
1

A Practical Methodology for the Formal
Verification of RISC Processors

SOFIÈNE TAHAR tahar@iro.umontreal.ca
IRO Department, University of Montreal, Montréal (Québec), H3C 3J7 Canada

RAMAYYA KUMAR kumar@fzi.de
FZI, Haid-und-Neu Straße 10-14, 76131 Karlsruhe, Germany

Abstract. In this paper a practical methodology for formally verifying RISC cores is presented. This methodology
is based on a hierarchical model of interpreters which reflects the abstraction levels used by a designer in the
implementation of RISC cores, namely the architecture level, the pipeline stage level, the clock phase level and the
hardware implementation. The use of this model allows us to successively prove the correctness between two
neighbouring levels of abstractions, so that the verification process is simplified. The parallelism in the execution of
the instructions, resulting from the pipelined architecture of RISCs is handled by splitting the proof into two
independent steps. The first step shows that each architectural instruction is implemented correctly by the sequential
execution of its pipeline stages. The second step shows that the instructions are correctly processed by the pipeline in
that we prove that under certain constraints from the actual architecture, no conflicts can occur between the
simultaneously executed instructions. This proof is constructive, since the conditions under which the conflicts occur
are explicitly stated thus aiding the user in its removal. All developed specifications and proof scripts are kept general,
so that the methodology could be used for a wide range of RISC cores. In this paper, the described formalization and
proof strategies are illustrated via the DLX RISC processor.

Keywords: Formal Specification, Hardware Verification, Higher-Order Logic, RISC Processors, Processor
Verification, Pipeline Verification

1. Introduction

As computer systems are becoming increasingly complex, the trustworthiness of their design is
questionable. Conventional approaches such as simulation and testing have a very high cost to
confidence-gain ratio and furthermore, the correctness of the design cannot be guaranteed due to
the combinatorial explosion of test vectors [20]. This situation is particularly unsatisfactory in the
case of embedded computers for safety-critical systems, such as aircraft, spacecraft and nuclear
reactor control etc., where design errors could lead to loss of life and expensive property [74].
Hence, there is a need to produce high-integrity processors that are correct inall situations.
Although completely reliable systems cannot be guaranteed, the use offormal methods [39] is an
alternative approach that systematically analysesall cases in a design and specification [23].

In the recent past several successful microprocessor specification and verification efforts have
been performed using formal methods; some using high-order logic [22, 37, 38, 49, 77] and others
based on functional calculi [8, 25, 44, 64, 66]. Among the processors verified within these works
only the VIPER [22] and the C/30 [25] processors are commercial ones, however, their verification
was only partly achieved. With exception of these two processors, all related works on
microprocessor verification deal with very simplified processors, so-called toy machines, when
compared with today's commercially available microprocessors. Furthermore, except the work of
Windley [77], these efforts were concerned with a specific microprocessor and do not give any
general methodology.

Technical Report No. FZI 9/95
Forschungszentrum Informatik
Karlsruhe, Germany, August 1995

2

During the verification of processors, powerful specifications are needed to express the
functionality, temporal aspects and structure at different levels of abstraction. Due to the
expressiveness of higher-order logic in specifying complex circuits at different abstraction levels,
the formalism used in our work will be based on this powerful logic. But, since this logic is neither
complete nor decidable [4], no automated proofs will be provided in general. However, this
disadvantage can be circumvented by the development of appropriate heuristics and techniques
which automate the verification of a special class of circuits, e.g. microprocessors, arithmetic
circuits, protocol circuits, systolic arrays, signal processors, etc. This is due to the observation that
specific classes of circuits have very typical syntactic structures which can be exploited to provide
automation.

Microprocessors build a particular class of hierarchical circuits, that are increasingly used in a
wide range of applications. A look at the microprocessor market shows that there are two kinds of
design philosophies: CISCs (Complex Instruction Set Computers) and RISCs (Reduced Instruction
Set Computers). Most related work in microprocessor specification and verification were
concerned with microprogrammed non-pipelined processors [37, 44, 49, 77]. Although large
examples have been verified [38, 45] and a general methodology for verifying microprogrammed
processors has been given [77], these efforts do not reflect the complexity of the commercially
available CISC processors. Our studies of real CISC microprocessors have shown that they have a
very unstructured and dirty design including a large control part (approx. 70% of the chip area)
encoded in an intricate way [75]. This complexity is the reason why conventional validation
methods such as logic simulation or breadboarding are the major bottleneck in CISC
microprocessor design projects [75]. Therefore, no reasonable methodology can be set up for the
verification of commercial CISC processors.

The RISC philosophy is based on the idea of pushing the complexity from the hardware to the
software. This characteristic leads to a much simpler design with a higher throughput. In contrast to
CISCs, RISC designs are better structured and hence more tractable for using formal methods [12].
However, additional problems such as pipelining have to be tackled since they form the essence of
RISCs. Moreover, contemporary RISCs include complex features, such as floating point
operations, memory management, etc. that have to be considered within the verification process.
However, due to the regularity of a RISC design and the use of modular implementations, the
overall architecture of such processors can be defined using a multiple layered architecture [7],
consisting of the core architecture, the numerical architecture and the protected architecture
(figure 1). Thecore architecture executes the basic instruction set of the RISC processor, includes
the basic instruction pipeline and controls the whole microprocessor. Thenumerical architecture
provides support for floating point and complex arithmetic operations. Theprotected architecture
is for memory management, multitasking and multiprocessing tasks. The more one moves from the
innermost ring (RISC core) to the outermost one, the more are the differences in architectures from
one RISC implementation to another, e.g. use of different cache mechanisms. Since the objective
of our endeavour is to provide ageneral methodology, we will therefore concentrate on the core
architecture of a RISC processor, as a first step towards the verification of whole RISC processors.
The handling of upper layers is topic of future work and is not covered by the scope of this paper.

3

Figure 1. Multiple Layered RISC Architecture

Recently, there have been successful efforts for verifying pipelined processors using theorem-
provers [1, 15, 26, 63, 65, 66]. However, in all these cases, either the processor was extremely
simple (e.g. in [26, 65] a very simple 3-stage pipeline known as Saxe-pipeline is handled) or a large
amount of labor was required. Among these works, only the work in [15] deals with the verification
of a RISC processor, namely a SPARC model [68]. Still, this work was only able to verify parts of
the processor at certain levels of abstraction. Lately, automated techniques for the verification of
pipelined processors have been presented [9, 16]. However, due to the computational cost of BDD
manipulations [13], the method presented in [9] was only able to prove the correctness of
simplified pipelined processor examples (e.g. using one single general purpose register, few 4-bit
ALU-operations, etc.) and that in [16] deals with the verification of the control part and
additionally, abstracts the behaviour of the datapath components. Moreover, these works do not
reflect the overall behaviour of real RISC processors (e.g. only few instructions, no interrupts,
etc.). Besides these works on pipelined processors, there exist only few publications on the formal
verification of pipelined hardware circuits in general which however do not address the problems
of RISC pipelines [11, 14, 36]. In contrast to all related works, we are developing a methodology
and an associated environment for the routine verification of RISC cores in their entireties, i.e.
from the specification of instruction sets down to their circuit implementations, independent of the
data width and including features of real RISCs as bypassing, delayed execution, interrupts, etc.

With the aim of advancing the state of technology in hardware verification, we set up the
following goals:

• To develop a methodology for the verification of a particular class of circuits, i. e. RISC cores

• To formally reason about new aspects in microprocessor design which were not sufficiently
addressed by previous efforts (especially pipelining)

• To set up advanced techniques for the verification of real RISCs, that are not designed just for
the purpose of verification

• To elaborate practical tools that automate the verification process using higher-order logic in
a theorem prover environment

• To use this methodology as a framework for formally specifying and verifying a broad range
of large, realistic RISC cores

• To implement this framework in theHOL theorem prover [34] and to integrate it into a general
verification frameworkMEPHISTO [52]

Architecture

Core
Architecture

Numerical

Architecture
Protected

4

The organization of this paper is as follows: Section 2 describes a novel hierarchical model for
RISCs on which the verification process will be based. Section 3 first sketches a new temporal
abstraction mechanism and then gives a formalization of the specification of this model. Section 4
describes the management of the verification tasks which will be explored in detail in the following
sections 5 and 6. Section 7 briefly describes some aspects of the implementation of the presented
methodology inHOL. Section 8 contains some experimental results based on the verification of a
VLSI implemented RISC processor and section 9 finally concludes the paper. It is to be noted, that
for illustration purposes, most of the methods and techniques presented in this paper are being
exercised by means of a RISC example — DLX [43]. This processor is an hypothetical RISC
which includes the most common features of existing RISCs such as Intel i860, Motorola M88000,
Sun SPARC or MIPS R3000.

2. RISC Verification Model

Some recent work has shown that the specification and verification of microprogrammed
processors can be simplified through the insertion of intermediate abstraction levels, called
interpreters, between the specification as an instruction set and the hardware implementation [45,
49, 77]. The overall approach of interpreters used reflects the way microprogrammed
microprocessor designs are carried out and designed [3]. Each interpreter consists of a set of visible
states and a set of state transition functions which define the semantics of the interpreter at that
level of abstraction. At the architecture level, for example, states such as the program counter,
register file or data memory, etc. are visible and the set of transition functions corresponds to the
instruction set of the processor. Between two levels, a structural abstraction (set of visible states),
a behavioural abstraction (functional semantics), a temporal abstraction (level of time granularity)
and a data abstraction (level of data granularity) may exist. Using this interpreter model, it is
sufficient to prove that each level correctly implements the next abstraction level instead of
verifying that each instruction is correctly implemented by the hardware. Through these
appropriate intermediate levels, long and complex proofs are replaced by many more routine
proofs, since the gap between the neighbouring levels is small.

2.1. CISC Interpreter Model

In some related work an interpreter model for microprogrammed processors has been presented [5,
49, 77]. This CISC interpreter model is given in figure 2 (where the arrow between the levels
means that the upper level specification is an abstraction of the next lower one). It comprises the
macro, micro and phase levels, each of which corresponds to an interpreter at different abstraction
levels, and the lowest level which corresponds to the circuit implementation — EBM (Electronic
Block Model). The macro level reflects the programmer’s view of instruction execution. At the
micro level, an instruction is interpreted by executing a sequence of microinstructions. The phase
level description decomposes the interpretation of a single microinstruction into the execution of
a set of elementary operations. Using this interpreter model the verification task is replaced by
several simplified proof steps. For example, one has only to prove that the EBM implements 4 to
6 phases instead of directly implying the whole instruction set. However, as mentioned earlier, this
model has been applied for very simplified microprocessors and is not usable for complex real
CISC processors.

5

Figure 2. CISC Interpreter Model

The way RISC designs are carried out and structured is different from that of CISCs, e.g.
because of the hardwired control the micro level does not exist more. The mentioned structuring
of the specification using the CISC interpreter model is hence unsuitable for RISC cores [70] and
we have to look for another verification model.

2.2. A Novel RISC Interpreter Model

A RISC processor executes each instruction in a number of physical steps, calledpipeline stages
(e.g. IF, ID, EX, WB, for instruction fetch, instruction decode, instruction execution and result
write back, respectively). The duration of a pipeline stage corresponds to one machine clock
period. We define astage instruction as the set of transfers, which occur during the corresponding
pipeline segment. Using a multiple phase non-overlapping clock, each stage operation is
partitioned into a number of clock phase operations. We define aphase instruction of a specific
stage as the set of the parts of the transfers that occur during that clock phase.

The instruction set of a RISC core is simple, elementary and less encoded, thus the complexity
of RISC instructions can be compared to that of CISC microinstructions [35]. The pipeline stages
are also comparable to CISC phases, since their number is limited by the pipeline depth, and is
constant for almost all instructions. The RISC phases could be compared to CISC instances, which
are refinements of clock phase operations at the asynchronous level [3]. Using this analogy, a naive
model for RISCs, similar to that of CISCs, could be given. This model is (top-down) built up of an
architecture level, a stage level, a phase level and an implementation EBM. However, in contrast
to CISCs, the RISC phase instructions are stage dependent and the stage instructions differ from
one instruction to another. Using such a model, the number of phase instructions and therefore the
number of verification steps between the EBM and the phase level isNa * ns * np, whereNa, ns and
np are the number of architectural instructions, pipeline stages and clock phases, respectively.
Since the complexity of the proof between the EBM and the next abstraction level is the largest
[22], the use of a naive interpreter model does not yield any advantages, e.g. withNa = 80,ns = 5
andnp = 4, a naive calculation would have yielded 80* 5 * 4 = 1600 different phase instructions
that have to be specified and verified resulting into 1600 single theorems.

As a first solution to reduce this number, we exploit the notion of instruction classes1 [70]. An
instruction class intuitively corresponds to the set of instructions with similar semantics, e.g. ALU,
FLP, LOAD, CONTROL for arithmetic-logic, floating point, load and control instructions,
respectively. Generally, instruction classes are implicitly provided by the instruction set of each

1. This Notion of instruction classes is being also adapted by RISC designers in order to improve the pipeline
execution [43] as well as for simulation [76], synthesis [21] or testing purposes [69].

Macro Level

Phase Level

Micro Level

EBM

6

RISC processor [29, 48, 58, 68]. Furthermore, a group of instructions belonging to one class
usually use the same number of pipeline stages, are executed by the same stage instructions and
are usually implemented in hardware by the same type of functional unit. For example, all binary
arithmetic and logic operations (+,–, ∧ , ∨, etc.) can be abstracted by a single operator called “op”.
The stage and phase instructions can now be parameterized in accordance to the class abstraction,
i.e. they are not dependent on each architectural instruction but only on the instruction class. Thus
the total number of different stage and phase level instructions can be reduced toNs = Nc * ns (Nc
is the number of classes) andNp = Nc * ns * np, respectively. The class level is therefore introduced
as the top level of our interpreter model.

Real RISC cores show further regularities which can be incorporated into our interpreter model.
A closer look at the stage level shows that some stage instructions are common to more than one
class (e.g. in general the IF-stage instruction is shared by all classes), and additionally some classes
do not require the full pipeline depth, e.g. in order to accelerate the execution of control instructions
(e.g. jumps, branches, etc.) only 2 pipeline stages are used. This implies that the number of
different possible stage instructionsNs is much less thenNc * ns. Furthermore, examining the phase
level of realistic RISCs, it can be seen that not all stage operations are broken down into phases.
Such phase level instructions can be modelled by letting the state of the interpreter at the phase
level unchanged. Incorporating this observation into our model yieldsNp (the number of different
potential phase instructions) asNp<< Ns * np.

Table 1. DLX Pipeline Structure.

Table 1 shows the pipeline structure of DLX [43] which has four instruction classes ALU,
LOAD, STORE and CONTROL, five pipeline stages IF, ID, EX, MEM, and WB and two clock
phasesφ

1
 andφ

2
. This pipeline structure lists the set of transfers which occur at the stage and phase

levels of the DLX processor, where the rows and columns represent the pipeline stages and the
instruction classes, respectively. In table 1, “←” represents that the stage transfer is not broken
down into phase transfers. , represent that the transfers take place in phase 1, 2,
respectively. Further, the class abstractions are reflected through the class abstraction functionsop,

ID

IF

EX

MEM

WB

ALU LOAD STORE CONTROL

IR ← I-MEM [PC]

PC← PC+4

IR1 ← IR

B ← RF[rs2]

A ← RF[rs1]

IR ← I-MEM [PC]

PC← PC+4

IR ← I-MEM [PC]

PC← PC+4

IR ← I-MEM [PC]

PC← PC+4

φ
2

φ
1

ALUOUT ← A op B

ALUOUT1 ← ALUOUT

RF[rd] ← ALUOUT1

φ
2

DMAR ← A+(IR1)
SMDR ← B

DMAR← A+(IR1)

RF[rd] ← LMDR

fL (D-MEM[DMAR]) D-MEM[DMAR]←

BTA ←

PC← BTA
φ

2

φ
1

φ
1

IR1 ← IR

B ← RF[rs2]

A ← RF[rs1]φ
2

φ
2

IR1 ← IR

B ← RF[rs2]

A ← RF[rs1]φ
2

φ
2

LMDR ← fS(SMDR)

fC (PC, IR, RF)

“←”φ1
“←”φ2

7

fL, fS andfC that are used in related pipeline stages2. In the rest of the paper we will denote stage
and phase instructions as follows:

• stage instructions:IFA, ID
C
, EXS, MEML, etc.

• phase instruction:φ1IFA
, φ2IDC

, φ1EXS
, φ2MEML

, etc.

where the subscripts of the pipeline stage identifiers represent the first letter of the corresponding
instruction class. For example,EXS means the EX-stage instruction of the STORE-class which is
composed of the stage operations “ ” and “ ” in table 1.

Using this DLX architecture the number of class, stage and (potential) phase instructions is
Nc = 4, Ns= 11 andNp = 16, respectively.

The overall hierarchical model obtained is given in figure 3. The architecture, class, stage and
phase levels correspond to the set of architectural, class, stage and phase instructions, respectively.
Each of these levels corresponds to a refinement of the processor behaviour and could be specified
independently. Summarizing the overall specification of the different abstraction levels, we have
to specify:

• the architecture level from the instruction set of the RISC core,

• the class level from the instruction set of the RISC core,

• the stage level from the pipeline architecture,

• the phase level from the pipeline architecture and

• a formal description of the implementation EBM.

Figure 3. RISC Interpreter Model

Using the steps (1), (2) and (3), as shown in the above figure, we are able to successively prove
the correctness of the class, stage and phase levels. Through this hierarchical structuring of the
verification steps, we have closed the big gap between the EBM and the architecture top level.
Moreover, each verification step can be done independently and should help the designer in
successively refining and verifying the design. The verification steps (1) and (2) are expected to be
relatively straightforward while step (3) seems to be the hardest one, since the EBM is a complex
structural description and the phase instructions are behavioural [23]. However, the proofs are
quite similar in nature and a strategy can therefore be evolved.

Having shown the correctness of the class level, the architectural instructions can then be proven
correct by a simpleinstantiation of the previous steps (1, 2 and 3) for each particular instruction of

2. Instead of the infix operatoropa class abstraction function in prefix formfA could be used in an equivalent manner,
i.e.A op B≡ fA (A, B).

DMAR A IR1()+← SMDR B←

 Architecture Level

(1)

(2)

(3)

(4)
Class Level

Phase Level

Stage Level

EBM

8

the actual architecture by replacing the class abstraction function by concrete operations.
Additionally, we should also prove the statement that the instruction classes abstract all
instructions of the architecture (step (4) in figure 3).

Using the above presented hierarchical structuring of the verification process, the proofs can be
managed hierarchically in a top-down or bottom-up manner, so that averification-driven design or
a post-design verification can be performed. By a top-down verification-driven design, we mean
that the verification and design process are interleaved, so that the verification of a current design
status, against the specification, yields the necessary constraints for the future design steps. A post-
design verification is verification in the normal sense which is performed in a top-down or bottom-
up manner after the entire design is completed at all levels. Within the scope of this paper, the
correctness proofs will be mainly handled by means of the top-down verification-driven design
methodology.

3. Formal Specification

Within this verification model, we have different abstraction levels which have to be related to each
other. There are four kinds of abstractions: structural abstraction, behavioural abstraction, data
abstraction and temporal abstraction [55]. Before getting into the details of the formal
specifications of the model levels, we will briefly discuss the structural, behavioural and data
abstractions and then we will focus on the concept of temporal abstraction in a dedicated
subsection.

Structural and behavioural abstractions are natural consequences of the hierarchical model. In
our RISC model, the structural abstraction is reflected by the visible state components at each
hierarchy level. Starting from the hardware implementation EBM, it includes all state components
of the machine. Since the phase level is only a behavioural abstraction of the EBM, all state
components of the EBM are visible at this level too. The stage and class levels, however, abstract
the structures of the lower levels and include subsets of the visible state components of the phase
and stage levels, respectively. Furthermore, since the class level is only a behavioural abstraction
of the architecture level, they use the same structural components, i.e. the programming model.
Regarding data abstraction, throughout our approach, we will let the specifications be based on the
data types that the microprocessor is to manipulate, i.e. bit-vectors. In [49, 77] uninterpreted data
types were used. Here we use concrete data types of bit-vectors, e.g. from the bit-vector library of
HOL [79]. Since bit-vectors are naturally used in the description of the instruction set, we do not
make any data abstractions and use bit-vectors through all abstraction levels. Thus, we save a lot
of mapping functions between the concrete data type and an abstract one, e.g. natural numbers.

3.1. Temporal Abstraction

Temporal abstraction relates the different time granularities which occur in the formal
specifications at various levels of abstractions [55]. The class and the instruction levels use the
same time granularity, which corresponds to instruction cycles. The stage level granularity is that
of clock cycles and the phase level granularity corresponds to the duration of single phases of the
clock (figure 4).

9

Figure 4. Time Granularities of the RISC Model

Temporal abstraction allows us to hide the unnecessary details at higher levels of abstractions
[55]. A fundamental step in the formalization of the interpreter model will be to establish a
mathematical relationship between the abstract time scales and the next concrete ones. In a
sequential machine the effects of one instruction can be considered at the end of an instruction
cycle, since they are caused by this specific instruction (figure 5). On the other hand, in a pipelined
machine (as is the case for RISC processors), instructions are executed in an overlapped manner
(figure 5), where state changes of the machine during one instruction cycle cannot be related to
only one instruction. Therefore the abstract discrete time unit of RISC instruction cycle cannot be
directly related to a fixed discrete time point on the concrete clock time scale.

Figure 5. Sequential and Pipelined Executions

Referring to the instruction set manual of a specific processor, the semantics of an instruction is
given as a state transition occurring in an instruction cycle with an implicit time relationship. For
example, the semantics of an ADD instruction is defined as follows:

ADD:= RF[rd] ← RF[rs1] + RF[rs2]

whereRF is the register file andrd, rs1, rs2 are the destination and source addresses of some
registers in the register file. These addresses correspond to fields of the actual instruction word,
which is addressed by the program counterPC.

u u+1

t t+1 t+ns

Instruction Cycles:

... ...
ns Pipeline Stages:

t+2

τ+1 ...
np Clock Phases:

... τ+npτ

IF ID WB

clock cycle

......

u+2 u+3

instruction

u u+1 u+2 u+3

I1 I2 I3

u u+1

u+1 u+2

u+2 u+3

I1

I2

I3

u+3

Sequential Execution:

Pipelined Execution:

- - - - -

- - - -

cycle

10

Using the abstract time of instruction cycles (represented by the variable “u”), this instruction
can be described formally by means of a predicate involving time as follows, whereI-MEM and
D-MEM represent the instruction and data memory, respectively3:

ADD_SPEC (PC, I-MEM, RF, D-MEM):=
∀ u: Inst_cycle. RF(u+1)[rd(u)]= RF(u)[rs1(u)] + RF(u)[rs2(u)] (i)

Referring to table 1, the ADD-instruction, using the more concrete time granularity of clock cycles
(represented by the variable “t”), can be specified formally as:

ADD_IMP (PC, I-MEM, RF, D-MEM):=
∀ t: Clock_cycle. RF(t+5)[rd(t)]= RF(t+1)[rs1(t)] + RF(t+1)[rs2(t)] (ii)

A mapping function that relates abstract time scales in (i) to concrete ones in (ii) is not linear
since an unit of time on the abstract time scale does not necessarily correspond to one discrete time
point of the next concrete time scale. For example, the same time pointu, that is used in (i) for
computing the addressesrs1, rs2 andrd, as well as for reading the register fileRF, has to be related
to t andt+1, corresponding to the IF and ID-stage, respectively.

In a pipelined execution, state changes at the abstract level can take place at some time between
the two discrete end-points of its time interval, i.e. at some time betweenu andu+1 depending
upon the implementation. A mapping time abstraction function should therefore take some
implementational contexts into consideration while converting the abstract time to a more concrete
one [70]. A context parameter could be given as a tuple involving a read/write information and a
pipeline stage identifier. For example, [read, ID] and [write, WB] describe a read operation during
the ID-stage and a write operation during the WB-stage, respectively. Letft be this temporal
abstraction function, applyingft to the instruction cycle time variableu using the above context
examples, we obtain —“ft ([read, ID], u) = t+1” and “ft ([write, WB], u+1) = t+5”, respectively.

At a lower level, i.e. between the stage and the phase levels, we have a similar temporal
relationship since state transitions can occur at some time points within the clock cycle interval
corresponding to some specific phases. In a similar manner, a time abstraction function has to be
provided which takes into account an implementation dependent context parameter. The
corresponding context variable is defined as a tuple composed of a read/write information and a
clock phase identifier, e.g. [read, φ1] means a read during phase 1.

Due to the similarities of the temporal behaviours at both levels, we have developed one general
parameterized time abstraction function (represented byTime_abs) for both abstraction levels.
This temporal abstraction function takes as parameters: a natural numbern corresponding to the
total number of implemented pipeline stages or clock phases, a context tupleC comprising the
read/write information and the pipeline stage or clock phase identifier, and a time variablex .
Furthermore, assuming that stage and phase identifiers are ordered in some manner (e.g.IF = 0,
ID = 1, etc.), we define a functionORD which computes the ordinal values of the corresponding
stage or phase identifiers and also the ordinal values ofread/write, e.g. ORD (EX)= 2 and
ORD (write) = 1. Additionally, this definition of the time abstraction function should take into

3. The notation “x: σ” means that the variablex is of typeσ.

11

account that written values are considered at the end of a discrete time interval while read values
are those at the beginning. A possible implementation ofTime_abs can be defined formally as
follows4:

This abstraction function has the advantage, that it allows specifications to be abstract and
implementation independent. Moreover, due to the given parametrization, it can be used both for
the verification of the class level and for the stage level. The various instantiations forn andC are
given later when constructing the appropriate verification goal, wheren is instantiated once
according to the current abstraction level andC is set for each state component of the abstract
specification (see section 5). For example, withn = ns = 5, C = [read, ID], ORD(read) = 0 and
ORD(ID) = 1, we obtainTime_abs(ns, [read, ID], u) = (u-0) + 1 + 0 = u +1 = t+1. The use
of the temporal abstraction functionTime_abswill be illustrated in section 5 while describing the
verification process.

3.2. Specification of the Model Levels

Each interpreter level is defined by means of a set of instructions which reflects the semantics at
each level of abstraction. Each instruction can be formally specified in higher-order logic by means
of a predicate whose parameters correspond to the visible states at that level of abstraction and
eventually to a class abstraction function. In contrast to the architecture, class, stage and phase
levels, the EBM cannot be characterized as an interpreter since it corresponds to the hardware
structure. Formally, it will be described as a hierarchy of predicates specifying the different
hardware components. In following, we describe the formal specification of each level of our
model in a dedicated subsection. The different formalization techniques used will be illustrated by
some simple examples based on the DLX processor.

3.2.1. Architecture Level

At the architecture level, the instruction set is conventionally specified as state transitions
occurring in an instruction cycle which implicitly involves time. For example the semantics of an
ADD and a branch-on-zero (BRZ) instruction are defined as follows:

ADD:= RF[rd] ← RF[rs1] + RF[rs2]

BRZ:= if (RF [rs1] = 0) then PC← PC + offset16
 else PC← PC + 4

whereoffset16 is a 16-Bit value corresponding to a field of the instruction word addressed by the
program counterPC.

Formally, each architectural instruction can be specified by means of a predicate using the
abstract time of instruction cycles. Given thatu is an unit for an instruction cycle, the above ADD
and BRZ instruction examples can be described formally as follows5:

4. fst returns the first component of a tuple andsnd returns its second component.
5. The expression “a → b | c” is an abbreviation for “ifa thenb elsec” .

£def Time_abs n C x:=
let (rw = fst(C) ∧ Id = snd(C)) in

((x - ORD(rw)) + ORD(Id) + ORD(rw))1
n--- *

1
5
--- * 1

5

12

3.2.2. Class Level

A class instruction abstracts the semantics of a group of architectural instructions. Similar to the
instruction set, the semantics of class instructions can be given as state transitions. For example,
the ALU class instruction (table 1) is defined as follows, whereop abstracts all required arithmetic-
logic operations:

ALU:= RF[rd] ← RF[rs1] op RF[rs2]

Analogously, using the class abstraction functionfC (which involves all implemented control
functions as jumps, branches, etc.), the CONTROL-class instruction is defined as the following
state transition:

CONTROL:= PC ← fC (PC, offset16, offset26, RF[rs1])

where offset26 is a 26-Bit value corresponding to a field of the actual instruction word. Using the
parametersPC, offset16, offset26and RF[rs1], the functionfC can compute all required target
address variants, e.g. for a register indirect jumpfC computesPC+RF[rs1].

The formal specification of the class level is almost the same as that of the architecture level
(since the same state components and the same time granularity are used), except that a generalized
class parameter (which will be used instead of a specific operator or function) is introduced as part
of the predicate parameters. Letu be an unit of time for an instruction cycle, the semantics for the
ALU and CONTROL class instructions can be specified formally by the following predicates:

£def ADD_SPEC (PC, RF, I-MEM, D-MEM) :=
∀ u: Instr_cycle.

let (rs1 = [I-MEM(PC)]25..21 ∧ rs2 = [I-MEM(PC)]20..16 ∧ rd = [I-MEM(PC)]15..11) in

RF(u+1) [rd(u)] = RF(u) [rs1(u)] + RF(u) [rs2(u)]

£def BRZ_SPEC (PC, RF, I-MEM, D-MEM) :=
∀ u: Instr_cycle.

let (rs1 = [I-MEM(PC)]25..21 ∧ offset16= [I-MEM(PC)]15..0) in
PC(u+1) = (RF(u) [rs1(u)] = 0) → PC(u) + offset16(u) |

 PC(u) + 4

£def ALU_SPEC op (PC, I-MEM, RF, D-MEM) :=
∀ u: Instr_cycle.

let (rs1 = [I-MEM(PC)]25..21 ∧ rs2 = [I-MEM(PC)]20..16 ∧ rd = [I-MEM(PC)]15..11) in

RF(u+1) [rd(u)] = RF(u) [rs1(u)] op RF(u) [rs2(u)]

£def CONTROL_SPEC fC (PC, I-MEM, RF, D-MEM) :=
∀ u: Instr_cycle.

let (rs1 = [I-MEM(PC)]25..21 ∧
 offset16= [I-MEM(PC)]15..0 ∧ offset26= [I-MEM(PC)]25..0) in

PC(u+1) = fC (PC(u), offset16(u), offset26(u), RF(u) [rs1(u)])

13

3.2.3. Stage Level

A stage instruction is defined as a set of elementary state transitions, that implement the
corresponding semantics. The additional visible states at the stage level are mostly pipeline buffer
latches as shown in table 1, for the DLX example. Formally, a stage instruction is specified as a
predicate on the visible states at this level. It is a conjunction of simple transfers that can be directly
read-off from the pipeline architecture (table 1) and encoded formally. For example, the ID-stage
instructionsID

A
 of the ALU class (see row ID and column ALU in table 1) is specified by the

following predicate:

Stage instructions which include operations using a class abstraction function, e.g.EXA, are
specified in a similar way except that the class abstraction functionop is introduced as a part of the
predicate parameters.

Continuing with the semantic specification of the control instructions, the ID-stage instructions
ID

C
 of the CONTROL-class (see row ID and column CONTROL in table 1) is specified as follows:

3.2.4. Phase Level

Similarly to the stage instructions, the predicates for phase instructions are built up of conjunctions
of elementary state transitions that can be directly read from the pipeline architecture (table 1) and
encoded formally. For phase transitions that are not explicitly marked in the pipeline architecture,
e.g. between IR and IR1-register in the ID-stage, we simply let the state values remain unchanged
until the last phase (see for example the predicateφ1IDA

_SPEC below). As a refinement of the ID-
stage specifications for the ALU-class, the corresponding ID-phase instructions can be easily
specified by the following predicates:

£def ID
A
_SPEC (A, B, …, PC, RF, …, IR, …):=
∀ t: Clock_cycle.

let (rs1 = [IR]25..21 ∧ rs2 = [IR]20..16) in
A(t+1)= RF(t) [rs1(t)] ∧
B(t+1) =RF(t) [rs2(t)] ∧
IR1(t+1) = IR(t)

£def ID
C
_SPECfC (A, B, …, PC, RF, …, IR, …):=
∀ t: Clock_cycle.

let (rs1 = [IR]25..21 ∧ offset16= [IR]15..0∧ offset26= [IR]25..0) in
PC(t+1)= fC (PC(t), offset16(t), offset26(t), RF(t) [rs1(t)])

£def φ1IDA
_SPEC (A, B, …, PC, RF, …, IR, …, BTA):=

 ∀ τ:Clock_phase.
IR(τ+1) = IR(τ)

£def φ2IDA
_SPEC (A, B, …, PC, RF, …, IR, …, BTA):=

 ∀ τ:Clock_phase.
let (rs1 = [IR]25..21 ∧ rs2= [IR]20..16) in

A(τ+1)= RF(τ) [rs1(τ)] ∧
B(τ+1) =RF(τ) [rs2(τ) ∧
IR1(τ+1) = IR(τ)

14

In contrast to the previous example, the stage operation ofIDC is accomplished during the first
phase and held in the bufferBTA, during the second phase:

3.2.5. Electronic Block Model

While the abstract levels of our interpreter model are behavioural descriptions, the EBM describes
the structure of the hardware at the RT-level (Register-Transfer). However, the visible states and
the temporal refinement used are the same as those of the phase level. In addition to the state
components, environment signals, such as the clock, interrupt or bus control signals, are made
visible and therefore will be involved as part of the specification predicate parameters. The EBM
is in general structured hierarchically at the RT-level. At the top most level, the EBM is composed

Figure 6. Electronic Block Model of DLX (simplified)

£def φ1IDC
_SPEC fC (A, B, …, PC, RF, …, IR, …, BTA):=

 ∀ τ:Clock_phase.
let (rs1 = [IR]25..21 ∧ offset16= [IR]15..0∧ offset26= [IR]25..0) in

BTA(τ+1) = fC (PC(τ), offset16(τ), offset26(τ), RF(τ) [rs1(τ)])

£def φ2IDC
_SPEC (A, B, …, PC, RF, …, IR, …, BTA):=

 ∀ τ:Clock_phase.
PC(τ+1) = BTA(τ)

LMDR

DMAR SMDRALUout

ALU

A B

M
em

or
y

rs1
rs2

rd

Imm

Control Unit

ALUout1

D
at

a
dmem_addr

dmem_data
MEM

EX

ID

WB

Datapath

IR3

IR

IR2

IR1

IF
MemoryInstr imem_addr

imem_data

Bypass
Logic

PC and
Branch
Logic

Main
Decode

Trap
Control

ackn

ext_trap

rw

alu_op

a_mux,b_mux

smdr_mux

lmdr_mux

rw

Reg.File

Reg.File

alu_op

15

of the RISC processor core and the interfaced instruction and data memories (caches). The
processor is conventionally split into a datapath and a control unit. These are themselves
compositions of simpler blocks, e.g. register file, arithmetic-logic unit (ALU), multiplexers,
pipeline latches, etc., which may again be conjunctions of lower building blocks.

Figure 6 shows a simplified form of the EBM of a DLX processor implementation [28]. The
data path and the control unit implement the pipelined execution. They are physically composed
of series of functional units and pipeline buffers and are partitioned in the above diagram according
to the pipeline stages. In the IF-stage, the instruction memory (cache) is accessed. In the ID-stage,
the fetched instructions are decoded, target addresses are computed, the register file is accessed and
all control signals, e.g. for bypassing control, are generated. In the EX-stage, the ALU is exercised
for arithmetic-logic operations or data address calculation. In the MEM-stage, the data memory
(cache) is eventually accessed. Finally, in the WB-stage the computed results or loaded data are
put into the register file and all internal and external interrupts occurring during the instruction
execution are handled.

Formally, the EBM is specified à la Hanna and Daeche [41] as a complex hierarchy of
predicates, which are composed using conjunctions. The input/output lines are universally
quantified and the internal lines of the circuit are modelled using existential quantification. The top
level implementation of the EBM given in figure 6 looks formally as follows, where the processor
predicate is expanded into datapath and control unit:

Related microprocessor verification works based on the interpreter model describe the EBM
using abstract sub-blocks whose implementations are assumed to be correct [5, 49, 77]. In contrast,
within our approach the implementation description is completely specified down to the gate level.
Since our methodology is embedded within theMEPHISTO [52] verification framework, the
formal description of the circuit can either be obtained automatically from anEDIF [31] output of
a schematic representation within a CAD tool or from a VHDL description [52]. The sub-blocks
of the hierarchical design are broken into elementary library cells whose formal descriptions are
contained in a library of rudimentary formal specifications [51].

£def EBM (PC, I-MEM, RF, D-MEM, A, B, ALUOUT, ALUOUT1, DMAR, SMDR,
LMDR, IR, IR1, IR2, IR3, BTA, IAR, ext_trap, ackn, clk1, clk2) :=

∃ rs1, rs2, rd, Imm, a_mux, b_mux, alu_op, smdr_mux,
 lmdr_mux, imem_addr, imem_data, dmem_addr, dmem_data, rw.

DataPath (RF, A, B, ALUOUT, ALUOUT1, DMAR, SMDR, LMDR,
 dmem_addr, dmem_data, rs1, rs2, rd, Imm, a_mux,
 b_mux, alu_op, smdr_mux, lmdr_mux, clk1, clk2) ∧

Control_Unit (PC, IR, IR1, IR2, IR3, BTA, IAR, ext_trap, ackn, rw,
 imem_addr, imem_data, rs1, rs2, rd, Imm, a_mux,
 b_mux, alu_op, smdr_mux, lmdr_mux, clk1, clk2) ∧

Instr_Memory (I-MEM, imem_addr, imem_data, clk2) ∧

Data_Memory (D-MEM, dmem_addr, dmem_data, rw, clk2)

16

3.3. Use of the Model Formalization

In general, a formal description of a hardware system could be used for specification, verification,
simulation or synthesis [33]. Hence, in addition to the verification intentions, the higher-order logic
formalization of our RISC model can be utilized for other purposes such as simulation or formal
synthesis, where higher-order logic plays the role of a universal hardware description language.
Regarding the use of the model specifications for simulation, Camilleri [18] has shown how
higher-order logic specifications can be made executable and run for simulation. This simulation
should not replace verification, but rather complement it; by giving the designer more confidence
about the specification, against which the implementation will be verified. The formalization of the
model could also be used as input for other special tools, e.g. formal synthesis [42]. This approach
of formal synthesis incorporates formal verification with the design process. In this sense, our
model specifications can also be used during the design process of a RISC processor.

4. Management of the Verification Task

Starting from the architecture of a microprocessor, the aim of a formal processor verification is to
show that the instruction set is correctly executed by the hardware. During any clock cycle, the
RISC processor can potentially be executingns instructions in parallel, inns different stages (see
figure 7), given thatns is the pipeline depth. This parallel execution increases the overall
throughput of the processor; however no single instruction runs faster, since each instruction is
realized by a sequential execution of its stage instructions. In proving the correctness of the RISC
processor, we have to therefore prove that each instruction is correctly implemented by the
sequential execution of its stage instructions. On the other hand, due to the simultaneous use of
shared resources and the existence of data and control dependencies, the stage instructions within
the pipeline could interfere with each other, so that semantical inconsistencies could also occur.
This fact implies that two orthogonal proofs have to be performed — firstly, the sequential
execution of each instruction is correctly implemented by the hardware EBM and secondly the
pipelined execution of the instructions is correct. Thus the overall correctness proof is split into
two independent steps as follows:

1. we prove that the EBM implements the semantics of each single architectural instruction

correctly, i.e.:

£ EBM ⇒ Architecture Level (I)

2. given some software constraints which are part of the actual architecture and given the
implementation EBM, we prove that any sequence of instructions is correctly pipelined, i.e.:

SW_Constraints, EBM£ Correct_Instr_Pipelining (II)

The software constraints in (II) represent those conditions which are to be met for designing the
software, so as to avoid conflicts, e.g. the number of delay slots to be introduced between the
instructions while using a software scheduling technique. Additionally, it is also assumed that the
EBM includes some conflict resolution mechanisms in hardware.

17

Figure 7. Pipelined Instructions Execution

According to the nature of each of these verification steps, we call step (I) the verification of the
semantic correctness and step (II) the verification of the pipeline correctness. These steps are
briefly discussed in the following subsections and elaborated later in sections 5 and 6.

4.1. Semantic Correctness

In order to show that the sequential execution of each instruction is correctly implemented by the
hardware EBM, we use the higher-order logic specifications and implementations at the various
levels of abstraction (cf. section 3.2) and prove the following —EBM ⇒ Phase Level⇒ Stage
Level⇒ Class Level. Later, these proofs are instantiated for each instruction at the architecture
level. The verification tasks of the semantic correctness include a proof for every instruction of
each interpreter level. However, exploiting the existing similarities between instructions of a given
abstraction level this tedious process could be automated using parameterized functions and proof
scripts that automatically generate the verification goals and perform the proofs for whole sets of
instructions, respectively.

4.2. Pipeline Correctness

The pipeline correctness consists in the proof that all possible combinations ofns instructions,
within the pipeline, are executed correctly. In the RISC literature, the inconsistencies that arise due
to the data and control dependencies and the resources contentions that occur in a pipelined
execution are calledconflicts. There are three classes of conflicts (also calledhazards) namely,
resource, data andcontrol conflicts [43]. Since the pipeline correctness is the direct consequence
of the absence of all these conflicts, the correctness statement (II) defines the non-existence of
these conflicts. The predicateCorrect_Instr_Pipeliningin (II) is hence defined as the following
conjunction, where we assign a specific conflict predicate to each kind of conflict, i.e.
Resource_Conflict, Data_Conflictand Control_Conflict. Formally:

£def Correct_Instr_Pipelining:= (¬ Resource_Conflict∧
¬ Data_Conflict ∧
¬ Control_Conflict)

IF ID EX MEM WB

1 clock

I i

…

I1

…

time

in
st

ru
ct

io
ns

I ns

IF ID EX MEM WB

IF ID EX MEM WB

IF ID EX MEM WB

IF ID EX MEM WB

18

and the pipeline correctness statement (II) can be rewritten as:

All these conflict predicates have to be formally specified and should be proven false. Thus the
whole correctness proof is tackled by splitting it into three independent parts, each corresponding
to one kind of conflict.

In proving the pipeline correctness, we have to ensure that all possible combinations of
instructions occurring inns stages are executed correctly. This large number can be reduced by an
order of magnitude when the notion of classes (as described in section 2.2) is exploited by
considering the combinations of few classes instead of combinations of all instructions. Thus, all
conflict predicates will be specified at a higher level in terms of class instructions. Furthermore, it
will be of a great advantage to closely relate the specifications of these conflicts to the hierarchical
levels of our interpreter model, taking the temporal and structural abstractions into account.

4.3. Verification of Specific Hardware Behaviours

A RISC processor generally includes some hardware behaviours whose specifications and
implementations are processor specific, such as hardware interrupts, stalls, branch prediction, etc.
In contrast to the architecture of the processor core, these specific behaviours cannot be handled
mechanically within our methodology since they are highly implementation dependent. Different
RISC processors handle interrupts, stalls, freezes and branch prediction in different ways, e.g. for
interrupts where the forced jump is to be inserted, the manner in which the interrupted program is
restarted, etc. can vary. Therefore, in addition to the specifications of the described model levels
(cf. section 3.2), one has to specify the intended (interrupt, stall, freeze or branch prediction)
behaviour formally in form of a predicate, whose correctness has to be implied from the
implementation EBM. Furthermore, the specification should take into account the pipelined
behaviour of instructions executions.

In general, such hardware behaviours could be grouped into two groups, namely

1. hardware used for conflict resolution (resource, data or control), e.g. branch prediction,
bypassing logic, etc., which depend on the internal state of the processor, and

2. hardware used for specific features, e.g. interrupts, stalls, etc., which in addition depend on
the external environment of the processor.

For the former group, the specification predicates of the implemented behaviour are used for the
proof of the pipeline correctness and their verification is implicitly included in step (II) of the
correctness statement (cf. section 6.3.2). The verification of the latter group is handled separately
in addition to the steps (I) and (II). For example, letINTR_SPEC be a predicate that describes the
behaviour of the implemented hardware interrupt of a specific processor and which ensures that no
resource, data or control conflicts occur when the linear pipeline flow is interrupted (e.g. proper
saving and recovery of the processor state before and after the interrupt handling), then the goal to
be proven for the specific hardware interrupt behaviour is:

(¬ Resource_Conflict∧
SW_Constraints, EBM £ ¬ Data_Conflict ∧

 ¬ Control_Conflict)

£ EBM ⇒ INTR_SPEC

19

5. Semantic Verification

In verifying the semantic correctness of RISC instructions, we consider the fact that the execution
of each RISC instruction is realized by the sequential execution of instructions at lower abstraction
levels having different time granularities. Hence, we first hierarchically prove the correctness of
the class level, by using the notion of instruction classes and the hierarchical verification model (cf.
section 2.2) i.e.:

EBM ⇒ Phase Level ⇒ Stage Level⇒ Class Level

and then through instantiation, we show the correctness of the architecture level. Corresponding to
the abstraction levels, this proof is broken into the following steps:

Stage Level⇒ Class Level,

Phase Level ⇒ Stage Level and

EBM ⇒ Phase Level

Due to this structuring of the verification task, the verification goals at different levels are
simple and show some similarities. The proofs are managed easier and general proof strategies
could be developed. In many aspects, this verification process is similar to that used by Windley
[77] for the verification of microprogrammed processors.

The description of the goals and their associated proofs are accomplished automatically using
generic functions and tactics, respectively. Further, each abstraction level can be verified
independently, so that a designer is able to successively refine and verify the design. In the
following, we present the verification process at each level of abstraction and we then show how
the instantiations are handled. The verification techniques described will be illustrated by some
simple examples based on the DLX processor.

5.1. Class Level Verification

In order to show the correctness of the class level, we have to prove that individual class
specifications are correctly implemented by the sequential execution of their corresponding stage
instructions, i.e.:

IF_SPEC∧ ID_SPEC∧ ... ∧ WB_SPEC ⇒ CLASS_SPEC

Since the specifications of the class and stage levels use different time granularities, the
verification goal should include the temporal abstraction function and context parameters (as
discussed in section 3.1). Hence, within the verification goal, the abstract specification (here the
class instruction) should be extended in such a way that for each state component of the class
specification formula a context parameter is introduced and the time abstraction function is applied
to the abstract time variables (here instruction cyclesu). The implementation dependent context
parameters are introduced as existentially quantified variables that have to be instantiated
appropriately later during the proof. The temporal abstraction functionTime_abs (as presented in
section 3.1) will be instantiated with the corresponding pipeline depthns and is applied to the
different context variables.

20

Using the formal specifications of the class and the stage instructions, as described in sections
3.2.2 and 3.2.3, respectively, the verification goal for the ALU-class example looks formally as
follows:

In order to avoid the burden of setting such complex verification goals (which may be error
prone), we have developed a parameterized function which automatically generates the required
goals given the pipeline depth and the corresponding specification predicates as parameters. This
function takes into account the time abstraction function and extracts in an intelligent way the
needed context variablesCi from the abstract specification. LetG be this goal setting function.
Using the following parametrization forG :

G (ns, CONTROL_SPEC,[IF
C
_SPEC, ID

C
_SPEC])

the verification goal of the CONTROL-class which has to be implied from the conjunction of an
IF and an ID-stage instructions is generated automatically as:

The universal quantification of the class abstraction functionsop andfC over the entire verification
goal expresses the generality of the theorem that is to be proven. Therefore, the obtained theorems
and the corresponding abstraction functions can be instantiated for special architectural
instructions.

For the proof of the class level, we use a general common tactic with the following parameters:
the pipeline depthns, the class and corresponding stage specification predicates and a list of the
needed context parameters including read/write information and an indication of the corresponding
pipeline stage. This tactic is mainly based on breaking down the structural abstraction by splitting

£ ∀ op.
IF

A
_SPEC(A, B, …, PC, RF, …, IR, …) ∧

 ID
A
_SPEC(A, B, …, PC, RF, …, IR, …) ∧

 EX
A
_SPEC fA (A, B, …, PC, RF, …, IR, …) ∧

 MEM
A
_SPEC(A, B, …, PC, RF, …, IR, …) ∧

 WB
A
_SPEC(A, B, …, PC, RF, …, IR, …)

⇒ ∃ C1 C2 C3: Context.
let ft = (Time_abs ns) in

∀u: Instr_cycle.
(RF+ ft C1) (u+1) [(rd + ft C2) (u)] = ((RF+ ft C3) (u) [(rs1+ ft C2) (u)]) op

((RF+ ft C3) (u) [(rs2+ ft C2) (u)])

£ ∀ fC.
IF

C
_SPEC(A, B, …, PC, RF, …, IR, …) ∧

 ID
C
_SPEC fC (A, B, …, PC, RF, …, IR, …)

⇒ ∃ C1 C2 C3 C4: Context.
let ft = (Time_abs ns) in

 ∀u: Instr_cycle.
let (rs1 = [IR]25..21 ∧ offset16= [IR]15..0∧ offset26= [IR]25..0) in

(PC+ ft C1) (u+1) =
fC ((PC+ ft C2) (u), (offset16+ ft C4) (u),

 (offset26+ ft C4) (u), (RF+ ft C3) (u) [(rs1+ ft C4) (u)])

21

the conjunctions of the stage instructions, explicitly instantiating the existentially quantified
context variables, expanding the specification predicates of the stage instructions, resolving the let
terms, mapping the time variables of the class level to those of the stage level using the temporal
abstraction function, and finally applying arithmetical and logical simplifications and several
rewritings. LetT be this tactic, for the above goal of the ALU-class verification, we use the
following parameters forT :

T (ns,
ALU_SPEC,

[IF
A
_SPEC, ID

A
_SPEC, EX

A
_SPEC, MEM

A
_SPEC, WB

A
_SPEC],

[[write, WB], [read, IF], [read, ID]])

which automatically yields the correctness proof of the ALU-class instruction. The context tuples
given within the parameters ofT are directly derived from the implemented pipeline architecture
(table 1), e.g. since the register file isread at theID-stage, the time abstraction function in the above
verification goal for the ALU-class is applied to it using the context parameterC3 = [read, ID].

5.2. Stage Level Verification

The correctness proof between the phase and the stage level is done in a manner similar to the
previous section, by proving that each stage instruction implementation is implied by the
conjunction of the corresponding phase instructions:

φ1ID_SPEC∧ … ∧ ID_SPEC⇒ ID_SPEC

Since the verification goals for the correctness of the stage level are similar (the conjunction of
phase instructions implies a stage instruction), the same temporal abstraction, goal setting and
proof mechanisms are used. However, the appropriate parameters, e.g. number of clock phases,
phase identifiers, etc., have to be set accordingly.

The verification goals of the stage level should involve the extension of the abstract
specification (here the stage instruction) by the temporal abstraction function and the appropriate
context variables which are included for each state component. Furthermore, the time abstraction
functionTime_abs should be instantiated with the corresponding number of clock phasesnp. Using
the specifications of the stage and phase levels, as described in sections 3.2.3 and 3.2.4,
respectively, the verification goal for the ID-stage of the ALU-class is given below:

£ φ1IDA
_SPEC (A, B, …, PC, RF, …, BTA) ∧

φ2IDA
_SPEC (A, B, …, PC, RF, …, BTA)

 ⇒ ∃ C1 C2 C3 C4 C5: Context.

let ft = (Time_abs np) in

∀t: Clock_cycle.
let (rs1 = [IR]25..21 ∧ rs2= [IR]22..16) in

(A +ft C1) (t+1)= (RF+ft C3) (t) [(rs1+ft C4) (t)] ∧
(B + ft C2) (t+1) = (RF+ft C3) (t) [(rs2+ft C4) (t)] ∧
(IR1+ ft C5) (t+1) = (IR +ft C4) (t)

φnp

22

Such verification goals for the stage level can also be set automatically using the presented
functionG with the appropriate parameters. For example, through the following parametrization
of G:

G (np, fC, ID
C
_SPEC, [φ1IDC

_SPEC, φ2IDC
_SPEC])

the following verification goal for the ID-stage of the CONTROL class is generated:

For the proof of the stage level, the same parameterized tacticT used for the class level
verification is now applied with the following parameters: the number of clock phasesnp, the
predicate of the stage instruction, the corresponding phase instruction predicates and an explicit list
of the needed context tuples. For the above ID-stage verification goal example of the ALU class,
the proof is automatically achieved by applying the tacticT with the following parametrization:

T (np,
ID

A
_SPEC,

 [φ1IDA
_SPEC, φ2IDA

_SPEC],
 [[write,φ2], [write,φ2], [read, φ2], [read, φ1], [write,φ2]])

The context variables required for the proof are easily derived from the implemented pipeline
structure (table 1), e.g. since the B-register in the ID-stage of the ALU-class is written in phase 2,
the time abstraction function in the verification goal of theIDA stage instruction is applied to it,
using the context variableC2 = [write,φ2].

5.3. Phase Level Verification

The phase level lies directly above the EBM. This step of the verification is different from the
previous ones since the EBM is a structural specification, while the phase level is a behavioural
one. However, due to the advantage of having used the hierarchical interpreter model, we only have
to show the correctness of a reduced number of phase instructions, built up of simple transitions as
seen in section 3.2.4. Although the specification of EBM is quite complex, a large amount of
automation has been achieved in the domain of hardware verification at the RT-level, e.g.
MEPHISTO [52]. The goal to be proved is successively broken down into a number of smaller
subgoals which can then be solved more or less automatically by theMEPHISTO verification
framework.

For the correctness proof at the phase level, it is to be noted that phase instructions including
class abstraction functions cannot be proven correct for every possible instance of the abstraction

£∀ fC.

φ1IDC
_SPEC fC (A, B, …, PC, RF, …, IR, …, BTA) ∧

φ2IDC
_SPEC (A, B, …, PC, RF, …, IR, …, BTA)

⇒ ∃ C1 C2 C3 C4: Context.

let ft = (Time_abs np) in
 ∀t: Clock_cycle.

let (rs1 = [IR]25..21 ∧ offset16= [IR]15..0∧ offset26= [IR]25..0) in
(PC+ft C1) (t+1) =

fC ((PC+ ft C2) (t), (offset16+ft C4) (t),
 (offset26+ft C4) (u), (RF+ft C3) (t) [(rs1+ ft C4) (t)])

23

function, since the implementation EBM only provides the concretely implemented ones, e.g. the
operatorop cannot be instantiated for floating point operations if no floating point arithmetic is
provided by the actual hardware. Hence, according to the implementation EBM, instead of a
general theorem including an universal quantification over the class abstraction function, we rather
prove instantiated phase instructions. In order to ease the verification of the relatively large number
of very similar phase instructions, we have developed an appropriate function which automatically
generates the verification goals for the correctness of the phase level. The parameters for this
function are: the predicate of the phase instruction, the corresponding clock phase identifier, the
predicate of the implementation EBM and a listL representing the instances of the class
abstraction function that are intended by the architecture, e.g. for arithmetic-logic operations
L = [add, sub, or, shl, ...]. According to the number of elements (if any) in the listL, this function
generates the appropriate number of verification goals for instantiated phase instructions. In the
case of phase instructions that do not include class abstraction, this list is empty and only one goal
is generated. Further, using the clock phase identifier, this goal generation function ensures that the
input lines for the clock phases within the EBM predicate are set correctly with respect to the phase
instruction that is to be implied, e.g. for a two phased clock, the clock signals are set for phase 1
as:clk1 = T andclk2 = F. Let g be this goal generation function, using the specifications of the
phase level and EBM, as described in sections 3.2.4 and 3.2.5, respectively, the following
parametrization example ofg :

g (φ2IDA
_SPEC, φ2, EBM, [])

generates the following verification goal for the phase instructionφ2IDA
 of the ID-stage of the

ALU-class:

The phase instructionφ2IDA
 does not include any class abstraction function and therefore the

list L is empty. Another example for the phase level verification is the phase 1 of the ID-stage of
CONTROL instructionsφ1IDC

. In this case the class abstraction functionfC should be instantiated
for the provided control instructions, e.g. jump immediate (JMP), jump register indirect (JR) and
branch-on-zero (BRZ). Therefore, the functiong is parameterized as follows:

g (φ1IDC
_SPEC, φ1, EBM, [fJMP, fJR, fBRZ])

to generate the following three goals:

£ EBM (PC, I-MEM, …, A, B, …, BTA, …, ackn, F, T)
⇒ φ2IDA

_SPEC (A, B, …, PC, RF, …, IR, …, BTA)

£ EBM (PC, I-MEM, …, A, B, …, BTA, …, ackn, T, F)
⇒ φ1IDC

_SPEC fJMP (A, B, …, PC, RF, …, IR, …, BTA)

£ EBM (PC, I-MEM, …, A, B, …, BTA, …, ackn, T, F)
⇒ φ1IDC

_SPEC fJR(A, B, …, PC, RF, …, IR, …, BTA)

£ EBM (PC, I-MEM, …, A, B, …, BTA, …, ackn, T, F)
⇒ φ1IDC

_SPEC fBRZ(A, B, …, PC, RF, …, IR, …, BTA)

24

Since neither structural, data nor temporal abstractions exist between the EBM and the phase
level, and the specifications within this goal are at the RT-level, the proof of the phase level could
be done automatically using an appropriate general proof schema based onMEPHISTO. Hence, we
have developed one general parameterized tactic which proves the correctness of all phase
instructions automatically. This tactic is based on the several tactics available inMEPHISTO which
automatically expand the specification predicates, flatten the hierarchical description of the EBM,
eliminate combinatorial line variables, etc.

5.4. Instantiations

In this last part of the verification task, we deal with the correctness proofs at the architectural level.
This is obtained by simply instantiating the proven theorems at the class and stage levels and using
the already instantiated theorems at the phase level. In the following, we will trace the instantiation
procedure by means of the ADD-instruction.

Starting from the architectural level, we first show the equivalence between each particular
instruction specification and the related abstract class specification which has been instantiated
appropriately (step (4) in figure 3). For the ADD-Instruction we obtain the following theorem:

Furthermore, since the correctness proofs at the class level involve an universal quantification of
the class abstraction functions, we are able to set an explicit function for the class abstraction and
obtain a theorem for a particular instruction of the architecture level. For example, we instantiate
the proven theorem for the ALU-class (cf. section 5.1) with the operator constantadd and obtain
the following theorem:

From this and the previous theorems, the correctness of the ADD-instruction from the stage level
is easily shown through simple rewriting, i.e:

At the stage level, only those instructions which include a class specific parameter need to be
instantiated, since all other instructions are already proven correct from the phase level. The related
theorems are gained in a manner similar to that of the class level, by simple instantiation. For the

£ADD_SPEC (PC, RF, I-MEM, D-MEM) =
ALU_SPEC add (PC, I-MEM, RF, D-MEM)

£ IF
A
_SPEC(A, B, …, PC, RF, …, IR, …) ∧

 ID
A
_SPEC(A, B, …, PC, RF, …, IR, …) ∧

 EX
A
_SPEC add (A, B, …, PC, RF, …, IR, …) ∧

MEM
A
_SPEC(A, B, …, PC, RF, …, IR, …) ∧

 WB
A
_SPEC(A, B, …, PC, RF, …, IR, …)

⇒ ALU_SPEC add (PC, I-MEM, RF, D-MEM)

£ IF
A
_SPEC(A, B, …, PC, RF, …, IR, …) ∧

 ID
A
_SPEC(A, B, …, PC, RF, …, IR, …) ∧

 EX
A
_SPEC add (A, B, …, PC, RF, …, IR, …) ∧

MEM
A
_SPEC(A, B, …, PC, RF, …, IR, …) ∧

 WB
A
_SPEC(A, B, …, PC, RF, …, IR, …)

⇒ ADD_SPEC (PC, I-MEM, RF, D-MEM)

25

above example of the ADD-instruction, the EX-stageEX
A

is simply proven correct by instantiating
the operatorop using the specialadd operator within the general theorem obtained, i.e:

Since the correctness of all phase instructions, including those of the EX-stage which involves
the implementedadd operator, has been shown from the implementation EBM (cf. section 5.3), we
use the proven theorems for the phase instructions, e.g.:

to obtain the correctness of the required stage instructionsIF
A
, ID

A
, EX

A
, MEM

A
 andWB

A
 from the

implementation EBM. For example, the instantiatedEX
A
 stage instruction is:

The correctness of the ADD-instruction from the hardware EBM can be derived through
transitivity:

5.5. Summary

Having proven the correctness of the class, stage and phase levels and after making the appropriate
instantiations of the obtained theorems for specific architectural instructions, we have deduced the
correctness proof of the architectural level from the hardware implementation EBM:

£ EBM ⇒ Architecture Level

6. Pipeline Verification

In this section, we focus our attention on the pipeline verification. As discussed in section 4.2, this
corresponds to the verification of the resource, data and control pipeline conflicts. Each of these
conflicts has to be specified formally as a predicate whose negation is to be proved. Since each
conflict can be handled independently, we formalize and describe the proof techniques for a
specific conflict in the subsections dedicated to each of them. The proof techniques that are given
are automated and moreover constructive, i.e. the conditions under which the conflicts occur are
explicitly stated, so that the designer can easily formulate the conflict resolution mechanisms either
in hardware or generate software constraints which have to be met.

In order to simplify the formalization and proof of pipeline conflicts, they will be specified
hierarchically according to the abstraction levels of our RISC model. Additionally, the existence
of multiple instructions in the pipeline can be formalized by predicates which we call themultiple

£ φ1IDA
_SPEC (A, B, …, PC, RF, …, BTA) ∧

φ2IDA
_SPECadd (A, B, …, PC, RF, …, BTA)

⇒ EX
A
_SPEC add (A, B, …, PC, RF, …, IR, …)

£EBM (PC, I-MEM, …, A, B, …, BTA, …, ackn, F, T)

⇒ φ2IDA
_SPEC add (A, B, …, PC, RF, …, IR, …, BTA)

£EBM (PC, I-MEM, …, A, B, …, BTA, …, ackn, clk1, clk2)
 ⇒ EX

A
_SPEC add (A, B, …, PC, RF, …, IR, …))

£EBM (PC, I-MEM, …, A, B, …, BTA, …, ackn, clk1, clk2)
 ⇒ ADD_SPEC (PC, I-MEM, RF, D-MEM)

26

conflict predicates. These multiple conflicts are further defined at lower levels in terms of conflict
predicates between pairs of instructions which are called thedual conflict predicates. These
notions will be clarified in the subsections to follow.

6.1. Formal Definitions

In this section, we briefly introduce some new types, functions and predicates, that are useful for
formalizing pipeline conflicts. According to our hierarchical model, we define for each abstraction
level a set of enumeration types for the processor specific instructions, resources and pipeline
characteristics, i.e. pipeline stages or clock phases. Referring to the pipeline structure in table 1,
the required enumeration types are defined for the DLX example with the following arguments:

- types for pipeline stages and clock phases:

pipeline_stage = IF | ID | EX | MEM | WB

clock_phase = φ1 | φ2

- types for the set of all instructions at each abstraction level:

class_instruction = ALU | LOAD | STORE | CONTROL

stage_instruction = IFX | IDX | IDC | EXA | … |MEMS | … |WBL

phase_instruction = φ1IFX
 | … |φ1EXA

| … |φ1WBL | φ2 IFX
 | … |φ2WBL

- types for resources (related to the structural abstraction, where CL, SL and PL stand for Class
Level, Stage Level and Phase Level, respectively):

CL_resource = PC | RF | I-MEM| D-MEM
SL_resource = PC | RF | I-MEM | … |IR | A | B | ALUOUT | DMAR | …
PL_resource = PC | RF | I-MEM | … |IR | A | B | ALUOUT | … |BTA

Since the arguments of these enumeration types are processor specific, they have to be defined
for each RISC differently. Except these type definitions, all needed information about the specific
processor that is to be verified are explicitly extracted from the formal specifications of the model
levels (cf. section 3.2).

For the specification of the conflict predicates, we also define the following functions and
predicates:

- abstraction functions, which either compute higher level instructions from lower ones or extract
lower level instructions from higher ones6:

ClassToStage: ((pipeline_stage, class_instruction)→ stage_instruction)
StageToClass: (stage_instruction→ class_instruction)
StageToPhase: ((clock_phase, stage_instruction)→ phase_instruction)
PhaseToStage: (phase_instruction→ stage_instruction)

e.g.ClassToStage (ID, CONTROL) = IDC, PhaseToStage (φ2EXA) = EXA.

6. The notation “f : (α, β, ...) → δ” means that the functionf has arguments of typesα, β, ... and a range of typeδ.

27

- functions that compute the logical pipeline stage or clock phase types from a stage or a phase
instruction, respectively:

Stage_Type: (stage_instruction→ pipeline_stage)

Phase_Type: (phase_instruction→ clock_phase)

- functions which compute the ordinal values of a given pipeline stage and clock phase,
respectively:

Stage_Rank: (pipeline_stage→ num)

Phase_Rank: (clock_phase→ num)

e.g. Stage_Rank (ID) = 1, Phase_Rank (φ1) = 0. These functions are needed to express the
sequential order of the execution of stage and phase instructions.

- predicates, which are true if a given resource is used by a given stage and phase instruction,
respectively:

Stage_Used: ((stage_instruction, SL_resource) → bool)

Phase_Used: ((phase_instruction, CL_resource) → bool)

e.g.Stage_Used (IDC, PC) = True which means that the resourcePC is used (written) by the stage
instructionIDC.

- predicates that imply that a given resource is read (domain) or written (range) [50] by a given
class or stage instruction at a given pipeline stage or clock phase, respectively:

Stage_Domain: ((class_instruction, pipeline_stage, CL_resource) → bool)

Stage_Range: ((class_instruction, pipeline_stage, CL_resource) → bool)

Phase_Domain: ((stage_instruction, clock_phase, CL_resource) → bool)

Phase_Range: ((stage_instruction, clock_phase, CL_resource) → bool)

e.g.Stage_Domain (ALU, ID, RF) = True, Phase_Range (IDC, φ2, D-MEM) = False which means
that the register fileRF is read by the ALU-class instruction at the ID-stage and that the data
memory D-MEM is not written by the stage instructionIDC at the second clock phase,
respectively (refer also to table 1).

The PredicatesStage/Phase_Used, Stage/Phase_Domain and Stage/Phase_Range are
automatically extracted from the specifications of the class, stage and phase level instructions at
the clock cycle and clock phase time granularities, respectively (refer to section 3.2). Each of these
predicates is generated as a theorem for the given combination of class, stage or phase instruction,
pipeline stage or clock phase and resources corresponding to a particular level. All these theorems
are created once and put in appropriate lists which will be used for rewriting later during the
verification of resource, data and control conflicts. The process of extracting the above predicates
is done completely automatically using four functions — one forStage_Used, one for
Phase_Used, one forStage_Range/Domain and one forPhase_Range/Domain. These functions
use the defined processor specific types and the formal specifications of the class, stage and phase
levels (as given in section 3.2, e.g.ALU_SPEC, ID

C
_SPEC, etc.) and generate the required theorems

from the formal specifications.

28

6.2. Resource Conflicts

Resource conflicts(also calledstructural hazards[43, 50, 57, 67] orcollisions [50, 67]) arise when
the hardware cannot support all possible combinations of instructions during the simultaneous
overlapped execution. This occurs when some resources or functional units are not duplicated
enough and two or more instructions attempt to use them simultaneously. A resource could be a
register, a memory unit, a functional unit, a bus, etc. The use of a resource is a write operation for
storage elements and an allocation for functional units. In the subsections to follow, we will first
formally specify the resource conflicts and then discuss the correctness proof issues.

6.2.1. Resource Conflict Specification

Referring to the hierarchical RISC model, the formal specifications of resource conflicts are
handled according to the different abstract levels. Furthermore, only the visible resources related
to each abstraction level are considered by the corresponding resource conflict predicates. In the
following subsections, the specification of the resource conflicts is presented hierarchically at the
class, stage and phase levels. Other specification forms for resource conflicts diverging from the
one to follow are of course possible, e.g. [72] where a compact formalization for post-design
verification is presented.

Class Level Conflicts.The resource conflict predicateResource_Conflict, as mentioned in section
4.2, is equivalent to a multiple conflict between the maximal number of class instructions that
occur in the pipeline, i.e.:

This Multiple_Res_Conflict predicate is true if any pair of the corresponding stage instructions
compete for one resource (see hatched box in figure 8). Formally,Multiple_Res_Conflict is defined
in terms of disjunctions over all possible stage instruction pair conflicts which correspond to the
class instructionsI1… . Let Dual_Stage_Conflict be a predicate describing the conflicts between
a pair of stage instructions (dual stage conflicts). Using the functionClassToStage, the multiple
resource conflict is specified formally in terms of dual conflicts as follows (where the indexi for
ψi represents the related pipeline stage, i.e.ψ1 = IF, ψ2 = ID, ψ3 = EX, etc.):

Figure 8. Stage Resource Conflict

£def Resource_Conflict := Multiple_Res_Conflict (I1, …,)

£def Multiple_Res_Conflict (I1, …,):=

Dual_Stage_Conflict (ClassToStage (ψi, -i+ 1),
i, j ClassToStage (ψj, -j+ 1))

(i, j = 1... ns)
(i < j)

Ins

Ins

Ins∨ Ins
Ins

1 clock

I i

I j

time

in
st

ru
ct

io
ns

Si

Sj

29

Stage Level Conflicts.A dual resource conflict happens when two stage instructions attempt to use
the same resource. Furthermore, since only stage instructions of different types can be executed
simultaneously in the pipeline (see hatched box in figure 7), we should ensure that the
corresponding stages are of different logical types. Using the functionStage_Type and the
predicate Stage_Used, theDual_Stage_Conflict predicate is specified formally as follows:

Looking closer, since a multi-phased non-overlapping clock is used, even when the predicate
Dual_Stage_Conflict is true, a conflict occurs only if the stage instructions Si and Sj use the
resourcer at the same phase of the clock (figure 9).

Figure 9. Phase Resource Conflict

Having an implementation of the stage instructions at the phase level and considering all
combinations of phase instructions for any two stage instructions, the dual stage conflict is defined
at this lower level in terms of a multiple phase conflict predicate, i.e.:

Formally,Multiple_Phase_Conflict is defined as disjunctions over all possible phase instruction
pair conflicts. LetDual_Phase_Conflict be a predicate representing dual phase conflicts. Using the
function StageToPhase, the multiple phase conflict is specified formally as follows (where the
indexk in ϕk represents a specific clock phase, i.e.ϕ1 = φ1, ϕ2 = φ2):

Phase Level Conflicts.A dual resource conflict at the phase level occurs only when any two phase
instructions that compete for the same resource, are of the same phase type, i.e. the same clock
phase is involved (see figure 9) and belong to stage instructions of different types. Using the
functions Phase_Type, Stage_Type and StageToPhase and the predicate Phase_Used, this is
formally defined as follows:

£def Dual_Stage_Conflict (Si, Sj):=
∃ r: SL_resource.

Stage_Type (Si) ≠ Stage_Type (Sj) ∧
Stage_Used (Si,r) ∧ Stage_Used (Sj,r)

£def Dual_Stage_Conflict := Multiple_Phase_Conflict (Si, Sj)

£def Multiple_Phase_Conflict (Si, Sj):=

Dual_Phase_Conflict (StageToPhase (ϕk, Si),
k StageToPhase (ϕk, Sj))

(k = 1...np)

£def Dual_Phase_Conflict (Pi, Pj):=
 ∃ r: PL_resource.

Phase_Type (Pi) = Phase_Type (Pj) ∧
Stage_Type (PhaseToStage (Pi)) ≠ Stage_Type (PhaseToStage(Pj)) ∧
Phase_Used (Pi,r) ∧ Phase_Used (Pj,r)

1 clock

Si

Sj

…p1 pn…
p

Pi
Pj

phase

∨

30

6.2.2. Resource Conflict Verification

Our ultimate goal is to show that for all class instruction combinations, no resource conflicts occur,
i.e. the predicateMultiple_Res_Conflict is never true:

Using the definition ofMultiple_Res_Conflict, the expansion of this goal at the stage level yields
a case explosion since for each permutation ofns class instructions, one has to perform the conflict
checks over all possible combinations of dual conflicts (represented by the big disjunction in the
specification ofMultiple_Res_Conflict). Taking advantage of the fact that most of the stage
instructions are shared by many class instructions, this complex goal can be simplified by
managing the proof in two steps as follows:

1. we prove that dual conflicts cannot occur:

2. we conclude the negation of the multiple conflict predicate from the first step:

Since the dual conflict predicate, which ranges over all stage instruction pairs, is a
generalization of the multiple conflict predicate, the proof of the second step is straightforward; we
even do not need to expand the dual conflict predicate. The proof of the first step, without any
assumptions, leads either to True, or to a number of subgoals which explicitly include a specific
resource and the specific stage instructions which conflict. For example, a conflict due to the
resourcePC between the common IF-stage instruction (IFX) and the ID-stage instruction (IDC) of
the CONTROL-class is output as follows:

Referring to the last example, the simultaneous use of the resourcePC at the phase level is checked
by explicitly setting the following goal using theMultiple_Phase_Conflict predicate:

Using the definition ofMultiple_Phase_Conflict, this goal is expanded in terms of dual phase
conflicts and one obtains eitherTrue (which means conflict freedom) or a number of subgoals of
the form:

In this case, the resource conflict remains andthe implementation EBM has to be changed
appropriately, e.g. by using an additional buffer or splitting the clock cycle into more phases.
Furthermore, since the phase level involves all resources of the machine, this result could also be

£ ∀ I1 … :class_instruction.

¬ Multiple_Res_Conflict (I1, …,)

£ ∀ Si Sj:stage_instruction.

¬ Dual_Stage_Conflict (Si, Sj)

£ (∀ Si Sj:stage_instruction. ¬ Dual_Stage_Conflict (Si, Sj))

⇒ (∀ I1 … :class_instruction. ¬ Multiple_Res_Conflict (I1, …,))

(Si = IFX), (Sj = IDC), (r = PC)£ F

£ ¬ Multiple_Phase_Conflict (IFX, IDC, PC)

(Pi = φkIFX), (Pj = φkIDC), (r = PC)£ F

Ins

Ins

Ins
Ins

31

reached by a systematiccheck of all resource conflicts at the phase level. This is then done by
setting the following goal:

However, due to the large number of resources and phase instruction combinations, the proof is
very time and memory consuming, but tractable.

To summarize, given an adequate implementation EBM which ensures that no resource is
mutually used by either the class, stage and phase instructions in simultaneous execution,
respectively, we prove for all instruction combinations and resources of the actual machine that no
resource conflicts occur, i.e.

6.3. Data Conflicts

Data conflicts(also calleddata hazards[43, 50, 67],timing hazards [57], data dependencies[35]
or data races [32]) arise when an instruction depends on the results of a previous instruction. The
term data refers either to the contents of some register within the processor or to the contents of the
data memory. Such data dependencies could lead to faulty computations when the order in which
the operands are accessed is changed by the pipeline.

Data conflicts are of three types called, read after write (RAW), write after read (WAR) and
write after write (WAW) [35, 43, 50, 67] (also called destination source (DS), source destination
(SD) and destination destination (DD) conflicts [57]). Given that an instructionI j is issued afterI i,
a brief description of these conflicts is:

- RAW conflict —I j reads a source before Ii writes it

- WAR conflict —I j writes into a destination before Ii reads it

- WAW conflict — I j writes into a destination before Ii writes it

The RAW conflict is the most frequent data conflict kind. The WAR and WAW conflicts,
however, are less severe and rarely occur except in some special cases. Since the semantics of these
data conflicts have similar forms, it is expected that their formal specifications and proofs are also
similar, hence a general formalization and verification method could be given. For illustration
purposes, in the rest of this section we will mainly focus on RAW data conflicts and then transfer
the obtained results to WAR and WAW data conflicts.

6.3.1. Data Conflict Specification

Data conflicts include temporal aspects that are related to the temporal abstractions of our
hierarchical model. Therefore, similar to resource conflicts, the formal specifications of data
conflicts are considered hierarchically at the class, stage and phase levels, as described in the next
subsections. Other variant specification forms for data conflicts, which are more useful for post-
design verification purposes are given in [72].

£ ∀ Pi Pj:phase_instruction.

¬ Dual_Phase_Conflict (Pi, Pj)

EBM £ ¬ Resource_Conflict

32

Class Level Conflicts. Considering a full pipeline (see figure 7), the data conflict predicate, i.e.
Data_Conflict, should involve the maximal numberns of instructions that could lead to data
conflicts. The predicateData_Conflict is thus defined in terms of a multiple data conflict predicate,
which includesns instructionsI1… with corresponding sequential issue times… 7, i.e.:

The predicateMultiple_Data_Conflict is true whenever any two class instructions conflict on some
data. Hence, we defineMultiple_Data_Conflict as the disjunction of all possible dual data conflicts
(represented byDual_Data_Conflict) as follows:

The predicateDual_Data_Conflict is true, if there exists a resource of the programming model
(class level) for which two class instructionsI i andI j issued at time points and , respectively,
conflict. Further, according to our hierarchical model, theDual_Data_Conflict is handled
hierarchically, first at the stage then at the phase level. Formally,Dual_Data_Conflict is defined
in terms of aStage_Data_Conflict predicate, as follows:

Stage Level Conflicts.Let I i be an instruction that is issued into the pipeline at time andwrites
a given resourcer at (≤). Let I j be another instruction that is issued at later time , i.e.
(<) andreads the same resourcer at . A RAW data conflict occurs when the resourcer is
read byI j before(and notafter) this resource is written by the sequentially previous instructionI i
(figure 10). Letsi andsj be the related pipeline stages in which the resourcer is written and read,
respectively. Assuming a linear pipeline execution of instructions, i.e. no pipeline freeze or stall

Figure 10. RAW Data Conflict

7. We assume a linear pipelining of instructions, i.e. no pipeline freeze or stall exist, as far as data conflicts are
concerned. The use of pipeline stalls or freezes is handled as a specific hardware behaviour apart as described in
section 4.3.

£def Data_Conflict := Multiple_Data_Conflict (I1, …,)

£def Multiple_Data_Conflict (I1, …,):=
∃ … :Clock_cycle.

Dual_Data_Conflict ((I i,), (I j, +j -1))
i, j

(i, j = 1... ns)
(i < j)

£def Dual_Data_Conflict ((I i,), (I j,)) :=
∃ r: CL_resource.

Stage_Data_Conflict ((I i,), (I j,), r)

I
sn t1

0 tns
0

Ins

Ins

t1
0 tns

0

∨ t i
0 t i

0

t i
0 t j

0

t i
0 t j

0

t i
0 t j

0

t i
0

t i
u t i

0 t i
u t j

0

t i
0 t j

0 t j
u

t i
ut j

ut i
0 t j

0

I i

I j

time

in
st

ru
ct

io
ns

sj

si

33

happen, the use time points and are equal to (+θ (si)) and (+θ(sj)), respectively (where
the symbolθ represents the functionStage_Rank, which computes the ordinal value of a given
pipeline stage (cf. section 6.1)). Hence, the timing condition for the RAW conflict, i.e. (≤),
is equivalent to (-) ≤ (θ(si) - θ(sj)).

Using the functionStage_Rank (represented by the symbolθ) and the predicatesStage_Range
and Stage_Domain, the formal specification of the stage RAW data conflict is thus given as
follows:

Similarly, the WAR and WAW predicates are defined as follows, where the semantics of the
data conflict is reflected by the order of theStage_Range andStage_Domain predicates:

A special case of the data conflict timing condition arises when a resource is simultaneously
used by the instructionsI i andI j, i.e. = . In this situation, the data conflict should be examined
at the phase level.

Phase Level Conflicts.Let Si andSj be any two stage instructions, where the rank ofSi is greater
than that ofSj, e.g.Si = WBL andSj = IDC. According to figure 11, a RAW data conflict at the phase
level happens when the resourcer is written by the stage instructionSi at a clock phasepi that
occursafter clock phasepj, where it isread bySj, i.e. (≥). Since instructions at the phase level
are executed purely in parallel, they all have the same issue time = = (figure 11), the timing
condition (≥) is equivalent to (+ξ(pi)) ≥ (+ ξ(pj)) = (ξ(pi) ≥ ξ(pj)), where the symbol
ξ represents the functionPhase_Rankwhich computes the ordinal value of the clock phase (cf.
section 6.1). Using the functionsStage_Rank, Phase_Rank andStage_Type (represented by the
symbolsθ, ξ and ϑ, respectively) and the predicatesPhase_Domain andPhase_Range, the phase
level RAW data conflict predicate is formally given as follows:

£def Stage_RAW_Conflict ((I i,), (I j,), r):=
∃ si sj: pipeline_stage.

(0 < (-))∧
((-) ≤ (θ(si) - θ(sj))) ∧
Stage_Range (I i, si, r) ∧
Stage_Domain (I j, sj, r)

£def Phase_RAW_Conflict (Si, Sj, r):=
∃ pi pj: clock_phase.

(ξ(pj) < ξ(pi)) ∧
(θ(ϑ(Sj)) < θ(ϑ(Si))) ∧
Phase_Range (Si, pi, r) ∧
Phase_Domain (Sj, pj, r)

t i
u t j

u t i
0 t j

0

t j
u t i

u

t j
0 t i

0

t i
0 t j

0

t j
0 t i

0

t j
0 t i

0

£def Stage_WAW_Conflict ((Ii,), (Ij,), r):=
∃ si sj: pipeline_stage.

 (0 < (-))∧
 ((-) ≤ (θ (si) - θ(sj))) ∧
 Stage_Range (I i, si, r) ∧
 Stage_Range (I j, sj, r)

t i
0 t j

0

t j
0 t i

0

t j
0 t i

0

£def Stage_WAR_Conflict ((Ii,), (Ij,), r):=
∃ si sj: pipeline_stage.

 (0 < (-))∧
 ((-) ≤ (θ(si) - θ(sj))) ∧
 Stage_Domain (I i, si, r) ∧
 Stage_Range (I j, sj, r)

t i
0 t j

0

t j
0 t i

0

t j
0 t i

0

t i
u t j

u

τ i
u τ j

u

τ i
0 τ j

0 τ0

τ i
u τ j

u τ0 τ0

34

Figure 11. Phase RAW Data Conflict

In a similar manner, the formal definitions of the phase level WAR and WAW data conflict
predicates are given as follows:

6.3.2. Data Conflict Verification

Our ultimate goal in proving the non existence of data conflicts relies in showing that none of the
data conflicts (RAW, WAR and WAW) occurs, i.e.:

This proof is split into three independent parts each corresponding to one data conflict type. These
proofs are similar and in the following we will handle RAW conflicts for illustration purposes.

At the top-most level, the goal to be proven for RAW data conflicts is given in terms of the
multiple RAW data conflict predicate as follows:

This goal includes a quantification over all possible conflict combinations that could occur
between all permutations ofns instructions within the pipeline. As in the case of resource conflicts,
the direct proof of this goal results in a case explosion. Hence, we manage the proof in two steps
as follows:

1. we first prove that dual conflicts do not occur:

(¬ RAW_Conflict ∧
£ ¬ Data_Conflict ⇔ ¬ WAR_Conflict ∧

 ¬ WAW_Conflict)

£ ∀ I1 … :class_instruction.
¬ Multiple_RAW_Conflict (I1, …,)

£ ∀ I i Ij:class_instruction.
∀ :Clock_cycle.

¬ Dual_RAW_Conflict((I i,), (I j,))

τ i
uτ j

u

Si

Sj

…p1 pn…
p

pj

pi

τi/j
0

£def Phase_WAW_Conflict (Si, Sj, r):=
∃ pi pj: clock_phase.

(ξ(pj) < ξ(pi)) ∧
(θ(ϑ(Sj)) < θ(ϑ(Si))) ∧
Phase_Range (Si, pi, r) ∧
Phase_Range (Sj, pj, r)

£def Phase_WAR_Conflict (Si, Sj, r):=
∃ pi pj: clock_phase.

(ξ(pj) < ξ(pi)) ∧
(θ(ϑ(Sj)) < θ(ϑ(Si))) ∧
Phase_Range (Si, pi, r) ∧
Phase_Range (Sj, pj, r)

Ins
Ins

t i
0 t j

0

t i
0 t j

0

35

2. we then conclude the negation of the multiple conflict predicate from the first step:

The proof of step 2 is done in a straightforward manner since the universal quantification over
all pairs (I i, I j) is more general than the disjunction over a fixed number of pairs depending onns.
Using the definition ofDual_RAW_Conflict (cf. section 6.3.1), the goal for the first step is
equivalent to:

The expansion of this goal at the stage level using the definition ofStage_RAW_Conflict yields
eitherTrue or a number of subgoals, which include the specific resource and class instructions that
conflict. The proof adapted for this goal is constructive, i.e. if conflicts occur, the corresponding
instructions, resources and the conflict timing conditions are explicitly output to the user. For
example, a data conflict that occurs between LOAD and ALU-instructions due to the resource
register fileRF, which is written at the WB-stage by the LOAD-instruction and read at the ID-stage
by the ALU-instruction is detected and output as follows, where the number “3” corresponds to the
differenceθ(si) - θ(sj) = “θ(WB) - θ(ID)”:

This result is interpreted as follows: as long as the issue times of the conflicting LOAD and ALU-
instructions satisfy the condition “(-)≤ 3”, there exists a data conflict. In order to resolve this
conflict, we should neutralize this timing condition. This can be done by considering the following
two cases:

1. “(-) = 3”: with = (+θ(WB)) and = (+θ(ID)) (cf. section 6.3.1), this timing
condition is equivalent to ((-θ(ID)) - (- θ(WB))) = 3, i.e. = . Hence, referring to
section 6.3.1, the data conflict should be explored at the lower time granularity of the phase
level, by setting the following goal:

If the goal is proven correct, no data conflict happens, otherwise either the hardware EBM
should be changed, e.g. via the inclusion of more clock phases, or one uses the software scheduling
technique [43].

£ (∀ I i Ij:class_instruction.
∀ :Clock_cycle.

¬ Dual_RAW_Conflict((I i,), (I j,)))

⇒ (∀ I1 … :class_instruction.
¬ Multiple_RAW_Conflict (I1, …,))

£ ∀ I i Ij:class_instruction.
∀ :Clock_cycle.

∀ r:CL_resource.
¬ Stage_RAW_Conflict((I i,), (I j,), r)

(I i = LOAD), (I j = ALU), (0 < (-))
£ ¬ ((-) ≤ 3)

(si = WB), (sj = ID), (r = RF)

£ ¬ Phase_RAW_Conflict (ClassToStage (WB, LOAD), ClassToStage (ID, ALU), RF)

t i
0 t j

0

t i
0 t j

0

Ins

Ins

t i
0 t j

0

t i
0 t j

0

t j
0 t i

0

t j
0 t i

0

t j
0 t i

0

t j
0 t i

0 t i
u t i

0 t j
u t j

0

t j
u t i

u t i
u t j

u

36

2. “(-) < 3”: The timing information gives an exact reference for the maximum number of
pipeline slots or bypassing paths that have to be provided by the software scheduling
technique or the implementation EBM, respectively, namely (3-1 =2) since (-) < 3 is
equivalent to (-)≤ 2.

 Using thesoftware scheduling technique (also calledinstruction scheduling [43]), we have to
ensure that the issue time of a LOAD-instruction followed by an ALU-instruction should be at least
3 time units apart. For this example the given software constraint that leads to the proof of the dual
data conflict goal, could then be defined as:

Another widely used data conflict resolution technique isbypassing (also calledforwarding)
[43]. A bypassing technique ensures that the needed data is forwarded as soon as it is computed (end
of the EX-stage) to the next instruction (begin of the EX-stage). This behaviour is implemented in
hardware by using some registers and corresponding feedback paths that hold and forward this
data, respectively. Referring to the discussion in section 4.3, the implemented bypass behaviour
should be specified in form of a predicate which ensures that by every data dependent instruction
sequence the right data is forwarded to the EX-stage. For example, letBYPASS_SPEC be a
predicate that describes the intended behaviour of the implemented hardware logic for data conflict
resolution. This predicate specifies how the processor behaves in a case of a data conflict by
detecting it and forwarding the right data to the right pipeline stage where it is needed. In order to
prove that the hardware EBM implements this behaviour, we shall prove8:

Using the definition ofStage_Range andStage_Domain, we easily extract from the predicate
BYPASS_SPEC the following bypass condition:

which formalizes the existence of the required buffers and bypass paths and thus we obtain:

Using transitivity we can derive:

Assuming this bypass condition in the dual data conflict goal, the existentially quantified pipeline
stage variablessi andsj in the definition ofStage_RAW_Conflict (cf. section 6.3.1) are set to EX
and the timing condition is hence reduced to:

…, (0 < (-)) £ ¬ ((-) ≤ 0)

which is always true.

8. A formal specification and verification ofBYPASS_SPEC for a hardware implementation of DLX is beyond the
scope of this paper and is reported elsewhere [27].

£def SW_Constraint:=
((I i = LOAD) ∧ (I j = ALU) ∧ ⇒ ((-) > 3)
 (r = RF) ∧ (0 < (-))

£ EBM ⇒ BYPASS_SPEC

£def Bypass_Cond:=
∀ I i Ij:class_instruction.

∃ rb. (rb = RF) ∧ Stage_Range (I i, EX, rb) ∧ Stage_Domain (I j, EX, rb)

£ BYPASS_SPEC⇒ Bypass_Cond

£ EBM ⇒ Bypass_Cond

t j
0 t i

0

t j
0 t i

0

t j
0 t i

0

t j
0 t i

0

t j
0 t i

0

t j
0 t i

0 t j
0 t i

0

37

To summarize, given some specific software constraints in form of instruction scheduling
timing conditions and/or given the implementation EBM, which includes some bypassing paths
with appropriate logic, we are able to prove that for all instruction combinations, instruction issue
times and resources of the programming model, none of the data conflicts (RAW, WAR and
WAW) happens, i.e. formally:

6.4. Control Conflicts

Control conflicts(also calledcontrol hazards [43, 67],branch hazards[43], sequencing hazards
[57] orbranch dependencies [35]) arise from the pipelining of branches and other instructions that
change the program counterPC, i.e. interruption of the linear instruction flow.

In highly pipelined processors, the next instruction fetch may begin long before the current
instruction has been fully decoded and executed. Thus it may be impossible to correctly update the
machine’s program counterPC before the next few instructions are fetched. If one instruction is
issued per clock, and a jump instruction takesN cycles to fetch and execute, then theN-1
instructions following the jump will always be executed, since they have been fetched before the
program counterPC was updated. Thus straightforward program coding may yield incorrect
results.

6.4.1. Control Conflict Specification

Let Af (I i,) be the fetch address of an instructionI i issued at time , i.e.Af (I i,) = PC(), and
let An(I i,) be the address of the sequential next instruction (also called next address ofI i), i.e.
An(I i,) = PC(). In a pipelined instruction execution, at each clock cycle a new instruction is
issued (fetched), i.e.PC () = PC (+1). If I i is a control instruction, then the sequential next
address is a specific target addressAt , i.e.An (I i,) = At (I i,). Due to the sequential execution
of a single instruction, the target instruction can only be fetched after the instructionI i is fetched,
decoded and the target address has been calculated. Since all this cannot happen in one clock cycle,
the target addressAt (I i,) is equal to PC (+N), whereN > 1. Hence, the next address is not equal
to the target address, i.e.:

An (I i,) = PC () = PC (+1) ≠ PC (+N) = At (I i,)

and the wrong instruction is fetched next.
A closer look at this situation shows that a software control conflict occurs when an instruction

attempts to read the resourcePC that is not yet updated (written) by a previous instruction. This
complies with the definition of RAW data conflict inPC [50] and thus the software control conflict
could be defined as follows:

(¬ RAW_Conflict ∧
SW_Constraints, EBM £ ¬ WAR_Conflict ∧

¬ WAW_Conflict)

£def Control_Conflict:= Stage_RAW_Conflict ((CONTROL,), (Ij,), PC)

t i
0 t i

0 t i
0 t i

0

t i
0

t i
0 ti +1

0

ti +1
0 t i

0

t i
0 t i

0

t i
0 t i

0

t i
0 ti +1

0 t i
0 t i

0 t i
0

t i
0 tj

0

38

6.4.2. Control Conflict Verification

The conflict freedom proof is therefore only a special case of the data conflict proofs and the goal
to be proven is set as follows:

and for the DLX processor example, we obtain, according to the four instruction classes, four
subgoals of the following form:

Since the issue times and satisfy (0 < (-)), the timing condition for the control conflict
((-) ≤ 1) is equivalent to ((-)= 1). Referring to the discussion on data conflict verification
in section 6.3.2, we should check the conflict in this case at the phase level by setting the following
goal (whereIFX represents the common IF-stage instruction of all instruction classes):

For the DLX example, we obtain:

This result confirms the fact that the program counterPC (that should be the target address) can
only be updated at the second clock phase of the ID-stage while it is needed for fetching in the first
phase of IF.

For conflict resolution no bypassing is possible, since the calculation of the target address
cannot be done earlier. One commonly used technique is software scheduling [43]. In the DLX
RISC processor, we just need one delay slot ((-)= 1) to ensure that control instructions are
executed correctly. The given software constraint that is used in this case is defined as follows:

Although delayed branching is used successfully for the reduction of the branch penalty9, control
conflicts could also be resolved in hardware using some special techniques, e.g.branch prediction,
branch folding, etc.[30]. These techniques try to reach a nearly zero-delay branch, for example via
the use a of branch history or a branch target buffer. However, there are different kinds of
mechanisms that are implemented in different ways by different processors [54]. Hence, a general
formalism cannot be given within the scope of our methodology. Referring to the discussion in
section 4.3, the behaviour of the implemented branching mechanisms has to be specified formally
and proven correct from the hardware implementation (as done for example in [46]). Using this
formal specification of the resolution technique, the above timing condition for the avoidance of
control conflicts has to be implied.

9. Some leading statistics have shown that by 70% of the delayed branches, the first delay slot can be filled with a
useful instruction, and by 25% the second one too [43].

£ ∀ I j:class_instruction.

 ∀ : Clock_cycle.
¬ Stage_RAW_Conflict ((CONTROL,), (Ij,), PC)

(I j = CLASS), (si = ID), (sj = IF), (0 < (-)) £ ¬ ((-) ≤ 1)

£ ¬ Phase_RAW_Conflict (IDC, IFX, PC)

 (Pi = φ2), (Pj = φ1) £ F

£def SW_Constraint:= ((I i = CONTROL)∧ (0 < (-))⇒ ((-) > 1)

t i
0 t j

0

t i
0 t j

0

t j
0 t i

0 t j
0 t i

0

t i
0 t j

0 t j
0 t i

0

t j
0 t i

0 t j
0 t i

0

t j
0 t i

0

t j
0 t i

0 t j
0 t i

0

39

To summarize, having used either an appropriate software constraint for a delayed branching or
the conflict resolution technique in hardware (EBM), the non-existence of control conflicts is
formally ensured, i.e.:

6.5. Summary

Our ultimate goal in proving the pipeline correctness relies in showing the non-existence of
pipeline conflicts, i.e. resource, data and control conflicts. Given an adequate implementation
EBM avoiding mutual resource use and involving conflict resolution mechanisms in hardware and/
or given some software constraints in form of timing conditions, we conclude from the theorems
yielded in sections 6.2.2, 6.3.2 and 6.4.2:

and hence the pipeline correctness. The obtained proof of the conflicts freedom has been achieved
at an abstract level by ranging over class instructions. Since neither structural, nor data or temporal
abstraction exists between the architecture and class levels and consequently they involve the same
resources and have the same timing behaviours, the obtained theorems for the pipeline correctness
can be transferred to the architecture level. Hence, we have performed the proof for the pipeline
correctness for all combinations of architectural instructions.

In contrast to the semantic correctness where, for a given RISC processor, a large number of
verification goals is to be set and proven, the goals and proofs within the verification process for
the pipeline correctness are fully processor independent. Further, with exception of the
specification of the processor specific arguments of the enumeration types (cf. section 6.1), all
required information about the specific processor that is to be verified are gained through
mechanical extraction from the formal specifications of the already specified model levels (cf.
section 3.2).

Furthermore, the verification method presented is constructive in that it helps the designer,
within a post-design verification process, in validating some existing software or hardware
constraints for conflict resolution or, within a verification-driven design process, in synthesizing
the constraints needed for conflict resolution at a given step of the design process.

The hierarchical structuring of the proofs resulted in parameterized tactics that are used for more
than one kind of conflict. All proofs have been mainly done using five automated proof tactics:

- one general tactic for deducing multiple (resource and data) conflicts at either the stage and
phase levels,

- two tactics for verifying dual resource conflicts at the stage and phase levels, respectively, and

- two parameterized tactics for the verification of dual (RAW, WAR and WAW) data and control
conflicts at the stage and phase levels, respectively.

Although we have been able to automate most of the verification process for pipeline conflicts
using few parameterized tactics, manual steps still being necessary when undertaking the
verification of data and control conflicts which are circumvented using processor specific
hardware.

EBM, SW_Constraints£ ¬ Control_Conflict

(¬ Resource_Conflict∧
EBM, SW_Constraints £ ¬ Data_Conflict ∧

 ¬ Control_Conflict)

40

7. Implementation inHOL

All formal specification and proof strategies of our methodology have been implemented using the
higher-order logic theorem proverHOL [34] (versionHOL90.6 which is based onSML [61]) within
the MEPHISTO verification framework [52]. The specification predicates for the model
instructions, the hardware implementation description, the conflicts formalization, etc. are
introduced inHOL asdefinitions. The goal setting functions are implemented asSML functions. The
predicate extraction functions are implemented inHOL asrules which generate theorems form other
theorems and definitions. The proof scripts (tactics) are implemented usingSML functions and
availableHOL tactics andtacticals [34]. The implementation inHOL of the model specifications,
the temporal abstraction function and the semantical correctness is reported in [71]. TheHOL
implementation of the pipeline conflict formalization and verification process is reported in [73].

All implementations are kept general so that it is applicable to a wide range of RISC processors
and could be grouped as follows:

- implementations that need no instantiations and are directly useable for any RISC processor.
These include the specification of pipeline conflicts (cf. sections 6.2.1, 6.3.1 and 6.4.1), the
functions for predicate extractions (cf. section 6.1) and the proof tactics for pipeline
verification (cf. section 6.5)

- implementations that have to be parameterized according to the handled RISC processor.
These are the temporal abstraction function (cf. section 3.1), the goal setting functions and the
proof tactics for the semantic verification (cf. sections 5.1, 5.2 and 5.3)

- implementations for which only general templates (illustrated by the DLX example) have been
provided. These involve the specifications of the model levels (cf. section 3.2) and the type
definitions for pipeline conflicts (cf. section 6.1)

- implementations for which no general patterns could be provided. These involve the
specification and verification of specific hardware behaviours, e.g. interrupt, stalls, branch
prediction, etc. (cf. section 4.3) which were mentioned within the scope of this paper through
few pointers

Although the presented methodology has been implemented inHOL, its implementation within
another verification system based on higher-order logic, e.g.Isabelle [62], PVS [59], Nuprl [24],
SDVS [53], LAMBDA [2], etc. is also possible. The reason for our choice ofHOL among the
existing theorem provers is the fact that it has the largest support within the hardware verification
community using theorem provers.

8. Experimental Results on a VLSI Implementation of DLX

The methodology presented so far, has been validated by using a VLSI implementation of DLX.
The choice of the DLX architecture was motivated by the following facts:

• DLX includes the main features of existing RISC cores, such as Intel i860, MIPS R3000,
Motorola M88000 and Sun SPARC

• existence of a well defined and thoroughly documented architectural description [43]
• frequent use of the DLX architecture as a benchmark example for different experimental

purposes, e.g. performance analysis, simulation, verification, synthesis, etc.
• availability of already implemented variants of the DLX processor using different tools as

VHDL [47] or GENESIL [56], e.g. [6, 10, 19, 40, 78]

41

This implementation of the DLX processor contains a five stage pipeline with a two phased
clock, and its architecture includes 51 basic instructions (integer, logic, load/store and control). All
these instructions are grouped into 5 classes according to which the stage and phase instructions
are defined (in addition to the four classes in table 1, a fifth class for immediate ALU instructions
has been provided). This architecture assumes synchronous instructions and data memories
(caches) with an access time equal to one clock cycle. Further, all architectural (class) instructions
are one cycle instructions, i.e. each clock cycle one instruction is completed and a new instruction
is issued. Also, no branch prediction has been implemented and the branch technique provided is
based on delayed branch with one delay slot. Hence, no pipeline stalls are necessary and therefore
no stall mechanism was implemented. This DLX processor core has been designed and
implemented within the commercial VLSI design environmentCADENCE [17] using a 1.0µm
CMOS technology (figure 12). The implementation has approximately 150,000 transistors which
occupy a silicon area of about 60.34 mm2, it has 172 I/O pads and currently runs at a clock rate of
12.5 MHz. A full description of the architecture and design of this DLX implementation is reported
in [28].

Figure 12. DLX VLSI Layout Picture

From the above given data, this DLX processor cannot be compared to commercial RISCs
which include more than a million transistors. However, the core architecture of commercial
processors usually do not contain a large number of transistors. For example, the core architecture
of the i860 [48] represents only 30% of its 1.2 million transistors while the rest is used for cache,
floating-point and other functional units [60]. Thus representing the complexity of 150,000
transistors for the DLX core architecture can be reckoned to be realistic enough. Considering the
performance of the implemented DLX, its relatively low clock rate of 12.5 MHz is due to the fact
that we used standard cells for our implementation while commercial processors use full-custom
cells and a technology of less than 1.0µm. Although the DLX processor is still simple when
compared to commercial processors, its complexity is orders of magnitude greater than the
complexities of reported verified processors as shown in table 2.

42

.

Using the already existing implementation of our methodology (cf. section 7), we have made
the experiment by performing the verification of this DLX by a third person who implemented the
processor inCADENCE. This person has an electrical engineering background with little
knowledge in formal methods and without previous knowledge inHOL. He has been successful in
specifying and verifying this DLX implementation within two months. However, most of this time
was spent in learning aboutHOL, formally specifying the processor and verifying the processor
specific interrupt and bypassing hardware. The following specifications have been provided:

- specification of the instructions of the architecture, class, stage and phase levels,

- formal description of the hardware implementation EBM down to the level ofCADENCE
standard cells,

- definition of the arguments for the instructions and pipeline types and

- specification of the interrupt and bypass behaviours.

For formal correctness the following verification tasks were involved:

- verification of the semantic correctness,

- verification of the pipeline correctness and

- verification of the interrupt and bypass behaviours.

With the exception of the bypass and interrupt behaviours the overall verification process has been
achieved fully automatically. It is to be noted finally that during this experiment few bugs were
found in the design which were not discovered during the simulation process. Examples of these
bugs are the implementation of a wrong addressing of the register file at the WB-stage by
immediate instructions and a missing bypass path for jump instructions that use the register file
during the ID-stage. The first failure arose during the semantic (class level) correctness proof and
the second one during the pipeline (data conflict) verification. Due to the hierarchical and
constructive aspects of our methodology, these bugs were easily fixed and recovered.

Table 2. Features of Reported Verified Processors

FM8501
[44]

VIPER
[22]

Tamarack-3
[49]

Mini-
Cayuga

[66]
AVM-1

[77]
MTI
[8]

DLX

Word Length 16-Bit 32-Bit 16-Bit 32-Bit 32-Bit 16-Bit 32-Bit

No. of Instructions 26 128 8 8 30 22 51

Microprogrammed yes no yes no yes yes no

No. of Microinstructions 14 - 32 - 64 38 -

Pipelined no no no 3-stage no no 5-stage

No. of Registers 16 4 2 32 32 32 32

Interrupt no no yes yes yes yes yes

Memory Model async. sync. async. sync. sync. sync. sync.

Memory Size 64 KB 1 MB 8 KB 1 GB 1 GB 8 MB 4 GB

Implemented no yes no no no yes yes

Size (gates or transistors)1,700 gt. 5,000 gt. - - - 30,000 tr. 150,000 tr.

Processor

Features

43

All formal specifications and verification proofs have been done within theHOL verification
system (versionHOL90.6) on a SPARC10 with a 128 MB main memory. The specification
overhead, the run times and the number of created inferences for the verification of this DLX
processor example are given in detail in the tables to follow. The overall specification for the DLX
core (illustrated in table 3 via the code length in number of lines and by the file size in Bytes) is
about 4500 lines long of which about 70% corresponds to the description of the EBM. The run
times (including the time for goal setting) for the proofs of the semantic correctness of the whole
processor are given in table 4. Hereby it is interesting to notice that, as expected, the verification
of the phase level corresponds to about 90% of the total semantic correctness proof overhead. The
run times for the theorem generation of theUsed andRange/Domain predicates are given in table
5. The run times for the pipeline verification for the implemented DLX processor are given in table
6. The overall proof results including the verification of the interrupt and bypass behaviours are
summarized in table 7. Accordingly, the whole verification of this DLX implementation took about
one hour and required about seven millions inferences.

Table 3. Formal Specifications

Specification # Lines # Bytes Comments

Architecture Level 718 27710 51 instructions

Class Level 216 8737 5 instructions

Stage Level 219 7845 13 instructions

Phase Level. 226 7149 26 instructions

EBM 3144 123121 -

INTERRUPT_SPEC 64 1700 -

BYPASS_SPEC 50 2211 -

Type Definitions 78 3610 -

Σ Specification 4515 182083 -

Table 4. Semantic Correctness

Verification Goal Time (in sec) # Inferences Comments

Stage Level⇒ Class Level 27.34 34640 5 theorems

Phase Level⇒ Stage Level 23.43 22074 13 theorems

EBM ⇒ Phase Level 850.48 204521 26 theorems

Architecture Level (instantiations) 14.08 5719 51 theorems

Σ Semantic Correctness 915.33 266945 -

Table 5. Predicates Extractions

 Predicate Time (in sec) # Inferences Comments

Stage_Used 206.74 576515 180 theorems generated

Phase_Used 1087.05 2536492 360 theorems generated

Stage_Range/Domain 302.00 534283 250 theorems generated

Phase_Range/Domain 266.70 267926 260 theorems generated

Σ Predicates Extractions 1862.49 3915216 -

44

9. Conclusions

In this paper we have shown the feasibility of formal verification techniques when applied cleverly
to specific classes of circuits. In this sense, we have provided a practical methodology for the
formal verification of RISC processor cores. This methodology is based on a novel hierarchical
interpreter model which is applicable for RISC cores in general. This model is a modification of
the one given by Anceau [3] for designing microprogrammed processors and reflects the design
hierarchy which is used for designing real pipelined RISC processors. Hence, the methodology
based on it can be used by computer architecture designers for successively refining and verifying
their designs. Further, the hierarchy present in the model can be exploited, to split the overall
verification task into a number of manageable subtasks so that the designers can formally verify
their designs during the design phase itself.

Due to the parallelism in the execution of instructions resulting from the pipelined architecture
of RISCs, a meticulous temporal abstraction has been developed and implemented. The
correctness of the RISC processor is ensured by splitting the proof goal into two independent parts,
namely the correct implementation of the semantics of each single instruction and the correctness
of the pipelined execution of various instructions by the hardware. The ease of formalizing the
specifications in higher-order logic at each level of abstraction and the similarity of the proofs
between the levels have lead to general functions and proof tactics which automate the goal setting
and the correctness proof for the semantic correctness. Furthermore,we have shown that pipeline
conflicts which occur in RISC cores— resource conflicts, data conflicts and control conflicts— can
be conveniently modelled at various abstraction levels using higher-order predicates and verified
using few parameterized proof scripts. The employment of the hierarchical RISC interpreter model

Table 6. Pipeline Correctness

Verification Goal Time (in sec) # Inferences Comments

Resource Conflicts 674.81 1455146 0 conflicts

RAW Data Conflict 536.86 1787020 15 conflict cases (3 slots) by RF and
5 conflict cases (1 slot) by PC

(using SW-Scheduling) 294.05 159806 0 conflicts

(using Bypassing) 1.89 5438 0 conflicts

WAR Data Conflict 578.07 1749153 0 conflicts

WAW Data Conflict 576.55 1735142 0 conflicts

Control Conflict 36.00 27659 5 conflict cases (1 slot)

(using SW-Scheduling) 47.70 34020 0 conflicts

Σ Pipeline Correctness 2402.29 6754120 -

Table 7. Summary of the Verification Results

Verification Goal Time (in sec) # Inferences Comments

EBM ⇒ BYPASS_SPEC 24.29 2706 proof done manually

EBM ⇒ INTERRUPT_SPEC 636.11 20725 proof done manually

Semantic Correctness 915.33 266945 95 main theorems

Pipeline Correctness 2402.29 6754120 3 main theorems

Σ DLX Verification 3978.02 7044496 -

45

and in particular the exploitation of the class level, empowers us to automatically derive compact
specifications of the conflicts. Furthermore, within the verification of the pipeline correctness, we
have adapted constructive proofs for conflicts verification and hence the designer gets invaluable
feedback for resolving these conflicts, either by making appropriate modifications to the hardware
or by generating the required software constraints.

The interpreter model, the formal specifications and the proof techniques were kept general and
provide a pattern to follow when verifying RISC cores. The specification and verification
templates give which definitions must be specified and which goals must be proved to verify the
machine. Given such specifications and a description of the hardware implementation, the proof
process has been automated by using parametrizable tactics. These tactics are independent of the
underlying implementation and can be used for a large number of RISC cores. The whole
methodology is generic, in that it is applicable to RISC cores with any pipeline depth and hence to
superpipelined architectures.

While exercising the verification process, we discovered that the proofs can be hierarchically
managed in a top-down or bottom-up manner, so that a verification-driven design or a post-design
verification can be performed. Within the scope of this paper, the correctness proofs were mainly
handled by means of the top-down verification-driven design methodology. By the application of
the methodology on the implemented DLX processor, for example, we have handled the
verification of the pipeline correctness in a post-design manner (as described in [72]), in that the
verification was done more or less in a single step through all hierarchies [27].

We have implemented the different specifications and proof strategies at each level of
abstraction inHOL within the MEPHISTO verification framework which is linked to the
commercial VLSI design toolCADENCE. The entire methodology has been validated by using a
VLSI implementation of DLX. The feasibility of the verification techniques developed is
illustrated by the run times reached for the verification of this realistic RISC core. In our future
work, we shall extend the layer of the core to superscalar architectures including pipelined
functional units, multiple instruction issue, etc.

 References

1. M. Aagaard; M. Leeser:Reasoning about Pipelines with Structural Hazards; Proc. Theorem Provers in Circuit
Design, Bad Herrenalb, Germany, September 1994, pp. 15-34.

2. Abstract Hardware Limited:LAMBDA — Logic and Mathematics behind Design Automation; User and
Reference Manuals, Version 3.1, 1990.

3. F. Anceau:The Architecture of Microprocessors; Addison-Wesley Publishing Company, 1986.
4. P. Andrews:An Introduction to Mathematical Logic and Type Theory: To Truth though Proof; Academic Press,

1986.
5. T. Arora: The Formal Verification of the VIPER Microprocessor: EBM to Phase, Phase to Microcode Level;

Master's �thesis, University of California, Davis, 1990.
6. P. Ashenden:DLX VHDL Model; Department of Computer Science, University of Adelaide, Australia, November

1993.
7. T. Baker:Headroom and Legroom in the 80960 Architecture; Proc. 35th IEEE Computer Society International

Conference (COMPCON90), San Francisco, California, February 1990, pp. 299-306.
8. D. Borrione; P. Camurati; J. Paillet; P. Prinetto:A Functional Approach to Formal Hardware Verification: The

MTI experience; Proc. IEEE International Conference on Computer Design (ICCD88), Rye Brook, New York,
October 1988, IEEE Computer Society Press, pp. 592-595.

9. V. Bhagwati; S. Devadas:Automatic Verification of Pipelined Microprocessors; Proc. ACM/IEEE 31st Design
Automation Conference (DAC94), San Diego, California, June1994, pp. 603-608.

10. M. Blomkvist; J. Nilsson; W. Sagefalk:A VLSI Implementation of the DLX Microprocessor; Department of
Computer Engineering, Lund University, Sweden, September 1992.

46

11. S. Bose; A. Fisher:Verifying Pipelined Hardware using Symbolic Logic Simulation; Proc. IEEE International
Conference on Computer Design (ICCD89), Cambridge, Massachusetts, September 1989, IEEE Computer
Society Press, pp. 217-221.

12. A. Bode:RISC-Architekturen; BI-Wiss. Verlag, 1990.
13. R. Bryant:Graph-Based Algorithms for Boolean Function Manipulation; IEEE Transactions on Computers, Vol.

C-35, No. 8, August 1986, pp. 677-691.
14. A. Bronstein; C. Talcott:Formal Verification of Pipelines based on String-Functional Semantics; In: L. Claesen

(Ed.), Formal VLSI Correctness Verification, VLSI Design Methods II, Elsevier Science Publishers B. V. (North-
Holland), 1990, pp. 349-367.

15. O. Buckow:Formale Spezifikation und (Teil-) Verifikation eines SPARC-kompatiblen Prozessors mit LAMBDA;
Diplomarbeit, Fachbereich Mathematik-Informatik, Universität-Gesamthochschule Paderborn, Germany,
October 1992.

16. J. Burch; D. Dill:Automatic Verification of Pipelined Microprocessor Control; In: D. Dill (Ed.), Computer Aided
Verification, Lecture Notes in Computer Science 818, Springer Verlag, 1994, pp. 68-80.

17. Cadence Design Systems Inc.:CADENCE User Manuals; Cadence Design Systems Inc., October 1991.
18. A. Camilleri: Simulation as an Aid to Verification Using the HOL Theorem Prover; Technical Report No. 150,

Computer Laboratory, Cambridge University, October 1988.
19. CAO-VLSI Team:Implementation of DLX in ALLIANCE; MASI Laboratory, University Pierre et Marie Curie,

Jussieu, Paris, France, March 1993.
20. P. Camurati; P. Prinetto:Formal Verification of Hardware Correctness: Introduction and Survey of Current

Research; IEEE Computer, July 1988, pp. 8-19.
21. R. Cloutier; D. Thomas:Synthesis of Pipelined Instruction Set Processors; Proc. ACM/IEEE 30th Design

Automation Conference (DAC93), Dallas, Texas, June 1993, pp. 583-588.
22. A. Cohn:A Proof of the Viper Microprocessor: The First Level; In: G. Birtwistle and P. Subrahmanyam (Eds.),

VLSI Specification, Verification and Synthesis, Kluwer Academic Publishers, 1988.
23. A. Cohn:The Notion of Proof in Hardware Verification; Journal of Automated Reasoning, Vol. 5, 1989, pp. 127-

139.
24. R. Constable et al.:Implementing Mathematics with the Nuprl Proof Development System; Prentice-Hall,

Englewood Cliffs, New Jersey, 1986.
25. J. Cook:Verification of the C/30 Microcode Using the State Delta Verification System (SDVS); Proc. 13th

National Computer Security Conference, Washington, D.C., National Bureau of Standards/National Computer
Security Centre, October 1990, pp. 20-31.

26. D. Cyrluk: Microprocessor Verification in PVS: A Methodology and Simple Example; Technical Report SRI-
CSL-92-12, SRI Computer Science Laboratory, December 1993.

27. M. Dehof:Formale Spezifikation und Verifikation des DLX-RISC-Prozessors; Diplomarbeit, Institut für Technik
der Informationsverarbeitung, Universität Karlsruhe, Germany, August 1994.

28. M. Dehof; S. Tahar:Implementierung des DLX RISC-Processors in einer Standardzellen-Entwufsumgebung;
Technical Report No. SFB 358-C2-1/94, Institute for Computer Design and Fault Tolerance, University of
Karlsruhe, Germany, March 1994.

29. Digital Equipment Corp.:Alpha Architecture Handbook; Digital Equipment Corp., Maynard, Massachusetts,
Order No. EC-H1689-10, 1992.

30. P. Dubey; M. Flynn:Branch Strategies: Modelling and Optimization; IEEE Transactions on Computer, Vol. 40,
No. 10, October 1991, p. 1159-1167.

31. Electronic Design Interchange Format,Version 2 0 0: EIA Interim Standard No. 44; EDIF Steering Committee,
Electronic Industries Association, May 1987.

32. S. Furber:VLSI RISC Architecture and Organization; Electrical Engineering and Electronics, Dekker, New York,
1989.

33. G. Gopalakrishnan; R. Fujimoto; V. Akella; N. Mani; K. Smith:Specification-Driven Design of Custom
Hardware in HOP; In: G. Birtwistle and P. Subrahmanyam (Eds.), Current Trends in Hardware Verification and
Automated Theorem Proving, Springer Verlag, 1989, pp. 128-170.

34. M. Gordon; T. Melham:Introduction to HOL: A Theorem Proving Environment for Higher Order Logic;
Cambridge, University Press, 1993.

35. A. Van De Goor:Computer Architecture and Design; Addison-Wesley, 1989.
36. G. Gopalakrishnan:Specification and Verification of Pipelined Hardware in HOP; In: J. Darringer and J.

Rammig (Eds.), Computer Hardware Description Language and their Applications (CHDL89), Elsevier Science
Publishers B.V. (North-Holland), 1989, pp. 117-131.

37. M. Gordon:Proving a Computer Correct using the LCF_LSM Hardware Verification System; Technical Report
No. 42, Computer Laboratory, University of Cambridge, September 1983.

38. B. Graham:The SECD Microprocessor: A Verification Case Study; Kluwer Academic Publishers, 1992.

47

39. A. Gupta:Formal Hardware Verification Methods: A Survey; Journal of Formal Methods in System Design, Vol.
1, No. 2/3, 1992, pp. 151-238.

40. A. Gupta; P. Stephan:VHDL Design and Analysis of DLX; CS252 Semester Project, University of California at
Berkeley, May 1991.

41. Hanna, F.; Daeche, N.:Specification and Verification of Digital Systems Using Higher-Order Predicate Logic;
IEE Proc. Pt. E, Vol. 133, No. 3, September 1986, pp. 242-254.

42. F. Hanna; M. Longley; N. Daeche:Formal Synthesis of Digital Systems; In: L. Claesen (Ed.), Applied Formal
Methods for Correct VLSI Design, Elsevier Science Publishers B. V. (North-Holland), 1989, pp. 532-548.

43. J. Hennessy; D. Patterson:Computer Architecture: A Quantitative Approach; Morgan Kaufmann Publishers, Inc.,
San Mateo, California, 1990.

44. W. Hunt:The Mechanical Verification of a Microprocessor Design; In: D. Borrione (Ed.), From HDL Description
to Guaranteed Correct Circuit Designs, Elsevier Science Publishers B.V. (North-Holland), 1987, pp. 89-129.

45. W. Hunt:Microprocessor Design Verification; Journal of Automated Reasoning, Vol. 5, No. 4, 1989, pp. 429-
460.

46. W. Hwu; P. Chang:Efficient Instruction Sequencing with Inline Target Insertion; IEEE Transactions on
Computer, Vol. 41, No. 12, December 1992, pp. 1537-1551.

47. Institute of Electrical and Electronics Engineers:IEEE Standard VHDL Language Reference Manual; IEEE
Press, New York, June 1993.

48. Intel Corporation:i860 64-Bit Microprocessor Programmer’s Reference Manual; Intel Corporation, Santa Clara,
California, 1989.

49. J. Joyce:Multi-Level Verification of Microprocessor-Based Systems; PhD. Thesis, Computer Laboratory,
Cambridge University, December 1989.

50. P. Kogge:The Architecture of Pipelined Computers; McGraw-Hill, 1981.
51. T. Kropf; R. Kumar; K. Schneider:Embedding Hardware Verification within a Commercial Design Framework;

Advanced Research Working Conference on Correct Hardware Design and Verification Methods (CHARME 93),
Lecture Notes in Computer Science, Springer Verlag, 1993.

52. R. Kumar; K. Schneider; T. Kropf:Structuring and Automating Hardware Proofs in a Higher-Order Theorem-
Proving Environment; Journal of Formal Methods in System Design, Vol.2, No. 2, 1993, pp. 165-230.

53. L. Marcus:SDVS 10 Users’ Manual; Technical Report ATR-91(6778)-10, The Aerospace Corporation, 1991.
54. S. McFarling; J. Hennessy:Reducing The Cost of Branches; Proc. 13th Annual International Symposium on

Computer Architecture, Tokyo, Japan, June 1986.
55. T. Melham:Abstraction Mechanisms for Hardware Verification; In: G. Birtwistle and P. Subrahmanyam, (Eds.),

VLSI Specification, Verification and Synthesis, Kluwer Academic Publishers, 1988, pp. 129-157.
56. Mentor Graphics Inc.:GENESIL Designer Manuals; Mentor Graphics Inc., September 1989.
57. V. Milutinovic: High Level Language Computer Architecture; Computer Science Press, Inc., 1989.
58. Motorola, Inc.: MC88100 RISC Microprocessor User’s Manual; Englewood Cliffs, New Jersey, Prince-Hall,

1988.
59. S. Owre; N. Shankar; J. Rushby:User Guide for the PVS Specification and Verification System, Language, and

Proof Checker; Computer Science Laboratory, SRI International, Melno Park, California, February 1993.
60. P. Patel; D. Douglass:Architecture Feature of the i860 - Microprocessor RISC Core and on-Chip Caches; Proc.

IEEE International Conference on Computer Design (ICCD89), Cambridge, MA, September 1989, IEEE
Computer Society Press, pp. 385-390.

61. L. Paulson:ML for the Working Programmer; Cambridge University Press, 1991.
62. L. Paulson: Isabelle:A Generic Theorem Prover; Lecture Notes in Computer Science 828, Springer Verlag, 1994.
63. A. Roscoe:Occam in the Specification and Verification of Microprocessors; Philosophical Transactions of the

Royal Society of London, Series A: Physical Sciences and Engineering, Vol. 339, No. 1652, April 1992, pp. 137-
151.

64. R. Sekar; M. Srivas:Formal Verification of a Microprocessor Using Equational Techniques; In: G. Birtwistle
and P. Subrahmanyam (Eds.), Current Trends in Hardware Verification and Automated Theorem Proving,
Springer Verlag, 1989, pp. 171- 217.

65. J. Saxe; S. Garland; J. Guttag; J. Horning:Using Transformations and Verification in Circuit Design; Proc. 2nd
Workshop on Designing Correct Circuits, Lyngby, Danmark, January 1992.

66. M. Srivas; M. Bickford:Formal Verification of a Pipelined Microprocessor; IEEE Software, Vol. 7, No.5,
September 1990, pp. 52-64.

67. H. Stone:High-Performance Computer Architecture; Addison-Wesley Publishing Company, 1990.
68. Sun Microsystems, Inc.:The SPARC Architecture Manual; Sun Microsystems, Inc., USA, Version 8, Part No.

800-1399-09, August 1989.

48

69. E. Talkhan; A. Ahmed; A. Salama:Microprocessors Functional Testing; IEEE Transactions on Computer Aided
Design, Vol. 8, No. 3, March 1989.

70. S. Tahar; R. Kumar:Towards a Methodology for the Formal Hierarchical Verification of RISC Processors; Proc.
IEEE International Conference on Computer Design (ICCD93), Cambridge, Massachusetts, October 1993, IEEE
Computer Society Press, pp. 58-62.

71. S. Tahar; R. Kumar:Implementing a Methodology for Formally Verifying RISC Processors in HOL; In: J. Joyce
and C. Seger (Eds.), Higher Order Logic Theorem Proving and Its Applications, Lecture Notes in Computer
Science 780, Springer Verlag, 1994, pp. 281-294.

72. S. Tahar; R. Kumar:Formal Verification of Pipeline Conflicts in RISC Processors; Proc. European Design
Automation Conference (EURO-DAC94), Grenoble, France, September 1994, IEEE Computer Society Press, pp.
285-289.

73. S. Tahar; R. Kumar:Implementational Issues for Verifying RISC-Pipeline Conflicts in HOL; In: T. Melham and
J. Camilleri (Eds.), Higher Order Logic Theorem Proving and Its Applications, Lecture Notes in Computer
Science 854, Springer Verlag, 1994, pp. 424-439.

74. M. Thomas:The Industrial Use of Formal Methods; Microprocessor and Microsystems, Vol. 17, No. 1, 1993, pp.
31-36.

75. N. Tredemick:Experiences in Commercial VLSI Microprocessor Design; Microprocessors and Microsystems,
Vol. 12, No.8, October 1988.

76. P. Villarrubia; Nusbaum, G.; Masleid, R.; Patel, P.:IBM RISC Chip Design Methodology; Proc. IEEE
International Conference on Computer Design (ICCD89), Cambridge, Massachusetts, September 1989, IEEE
Computer Society Press, pp. 143-147.

77. P. Windley:The Formal Verification of Generic Interpreters; PhD. Thesis, Division of Computer Science,
University of California, Davis, July 1990.

78. K. Winters:ASIC Design Experience: MDLX; Department of Electrical Engineering, Montana State University,
USA, April 1992.

79. W. Wong:Modelling Bit Vectors in HOL: the word Library; In: J. Joyce and C. Seger (Eds.), Higher Order Logic
Theorem Proving and Its Applications, Lecture Notes in Computer Science 780, Springer Verlag, 1994, pp. 371-
384.

