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Abstract Anonymity and confidentiality protocols constitute crucial parts in many net-
work applications as they ensure anonymous communications between entities in a network
or provide security in insecure communication channels. Evaluating the properties of these
protocols is therefore of paramount importance, especially in the case of safety-critical appli-
cations. However, traditional analysis techniques, like simulation, cannot ascertain accurate
analysis in this domain. We propose to overcome this limitation by conducting an informa-
tion leakage analysis of anonymity and cryptographic protocols within the trusted kernel of a
higher-order-logic theorem prover. For this purpose, we first introduce two novel measures of
information leakage, namely the information leakage degree and the conditional information
leakage degree and then present a higher-order-logic formalization of information measures
and the underlying required theories of measure, probability and information. For illustration
purposes, we use the proposed framework to evaluate the security properties of the one-time
pad encryption system as well as the properties of an anonymity-based single MIX.We show
how this formal analysis allowed us to find a counter-example for a theorem that was reported
in the literature to describe the leakage properties of this single MIX.
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1 Introduction

Anonymity networks such as Crowds [24] and Tor [9] have been proposed to provide anony-
mous communication between entities in a network. Analyzing the anonymity properties of
these protocols consists in finding out how much information an attacker can learn about
the senders and receivers in the network. One way to do so is through quantitative analy-
sis of information flow [26,28] which allows to measure how much information about the
high security inputs of a system can be leaked, accidentally or maliciously, by observing the
systems outputs and possibly the low security inputs.

Quantitative analysis of information flowhas also been proposed to analyze confidentiality
protocols [28]. In fact, while these protocols aim to preserve sensitive and confidential data
and prevent it from being leaked or tainted, a small leakage of information is sometimes
necessary, as is the case for a voting protocol, where the tally of votes should be publicly
revealed eventhough the individual votes should be kept secret. Password checking is another
example of information leakage by design, where a rejected password reveals information
about what the secret password is not.

Various measures of information flow have been proposed in the literature. For instance,
Serjantov and Danezis [27] and Diaz et al. [8] independently proposed to use the entropy
to define the quality of anonymity and to compare different anonymity systems. Malacaria
[16] defined the leakage of confidential information in a program as the conditional mutual
information between its outputs and secret inputs, given the knowledge of its low security
inputs. Deng et al. [7] proposed relative entropy as a measure of the amount of information
revealed to the attacker after observing the outcomes of the protocol, together with the a priori
information. Chatzikokolakis et al. [2] modeled anonymity protocols as noisy channels and
used the channel capacity as ameasure of the loss of anonymity. Zhu andBettati [29] proposed
the anonymity degree as a measure of the anonymity properties in a MIX network.

In this paper, we propose two novel measures of information leakage, namely the informa-
tion leakage degree and the conditional information leakage degree. We present the intuition
behind these definitions and compare them to existingmeasures. Themotive behind these new
measures is that they not only quantify the leakage of information but they also describe the
quality of leakage compared to the maximum leakage that the system allows under extreme
situations, namely the perfect identification scenario and the perfect security scenario. We
also compare the proposed information leakage degree to the anonymity degree introduced
in [29] and show that our definition is related but more generic.

Traditionally, paper-and-pencil based analysis or computer simulations have been used
for quantitative analysis of information flow. Paper-and-pencil analysis does not scale well
to complex systems and is prone to human error. Computer simulation, on the other hand,
lacks in accuracy due to the usage of computer arithmetics, such as floating or fixed point
numbers, that leads to numerical approximations. These analysis inaccuracies may result in
compromising national security and finances given the safety and security-critical nature of
systems where information flow analysis is usually used.

As an alternative approach, we propose a machine-assisted analysis of information flow
by conducting the analysis within the trusted kernel of a higher-order-logic theorem prover
[11]. Theorem proving [13] is a field of computer science and mathematical logic that allows
to conduct computer-assisted formal proofs of the correctness of systems and programs
using mathematical reasoning. The implementation and specification of a system are both
expressed in terms of logical formulas and the proof of correctness is derived from a very
small set of axioms and inference rules. This deduction style ensures that only valid formulas
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are provable. We propose to use higher-order logic [1] because its high expressiveness is
required to formalize, or write in a formal language, all the mathematical theories needed to
conduct the quantitative analysis on information flow. This includes the higher-order logic
formalization of measure theory, Lebesgue integration, probability and information theory
concepts.

We build upon the existing formalization of measure, integration and probability [18],
and information theories [19] to provide a complete framework to formally reason about
quantitative properties of information flow analysis within the sound core of the HOL4
theorem prover and thus guarantee accuracy of the analysis. In particular, this paper presents
an extension of existing theories of measure, Lebesgue integration and probability [18] to
cater for measures involving multiple random variables. Building upon this formalization,
we present a higher-order-logic formalization of the Kullback–Leibler (KL) divergence [6]
from which we can derive the formalization of most of the information leakage measures
presented in the literature so far and the information leakage degrees that we propose in this
paper.

We illustrate the usefulness of the framework for formal quantitative analysis of infor-
mation flow by tackling two applications, an anonymity-based single MIX application [29]
and the one-time pad (OTP) encryption system [21]. We provide a higher-order-logic for-
malization of the single MIX as well as the channel capacity which we use as a measure of
information leakage within the MIX. We then formally verify that a sender using the MIX
as a covert channel, can transmit information through the MIX at a rate equal to the max-
imum channel capacity without having to communicate with all the receivers. This result
allowed us to identify a flaw in the paper-and-pencil based analysis of a similar problem
[29] which clearly indicates the usefulness of the proposed technique. We also provide a
higher-order-logic formalization of the different blocks of an OTP encryption system and
use the formalization of information leakage measures to prove that this encryption type
offers, indeed, a perfectly secure communication.

The rest of the paper is organized as follows: in Sect. 2, we present an overview of higher-
order-logic theorem proving and the HOL4 theorem prover, followed by the formalization of
information measures as well as the required underlying theories of measure and probability.
In Sect. 3, we introduce two novel measures of information leakage and highlight their
distinguishing characteristics. We show in Sect. 4 how we can use the proposed framework
to evaluate the properties of an anonymity-based singleMIXand the confidentiality properties
of the OTP encryption. We discuss related work in Sect. 5 and conclude the paper in Sect. 6.

2 Formalization of information leakage in HOL

The formalization of measures of information leakage in higher-order logic requires the
formalization of probability theory and main concepts on information theory including the
Shannon entropy, mutual information and conditional mutual information. We start with a
brief preview of the HOL4 theorem prover and then show how we formalize the probability
and information theories in HOL.

2.1 HOL4 theorem prover

HOL4 is an interactive theorem prover which is capable of conducting proofs in higher-order
logic. It utilizes the simple type theory of Church [3] along with Hindley–Milner polymor-
phism [22] to implement higher-order logic. HOL has been successfully used as a verification
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Table 1 HOL symbols and
functions

HOL symbols Meaning

∧ Logical and

∨ Logical or

¬ Logical negation

:: Adds a new element to a list

++ Joins two lists together

(a, b) A pair of two elements

fst First component of a pair

snd Second component of a pair

λx.t Function that maps x to t (x)

{x|P(x)} Set of all x such that P(x)

framework for both software and hardware as well as a platform for the formalization of pure
mathematics.

In order to ensure secure theorem proving, the logic in the HOL system is represented in
the strongly-typed functional programming language ML [23]. An ML abstract data type is
used to represent higher-order-logic theorems and the only way to interact with the theorem
prover is by executing ML procedures that operate on values of these data types. The HOL
core consists of only five basic axioms and eight primitive inference rules, which are imple-
mented as ML functions. Soundness is assured as every new theorem must be verified by
applying these basic axioms and primitive inference rules or any other previously verified
theorems/inference rules.

The HOL theorem prover includes many proof assistants and automatic proof procedures
[12] to assist the user in directing the proof. The user interacts with the proof assistant through
an interface and provides it with the necessary tactics, which are ML functions that break the
proof goals into simpler subgoals that might need further simplification or could simply be
solved using the various automatic proof procedures.

In order to facilitate reutilization of verified theorems, HOL allows its users to store a
collection of valid HOL types, constants, axioms and theorems as a HOL theory file in
computers. Once stored, HOL theories can be loaded in the HOL system and the corre-
sponding definitions and theorems can be utilized right away. Thus, HOL theories allow us
to build upon existing results in an efficient way without going through the tedious process
of regenerating these results using the basic axioms and primitive inference rules. Various
mathematical concepts have been formalized and saved as HOL theories by HOL users. Out
of this useful library of HOL theories, we utilize the theories of Booleans, lists, sets, positive
integers, real numbers, measure and probability in this paper. In fact, one of the primary
motivations of selecting the HOL theorem prover for our work was to benefit from these
built-in mathematical theories.

Table 1 provides the mathematical interpretations of some frequently used HOL symbols
and functions, which are inherited from existing HOL theories, in this paper.

2.2 Probability theory in HOL

Probability provides mathematical models for random phenomena and experiments. The
classical approach to formalize probabilities defines the probability of an event A as p(A) =
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NA
N , where NA is the number of outcomes favorable to the event A and N is the number
of all possible outcomes of the experiment. The main limitation of this approach is the
assumption that required all outcomes to be equally likely (equiprobable). Thus a concept
of probability is used to define probability itself and hence this definition cannot be used as
a basis for a mathematical theory. Besides that, for many random experiments the outcomes
are not equally likely. Finally, the definition does not work for the cases when the number of
possible outcomes is infinite.

Kolmogorov [14] introduced the axiomatic definition of probability which provides a
mathematically consistent way for assigning and deducing probabilities of events. This
approach consists in defining a set of all possible outcomes, Ω, called the sample space,
a set F of events which are subsets of Ω and a probability measure p such that (Ω, F, p) is
a measure space with p(Ω) = 1.

Usingmeasure theory to formalize probability has the advantage of providing amathemat-
ically rigorous treatment of probabilities and a unified framework for discrete and continuous
probability measures. In this context, a probability measure is a measure function, an event
is a measurable set and a random variable is a measurable function. The expectation of a
random variable is its integral with respect to the probability measure.

Basic definitions in the formalization of probability and measure theory in HOL are based
on the work of [5]. Our contributions consist in going beyond these definitions to provide
important theorems that will allow us to operate with the basic concepts such us random
variables and their expected values. For instance, the formalization of [5] does not allow us
to work with the sum of random variables as a random variable itself; we would have to
add it as an assumption. Another important shortcoming is the lack of the formally verified
properties of the expected value of a random variable such as the linearity and monotonicity.

In [20], we have presented a formalization of measure theory and Lebesgue integration
based on the set of extended-real numbers, which is the set of real numbers augmented by
the negative and positive infinity. This has allowed us to prove several important limiting
and convergence theorems. On the other hand, it rendered the analysis more complex and
at times tedious. In the current paper, however, we define the measure theory over standard
real numbers to take into account the fact that probabilities are finitely valued. This has
lead to important simplifications of the theorems in the library and made it easier to use the
formalization without having to prove unnecessary and sometimes cumbersome assumptions
in this context of probability. Furthermore, it allowed us to make use of the rich libraries of
definitions and theorems related to limits and sequences which are already available in HOL.
In the following, the symbol � denotes a theorem and |� denotes a definition.

We define subset_class of a set Ω as a set of subsets of Ω. A sigma algebra over Ω

is a special subset class that contains the empty set and is closed under countable unions and
complementation relative to the space. Members of the sigma algebra over Ω are called the
measurable sets of Ω. The higher-order logic formalization of a sigma algebra is as follows:

|� sigma_algebra (Ω, A) =
subset_class Ω A ∧
{} ∈ A ∧
∀s. s ∈ A ⇒ Ω\s ∈ A ∧
∀c. countable c ∧ c ⊆ A
⇒ ⋃

c ∈ A

where Ω\s denotes the complement of s within Ω and
⋃
c the union of all elements of c.

A set is countable if its elements can be counted one at a time, or in other words, if every
element of the set can be associated with a natural number.
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A measure function is a non-negative function μ:A → R satisfying the countable-
additivity condition, which states that the measure of a countable union of pairwise disjoint
measurable sets is the sum of their respective measures. A triplet (Ω, A, μ) is a measure
space iff A is a sigma algebra over the space Ω and μ:A → R is a measure function. The
formalization of a measure space is then the following

|� measure_space (Ω, A, mu) =
sigma_algebra (Ω, A) ∧
positive (Ω, A, mu) ∧
countably_additive (Ω, A, mu)

A probability space (Ω, F, p) is defined as a measure space having a unit space measure.

|� prob_space (Ω, F, p) =
measure_space (Ω, F, p) ∧
(p Ω = 1)

A probability measure is a measure function and an event is defined as a measurable set.

|� ∀p. prob p = measure p
|� ∀p. events p = measurable_sets p

Two eventsA andB are independent iff p(A∩B) = p(A)p(B).Here A∩B is the intersection
of A and B, which is the event that both events A and B occur.

|� ∀p a b. indep p a b =
a ∈ events p ∧ b ∈ events p ∧
prob p (a ∩ b) = prob p a * prob p b

X :Ω → R is a random variable iff X is (F, B(R)) measurable

|� random_variable X Ω F p Borel =
prob_space (Ω, F, p) ∧
X ∈ measurable (Ω, F) Borel

where F denotes, as previously, the set of events. A measurable function X :Ω → R is a
function for which the inverse image of a measurable set is a measurable set, in other words,
∀A ∈ B(R), X−1(A) ∈ F. The Borel sigma algebra over a space Ω is the sigma algebra
generated by the open sets of Ω. In other words, it is the smallest sigma algebra containing
the open sets of Ω. The higher-order-logic formalization of these concepts can be found in
[19]. Here we focus on real-valued random variables but the definition can be adapted for
random variables having values on any topological space thanks to our general definition of
the Borel sigma algebra.

We also formally verified the properties of random variables in HOL. If X and Y are
random variables and c ∈ R then the following functions are also random variables:
cX, |X |, Xn, X + Y, XY, eX and max(X, Y ).

The probability mass function pX :B(R) → [0, 1] of a random variable X is defined as
the function assigning to every A ∈ B(R), the probability of X−1(A), also notated {X ∈ A}.

pX (A) = p({X ∈ A}) = p
(
X−1(A)

)
,

|� pmf p X = (λA. prob p (PREIMAGE X A ∩ Ω))
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where PREIMAGE denotes the HOL function for inverse image and the intersection with the
sample space Ω is required because HOL functions are total and should be defined on all
variables of the specific type instead of only on Ω.

To be able to define information measures involving multiple random variables, as is
the case for the information leakage degrees defined above, we first need to formalize joint
distributions as well as products of measure spaces. The joint distribution of two random
variables defined on the same probability space is defined as

pXY (A) = p({(X, Y ) ∈ A}),
|� joint_distribution p X Y = (λA. prob p

(PREIMAGE (λx. (X x, Y x)) A ∩ Ω))

The joint distribution of any number of variables can be defined in a similar way.We formally
verified a number of joint distribution properties in HOL [17] and some of the useful ones
are given below:

� 0 ≤ p X Y A
� p X Y = p Y X
� p X Y (A × B) ≤ p X A
� p X Y (A × B) ≤ p Y B

We also formally verified that the joint distribution is absolutely continuous with respect to
the product of marginal distributions. A measure μ is said to be absolutely continuous with
respect to ν if μ(A) = 0 for every set A for which ν(A) = 0. We also prove the following
useful properties in HOL.

pX (A) =
∑

y∈Y (Ω)

pXY (A × {y}),

pY (B) =
∑

x∈X (Ω)

pXY ({x} × B).

The joint distribution of two random variables is defined over the sigma-algebra cor-
responding to the product of measure spaces defined in the following. The product of
two measure spaces (X1, S1, μ1) and (X2, S2, μ2) is defined as the measure space
(X1 × X2, S, μ), where S is the sigma algebra on X1 × X2 generated by subsets of the
form A1 × A2 where A1 ∈ S1, and A2 ∈ S2. The measure μ is defined for σ -finite measure
spaces as

μ(A) =
∫

X1

μ2 ({y ∈ X2|(x, y) ∈ A}) dμ1,

and S is defined using the sigma operator which returns the smallest sigma algebra contain-
ing a set of subsets, i.e., the product subsets in this case. The integral used in the definition
of product measure is the Lebesgue integral which we formalized in [18].

Let g(s1) be the function s2 → (s1, s2), then the product measure is formalized as

|� prod_measure m1 m2 =
(λa. integral m1 (λs1.

measure m2 (PREIMAGE g(s1) a)))

Weverified inHOL that the productmeasure can be reduced toμ(a1×a2) = μ1(a1)×μ2(a2)
for finite measure spaces.
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� prod_measure m1 m2 (a1 × a2) =
measure m1 a1 × measure m2 a2

We use the above definitions to define products of more than two measure spaces as
follows. X1 × X2 × X3 = X1 × (X2 × X3) and μ1 ×μ2 ×μ3 is defined as μ1 × (μ2 ×μ3).

As stated above, we use the joint distribution and products of measure spaces as a basis to
define several concepts of information theory that involve multiple random variables, as is
the case for the information leakage degrees.

In this section we defined basic concepts of probability like the events, probability mea-
sures and random variables. We also used the formalization of Lebesgue integral [18] to
formalize the main statistical properties of random variables, such as the expectation and the
variance. Further details about this formalization can be found in [17].

2.3 Information theory in HOL

In this section, we first provide a formalization of the Radon–Nikodym derivative [10] which
is then used to define the KL divergence. Based on the latter, we definemost of the commonly
used measures of information. We start by providing general definitions which are valid for
both discrete and continuous cases and then prove the corresponding reduced expressions
where the measures considered are absolutely continuous over finite spaces. We build on the
foundations, presented in [19], to provide a more general formalization of information theory
including the properties of measures of information.

2.3.1 Radon–Nikodym derivative

The Radon–Nikodym derivative of a measure ν with respect to the measure μ is defined as
a non-negative measurable function f, satisfying the following formula, for any measurable
set A [10]. ∫

A
f dμ = ν(A).

We formalize the Radon–Nikodym derivative in HOL as

|� RN_deriv m v =
@f. f IN measurable (X, S) Borel ∧
∀x ∈ X, 0 ≤ f x ∧ ∀a ∈ S,
integral m (λx. f x * I_a x) = v a

where @ denotes the Hilbert-choice operator. The existence of the Radon–Nikodym deriv-
ative is guaranteed for absolutely continuous measures by the Radon–Nikodym theorem
stating that if ν is absolutely continuous with respect to μ, then there exists a non-negative
measurable function f such that for any measurable set A,

∫

A
f dμ = ν(A).

We proved the Radon–Nikodym theorem in HOL for finite measures which can be easily
generalized to σ -finite measures [19].

� ∀m v s st.
measure_space (s, st, m) ∧
measure_space (s, st, v) ∧
abs_cont (s, st, m) (s, st, v) ⇒
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∃f. f ∈ measurable (s, st) Borel ∧
∀x ∈ s, 0 ≤ f x < ∞ ∧
∀a ∈ st,

integral m (λx. f x * I_a x) = v a

The formal reasoning about the above theorem is primarily based on the Lebesgue monotone
convergence and the following lemma which, to the best of our knowledge, has not been
referred to in mathematical texts before.

Lemma 1 If P is a non-empty set of extended-real valued functions closed under the max
operator, g is monotone over P and g(P) is upper bounded, then there exists a monotonically
increasing sequence f (n) of functions, elements of P, such that

sup
n∈N

g( f (n)) = sup
f ∈P

g( f ).

Finally, we formally verified various properties of the Radon–Nikodym derivative. For
instance, we prove that for absolutely continuous measures defined over a finite space, the
derivative reduces to

� ∀x ∈ s, u{x} �= 0 ⇒
RN_deriv u v x = v{x}/u{x}

The following properties play a vital role in formally reasoning about the Radon–Nikodym
derivative and have also been formally verified.

� ∀x ∈ s, 0 ≤ RN_deriv m v x < ∞
� RN_deriv ∈ measurable (s, st) Borel
� ∀a ∈ st, v a =

integral m (λx. RN_deriv m v x * I_a x)

2.3.2 Kullback–Leibler divergence

The KL divergence [6], DKL(μ||ν) is a measure of the distance between two distributions
μ and ν. It can be used to define most information-theoretic measures such as the mutual
information and entropy and can, hence, be used to provide a unified framework to formalize
most information leakage measures. It is because of this reason that we propose to formalize
the KL divergence in this paper as it will facilitate formal reasoning about a wide variety of
information flow related properties. The KL divergence is defined as

DKL(μ||ν) = −
∫

X
log

dν

dμ
dμ,

where dν
dμ

is the Radon–Nikodym derivative of ν with respect to μ. The KL divergence is
formalized in HOL as

|� KL_divergence b m v =
-integral m (λx. logr b((RN_deriv m v)x))

where b is the base of the logarithm. DKL is measured in bits when b = 2. We formally
verify various properties of the KL divergence. For instance, we prove that for absolutely
continuous measures over a finite space, it reduces to

DKL(μ||ν) =
∑

x∈s
μ{x} log μ{x}

ν{x} ,
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� KL_divergence b u v =
SIGMA (λx. u{x} logr b (u{x}/v{x})) s

We also prove the following properties

� KL_divergence b u u = 0
� 1 ≤ b ⇒ 0 ≤ KL_divergence b u v

The non-negativity of the KL divergence for absolutely continuous probability measures over
finite spaces is extensively used to prove the properties of information theory measures like
the mutual information and entropy. To prove this result, we use the Jensen’s inequality and
the concavity of the logarithm function.

We show in the subsequent sections howwe use theKL divergence to formalize themutual
information, Shannon entropy, conditional entropy and the conditional mutual information,
which are some of the most commonly used measures of information leakage.

2.3.3 Mutual information and entropy

Themutual information has been proposed as a measure of information leakage [29] from the
secure inputs S of a program to its public outputs O as it represents the mutual dependence
between the two random variables S and O. The mutual information is defined as the KL
divergence between the joint distribution and the product of marginal distributions. The
following is a formalization of the mutual information in HOL.

|� I(X;Y) = KL_divergence b (p X Y)
prod_measure (p X) (p Y)

We prove various properties of the mutual information in HOL, such as the non-negativity,
symmetry and reduced expression for finite spaces, using the result that the joint distribution
is absolutely continuous w.r.t. the product of marginal distributions.

� 0 ≤ I(X;Y)
� I(X;Y) = I(Y;X)
� I(X;Y) = 0 ⇔ X and Y independent
� I(X;Y) = SIGMA (λ(x, y). p{(x, y)}

logr b (p{(x, y)}/p{x}p{y})) s

TheShannon entropyH(X)was one of the firstmeasures to be proposed to analyze anonymity
protocols and secure communications [8,27] as it intuitively measures the uncertainty of a
random variable X. It can be defined as the expectation of pX or simply as I (X; X).

|� H(X) = I(X;X)

We prove that it can also be expressed in terms of the KL divergence between pX and the
uniform distribution puX , where N is the size of the alphabet of X.

� H(X) = log(N) - KL_divergence b (p X) (p_u X)

The cross entropy H(X, Y ) is the entropy of the random variable (X, Y ) and hence there is
no need for a separate formalization of the cross entropy.

The conditional entropy is defined in terms of the KL divergence as follows:

|� H(X|Y) = log(N) - KL_divergence b (p X Y)
prod_measure (p_u X) (p Y)

Some of the major entropy properties that we formally verified in HOL include:
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� 0 ≤ H(X) ≤ log(N)
� max(H(X), H(Y)) ≤ H(X, Y) ≤ H(X) + H(Y)
� H(X|Y) = H(X, Y) - H(Y)
� 0 ≤ H(X|Y) ≤ H(X)
� I(X;Y) = H(X) + H(Y) - H(X,Y)
� I(X;Y) ≤ min(H(X), H(Y))
� H(X) = -SIGMA (λx. p{x} logr b (p{x})) s

2.3.4 Conditional mutual information

The conditionalmutual information I (X; Y |Z) allows one tomeasure howmuch information
about the secret inputsX is leaked to the attacker by observing the outputsY of a programgiven
knowledge of the low security inputsZ. This propertywas used byMalacaria [16] to introduce
the conditional mutual information as a measure of information flow for a program with high
security inputs and low security inputs and outputs. The conditional mutual information is
defined as the KL divergence between the joint distribution pXY Z and the product measure
pX |Z pY |Z pZ . The HOL formalization is as follows.

|� I(X;Y|Z) = KL_divergence b (p X Y Z)
(prod_measure (p X|Z) (p Y|Z) (p Y))

We formally verify the following reduced form of the conditional mutual information for
finite spaces by first proving that pXY Z is absolutely continuous w.r.t. pX |Z pY |Z pZ and then
apply the reduced form of the KL divergence.

I (X; Y |Z) =
∑

(x,y,z)∈X×Y×Z
p(x, y, z) log

p(x, y, z)

p(x |z)p(y|z)p(z) .

When the two random variables X and Y are independent given Z, the conditional mutual
information I (X; Y |Z) = 0. In fact, in this case, ∀x, y, z. p(x, y, z) = p(x, y|z)p(z) =
p(x |z)p(y|z)p(z).

� indep_rv_cond p X Y Z ⇒ I(X;Y|Z) = 0

We also prove a few other important results regarding the conditional mutual information
which will be useful later in our work.

� 0 ≤ I(X;Y|Z)
� I(X;Y|Z) = H(X|Z) - H(X|Y, Z)
� I(X;Y|Z) = I(X;(Y, Z)) - I(X;Z)
� I(X;Y|Z) ≤ H(X|Z)

So far, we have provided a higher-order-logic formalization of the KL divergence which
we used to define various measures of information. Overall, the HOL definitions and proof
scripts of the above formalization required around 15,000 lines of code [17].

This framework allows us to conductmany analyses of quantitative information flow using
a theorem prover and hence guaranteeing the soundness of the analysis. We introduce, in the
next section, two new measures of information as well as their formalization in higher-order
logic. We also compare these measures to existing ones.
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3 Degrees of information leakage

Information leakage is a measure of how much information about the high security inputs
of a system is leaked, accidentally or maliciously, by observing the systems outputs and
the low security inputs. Various measures of information leakage have been proposed in the
literature, ranging from entropy to the channel capacity [2,7,8,16,27]. We introduce two
new measures of information, namely the information leakage degree and the conditional
information leakage degree, and compare them to the anonymity degree introduced in [29]
to show that our definitions are more generic.

3.1 Information leakage degree

Consider a program having a set of secret inputs, represented by the random variable X and
a set of public outputs, represented by Y. We define the information leakage degree of this
program as

D = H(X |Y )

H(X)
,

where H(X) and H(X |Y ) represent the Shannon entropy of X and the conditional entropy
of X given Y, respectively.

|� D p X Y = H(X|Y) / H(X)

To better understand the intuition behind this definition, let us consider the two extreme
cases of a completely secure program and a completely insecure program. Complete security,
intuitively, happens when the knowledge of the public output Y of a program does not affect
the uncertainty about the secret input X. This is equivalent to the requirement that X is
independent of Y. In this case H(X |Y ) = H(X) and the information leakage degree is equal
to 1. On the other hand, when the output of the program completely identifies its secret input,
the entropy H(X |Y ) is equal to 0 and hence the information leakage degree is equal to 0 in
this case of perfect identification. For situations between the two extremes, we prove that
the information leakage degree lies within the interval (0, 1). The result is derived in HOL as
follows

� 0 ≤ D p X Y ≤ 1

Using the properties of the mutual information, I (X; Y ), we prove that the information
leakage degree is also equal to

� D p X Y = 1 - I(X;Y) / H(X)

This result illustrates the significance of the information leakage degree definition since the
mutual information measures how much information an adversary can learn about the input
X after observing the output Y. This also allows to compare our definition to the anonymity
degree proposed in [29] as

D′ = 1 − I (X; Y )

logN
,

whereN is the size of the alphabet of X. The perfect identification scenario, which is achieved
when the anonymity is totally broken, should be represented by an anonymity degree that is
always equal to zero, regardless of the system inputs. However, the definition proposed above
is equal to zero only when the input random variable X is uniformly distributed. In fact, in the
perfect identification scenario I (X; Y ) is equal to H(X). When X is uniformly distributed,
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H(X) = log(N ) and D′ = 0. For all other distributions, H(X) < log(N ) and D′ > 0. This
is not a desirable property of the anonymity degree for the perfect identification case.

Our definition is more general. In fact, when X is uniformly distributed, the two measures
coincide D = D′.However, in the general case,we believe that our definition ismore accurate
since, for instance, in the perfect identification scenario, D is always equal to 0 regardless of
the input distribution. It is also always equal to 1 for the perfect anonymity case.

It should be noted that Zhu andBettati [29] considered using the entropy as a normalization
factor instead of log(N ) but opted for the latter arguing that the input distribution is already
accounted for in themutual information.We believe that this argument is not at all convincing.
We also find that analyzing the perfect identification case in their paper, leads to a confusion
on what normalization factor was finally used. This analysis is valid only when the entropy
is used.

3.2 Conditional information leakage degree

Wepropose another variation of information leakage degree that ismore general and can cover
a wider range of scenarios. First, consider a program which has a set of high security inputs
S, a set of low security inputs L and a set of public outputs O. The adversary wants to learn
about the high security inputs S by observing the outputs O given the knowledge of the low
security inputsL. To capture this added information for the adversary (low security inputs), we
propose the following definition, which we call the conditional information leakage degree

Dc = H(S|(O, L))

H(S|L)
.

This can be formalized in HOL as

|� D_c p S L O = H(S|(O, L)) / H(S|L)

Just like the previous case, consider the two extremes of perfect security and perfect iden-
tification. When the outputs and the secret inputs are independent, given L, the conditional
entropy H(S|(O, L)) is equal to H(S|L)which results in a conditional leakage degree equal
to 1 for perfect security. However, if the public inputs and outputs completely identify the
secret inputs, then H(S|(O, L)) is equal to 0 and so is the conditional leakage degree in the
case of perfect identification. As in the case of leakage degree, we are also able to show that
the conditional information leakage degree lies within the interval (0, 1).

� 0 ≤ D_c p X Y Z ≤ 1

We also prove that the conditional information leakage degree can be written in terms of the
conditional mutual information and the conditional entropy.

� D_c p S L O = 1 - I(S;O|L) / H(S|L)

This shows that this definition is clearly a generalization of the information leakage degree
for the case of programs with additional low security inputs. We provide more intuition to
interpret this definition by proving the data processing inequality (DPI) [6], which is an
important result in information theory that is used, for instance, in statistics to define the
notion of sufficient statistic. Random variables X, Y, Z are said to form aMarkov chain in that
order (denoted by X → Y → Z ) if the conditional distribution of Z depends only on Y and is
conditionally independent of X. Specifically, X, Y and Z form a Markov chain X → Y → Z
if the joint probability mass function can be written as p(x, y, z) = p(x)p(y|x)p(z|y). We
formalize this in HOL as follows
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|� markov_chain p X Y Z =
∀ x y z. p X Y Z {(x, y, z)} =
p X {x} * p Y|X {(y, x)} * p Z|Y {(z, y)}

We prove that X → Y → Z is equivalent to the statement that X and Z are conditionally
independent given Y. In fact, p(x)p(y|x)p(z|y) = p(x, y)p(z|y) = p(x |y)p(z|y)p(y).
This in turn is equivalent to I (X; Z |Y ) = 0. This result allows us to prove the DPI theorem
stating that, if X → Y → Z then I (X; Z) ≤ I (X; Y ).

Weprove theDPI theorem using the properties of themutual information. In fact, as shown
previously, I (X; (Y, Z)) = I (X; Z)+ I (X; Y |Z). By symmetry of the mutual information,
we also have I (X; (Y, Z)) = I (X; Y ) + I (X; Z |Y ) = I (X; Y ). The last equality results
from the fact that I (X; Z |Y ) = 0 for a Markov chain. Using the non-negativity of the
conditional mutual information, it is straightforward to conclude that I (X; Z) ≤ I (X; Y ).

We make use of the DPI to interpret the conditional information leakage degree. For a
system with high security inputs S, low security inputs L and outputsO, if the outputs depend
only on the low security inputs, i.e., p(O|S, L) = p(O|L) then S → L → O and S and O
are conditionally independent givenL. This is the perfect security scenario, forwhich Dc = 1.
Using the DPI, we conclude that I (S; O) ≤ I (S; L). This means that when the conditional
mutual information leakage is equal to 1, no clever manipulation of the low security inputs,
by the attacker, deterministic or random, can increase the information that L contains about
S, (I (S; L)).

The information leakage degrees that we have introduced in this section can be used to
reason about information flow analysis of real-world protocols and programs. In the next
section, we show two simple yet illustrative examples of how to use a theorem prover and
our formalization of information measures to evaluate the properties of security protocols.

4 Applications

In order to illustrate the effectiveness and utilization of the formalization presented in the
previous section, we use it to perform quantitative analysis of information flow and apply
it to evaluate the anonymity properties of an anonymity-based single MIX as well as the
properties of a classical encryption technique, namely the OTP.

4.1 Anonymity-based single MIX

In this section, we use our formalization to reason about an anonymity-based single MIX,
designed to hide the communication links between a set of senders and a set of receivers.
We model a single MIX as a communication node connecting m senders (s1, . . . , sm) to
n receivers (r1, . . . , rn). The single MIX is determined by its inputs (senders), outputs
(receivers) and the transition probabilities. We can also add clauses in the specification to
capture additional information about the MIX like structural symmetry. The following is a
formalization of the single MIX given in Fig. 1.

|� MIX_channel s m X Y =
(X(s) = {0; 1}) ∧
(Y(s) = {0; 1; 2; 3}) ∧
(p Y|X {0} {0} = 1/2) ∧
(p Y|X {1} {0} = 1/2) ∧
(p Y|X {2} {1} = 1)
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Fig. 1 Single MIX
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Zhu and Bettati [29] used the singleMIX tomodel an anonymity-based covert-channel where
a sender is trying to covertly sendmessages through theMIX. They used the channel capacity
as a measure of the maximum information that can be leaked through the MIX and can be
used as a measure of the quality of anonymity of the network. A communication between a
sender si and a receiver r j is denoted by [si , r j ]. The term p([su, rv]s |[si , r j ]a) represents
the probability that the communication [su, rv] is suspected given that [si , r j ] is actually
taking place. This model describes attacks on sender–receiver anonymity. The input symbols
of the covert-channel are the actual sender–receiver pairs [s, r ]a and the output symbols
are the suspected pairs [s, r ]s . In this case, p([s, r ]s |[s, r ]a) represents the result of the
anonymity attack. We consider the case where an attacker can establish a covert-channel by
having one sender s1 communicate with any combination of j receivers. The same reasoning
can be applied to multiple senders. The authors claim the following result [29]:

Lemma 2 For a single sender s1 on a single MIX, the maximum covert-channel capacity is
achieved when s1 can communicate to all receivers.

We initially tried to formally verify this result, using the foundational results presented in
the previous section, but we found a counter-example for an assumption upon which the
paper-and-pencil proof of Lemma 2 is based [29]. The erroneous assumption states that
the maximum of the mutual information is achieved when all input symbols have non-zero
probabilities regardless of the transition probabilities (the results of the anonymity attack).
We are able to prove in HOL that it is not necessary for the sender s1 to communicate with
all receivers to achieve capacity.

First, we provide a higher-logic-formalization of the channel capacity which is defined as
the maximum, over all input distributions, of the mutual information between the input and
the output of the channel. We formalize it in HOL using the Hilbert-choice operator; i.e., if
it exists, the capacity is some c such that c = Im(X; Y ) for some probability distribution m
and for any input distribution p, Ip(X; Y ) ≤ c.

|� capacity s X Y = @c.
∃m. c = I_m(X;Y) ∧ ∀m. I_m(X;Y) ≤ c

Next, consider the covert-channel depicted in Fig. 2. To simplify the notation, let xi =
[s1, ri ]a and yi = [s1, ri ]s . This covert-channel is formalized in HOL as

|� MIX_channel_1 s m X Y =
(X(s) = {0; 1; 2}) ∧
(Y(s) = {0; 1; 2}) ∧
(p X {0} = p X {2}) ∧
(p Y|X {0} {0} = 1) ∧
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Fig. 2 Single MIX example
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(p Y|X {0} {1} = 1 / 2) ∧
(p Y|X {0} {2} = 0) ∧
(p Y|X {1} {0} = 0) ∧
(p Y|X {1} {1} = 0) ∧
(p Y|X {1} {2} = 0) ∧
(p Y|X {2} {0} = 0) ∧
(p Y|X {2} {1} = 1 / 2) ∧
(p Y|X {2} {2} = 1)

We prove that its mutual information is equal to 2p.

� ∀X Y s. MIX_channel_1 s m X Y ⇒
I(X;Y) = 2 * p X {0}

We also prove that the capacity is equal to 1 and corresponds to p = 1
2 . This means that the

input distribution that achieves the channel capacity is [p{x0} = 1
2 , p{x1} = 0, p{x2} = 1

2 ].
Hence, we prove that the sender s1 does not need to communicate with the receiver r2 and
still achievemaximum capacity, contradicting Lemma2. Notice that with p = 1

2 , I (X; Y ) =
H(X) = 1 which implies that the degree of information leakage D = 0. So for this covert-
channel, the maximum capacity corresponds to perfect identification.

Unlike the paper-and-pencil based analysis, a machine-assisted analysis of quantitative
information flow using theorem proving guarantees the accuracy of the results. In fact, the
soundness of theorem proving inherently ensures that only valid formulas are provable. The
requirement that every single step of the proof needs to be derived from axioms or previous
theorems using inference rules, allows us to find missing assumptions and even sometimes
wrong statements as was the case in the single MIX application. We have detected this
problem while conducting the proof using the HOL4 theorem prover and more specifically
when trying to prove the intermediate erroneous result.

4.2 One-time pad

The OTP is a simple yet solid encryption system that provides, if used correctly, an unbreak-
able security. The encryption is performed by modular addition of every character of the
plaintext with a character from a secret random key of at least the same length as the original
message. If the key is truly random and never reused in whole or in part, then it can be proven
that the OTP encryption provides a perfect security. We formally prove this property using
the HOL4 theorem prover using the higher-order-logic formalization we presented in Sect. 2.

The OTP encryption technique takes its name from the paper pads that have been histor-
ically used to distribute the keys, making it easy to simply pull the top sheet of the pad and
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Fig. 3 A Russian one-time pad,
captured by MI5 (courtesy
Marcus J. Ranum)

Fig. 4 One-time pad encryption
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destroy it after use. An example of a Russian OTP that was captured by MI5 is depicted in
Fig. 3.

The OTP has been extensively used to secure the communications of various international
intelligence agencies andwas used for instance in theWashington/Moscow hotline to provide
perfectly secure communication betweenWashington and theKremlin andwithout disclosing
any other secret cryptographic technology.

The main challenges for this encryption technique are the generation of truly random
keys and their distribution to both sender and receiver. This sometimes makes the technique
impractical and limits the types of its applications to the cases where, for example, absolute
security is a realmust, regardless of the costs. Still, theOTP is available as a backup encryption
option if other theoretically less secure but more practical encryption systems are unavailable
for reasons ofwar or attacks. TheOTP encryption is also very important in the situationwhere
both sender and receiver need to do all theworkbyhandwithout the use of a computer,whether
because one is not available or to avoid possible vulnerabilities of a standard computer.

The structure of a typical OTP encryption system is depicted in Fig. 4. The plaintext is
first encoded into digits or bits then fed to the encryption block which performs a modular
additional (modulo 10 or modulo 2) to produce a cipher text. The latter is transmitted to the
receiver side which performs the inverse operations to recover the original message.

4.2.1 Encoding–decoding

A checkerboard [25] is a conversion scheme to convert alphabetic plaintext into digits to
prepare it for encryption. Several types of checkerboards have been proposed. We use a
straddling checkerboard in which the more frequent letters in a language are encoded with
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Table 2 Straddling
checkerboard example

0 1 2 3 4 5 6 7 8 9

A T O N E S I R

2 B C D F G H J K L M

6 P Q U V W X Y Z . /

a lower number of digits, leading to a compressed output and, hence, shorter messages
to be transmitted. Besides, a straddling checkerboard allows to achieve a simple form of
information diffusion, or in other words, it reduces the redundancy in the statistics of the
plaintext. An example checkerboard for the English language can be found in Table2. We
formalize the straddling checkerboard as the function checkerboard of the HOL type,

|� checkerboard: char -> num

We present the definition of checkerboard associated with Table2 for the first-row letters
as well as P and /.

|� (checkerboad #’’A’’ = 0) ∧
(checkerboad #’’T’’ = 1) ∧
(checkerboad #’’O’’ = 3) ∧
(checkerboad #’’N’’ = 4) ∧
(checkerboad #’’E’’ = 5) ∧
(checkerboad #’’S’’ = 7) ∧
(checkerboad #’’I’’ = 8) ∧
(checkerboad #’’R’’ = 9) ∧
(checkerboad #’’P’’ = 60) ∧
(checkerboad #’’/’’ = 69)

Using the above definition of the straddling checkerboard, we formalize the encoding and
decoding blocks as encode and decode functions, respectively. The encoder takes as input
a string representing the alphabetic plaintext which it explodes into a list of characters, each
of which is processed through the checkerboard, and returns a list of digits. The decoder
performs the inverse operations to convert a list of digits back to a string. The functions
encode and decode have the following HOL types:

|� encode: string → num list;
|� decode: num list → string

4.2.2 Encryption–decryption

The encryption and decryption blocks are formalized as two functions, encrypt and
decrypt, taking as input a pair of same length lists of digits and returning a list of digits.

|� encrypt:(num list, num list) → num list
|� decrypt:(num list, num list) → num list

The encryption is performed by a modulo 10 addition, digit by digit, of the list representing
the encoded message and the list of digits representing the OTP key. The result of this
operation is a ciphertext which is also represented by a list of digits. On the receiver side, the
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ciphertext is decrypted by subtracting, modulo 10, the key from ciphertext, resulting into a
list of numbers that represent the original message. In the case where the plaintext is encoded
into bits instead of digits, both encryption and decryption are performed by a simple XOR
operation. We formalize encrypt in higher-order logic, recursively. h1 and h2 represent
the first elements or heads of the lists and t1 and t2 their tails. The :: operator is the list
constructor.

|� encrypt ([], []) = [] ∧
∀ t1 t2 h1 h2.

encrypt (h1::t1, h2::t2) =
(h1 + h2) MOD 10::encrypt (t1, t2)

Similarly, we formalize the decryption block as follows.

|� decrypt ([], []) = [] ∧
∀ t1 t2 h1 h2.

decrypt (h1::t1, h2::t2) =
(h1-h2) MOD 10::decrypt (t1, t2)

Finally, let m be the original message (plaintext), k be the OTP key and r be the received
message after decryption and decoding. TheOTP encryption is then formalized in HOL using
the following OTP predicate.

� ∀ m k r. OTP m k r ⇔
r = decode(decrypt(encrypt(encode m, k), k))

As a reassuring property, we prove in HOL that the OTP as designed and formalized above,
ensures that the received message is equal to the original message.

� ∀ m k r. OTP m k r ⇒ (r = m)

4.2.3 Perfect security

We use our definition of information leakage degree and its formalization in higher-order
logic, to prove in HOL that the OTP provides perfect security, i.e., D = 1.

We start by formalizing the notion of independence of random variables. Two random
variables X and Y are independent iff ∀A, B, the events {X ∈ A} and {Y ∈ B} are indepen-
dent.

|� indep_rv p X Y = ∀A B.
A ∈ subsets Borel ∧
B ∈ subsets Borel ⇒

indep p (PREIMAGE X A ∩ Ω)
(PREIMAGE Y B ∩ Ω)

LetM, C and K denote the random variables representing the plaintext, ciphertext and keys,
respectively. Hence, K is uniformly distributed and is independent of M, which allows us to
prove that

� ∀ m ∈ M, c ∈ C.
P(M=m|C=c) = P(M=m)

This follows from the following lemmas,
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� P(M=m|C=c) = P(M=m, C=c) / P(C=c)
� P(M=m, C=c) = P(M=m, K=m ⊕ c)
� P(M=m, K=m ⊕ c) = P(M=m) P(K=m ⊕ c)
� P(K=m ⊕ c) = 2−n

� P(C=c) = 2−n

Next, we prove that the conditional entropy of M given C is equal to the entropy of M and
that the mutual information I (M;C) is equal to zero.

� H(M|C) = H(M)
� I(M;C) = 0

Finally, it follows that the information leakage degree introduced in Sect. 3 is equal to 1,
meaning that the OTP encryption is information-theoretically secure and there is no leakage
of information about the secret input (plaintext) to a possible eavesdropper.

� D(M, C) = 1

The assumption that k is never reused is actually not directly used in the mathematical
proof of perfect secrecy of the OTP. In fact, key reuse would allow to break the encryption
through heuristic cryptanalysis not through mathematical analysis. Instead, in a theoretically
perfect setting, the one time use of the key is captured by the following assumptions: the
ideal randomness of the keys generated and the uniform distribution of the keys. While ideal
randomness is a theoretical unattainable concept, the one-time use is the practical realization
of the ideal OTP protocol. Of course, the perfect security of the OTP is only ensured in this
theoretically perfect setting.

5 Related work

Zhu and Bettati [29] proposed the notion of degree of anonymity which is close to our
definition of information leakage degree but we showed that our definition is more general
and the two are equal in the case of uniform distribution. Besides, we proposed the conditional
information leakage degree, suitable for programs with low security inputs and proved the
DPI to give more insight into the intuition behind this new definition. Moreover, our work is
based on higher-order-logic theorem proving, which is arguably more sound than the paper-
and-pencil based analysis of Zhu and Bettati. In fact, with our analysis we were able to detect
the aforementioned problem with the analysis in [29] and provide a counter-example using
theorem proving.

Coble [4] formalized some information theory in higher-order logic and used Malacaria’s
measure of information leakage, i.e., the conditional mutual information [16], to formally
analyse the anonymity properties of the Dining Cryptographers protocol. Our formalization
of information theory is an extended version of Coble’s formalization, i.e., it supports Borel
spaces and extended real numbers which allowed us to prove the Radon–Nikodym theorem.
Coble’s formalization of information theory does not offer these capabilities and thus can-
not be used to formally verify the Radon–Nikodym theorem which is useful to verify the
properties of various measures of information.

Chatzikokolakis et al. [2] modeled anonymity protocols as noisy channels and used the
channel capacity as a measure of the loss of anonymity. In the case where some leakage is
intended by design, like in an election protocol, they introduced the notion of conditional
capacity which is related to the conditional mutual information. They used the PRISMmodel
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checker [15] to assist in computing the transition probabilities and capacity of the Dining
Cryptographers protocol. This analysis technique inherits the state-space explosion problem
of model checking, limiting the number of state variables that can be used to represent the
protocol. In [2], for instance, the anonymity property of the protocol have been proven for only
three cryptographers. The same result can be derived using our framework for an arbitrary
number N of cryptographers. In fact, probabilistic model checking is not designed to verify
universally quantified generic mathematical relationships like we have been able to verify in
the reported work.

The underlying theories over whichwe built this work aremainly from [18,19]. In [18], we
provided a formalization of the measure theory and Lebesgue integration in HOL and proved
someclassical probability results like theWeakLawofLargeNumbers. In [19],we formalized
extended reals and based on them provided a more extensive formalization of measure and
Lebesgue integration. We also formalized the Shannon entropy and relative entropy and
proved the Asymptotic Equipartition Property. In the current paper, we enrich the underlying
theories by adding, for instance, products of measure spaces and joint distributions. Themain
difference, however, is that in this paperwe propose newmeasures of information leakage and
formalize various othermeasures likemutual information and conditionalmutual information
based on a unified definition of the KL divergence.We use the framework in the evaluation of
the anonymity properties of an anonymity-based singleMIXand the confidentiality properties
of the OTP encryption system.

6 Conclusions

In this paper, we proposed an alternative way to evaluate the anonymity and confidentiality
properties of programs andprotocols, by conducting a quantitative analysis on the information
flow within these programs using a higher-order-logic theorem prover. The deduction style
used in the theorem prover to derive proofs offers a high degree of trust in the accuracy of
the analysis.

For this purpose, we provided a formalization of the KL divergence in the HOL4 theorem
prover and used it to formalize various measures of information leakage that have been
proposed in the literature such as the entropy, mutual information and conditional mutual
information.

We have introduced two new measures of information, namely the information leakage
degree and the conditional information leakage degree, and showed that these definitions are
more generic to other comparable measures.

We also showed how formal analysis of information flow can be used in the evaluation
of the properties of security protocols by proving the perfect security property of the OTP
encryption system. We formalized the various blocks of the encryption system and proved
the property as a general mathematical result, compared to computer simulation which can
be used to prove such properties but less accurately due to numerical approximations and
more importantly because it is not exhaustive.

We also showcased the benefit of using theorem proving to conduct such analysis when
compared to paper-and-pencil analysis even for small applications. The benefit is even greater
for larger systems or when dealing with parallel and distributed systems. In fact, we were
able to come up with a counter-example to a result that appeared in a prominent paper [29]
related to the anonymity-based single MIX for which we proved in HOL that the senders
need not communicate with all the receivers to achieve channel capacity.
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Our future plans include using this framework to study the properties of the Crowds [24]
and Tor [9] protocols within the theorem prover.
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