbers and real
numbers, rounding, and some arithmetic operations on both finite and infinite operands. He
used this formalization to verify abstract mathematical descriptions of the main operations
and their relation to the corresponding floating-point implementations. His work was one
of the earliest on the formalization of floating-point standards using theorem proving. His
formal specification was then used by Miner and Leathrum [30] to verify in PVS a general
class of IEEE compliant subtractive division algorithms.

Carreno [8] formalized the same IEEE-854 standard in HOL. He interpreted the lexical
descriptions of the standard into mathematical conditional descriptions and organized them
in tables, which were then formalized in HOL. He discussed different standard aspects such
as precisions, exceptions and traps, and many other arithmetic operations such as addition,
multiplication, and square-root of floating-point numbers.

Harrison [13] constructed the real numbers in HOL. He then developed in HOL a generic
floating-point library [14] to define the most fundamental terms of the IEEE-754 stan-
dard and to prove the corresponding correctness analysis lemmas. He used this library
to formalize and verify floating-point algorithms of complex arithmetic operations such
as the square root, the exponential function [15], and the transcendental functions [16]



176 AKBARPOUR, TAHAR AND DEKDOUK

against their abstract mathematical counterparts. He also used the floating-point library
for the verification of the class of division algorithms used in the Intel IA-64 architecture
[17].

Moore et al. [31] have verified the AMD-K5 floating-point division algorithm using the
ACL2 theorem prover. Also, Russinoff [35] has developed a floating-point library for the
ACL2 prover and applied it successfully to verify the floating-point multiplication, division,
and square root algorithms of the AMD-K5 and AMD Athlon processors.

Aagaard and Seger [1] combined BDD-based model-checking and theorem proving tech-
niques in the Voss hardware verification system to verify the IEEE compliance of the
gate-level implementation of a floating-point multiplier. O’Leary et al. [34] reported on the
specification and verification of the Intel Pentium©R Pro processor’s floating-point execution
unit at the gate level using a combination of model-checking and theorem proving. Leeser
et al. [24] verified a subtractive radix-2 square root algorithm and its hardware implemen-
tation using the higher-order logic theorem proving system Nuprl. Chen and Bryant [10]
used word-level SMV to verify a floating-point adder. Cornea-Hasegan [9] used iterative
approaches and mathematical proofs to verify the correctness of the IEEE floating-point
square root, divide, and remainder algorithms.

More recently, Daumas et al. [11] have presented a generic library for reasoning about
floating-point numbers within the Coq system. This library was then used in the verification
of IEEE-compliant floating-point arithmetic algorithms [5] and hardware units [6]. Berg
et al. [3] have formally verified a theory of IEEE rounding presented in [32] using the
theorem prover PVS. They have used a formal definition of rounding based on Miner’s
formalization of the standard [29]. This theory was then used to prove the correctness of
a fully IEEE compliant floating-point unit used in the VAMP processor [4]. Sawada and
Gamboa [36] formally verified the correctness of a floating-point square root algorithm used
in the IBM Power4T M processor. The verification was carried out with the ACL2(r) theorem
prover which is an extension of the ACL2 theorem prover that performs reasoning on real
numbers using non-standard analysis. The proof required the analysis of the approximation
error on Chebyshev series by proving Taylor’s theorem. Kaivola et al. [20–22] presented
the formal verification of the floating-point multiplication, division, and square root units of
the Intel IA-32 Pentium©R 4 microprocessor. The verification was carried out using the Forte
verification framework, a combined model-checking and theorem-proving system built on
top of the Voss system. Model checking was done via symbolic trajectory evaluation (STE),
and theorem proving was done in the ThmTac proof tool.

While all of the above work are concerned with floating-point representation and arith-
metic, there is no report in the open literature on any machine-checked formalization of
properties of fixed-point arithmetic. Therefore, the formalization presented in this paper is
to our best knowledge, the first of its kind. Our formalization of the fixed-point arithmetic
has been inspired mostly by the work done by Harrison [15] and Carreno [8] on floating-
point. Harrison’s work was more oriented towards verification purposes. Indeed, we used
an analogous set of lemmas to his work, to check the validity of operation results and to
carry out the error analysis of the quantized fixed-point result. For exception handling which
is not covered by Harrison [15], we followed Carreno [8] who formalized floating-point
exceptions and their handling in more details.



FORMALIZATION OF FIXED-POINT ARITHMETIC IN HOL 177

3. Fixed-point arithmetic

In this section we describe the fixed-point arithmetic definitions on which we base our
formalization. While we tried to keep these definitions as general as possible, the fixed-point
numbers format, arithmetic operations, overflow and quantization modes, and exception
handling adopted are to some extent influenced by the fixed-point arithmetic defined by
Cadence SPW [7] and Synopsys SystemC [33].

3.1. Fixed-point numbers

A fixed-point number has a fixed number of binary digits and a fixed position for the decimal
point with respect to that sequence of digits. Fixed-point numbers can be either unsigned
(always positive) or signed (in two’s complement representation). For example, consider
the case of four bits being used to represent the fixed-point numbers. If the numbers are
unsigned and if the decimal point or, more properly, the binary point is fixed at the position
after the second digit (XX.XX), the representable real values range from 0.0 to 3.75. In two’s
complement format, the most significant bit is the sign bit. The remaining bits specify the
magnitude. If four bits represent the fixed-point numbers, and the binary point is fixed at
the position after the second digit following the sign bit (SXX.X), the real values range from
−4.0 to +3.5.

Fixed-point numbers are expressed as a pair consisting of a binary string and a set
of attributes, (Binary String, Attributes). The attributes specify how the binary string is
interpreted. Generally, the attributes are specified in the following format:

(wl, iwl, sign) (1)

which consists of the following parameters:

• wl: Total word length, specifying the total number of bits used to represent the fixed-point
binary string, including integer bits, fractional bits, and sign bit, if any. Word length must
be in the range of 1 to 256.

• iwl: Integer word length, specifying the number of integer bits (the number of bits to
the left of the binary point, excluding the sign bit, if any). If this number is negative,
repeated leading sign bits or zeros are added to generate the equivalent binary value. If
this number is greater than the total word length, trailing zeroes are added to generate
the equivalent binary value.

• sign: A letter specifying the sign format: “u” for unsigned, and “t” for two’s complement.

Example. According to the above definitions, the real value −0.75 is represented by
(111101, (6, 3, t)). If we consider the same bit string with unsigned attributes (111101,
(6, 3, u)), then the equivalent number is 111.101 or +7.625. On the other hand, (111101,
(6, −3, u)) represents the value .000111101 which is +0.119140625.



178 AKBARPOUR, TAHAR AND DEKDOUK

3.2. Fixed-point operations

A DSP design tool usually provides a library including basic fixed-point signal processing
blocks such as adders, multipliers, delay blocks, and vector blocks. It also supports fixed-
point hardware blocks such as multiplexers, buffers, inverters, flip-flops, bit manipulation
and general-purpose combinational logic blocks. These blocks accurately model the be-
havior of fixed-point digital signal processing systems. In this paper, we will focus on the
arithmetic and logic operations, but the idea can be generalized to the remaining operations.
Operations performed on fixed-point data types are done using arbitrary and full precision.
After the operation is complete, the resulting operand is cast to fit the fixed-point data type
object. The casting operation applies the quantization behavior of the target object to the
new value and assigns the new value to the target object. Then, the appropriate overflow
behavior is applied to the result of the process which gives the final value. In addition to the
parameters corresponding to the input operands and output result, the arithmetic operations
take specific parameters defining the overflow and quantization (loss of precision) modes.
These parameters are as follows:

• q mode: Quantization mode. This parameter determines the behavior of the fixed-point
operations when the result generates more precision in the least significant bits (LSB)
than is available.

• o mode: Overflow mode. This parameter determines the behavior of the fixed-point
operations when the result generates more precision in the most significant bits (MSB)
than is available.

• n bits: Number of saturated bits. This parameter is only used for overflow mode and
specifies how many bits will be saturated if a saturation behavior is specified and an
overflow occurs.

Example. Consider a block that serves as a primitive fixed-point multiplier, which trun-
cates the results when loss of precision occurs and wraps the result when overflow occurs.
We can make a call to the multiplier routine through the function fxpMul (Wrap | Truncate,
In1, In2, Out), in which In1 and In2 are the input fixed-point operands, Out is a parameter
corresponding to the output attributes, and Wrap and Truncate indicate the overflow and
quantization modes, respectively.

3.2.1. Fixed-point exception handling. Fixed-point arithmetic operations that do not com-
pute and return an exact result resort to an exception-handling procedure. This procedure is
controlled by the exception flags. There are three kinds of exceptions that can be tested [7]:

• Loss of sign: The result was negative but the result storage area was unsigned. Zero is
stored.

• Overflow: The result was too big to be represented in the result storage area. The overflow
mode determines the returned value.

• Invalid: No result can be meaningfully represented (e.g., divide by zero). This error can
also occur if the fixed-point number itself is invalid.



FORMALIZATION OF FIXED-POINT ARITHMETIC IN HOL 179

Table 1. Fixed-point quantization modes.

Quantization mode Name

Quantization to Plus Infinity RND

Quantization to Zero RND ZERO

Quantization to Minus Infinity RND MIN INF

Quantization to Infinity RND-INF

Convergent Quantization RND CONV

Truncation TRN

Truncation to Zero TRN ZERO

3.2.2. Fixed-point quantization modes. Quantization effects are used to determine what
happens to the LSBs of a fixed-point type when more bits of precision are required than are
available. The quantization modes are listed in Table 1.

Figure 2 shows the behavior of each quantization mode. The X axis is the result of the
previous arithmetic operation and the Y axis is the value after quantization. The diagonal
line represents the ideal number representation given infinite bits. The small horizontal
lines show the effect of the quantization. Any value of the X axis within the range of the
line will be converted to the value of the Y axis. The symbol q in the figure refers to the
quantization step, that is, the resolution of the data type. Each non integer value on the X
axis is located in a quantization interval surrounded by two successive integer multiples
of q as its closest representable quantized numbers, one greater and one smaller than the
original value. If the value is exactly in the middle of the quantization interval, then the

Figure 2. The behavior of fixed-point quantization modes.



180 AKBARPOUR, TAHAR AND DEKDOUK

Table 2. Fixed-point overflow modes.

Overflow mode Name

Saturation SAT
Saturation to Zero SAT ZERO
Symmetrical Saturation SAT SYM
Wrap-Around WRAP
Sign Magnitude Wrap-Around WRAP SM

two closest representable numbers are equally distanced apart from the original value. As
shown in this figure modes RND, RND ZERO, RND MIN INF, RND INF, and RND CONV
will quantize a value to the closest representable number if the two nearest representable
numbers are not equally distanced apart from the original value. Otherwise, quantization
towards plus infinity, to zero, towards minus infinity, towards plus infinity if positive or
minus infinity if negative, and towards nearest even will be performed, respectively (figure
2(a)–(e)). The TRN mode is the default for fixed-point types and will be used if no other
value is specified. The result is always quantized towards minus infinity (figure 2(f)). In
other words, the result value is the first representable number lower than the original value.
Finally, for TRN ZERO the result is the nearest representable value to zero (figure 2(g))
[33].

3.2.3. Fixed-point overflow modes. In addition to quantization modes, we can use overflow
modes to approximate a higher range for fixed-point operations. Usually, overflow occurs
when the result of an operation is too large or too small for the available bit range. Specific
overflow modes can then be implemented to reduce the loss of data. Overflow modes are
specified by the o mode and n bits parameters, and are listed in Table 2.

Figure 3 shows the behavior of each overflow mode for a 3 bit fixed-point data type. The
diagonal line represents the ideal value if infinite bits are available for representation. The
dots represent the values of the result. The X axis is the original value and the Y axis is the
result. From this figure, it can be seen that MAX = 3 and MIN = −4 for a 3 bit fixed-point
data type. The SAT mode will convert the specified value to MAX for an overflow or MIN for
an underflow condition (figure 3(a)). The SAT ZERO mode will set the result to 0 for any
input value that is outside the representable range of the fixed-point type. If the result value
is greater than MAX or smaller than MIN, the result will be 0 (figure 3(b)). In the SAT SYM
mode, positive overflow will generate MAX and negative overflow will generate −MAX
for signed numbers or MIN for unsigned numbers (figure 3(c)). With the WRAP mode, the
value of an arithmetic operand will wrap around from MAX to MIN as MAX is reached.
There are two different cases within this mode. The first is with the n bits parameter set
to 0 or having a default value of 0. All bits except for the deleted bits are copied to the
result number (figure 3(d)). The second is when the n bits parameter is a nonzero value.
In this case the specified number of most significant bits of the result number are saturated
with preservation of the original sign, the other bits are simply copied. Positive numbers
remain positive and negative numbers remain negative. A graph showing this behavior with



FORMALIZATION OF FIXED-POINT ARITHMETIC IN HOL 181

Figure 3. The behavior of fixed-point overflow modes.

n bits = 1 is given in figure 3(e). Note that positive numbers wrap around to 0 while negative
values wrap around to −1. The WRAP SM overflow mode uses sign magnitude wrapping.
This overflow mode behaves in two different styles depending on the value of the n bits
parameter. When n bits is 0, no bits are saturated. This mode will first delete any MSB
bits that are outside the result word length. The sign bit of the result is set to the value of
the least significant deleted bit. If the most significant remaining bit is different from the
original MSB, then all the remaining bits are inverted. If the MSBs are the same, the other
bits are copied from the original value to the result value. A graph showing the result of
this overflow mode is provided in figure 3(f). As the value of X increases, the value of Y
increases to MAX and then slowly starts to decrease until MIN is reached. The result is a
sawtooth like waveform. With n bits greater than 0, n bits MSB bits are saturated to 1. A
graph showing this behavior with n bits = 1 is given in figure 3(g). Note that while the
graph looks somewhat like a sawtooth waveform, positive numbers do not dip below 0 and
negative numbers do not cross −1 [33].



182 AKBARPOUR, TAHAR AND DEKDOUK

Table 3. HOL symbols.

HOL symbol Standard symbol Meaning

@x .t εx .t An x such that t (x) holds

λx .t λx .t Function that maps x to t (x)

& (none) Natural map operator (N → R)

¬ t ¬ t Not t

¬ x −x Unary negation of x

inv (x) x−1 Multiplicative inverse of x

abs (x) |x | Absolute value of x

x pow n xn Real x raised to natural number power n

m E X P n mn Natural number m raised to exponent n

4. Formalizing fixed-point arithmetic in HOL

In this section, we present formalization of the fixed-point arithmetic in higher-order logic,
based on the general purpose HOL theorem prover. The HOL system supports both forward
and backward proofs. The forward proof style applies inference rules to existing theorems to
obtain new theorems and eventually the desired theorem. Backward or goal oriented proofs
start with the goal to be proven. Tactics are applied to the goal and subgoals until the goal is
decomposed into simpler existing theorems or axioms. The system basic language includes
the natural numbers and Boolean type. It also includes other specific extensions like reals
library [13], which was proved to be essential for our fixed-point arithmetic formalization.
Table 3 summarizes some of the HOL symbols used in this paper and their meanings [12].

The HOL type system does not support subtypes, so the real numbers (R) have formally
a different type from the natural numbers (N). Therefore, the unary operator ampersand
(&) is used to map between them. Thus the real number numerals can be written as &0,
&1, etc. [15].

4.1. Fixed-point numbers representation

The actual fixed-point numbers are represented in HOL by a pair of elements representing
the binary string and the set of attributes. The extractors for the two fields of a fixed-point
number are defined as follows:

�de f string (s,a) = s
�de f attrib (s,a) = a

The binary string is treated as a Boolean word (type: bool word). For example, the bit
string 1010 is represented by WORD [T;F;T;F]. In this way, we use the definitions and
theorems already available in the HOL word library [39] to facilitate the manipulation of
binary words. The attributes are represented by a triplet of natural numbers for the total
number of bits, the integer bits and the sign format.



FORMALIZATION OF FIXED-POINT ARITHMETIC IN HOL 183

In HOL, we define functions to extract the primitive parameters for arbitrary attributes.

�de f wordlength (w,iw,s) = w
�de f intbits (w,iw,s) = iw
�de f sign (w,iw,s) = s

We also define predicates partitioning the fixed-point numbers into signed and unsigned
numbers.

�de f is signed X = (sign X = 1)
�de f is unsigned X = (sign X = 0)

The number of digits on the right hand side of the binary point of a fixed-point number
is defined as fracbits. It can be derived as the difference between the total number of bits
and the number of integer bits, considering the sign bit in the case of signed numbers.

�de f (fracbits X) =
if (is unsigned X) then (wordlength X - intbits X)
else (wordlength X − intbits X − 1)

Two useful derived predicates test the validity of a set of attributes and a fixed-point
number based on the definition in Section 3.1. In a valid set of attributes, the wordlength
should be in the range of 1 and 256, the sign can be either 0 or 1, and the number of integer
bits is less than or equal to the wordlength. A valid fixed-point number must have a valid
set of attributes and the length of its binary string must be equal to the wordlength.

�de f validAttr X =
wordlength X > 0 ∧ wordlength X < 257 ∧
intbits X < wordlength X + 1 ∧ sign X < 2

�de f is valid a =
validAttr (attrib a) ∧ (WORDLEN (string a) = wordlength
(attrib a))

where WORDLEN is a predefined function of the HOL word library, which returns the size
of a word.

4.2. Fixed-point type

Now we define the actual HOL type for the fixed-point numbers. The type is defined to be
in bijection with the appropriate subset of (bool word × N

3), with the bijections written in
HOL as fxp: (bool word × N

3) → fxp, and defxp: fxp → (bool word × N
3). The bijection

maps the set of all elements of type (bool word × N
3) to the set of valid fixed-point numbers

specified by the function is valid as defined in the previous section. For this purpose, we
make use of built-in facilities in HOL for defining new bijection types [38]. A similar
technique was used in [15] for defining type bijections for the floating-point numbers (float,
defloat) in HOL.



184 AKBARPOUR, TAHAR AND DEKDOUK

fxp tybij =
� (∀a. fxp (defxp a) = a) ∧ (∀r. is valid r = (defxp (fxp r) = r))

We specialize the previous functions and predicates to the fxp type, as follows:

�de f String a = string (defxp a)
�de f Attrib a = attrib (defxp a)
�de f Wordlength a = wordlength (Attrib a)
�de f Intbits a = intbits (Attrib a)
�de f Fracbits a = fracbits (Attrib a)
�de f Sign a = sign (Attrib a)
�de f Issigned a = is signed (Attrib a)
�de f Isunsigaed a = is unsigned (Attrib a)
�de f Isvalid a = is valid (defxp a)

Note that we start the name of the functions manipulating fixed-point numbers by capital
letters to distinguish them from those taking pairs and triplets as argument.

4.3. Fixed-point valuation

Now we specify the real number valuation of fixed-point numbers. We use two separate
formulas for signed and unsigned numbers:

• Unsigned:

(1/2M ) ∗
(

N−1∑
n=0

2n ∗ vn

)
(2)

• Signed:

(1/2M ) ∗
[

N−1∑
n=0

2n ∗ vn − 2N ∗ vN − 1

]
(3)

where vn represents the nth bit of the binary string in the fixed-point number,1 and M and
N are respectively fracbits and wordlength. In HOL, we define the valuation function value
that returns the corresponding real value of a fixed-point number.

�de f value a =
if (Isunsigned a) then &(BNVAL (String a))/2 pow Fracbits a
else (&(BNVAL (String a)) − &((2 EXP Wordlength a) *

BV (MSB (String a))))/2 pow Fracbits a



FORMALIZATION OF FIXED-POINT ARITHMETIC IN HOL 185

where BNVAL is a function which returns the numeric value of a Boolean word, BV is a
function for mapping between a single bit and a number, and MSB is a constant for the most
significant bit of a word, available in the HOL word library.

We also define the real value of the smallest (MIN) and largest (MAX) representable
numbers for a given set of attributes. The maximum is defined for both signed and unsigned
numbers using the following formula:

MAX = 2a − 2−b (4)

where a is the intbits and b the fracbits. The minimum value for unsigned numbers is zero
and for signed numbers is computed using the following formula:

MIN = −2a (5)

Thereafter, we obtain the corresponding functions in HOL.

�de f MAX X = 2 pow intbits X − inv (2 pow fracbits X)
�de f MIN X = if (is unsigned X) then 0 else ¬(2 pow intbits X)

The constants for the smallest (bottomfxp) and largest (topfxp) representable fixed-point
numbers for a given set of attributes can be defined as follows:

�de f topfxp X =
if (is unsigned X) then fxp (WORD (REPLICATE (wordlength X) T),
X)
else fxp (WCAT (WORD [F], WORD (REPLICATE (wordlength X− 1) T)),
X)

�de f bottomfxp X =
if (is unsigned X) then fxp (WORD (REPLICATE (wordlength X) F),
X)
else fxp (WCAT (WORD [T], WORD (REPLICATE (wordlength X− 1) F)),
X)

where WCAT denotes the concatenation of two words, and REPLICATE makes a list con-
sisting of a value replicated a specified number of times, which are predefined functions in
HOL.

4.4. Exception handling

Operations on fixed-point numbers can signal exceptions as described in Section 3.2. These
are declared as a new HOL data type.

�de f Exception = no except | overflow | invalid | loss sign



186 AKBARPOUR, TAHAR AND DEKDOUK

where no-except is reserved for the case without exception.
Five overflow modes are also represented via an enumerated type definition.

�de f overflow mode = SAT | SAT ZERO | SAT SYM | WRAP | WRAP SM

According to the definition of overflow modes in Section 3.2.3 for Saturation, if the number
is greater than MAX or less than MIN, we return topfxp and bottomfxp, as the closest
representable values to the right result, respectively. For Saturation to Zero overflow, we
will return zero in any case. For Symmetrical Saturation, if the number is greater than
MAX, we return topfxp. If the number is less than MIN, we return the two’s complement
of the maximum value, defined by the function minustopfxp for signed, and bottomfxp
for unsigned numbers, respectively. For Wrap-around and Sign magnitude, we must first
convert the real number to a binary format. Then we discard the extra bits according to the
output attributes, and saturate the required bits based on the parameter n bits. The details
are defined as functions WRAP AROUND and WRAP AROUND SM. Therefore, we define
the fixed-point overflow function in HOL as follows:

�de f fxp overflow X o mode n bits x =
if (x > MAX X) then

if (o mode = SAT) then topfxp X
else if (o mode = SAT ZERO) then

fxp (WORD (REPLICATE (wordlength X) F), X)
else if (o mode = SAT SYM) then topfxp X
else if (o mode = WRAP) then

WRAP AROUND X n bits x
else WRAP AROUND SM X n bits x

else if (x < MIN X) then
if (o mode = SAT) then bottomfxp X
else if (o mode = SAT ZERO) then

fxp (WORD (REPLICATE (wordlength X) F), X)
else if (o mode = SAT SYM) then

if (is unsigned X) then bottomfxp X
else minustopfxp X

else if (o mode = WRAP) then
WRAP AROUND X n bits x

else WRAP AROUND SM X n bits x
else Null

where Null is a constant that represents the result of an invalid operation, defined as:

�de f Null = @a. ¬ (Isvalid a)

Note that if the number is in the representable range of the given attributes, i.e. its value
is neither greater than MAX nor less than MIN, then the overflow is meaningless and Null
will be returned as the result.



FORMALIZATION OF FIXED-POINT ARITHMETIC IN HOL 187

4.5. Quantization

Fixed-point quantization takes an infinitely precise real number and converts it into a fixed-
point number. Seven quantization modes are specified in Section 3.2.2, which we formalize
using the following data type.

�de f quantization mode =
RND | RND ZERO | RND MIN INF | RND INF | RND CONV | TRN | TRN ZERO

Then we define the fixed-point quantization operation by a function, which is defined case
by case on the quantization modes as follows:

�de f fxp quantize X q mode x =
if (q mode = RND) then

closest value (λ a. value a ≥ x)
{a | (Isvalid a) ∧ (Attrib a = X)} x

else if (q mode = RND ZERO) then
closest value (λ a. abs (value a) ≤ abs x)
{a | (Isvalid a) ∧ (Attrib a = X)} x

else if (q mode = RND MIN INF) then
closest value (λ a. value a ≤ x)
{a |(Isvalid a) ∧ (Attrib a = X)} x

else if (q mode = RND INF) then
closest value
(λ a. (if 0 ≤ x then value a ≥ x else value a ≤ x))
{a |(Isvalid a). ∧ (Attrib a = X)} x

else if (q mode = RND CONV) then
closest value (λ a. LSB (String a) = F)
{a |(Isvalid a) ∧ (Attrib a = X)} x

else if (q mode = TRN) then
closest value (λ a. T)
{a λ(Isvalid a) ∧ (Attrib a = X) ∧ (value a x)} x

else closest value (λ a. T)
{a | (Isvalid a) ∧ (Attrib a = X) ∧
(abs (value a) ≤ abs x)} x

The fixed-point quantization function takes as arguments a real number, a quantization
mode, and an output attributes, and returns the corresponding fixed-point number. Similar
to the floating-point case [15], its definition is based on the following predicate meaning
that a is an element of the set s that provides a best approximation to x , assuming a valuation
function v:

�de f is closest v s x a =
((a IN s) ∧ ∀b. (b IN s) ⇒ (abs (v a - x) ≤ abs (v b - x)))



188 AKBARPOUR, TAHAR AND DEKDOUK

However, we still need to define a function that picks out a best approximation in case
there are more than one closest number, based on a given property like even. This can be
done in HOL as follows:

�de f closest v p s x =
@a. ((is closest v s x a) ∧

((∃b, (is closest a s x b) ∧ (p b)) ⇒ (p a)))

Finally, we define the actual fixed-point rounding function for an arbitrary output at-
tributes.

�de f fxp round X o mode q mode n bits x =
if (x > MAX X V x < MIN X) then

((fxp overflow X o mode a bits x), overflow)
else ((fxp quantize X q mode x), no except)

where fxp overflow is the fixed-point overflow function as defined in the previous section
and supports all overflow modes, and fxp quantize is the fixed-point quantization function
that supports all quantization modes. The fixed-point rounding function takes as argument
a real number, an output attributes, the quantization and overflow modes, and the number
of saturated bits. It returns a fixed-point number and an exception flag. The function first
checks for overflow, and in case of overflow returns the result based on the overflow mode,
and sets the exception flag to overflow. Otherwise, it performs the quantization based on
the quantization mode, and sets the exception flag to no except.

4.6. Fixed-point arithmetic operations

Fixed-point arithmetic operations such as addition or multiplication take two fixed-point
input operands and store the result into a third. The attributes of the inputs and output
need not match one another. Both unsigned and two’s complement inputs and output are
allowed. The result is formatted into the output as specified by the output attributes and by
the overflow and loss of precision mode parameters. In our formalization, we first deal with
exceptional cases such as invalid operation and loss of sign. If any of the input numbers
is invalid, then the result is Null and the exception flag invalid is raised. If the result is
negative but the output is unsigned then zero is returned and the exception flag loss sign
is raised. Also in the case of division by zero, the output value is forced to zero and the
invalid flag is raised. Otherwise, we take the real value of the input arguments, perform the
operation as infinite precision, then quantize the result according to the desired quantization
and overflow modes. Formally, the operations for addition, subtraction, multiplication, and
division are defined as follows:

�de f fxpAdd X o mode q mode n bits a b =
if ¬(Isvalid a ∧ Isvalid b) then (Null,invalid)
else if (value a + value b < 0 ∧ is unsigned X) then



FORMALIZATION OF FIXED-POINT ARITHMETIC IN HOL 189

(fxp (WORD (REPLICATE (wordlength X) F), X), loss sign)
else fxp round X o mode q mode u bits (value a + value b)

�de f fxpSub X o mode q mode n bits a b =
if ¬(Isvalid a ∧ Isvalid b) then (Null, invalid)
else if (value a - value b < 0 ∧ is unsigned X) then

(fxp (WORD (REPLICATE (wordlength X) F), X), loss sign)
else fxp round X o mode q mode n bits (value a - value b)

�de f fxpMul X o mode q mode n bits a b =
if ¬(Isvalid a ∧ Isvalid b) then (Null, invalid)
else if (value a * value b < 0 ∧ is unsigned X) then

(fxp (WORD (REPLICATE (wordlength X) F), X), loss sign)
else fxp round X o mode q mode n bits (value a * value b)

�de f fxpDiv X o mode q mode n bits a b =
if ¬(Isvalid a ∧ Isvalid b) then (Null, invalid)
else if (value b = 0) then

(fxp (WORD (REPLICATE (wordlength X) F), X), invalid)
else if (value a/value b < 0 ∧ is unsigned X) then

(fxp (WORD (REPLICATE (wordlength X) F), X), loss sign)
else fxp round X o mode q mode n bits (value a / value b)

5. Verification of fixed-point operations

According to the discussion in Section 4.3, each fixed-point number has a corresponding
real number value. The correctness of a fixed-point operation can be specified by comparing
its output with the true mathematical result, using the valuation function value that converts
a fixed-point to an infinitely precise number. For example, the correctness of a fixed-point
adder fxpAdd is specified by comparing it with its ideal counterpart +. That is, for each pair
of fixed-point numbers (a, b), we compare value (a) + value (b) and value (fxpAdd (a, b)).
In other words, we check if the diagram in figure 4 commutes.

For this purpose we define the error resulting from quantizing a real number to a fixed-
point value as follows:

Figure 4. Correctness criteria for fixed-point addition.



190 AKBARPOUR, TAHAR AND DEKDOUK

�de f fxperror X o mode q mode n bits x =
value (FST (fxp round X o mode q mode n bits x)) - x

and then establish the correctness theorems for all four fixed-point arithmetic operations.

Theorem 1: FXP ADD THM
� (Isvalid a) ∧ (Isvalid b) ∧ validAttr (X) ⇒

(Isvalid (FST (fxpAdd (X) o mode q mode n bits a b))) ∧
(value (FST (fxpAdd (X) o mode q mode n bits a b)) =
value (a) + value (b) +
(fxperror (X) o mode q mode n bits (value (a) + value (b)))

Theorem 2: FXP SUB THM
� (Isvalid a) ∧ (Isvalid b) ∧ validAttr (X) ⇒

(Isvalid (FST (fxpSub X o mode q mode n bits a b))) ∧
(value (FST (fxpSub (X) o mode q mode n bits a b)) =
value (a) + value (b) +
(fxperror (X) o mode q mode n bits (value a - value b)))

Theorem 3: FXP MUL THM
� (Isvalid a) ∧ (Isvalid b) ∧ validAttr (X) ⇒

(Isvalid (FST (fxpMul X o mode q mode n bits a b))) ∧
(value (FST (fxpMul (X) o mode q mode n bits a b)) =
(value a * value b) +
(fxperror (X) o mode q mode n bits (value a * value b)))

Theorem 4: FXP DIV THM
� (Isvalid a) ∧ (Isvalid b) ∧ validAttr (X) ⇒

(Isvalid (FST (fxpDiv X o mode q mode n bits a b))) ∧
(value (FST (fxpDiv (X) o mode q mode n bits a b)) =
(value a / value b) +
(fxperror (X) o mode q mode n bits (value a / value b)))

The theorems are composed of two parts. The first part is about the validity of the fixed-
point arithmetic operation output and states that if the input fixed-point numbers and the
output attributes are valid then the result of the fixed-point operation is valid. The second
part of the theorem relates the result of the fixed-point arithmetic operations to the real
result based on the corresponding error function. To prove these main theorems, a number
of lemmas have been established. We first proved lemmas concerning the approximation
of a real number with a fixed-point number. We proved that in a finite non-empty set of
fixed-point numbers, we can find the best approximation to a real number based on a given
valuation function (Lemma 1).

Lemma 1: FXP IS CLOSEST EXISTS
� FINITE (s) ⇒ ¬(s = EMPTY) ⇒ ∃ (a: fxp). is closest v s x a



FORMALIZATION OF FIXED-POINT ARITHMETIC IN HOL 191

Then, we proved that the chosen best approximation to a real number satisfying a property
p from a finite and non-empty set of fixed-point numbers is unique (Lemma 2), and is itself
a member of the set (Lemma 3), and is itself the best approximation of the real number
(Lemma 4).

Lemma 2: FXP CLOSEST IS EVERYTHING
� FINITE (s) ⇒ ¬(s = EMPTY) ⇒

is closest v s x (closest v p s x) ∧
((∃b. is closest v s x b ∧ p b) ⇒ p (closest v p s x))

Lemma 3: FXP CLOSEST IN SET
� FINITE (s) ⇒ ¬(s = EMPTY) ⇒ (closest v p s x) IN s

Lemma 4: FXP CLOSEST IS CLOSEST
� FINITE (s) ⇒ ¬(s = EMPTY) ⇒ (is closest v s x (closest v p s x)

Finally, we proved that the chosen best approximation to a real number satisfying a
property p from the set of all valid fixed-point numbers with a given attributes is itself a
valid fixed-point number (Lemma 5).

Lemma 5: IS VALID CLOSEST
� (validAttr X) ⇒

Isvalid (closest v p {a | Isvalid a ∧ ((Attrib a) = X)} x)

Besides, we proved that the set of all valid fixed-point numbers with a given attributes is
finite (Lemma 6).

Lemma 6: FINITE VALID ATTRIB
� FINITE {a | Isvalid a ∧ (Attrib a = X)}

The proof of this lemma is a bit complicated. For this purpose we made use of some built-
in theorems about finite sets in the HOL pred sets library [28]. Among these are the two
fundamental theorems FINITE EMPTY and FINITE INSERT, which state that the empty
set is indeed finite and the insertion of an element to a finite set constructs a finite set. Other
theorems state that the union of two finite sets (FINITE UNION), the image of a function on
a finite set (IMAGE FINITE), a singleton set2 (FINITE SING), the cross combination of two
finite sets (FINITE CROSS), and any subset of a finite set (SUBSET FINITE) is itself a finite
set. Using these theorems together with the definition of a valid fixed-point number helped
us to break down the proof of the finiteness of all valid fixed-point numbers to the proof of
finiteness of the set of all Boolean words with a given word length (WORD FINITE) and
the set of all natural numbers less than a given value (FINITE COUNT). The last lemmas
are proved by induction on the word length of the Boolean word and the maximum limit of
the natural numbers, respectively.

We also proved that the set of all valid fixed-point numbers is nonempty (Lemma 7).



192 AKBARPOUR, TAHAR AND DEKDOUK

Lemma 7: IS VALID NONEMPTY
� (validAttr X) ⇒ ¬({ a | Isvalid a ∧ (Attrib a = X)} = EMPTY)

Finally, we proved that the result of quantizing a real number, which is in the range
representable by a given valid attributes, is a valid fixed-point number (Lemma 8).

Lemma 8: IS VALID QUANTIZATION
� (validAttr X) ⇒ Isvalid (FST (fxp round X o mode q mode n bits x))

The validity of the quantization directly implies validity of the fixed-point operation
output, and this completes the proof of the first parts of the theorems. The second parts of
the theorems are proved using the properties of the real arithmetic in HOL and rewriting
with the definitions of the fxpAdd, fxpSub, fxpMul, fxpDiv, and fxperror functions.

The second main theorem on fixed-point error analysis concerns bounding the quantiza-
tion error. The error can be absolutely quantified as follows:

Theorem 5: FXP ERROR BOUND THM
� (validAttr X) ∧ ¬(x > MAX (X)) ∧ ¬ (x < MIN (X)) ⇒

abs (fxperror X o mode q mode n bits x) ≤ inv (&2 pow fracbits X)

According to this theorem, the error in quantizing a real number which is in the range
representable by a given set of attributes X is less than the quantity 1/2fracbits(x) . This
theorem is valid for all fixed-point quantization modes. However, for RND, RND ZERO,
RND MIN INF, RND INF, and RND CONV modes, which quantize to the nearest repre-
sentable value, the error can be bounded to 1/2(fracbits (X) + 1) by extending the theorem.

To explain the theorem, we consider the following fact that relates the definition of the
fixed-point numbers to the rationals.

An N -bit binary word, when interpreted as an unsigned fixed-point number, can take on
values from a subset P of the non-negative rationals given by

P = {p/2b| 0 ≤ p ≤ 2N − 1, p ∈ Z} (6)

Similarly, for signed two’s complement representation, we have

P = {p/2b | − 2N−1 ≤ p ≤ 2N−1 − 1, p ∈ Z} (7)

Note that P contains 2N elements and b represents the fractional bits in each case.
Based on this fact, we can depict the range of values covered for each case as shown in

figure 5.
Thereafter, the representable range of fixed-point numbers is divided into 2N equispaced

quantization steps with the distance between two successive steps equal to 1/2b. Suppose
that x ∈ R is approximated by a fixed-point number a. The position of these values are
labeled in figure 5. The error |x − a| is hence less than the length of one interval, or 1/2b,
as mentioned in the second theorem.



FORMALIZATION OF FIXED-POINT ARITHMETIC IN HOL 193

Figure 5. Fixed-point values on the real axis.

In HOL, we first proved that the quantization result is the nearest value to a real number and
the corresponding error is minimum compared to the other fixed-point numbers (Lemma 9).

Lemma 9: FXP ERROR AT WORST LEMMA
� (validAttr X) ∧ ¬(x > MAX (X)) ∧ ¬(x < MIN (X)) ∧

(Isvalid a) ∧ (Attrib a = X) ⇒
abs (fxperror X o mode q mode n bits x) ≤ abs (value a - x)

Then we proved that each representable real value x can be surrounded by two successive
rational numbers (Lemma 10).

Lemma 10: FXP ERROR BOUND LEMMA1
� (validAttr X) ∧ ¬(x > MAX (X)) ∧ ¬(x < MIN (X)) ⇒

∃k. (k < 2 EXP wordlength X) ∧ (&k/(&2 pow fracbits X) ≤ x)∧
(x < (&(SUC k)/(&2 pow fracbits (X)))

Also we proved that the difference between the real number and the surrounding rationals
is less than 1/2fracbits(X ) (Lemma 11).

Lemma 11: FXP ERROR BOUND LEMMA2
� (validAttr X) ∧ ¬(x > MAX (X)) ∧ ¬(x < MIN (X)) ⇒

∃k. (k ≤ 2 EXP wordlength X) ∧
abs (x - &k / (&2 pow (fracbits (X)))) ≤ inv (&2 pow (fracbits
(X)))

Finally, we proved that for each real value we can find a fixed-point number with the
required error characteristics (Lemma 12).

Lemma 12: FXP ERROR BOUND LEMMA3



194 AKBARPOUR, TAHAR AND DEKDOUK

� (validAttr X) ∧ ¬(x > MAX (X)) ∧ ¬(x < MIN (X))⇒∃(w: bool word).
abs (value (fxp (w,X)) - x) ≤ inv (&2 pow (fracbits X)) ∧
(WORDLEN w = wordlength X)

Since the quantization produces the minimum error as stated in Lemma 9, the proof
of the second main theorem (Theorem 5) is a direct consequence of Lemma 12. In these
proofs, we have treated the case of signed and unsigned numbers separately since they
have different definitions for MAX, MIN, and value functions. For signed numbers a special
attention needs also to be paid to deal with negative numbers.

6. Application with SPW

In this section we demonstrate how to apply the formalization of fixed-point arithmetic
presented in the previous sections for the verification of the transition from floating-point
to fixed-point algorithmic levels. We have chosen SPW as application tool and the case
of an Integrator as an example circuit. A digital integrator is a discrete time system that
transforms a sequence of input numbers into another sequence of output, by means of a spe-
cific computational algorithm. To describe the general functionality of a digital integrator,
let {xt}, {wt}, and a denote the input sequence, output sequence, and constant coeffi-
cient of the integrator, respectively. Then the integrator can be specified by the difference
equation:

wt = xt−1 + a wt−1 (8)

Thereafter, the output sequence at time t is equal to the input sequence at time t − 1,
added to the output at time t − 1 multiplied by the integrator coefficient.

Figure 6 shows the SPW design of an integrator. The integrator is first designed and
simulated using the SPW predefined floating-point blocks and parameters (figure 6(a)). The
design is composed of an adder (M1), a multiplier by constant (M2), and a delay (M3)
block, together with signal source (M4) and sink (M5) elements. The input signal, the
output signal, and the output of the adder and multiplier blocks are labeled by IN′, OUT′,
SI′, and S2′, respectively. Figure 6(b) shows the converted fixed-point design in which each
block is replaced with the corresponding fixed-point block (M1′, M2′, M3′, M4′, M5′).
Fixed-point blocks are shown by double circles and squares to distinguish them from the
floatingpoint blocks. The attributes of all fixed-point block outputs are set to (64, 31, t) to
ensure that overflow and quantization do not affect the system operation. The corresponding
fixed-point signals are labeled by IN′′, OUT′′, S1′′, and S2′′.

In HOL, we first model the design at each level as predicates in higher-order logic. The
predicates corresponding to the floating-point design are as follows:

�de f Float Gain Block a' b' c' = (∀t. c' t = a' t float mul b')
�de f Float Delay Block a' b' = (∀t. b' t = a' (t - 1))
�de f Float Add Block a' b' c' = (∀t. c' t = a' t float add b' t)



FORMALIZATION OF FIXED-POINT ARITHMETIC IN HOL 195

Figure 6. SPW design of an integrator.

�de f Float Integrator Imp X a' IN' OUT' =
∃ S1' S2'.
Float Add Block IN' S2' S1' ∧
Float Delay Block S1' OUT' ∧
Float Gain Block OUT' a' S2'

where X is the floating-point format. In these definitions, we have used available formaliza-
tion of floating-point arithmetic in HOL [15]. Floating-point data types are stored in SPW
in the standard IEEE 64 bit double precision format.

The HOL description of the fixed-point implementation is as follows:

�de f Fxp Gain Block a" b" c" = (∀t. c" t = a" t fxp mul b")
�de f Fxp Delay Block a" b" = (∀t. b" t = a" (t - 1))
�de f Fxp Add Block a" b" c" = (∀t. c" t = a" t fxp add b" t)
�de f Fxp Integrator Imp X' o mode q mode n bits a" IN" OUT" =

∃ S1" S2".
Fxp Add Block IN" S2" S1" ∧
Fxp Delay Block S1" OUT" ∧
Fxp Gain Block OUT" a" S2"

where X ′ is the fixed-point format, and the functions fxp add and fxp mul are defined as
follows:

�de f a" fxp add b" = FST (fxpAdd X' o mode q mode n bits a" b")
�de f a" fx mul b" = FST (fxpMul X' o mode q mode n bits a" b")



196 AKBARPOUR, TAHAR AND DEKDOUK

In the next step, we describe each design as a difference equation relating the input and
output samples according to the Eq. (8).

�de f FLOAT Integrator Spec X a' IN' OUT' =
∀t. OUT' t = (IN' (t - 1) float add (a' float mul OUT' (t - 1)))

�de f FXP Integrator Spec X' o mode q mode n bits a" IN" OUT" =
∀t. OUT" t = (IN" (t - 1) fxp add (a" fxp mul OUT" (t - 1)))

The following lemmas ensure that the implementation at each level satisfies the corre-
sponding specification.

Lemma 13: FLOAT INTEGRATOR IMP SPEC
� Float Integrator Imp X a' IN' OUT' ⇒
Float Integrator Spec X a' IN' OUT'

Lemma 14: FXP INTEGRATOR IMP SPEC
� Fxp Integrator Imp X' o mode q mode n bits a" IN" OUT" ⇒
Fxp Integrator Spec X' o mode q mode n bits a" IN" OUT"

Now we assume that the floating-point and fixed-point input sequences are the rounded
versions of an infinite precision ideal input IN, and we have

�de f IN' t = round X To nearest (IN t)
�de f IN" t = FST (fxp round X' o mode q mode n bits (IN t))

where round is the floating-point rounding function, and To nearest is the corresponding
mode for rounding to nearest floating-point number [15]. We also make some other as-
sumptions on finiteness and validity of floating-point and fixed-point inputs, coefficients,
and intermediate results, in order to have finite and valid final outputs. Using these as-
sumptions and based on the theorems FXP ADD THM and FXP MUL THM (Section 5)
and the corresponding ones in floating-point theory [15], we prove the following theorem
concerning the error between the real values of the floating-point and fixed-point precision
integrator output samples.

Theorem 6: INTEGRATOR THM
� Float Integrator Imp X a' IN' OUT' ∧
Fxp Integrator Imp X' o mode q mode n bits a" IN" OUT"
⇒
Val (OUT' t) - value (OUT" t) =
Val a' * Val (OUT" (t - 1)) -
value a" * value (OUT" (t - 1)) +
error (IN (t - 1)) +
error (Val a' * Val (OUT' (t - 1))) +



FORMALIZATION OF FIXED-POINT ARITHMETIC IN HOL 197

error (Val (IN' (t - 1)) + Val (a' float mul OUT' (t - 1))) +
fxperror X' o mode q mode n bits
(value (value a" ∗ OUT" (t - 1))) +
fxperror X' o mode q mode n bits
(value (IN" (t - 1) + value (a" fxp mul OUT" (t - 1))) -
fxperror X' o mode q mode n bits (IN (t - 1))

where Val is the floating-point valuation function, and error is the floating-point rounding
error function [15]. According to Theorem 6, for a valid and finite set of input and output
sequences at time (t − 1) to the integrator design at the floating-point and fixed-point
levels, we can have finite and valid outputs at time t , and the difference in the real values
corresponding to these output samples can be expressed as the difference in input and output
values multiplied by the corresponding coefficients, taking into account the effects of finite
precision in coefficients and arithmetic operations. To find a constant upper bound for the
difference between the outputs, we use Theorem 5 on the fixed-point error quantification.
Similarly, for the floating-point error bound analysis we proved the following lemma:

Lemma 15: ERROR BOUND NORM STRONG NORMALIZE
� normalizes X x ⇒

∃ j. abs (error x) ≤ (2 pow j / 2 pow (bias X + fracwidth X))

where normalizes defines the criteria for an arbitrary real number to be in the range of nor-
malized floating-point numbers, bias defines the exponent bias in the floating-point format
which is a constant used to make the exponent’s range non-negative, and fracwidth extracts
the fraction width parameter from the floating-point format. According to Lemma 15, if
the absolute value of a real number is in the representable range of the normalized floating-
point numbers with the format X and located in the j’th binade (the floating-point numbers
between two adjacent powers of 2), then the absolute value of the error is less than or equal
to 2 j/2(bias X+fracwidth X). The lemma is proved based on the general floating-point absolute
error bound theorem developed in [15].

Finally, we proved the following theorem (Theorem 7) that bounds the output error of
the integrator design in the transition from the floating-point to fixed-point levels.

Theorem 7: INTEGRATOR FP TO FXP ERROR BOUND THM
� Float Integrator Imp X a' IN' OUT' ∧
Fxp Integrator Imp X' o mode q mode n bits a" IN" OUT"
⇒
∃ j1 j2 j3.
abs (Val (OUT' t) - value (OUT" t)) ≤
2 * abs (a) * M +
(2 pow j1 + 2 pow j2 + 2 pow j3) / 2 pow (bias X + fracwidth X) +
3 / (2 pow (fracbits X'))

In the proof of this theorem, we have assumed that the real values of the floating-point and
fixed-point integrator coefficients are equal (Val a′ = value a′′ = a), hence ignoring the



198 AKBARPOUR, TAHAR AND DEKDOUK

effects of inaccuracies in the integrator coefficient. We have also assumed that the floating-
point and fixed-point output values are bounded to a constant value (M). The parameters
j1, j2, and j3 are related to the binades in which the real valued arguments of the three
floating-point error expressions in Theorem 6 are located.

7. Conclusions

In this paper, we established the formalization of fixed-point arithmetic in the HOL theorem
prover. Unlike floating-point arithmetic, there is no standard for the fixed-point counterpart.
We hence defined in this paper a complete common set of the fixed-point arithmetic sup-
ported by most DSP tools, in particular SPW and SystemC. We started first by encoding the
fixed-point arithmetic in HOL considering different quantization and overflow modes, as
well as exception handling. We then proved two main theorems stating that the operations on
fixed-point numbers are closely related to the corresponding operations on infinitely precise
values, considering some error. The error is bounded to a certain absolute value which is a
function of the output precision. We have also shown by an example how these theorems
can be used as a basis for analysis of the quantization errors in the design of fixed-point DSP
subsystems. The formalization presented in this paper can be considered as a complement to
the floating-point formalizations which are widely available in the literature. Based on the
proposed fixed-point formalization, our immediate future work will focus on the verification
of the transition from the floating-point algorithmic level to hardware implementations for
DSP applications.

Notes

1. We adopt the convention that bits are indexed from the right hand side.
2. A set that contains precisely one element.

References

1. M.D. Aagaard and C.-J.H. Seger, “The formal verification of a pipelined double-precision IEEE floating-point
multiplier,” in Proceedings International Conference on Computer Aided Design, San Jose, California, USA,
November 1995, pp. 7–10.

2. G. Barrett, “Formal methods applied to a floating point number system,” IEEE Transactions on Software
Engineering, Vol. SE-15, No. 5, pp. 611–621, 1989.

3. C. Berg and C. Jacobi, “Formal Verification of the VAMP Floating Point Unit,” in Correct Hardware Design
and Verification Methods, LNCS 2144, Springer-Verlag, 2001, pp. 325–339.

4. S. Beyer, C. Jacobi, D. Kröning, D. Leinenbach, and W. J. Paul, “Instantiating uninterpreted functional units
and memory system: Functional verification of the VAMP,” in Correct Hardware Design and Verification
Methods, LNCS 2860, Springer-Verlag, 2003, pp. 51–65.

5. S. Boldo, M. Daumas, and L. Thèry, “Formal proofs and computations in finite precision arithmetic,” in
Proceedings of the 11th Symposium on the Integration of Symbolic Computation and Mechanized Reasoning,
Rome, Italy, September 2003, pp. 101–111.

6. S. Boldo and M. Daumas, “Properties of two’s complement floating point notations,” Software Tools for
Technology Transfer, Vol. 5, Nos. 2/3, pp. 237–246, 2004.

7. Cadence Design Systems, Inc., Signal Processing WorkSystem (SPW) User’s Guide, USA, July 1999.



FORMALIZATION OF FIXED-POINT ARITHMETIC IN HOL 199

8. V.A. Carreno, “Interpretation of IEEE-854 floating-point standard and definition in the HOL system,” NASA
TM-110189, September 1995.

9. M. Cornea-Hasegan, “Proving the IEEE correctness of iterative floating-point square root, divide, and remain-
der algorithms,” Intel Technology Journal, Vol. Q2, pp. 1–11, 1998.

10. Y.-A. Chen and R.E. Bryant, “Verification of floating point adders,” in Computer Aided Verification, LNCS
1427, Springer-Verlag, 1998, pp. 488–499.

11. M. Daumas, L. Rideau, and L. Thèry, “A generic library for floating-point numbers and its application to
exact computing,” in Theorem Proving in Higher Order Logics, LNCS 2152, Springer-Verlag, 2001, pp. 169–
184.

12. M.J.C. Gordon and T.F. Melham, Introduction to HOL: A Theorem Proving Environment for Higher-Order
Logic, Cambridge University Press, 1993.

13. J.R. Harrison, “Constructing the real numbers in HOL,” Formal Methods in System Design, Vol. 5, Nos. 1/2,
pp. 35–59, 1994.

14. J.R. Harrison, “A machine-checked theory of floating-point arithmetic,” in Theorem Proving in Higher Order
Logics, LNCS 1690, Springer-Verlag, 1999, pp. 113–130.

15. J.R. Harrison, “Floating-point verification in HOL light: The exponential function,” Formal Methods in System
Design, Vol. 16, No. 3, pp. 271–305, 2000.

16. J.R. Harrison, “Formal verification of floating point trigonometric functions,” in Formal Methods in Computer-
Aided Design, LNCS 1954, Springer-Verlag, 2000, pp. 217–233.

17. J.R. Harrison, “Formal verification of IA-64 division algorithms,” in Theorem Proving in Higher Order Logics,
LNCS 1869, Springer-Verlag, 2000, pp. 234–251.

18. The Institute of Electrical and Electronic Engineers, Inc., “IEEE, Standard for Binary Floating-Point Arith-
metic,” ANSI/IEEE Standard 754, USA, 1985.

19. The Institute of Electrical and Electronic Engineers, Inc., “IEEE, Standard for Radix-Independent Floating-
Point Arithmetic,” ANSI/IEEE Std 854, USA, 1987.

20. R. Kaivola and M.D. Aagaard, “Divider circuit verification with model checking and theorem proving,” in
Theorem Proving in Higher Order Logics, LNCS 1869, Springer-Verlag, 2000, pp. 338–355.

21. R. Kaivola and N. Narasimhan, “Formal verification of the Pentium©R 4 floating-point multiplier,” in
Proceedings Design Automation and Test in Europe Conference, Paris, France, March 2002, pp. 20–
27.

22. R. Kaivola and K.R. Kohatsu, “Proof engineering in the large: Formal verification of Pentium©R 4 Floating-
point divider,” Software Tools for Technology Transfer, Vol. 4, No. 3, pp. 323–334, 2003.

23. H. Keding, M. Willems, M. Coors, and H. Meyr, “FRIDGE: A fixed-point design and simulation environment,”
in Proceedings Design Automation and Test in Europe Conference, Paris, France, February 1998, pp. 429–
435.

24. M. Leeser and J. O’Leary, “Verification of a subtractive Radix-2 square root algorithm and implementation,”
in Proceedings International Conference on Computer Design, Austin, Texas, USA, October 1995, pp. 526–
531.

25. Mathworks, Inc., Simulink Reference Manual, USA, 1996.
26. Mathworks, Inc., Fixed-Point Blockset, For Use with Simulink, User’s Guide, USA, 2004.
27. Mentor Graphics, Inc., DSP Station User’s Manual, USA, 1993.
28. T.F. Melharn, The HOL pred sets Library, University of Cambridge, Computer Laboratory, February 1992.
29. P.S. Miner, “Defining the IEEE-854 Floating-Point Standard in PVS,” NASA TM-110167, June

1995.
30. P.S. Miner and J.F. Leathrum, “Verification of IEEE Compliant Subtractive Division Algorithms,” in Formal

Methods in Computer-Aided Design, LNCS 1166, Springer-Verlag, 1996, pp. 64–78.
31. J.S. Moore, T. Lynch, and M. Kaufmann, “A mechanically checked proof of the correctness of the kernel of the

AMD5K86 floating-point division algorithm,” IEEE Transactions on Computers, Vol. 47, No. 9, pp. 913–926,
1998.

32. S.M. Mueller and W.J. Paul, Computer Architecture. Complexity and Correctness, Springer-Verlag, 2000.
33. Open SystemC Initiative, SystemC Language Reference Manual, USA, 2004.
34. J. O’Leary, X. Zhao, R. Gerth, and C.-J.H. Seger, “Formally verifying IEEE compliance of floating-point

hardware,” Intel Technology Journal, Vol. Q1, pp. 1–14, 1999.



200 AKBARPOUR, TAHAR AND DEKDOUK

35. D.M. Russinoff, “A case study in formal verification of register-transfer logic with ACL2: The floating-point
adder of the AMD athlon processor,” in Formal Methods in Computer-Aided Design, LNCS 1954, Springer-
Verlag, 2000, pp. 3–36.

36. J. Sawada and R. Gamboa, “Mechanical verification of a square root algorithm using Taylor’s theorem,” in
Formal Methods in Computer-Aided Design, LNCS 2517, Springer-Verlag, 2002, pp. 274–291.

37. Synopsys, Inc., CoCentricTM System Studio User’s Guide, USA, August 2001.
38. University of Cambridge, “The HOL System Reference,” Computer Laboratory, Cambridge, UK, March 2004.
39. W. Wong, “Modeling bit vectors in HOL: The word library,” in Higher Order Logic and its Applications,

LNCS 780, Springer-Verlag, 1994, pp. 371–384.


