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Abstract

Dynamic Fault Trees (DFTs) is a widely used failure modeling technique
that allows capturing the dynamic failure characteristics of systems in a very
effective manner. Simulation and model checking have been traditionally used
for the probabilistic analysis of DFTs. Simulation is usually based on sampling
and thus its results are not guaranteed to be complete, whereas model checking
employs computer arithmetic and numerical algorithms to compute the exact
values of probabilities, which contain many round-off errors. Leveraging upon
the expressive and sound nature of higher-order-logic (HOL) theorem proving,
we propose, in this paper, a formalization of DFT gates and their probabilistic
behaviors as well as some of their simplification properties in HOL based on
the algebraic approach. This formalization would allow us to conduct the prob-
abilistic analysis of DFTs by verifying generic mathematical expressions about
their behavior in HOL. In particular, we formalize the AND, OR, Priority-AND,
Functional DEPendency, Hot SPare, Cold SPare and the Warm SPare gates and
also verify their corresponding probabilistic expressions in HOL. Moreover, we
formally verify an important property, Pr(X < Y ), using the Lebesgue integral
as this relationship allows us to reason about the probabilistic properties of
the Priority-AND gate and the Before operator in HOL theorem proving. We
also formalize the notion of conditional densities in order to formally verify the
probabilistic expressions of the Cold SPare and the Warm SPare gates. In order
to illustrate the usefulness of our formalization, we use it to formally analyze
the DFT of a Cardiac Assist System.

1 Introduction
A Fault Tree (FT) [22] represents an effective way of graphically modeling the causes
of failure in a system in the form of a rooted failure tree. A typical FT consists of
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a top event representing system failure, basic failure events modeling the compo-
nents failure and the FT gates, which combine the basic failure events and allow
components failure to propagate to the top event. FTs are categorized as: Static
FTs (SFTs) and Dynamic FTs (DFTs). SFTs capture the causes of failure in a sys-
tem without considering the failure dependencies or sequences between the system
components. DFTs, on the other hand, capture the failure dependencies in sys-
tems, which represent a more realistic approach to model the behavior of real-world
systems.

Fault Tree Analysis (FTA) can be used to examine the failure characteristics
of the given system qualitatively and quantitatively. In the former analysis, the
combinations and sequences of basic failure events, associated with the system com-
ponents, are determined in the form of cut sets and cut sequences [22]. While the
quantitative analysis allows estimating the failure probability of the system based
on component’s failure probabilities among other metrics. Usually, Markov chain
(MC) based analysis or algebraic approaches are used to perform DFT analysis. In
the Markov chain based analysis, the DFT is first converted into its equivalent MC
and then the analysis is conducted on the resulting MC. Complex systems often lead
to a MC with a large number of states. The MCs of such complex systems can be
analyzed using a modularization approach that divides the corresponding FT into
SFT and DFT parts [19]. The SFT part is analyzed using traditional combinatorial
analysis methods, such as Binary Decision Diagrams (BDDs) [22], while the DFT
part is analyzed using MCs [23]. This kind of modularization approach has been
implemented in the Galileo tool [24]. In the algebraic approach, an algebra similar
to the ordinary Boolean algebra is used to reduce the structure function (expression)
of the top event of the DFT [12]. This reduced expression is then used to derive
the failure probability of the given system based on the failure probabilities of DFT
gates.

Traditionally, DFTs are either analyzed by analytically deriving the system fail-
ure probability expression or using computer-based simulation tools. In the former
method, firstly cut-sequences consisting of basic failure events are obtained and
then the probabilistic Principle of Inclusion-Exclusion (PIE) [12] is used to man-
ually derive the probability of failure of the overall system. This kind of manual
manipulation is prone to human errors and can produce erroneous results especially
when dealing with large DFTs. The latter method is more extensively used due
to its scalability and user friendliness. Several simulation tools are available that
provide GUI editors that obtain the system FT model from the user and return
the analysis results based on the assigned failure distribution to the system com-
ponents at a given instant of time. However, simulation cannot be guaranteed to
produce complete and accurate results due to the involvement of numerical tech-
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niques, such as Monte Carlo simulation [17], and pseudo random variables. Due
to the above-mentioned inaccuracies, both analytical and simulation based methods
are not suitable to conduct the failure analysis of safety-critical systems.

As an accurate alternative, formal methods have been recently utilized for ana-
lyzing FTs. Probabilistic model checkers (PMC), such as STORM [6], have been used
to perform the quantitative analysis of DFTs [9]. However, due to the state-based
nature of PMCs, they cannot be used to verify generic expressions for probability of
failure. In addition, their usage is only limited to exponential distributions, which
in the context of reliability analysis, for example, do not consider the aging of sys-
tems components. Due to the sound nature of higher-order-logic (HOL) theorem
proving, it has been successfully used to formalize basic SFT gates [1], which have
been in turn used to conduct the SFT-based analysis of several systems, including
an air traffic management system [2]. However, this formalization is only limited to
SFTs. So far, there is no formalization in HOL that supports the probabilistic failure
analysis of DFTs. Recently, we have presented a hybrid methodology based on both
interactive theorem proving and model checking for formal analysis of DFTs [8]. The
main idea is to first conduct the qualitative analysis of a given DFT, based on the
algebraic approach [12], using theorem proving and then quantitatively analyze the
simplified DFT model using the STORM model checker. Since a PMC is involved in
estimating the probabilities quantitatively, this methodology cannot provide generic
expressions for probability and its usage is only limited to exponential distributions.
Moreover, the formal definitions of DFT gates in [8] cannot cater for conducting the
probabilistic analysis using HOL theorem proving as the behavior of the DFT gates
has been captured using numbers instead of random variables.

In order to perform the complete probabilistic analysis of DFTs within a higher-
order-logic theorem prover by verifying generic expressions of probability of failure,
we propose to improve our formalization of the DFT gates in higher-order logic
that uses the algebraic approach, presented in [12], as its foundation. The choice
to formalize an algebraic approach to conduct the DFT analysis is motivated by
the fact that HOL is well known for modeling systems that can be mathematically
expressed. In addition, using HOL theorem proving we can formally verify generic
expressions that cannot be obtained and verified using other formal tools and the
algebraic approach fits perfectly with these features of HOL theorem proving. The
foremost task in this work is to identify an algebraic approach to formalize DFTs so
that the formal DFT analysis can be constructed within a theorem prover. In this
respect, we have to consider the availability of foundational theories, like measure
and probability, and their compatibility with the chosen approach. We identified
the algebraic approach, initially proposed by Merle [12], to formalize DFTs among
other options (e.g., [18]). Despite the fact that the presented formalization is based
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on an existing algebraic approach [12], it bears its own research challenges. For ex-
ample, it is well-known that a theorem proving based proof requires many intricate
proof guidance and explicit reasoning that a mathematician doing a paper based
proof would sometimes ignore. Thus, in our experience with the formalization of
the algebraic approach, we also had to take many modeling decisions, choose ap-
propriate data types, identify missing assumptions for the validity of results, devise
proof strategies and verify many helper theorems to facilitate the process of formal
DFT analysis in a theorem prover. The paper highlights these details while we
present our formalization. Based on this novel formalization, we also formally verify
the DFT algebraic reduction properties. Then, using the available probability the-
ory formalization [13], we also formally verify the failure probability relationships of
all commonly used DFT gates, i.e., AND, OR, Priority-AND (PAND), Functional
DEPendency (FDEP), Hot SPare gate (HSP), Cold SPare gate (CSP) and Warm
SPare gate (WSP). In order to verify the failure probability relationship of some
of these DFT gates, we are required to formalize the Pr(X < Y ) describing the
effect of one system component failing before the other or one after the other. This
property is mainly verified by using Lebesgue integral properties [15, 21]. In addi-
tion, we formalize the notion of conditional density functions, which is necessary to
formally verify the probabilistic relationships of the spare gates. The HOL4 the-
orem prover [10] was a natural choice for this formalization as it has the required
theories such as: the probability theory and the Lebesgue integral [15]. In addition,
we use the existing formalization of the probabilistic PIE in HOL4 [1]. The above-
mentioned formalizations can be utilized to conduct the DFT-based failure analysis
of a variety of real-world systems within the sound core of a theorem prover. For
illustration purposes, we present the formal DFT-based failure analysis of a Cardiac
Assist System (CAS) [5], which is a safety-critical DFT benchmark. We first reduce
the original structure function of the system’s top event using the formally veri-
fied simplification theorems. Then, we utilize the probabilistic PIE [1] to formally
verify a generic failure probability expression of the Cardiac Assist System whereas
the failure characteristics of its components are represented as generic probability
distribution and density functions.

1.1 Contributions of the Paper

The main contributions of the paper are summarized as:

• Providing a framework for the probabilistic analysis of DFT within a theorem
prover, which offers a sound and rigorous method for conducting DFT analysis
by providing formally verified generic expressions of probability of failure.
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• Development of reasoning steps for the verification of DFT gate properties,
which, to the best of our knowledge, are not available in the literature or even
in [12].

• Providing the formal definitions of DFT gates, which are somewhat different
than the expressions provided in [12].

• Verifying a generic expression for the probabilistic failure behavior of a cardiac
assist system in HOL theorem proving, which involves identifying the required
conditions for the generic expression to hold.

1.2 Paper Organization

The rest of the paper is structured as follows: Section 2 presents some preliminaries
about the probability theory and the Lebesgue integral in HOL4 that will facilitate
the understanding of the rest of the paper. In Section 3, we present our HOL for-
malization of DFT gates and the corresponding simplification properties. Section 4
provides the verification details of the probabilistic behavior of the DFT gates. Sec-
tion 5 presents the formalization of the probabilistic failure behavior of the Cardiac
Assist System. Finally, we conclude the paper in Section 6.

2 Preliminaries
In this section, we present some preliminaries that are required for the understanding
of the proposed formalization.

2.1 Probability Theory

The probability theory is formalized based on the measure theory in HOL4 [15].
A measurable space is represented as a pair (X ,A), where X represents a space
and A a set of measurable sets. The functions space and subsets are defined in
HOL to return X and A, respectively of a measurable space (X ,A). A measure
is generally a function that designates a certain number to a set, which represents
the size of this set [13]. It is defined as the triplet (X ,A, µ), where X represents
the space, A represents the measurable sets and finally µ represents the measure.
Three functions, m_space, measurable_sets and measure, are defined in HOL to
return the space (X ), measurable sets (A) and measure (µ) of a measure space,
respectively [16]. A probability space is defined as a measure space, with the added
condition that the probability measure for the entire space is equal to 1.
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Random variables are formalized as measurable functions that map events from
the probability space to some other σ- algebra space s. Random variables are de-
fined in HOL4 as [13]:

Definition 2.1.
⊢ ∀X p s. random_variable X p s ⇔

prob_space p ∧ X ∈ measurable (p_space p, events p) s

where prob_space p ensures that p is a probability space with p_space as its space
and events as its measurable sets. X ∈ measurable (p_space p, events p) s
ensures that X belongs to the set of measurable functions from the probability space
p to σ-algebra space s [16]. Measurable spaces s and (p_space p, events p) are
ensured to be σ-algebra spaces using the measurable function.

The probability distribution of a random variable X represents the probability
that the random variable X belongs to a set A. This is equivalent to finding the
probability of the event {X ∈ A}, which can also be represented using the preimage
as X−1(A). The probability distribution is defined in HOL4 as [13]:

Definition 2.2.
⊢ ∀p X. distribution p X = (λs. prob p (PREIMAGE X s ∩ p_space p))

where s is a set of elements of the space that the random variable X maps to.
For a random variable that maps the probability space (p) into another measurable
space, the push forward measure is a measure that uses the space and subsets of the
measurable space as its space and measurable sets and uses the distribution of the
random variable as its measure part [11]. In general, the push forward measure for
any measurable function X from measure M to measure N can be expressed as:

Definition 2.3.
⊢ ∀ M N f. distr M N f =

(m_space N, measurable_sets N,
λA. measure M (PREIMAGE f A ∩ m_space M))
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A density measure is used to define a density function, f , over the measure space
M as [11]:

Definition 2.4.
⊢ ∀ M f. density M f =

(m_space M, measurable_sets M,
λA. pos_fn_integral M (λ x. f x * indicator_fn A x ) )

where pos_fn_integral represents the Lebesgue integral of positive functions as
will be described in the following section.

The cumulative distribution function (CDF) of a random variable X is usually
used when we are interested in finding the probability that the random variable is
less than or equal to a certain value. It is formally defined for real values as [1]:

Definition 2.5.
⊢ ∀p X t. CDF p X t = distribution p X {y | y ≤ (t:real)}

It is worth mentioning that the CDF can be defined for extended-real (extreal)
random variables as well, where extreal is a HOL data-type that includes the real
numbers beside ±∞. However, in our formalization we will use the CDF of real
random variables, as it is required to integrate their density functions over the real
line.

When dealing with multiple random variables, the probabilistic Principle of In-
clusion and Exclusion (PIE) provides a very interesting relationship between the
probability of the union of different events. It can be expressed as:

Pr(
n∪

i=1
Ai) =

∑

t̸={},t⊆{1,2,...,m}
(−1)|t|+1Pr(

∩

j∈t
Aj) (1)

It has been formally verified in HOL4 as follows [1]:

Theorem 2.1.
⊢ ∀p L.

prob_space p ∧ (∀ x. MEM x L ⇒ x ∈ events p) ⇒
(prob p (union_list L = sum_set {t | t ⊆ set L ∧ t ̸= {}}
(λt. -1 pow (CARD t+1) * prob p (BIGINTER t))
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where L is the list of events that we are interested in expressing the probability of
their union.

In order to be able to handle multiple random variables, a pair measure (often
called binary product measure) is required to be able to model joint distribution
measures. This pair measure can be used also in a nested way to model the joint
distribution measure of multiple random variables. The pair measure is defined as
the product of two measures. It was initially formalized in Isabelle/HOL [11] and was
then ported to HOL4 [20]. The space and the measurable sets of this pair measure
are generated using the Cartesian product of the spaces and the measurable sets of
the participating measures, while the measure part is defined using the Lebesgue
integral.

Since there are real and extended-real data-types in HOL4, there exist two Borel
spaces, one over the real line (borel) [21] and the second over the extended-real
line (Borel) [14]. The Lebesgue-Borel measure is required to integrate over the real
line. In particular, we need the Lebesgue-Borel measure in this work to integrate
the density functions of the random variables over the real line. The Lebesgue-Borel
measure is a measure defined over the real line, which uses the real line as its space
and the Borel sets as its measurable sets. The Lebesgue-Borel measure is defined in
HOL4 as lborel, which uses the real borel sigma algebra (borel) generated by the
open sets of the real line as well as the Lebesgue measure [21].

The independence of random variables is an important property when dealing
with multiple random variables. In general, for any two random variables X and Y ,
the probability of the intersection of their events is equal to the multiplication of
the probability of the individual events. The independence of random variables is
defined as indep_vars [20]:

Definition 2.6.
⊢ indep_vars p M X ii =

(∀i. i ∈ ii ⇒
random_variable (X i) p

(m_space (M i), measurable_sets (M i))) ∧
indep_sets p

(λi. {PREIMAGE f A ∩ p_space p |
(f = X i) ∧ A ∈ measurable_sets (M i)}) ii

where p is the probability space and M is the measure space that the random vari-
able X maps to. In this case, M and X are indexed by a number from the set of
numbers ii, which gives the possibility of defining the independence for multiple
random variables that map from the probability space to different spaces. The
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function indep_vars defines the independence by first ensuring that the group of
input functions X are random variables and that their event sets are independent
using indep_sets. Using indep_sets, the probability of the intersection of any
sub-group of events of the random variables is equal to the multiplication of the
probability of the individual events.

Using indep_vars, the independence of two random variables is defined as [20]:

Definition 2.7.
⊢ indep_var p M_x X M_y Y =

indep_vars p (λi. if i = 0 then M_x else M_y)
(λi. if i = 0 then X else Y) {x | (x = 0) ∨ (x = 1)}

We define several functions that facilitate handling our formalization. The first
function is measurable_CDF, which is defined as:

Definition 2.8.
⊢ ∀p X. measurable_CDF p X = (λx. CDF p X x) ∈ measurable borel Borel

This function ensures that the CDF of random variable X is measurable from
the borel space to the Borel space. In other words, it ensures that the CDF
is measurable from the real line to the extended-real line. This implies that the
domain for this CDF is the real line and the range is the extended-real line.

We define another function, cont_CDF, which ensures that the CDF is continuous.
It is formally defined as:

Definition 2.9.
⊢ ∀p X. cont_CDF p X = ∀z. (λx. real (CDF p X x)) contl z

where the function real typecasts the value of CDF from extended-real to real
data-type, and contl ascertains that the function is continuous over all values in its
domain. It is worth mentioning that X is a real valued random variable. However,
the CDF returns extended-real. As the continuity of functions is defined in HOL4 for
real valued functions, it is required to typecast the value of the CDF from extended-
real to real. In addition, since the values of the CDF range from 0 to 1, as it
represents a probability, this function is the same in both cases but with different
datatypes. Therefore, if the function is continuous in the extended-real, then it is
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continuous using the real datatype. Furthermore, later we will use extended-real
random variables, therefore, it is required to typecast their values using the real
function.

Next, we define a function, rv_gt0_ninfinity, to ensure that the input random
variables of a DFT can only have the range [0,+∞):

Definition 2.10.
⊢ (rv_gt0_ninfinity [] = T) ∧

(rv_gt0_ninfinity (h::t) = (∀s. 0 ≤ h s ∧ h s ̸= PosInf) ∧
(rv_gt0_ninfinity t))

Finally, we define a function, den_gt0_ninfinity to ensure the proper values
for the marginal, joint and conditional density functions:

Definition 2.11.
⊢ ∀f_xy f_y f_cond.

den_gt0_ninfinity f_xy f_y f_cond ⇔
∀x y.

0 ≤ f_xy (x,y) ∧ 0 < f_y y ∧ f_y y ̸= PosInf ∧ 0 ≤ f_cond y x

where f_xy is the joint density function, f_y is the marginal density function, and
finally f_cond is the conditional density function of X given Y. This function can
be used to assign the mentioned conditions to other functions and not necessarily
only the density functions.

2.2 Lebesgue Integral
The Lebesgue integral is defined in HOL4 using positive simple functions, which
are measurable functions defined as a linear combinations of indicator functions of
measurable sets representing a partition of the space X [15]. A positive simple
function, g, can be represented using the triplet (s, a, x) as [15]:

∀t ∈ X, g(t) =
∑

i∈s
xi1ai(t), xi ≥ 0 (2)

where s is a finite set of partition tags, xi is a sequence of positive extreal numbers,
ai is a sequence of measurable sets and 1ai is the indicator function of measurable
set ai and is defined as [15]:
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Definition 2.12.
⊢ ∀A. indicator_fn A = (λx. if x ∈ A then 1 else 0)

The Lebesgue integral is first defined for positive simple functions and then
extended for positive functions for measure µ as [14]:

∫

X
fdµ = sup{

∫

X
g dµ | g ≤ f and g positive simple function} (3)

It is usually required that the probability of an event for a random variable to
be expressed using the integration of the random variable’s distribution. This is
verified in HOL4 as [13]:

Theorem 2.2.
⊢ ∀X p s A.

random_variable X p s ∧ A ∈ subsets s ⇒
(distribution p X A =
integral (space s, subsets s, distribution p X)(indicator_fn A))

In the above theorem, X can be a continuous or discrete random variable. How-
ever, in our DFT formalization, we are only interested in continuous random vari-
ables as they represent the time of failure of system components.

3 Formalization of Dynamic Fault Trees in HOL
Our previous formalization of DFT gates and operators was based on the algebraic
approach [12], where the DFT events are treated based on their time of occurrence
(failure of corresponding components) [8]. However, these formal definitions cannot
cater for the probabilistic analysis of system failures, which is the scope of the
current paper. Therefore, we provide an improved formalization of DFT gates and
operators using functions of time that can be represented as random variables when
carrying out the formal probabilistic analysis of the given DFT based on the algebraic
approach presented in [12]. However, there are some missing gaps in the paper-and-
pencil proofs available in [12] that we were able to fill using our formalization,
particularly that we had to build our formalization on top of some existing HOL
theories, such as the Lebesgue integral and probability theories. In [12], there is no
direct description on how to build the DFT analysis based on the above-mentioned
theories. Besides this, we also had to use different strategies for some proofs. All
these differences will be highlighted throughout Sections 3 and 4.
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3.1 Identity Elements and Temporal Operators

Similar to ordinary Boolean algebra, the DFT algebraic approach defines identity
elements that are important in the simplification process of the DFT [12]. The
DFT identity elements are: the ALWAYS element representing an event that always
occurs (fails) from time 0 and the NEVER element, which describes an event that
never occurs (fails). The formal definitions of these elements are shown in Table 1,
where PosInf represents +∞ in HOL4. We define the time of failure of the events
as lambda abstracted functions that accept an arbitrary data-type that represents
an element from the probability space and return the time. so that they can be later
treated as random variables. For example, the time of failure of a component is a
random variable X and can be expressed in lambda abstraction form as (λs. X s).

Temporal operators are also required to model the DFT gates in the algebraic
approach [12]. These operators are: Before (�), Simultaneous (∆) and Inclusive
Before (�). Each one of these operators accepts two inputs, which can be subtrees
or basic events that represent faults of system components. The output event of
the operator occurs according to a certain sequence of occurrence for the input
events, i.e., the time of occurrence of the first (left) input is less than, equal to
or less than or equal to the occurrence time of the second input (right) for the
Before, the Simultaneous and the Inclusive Before operators, respectively. The time
of occurrence of the output event of all operators is equal to the time of occurrence
of the first input event (left). The mathematical expressions of these operators as
well as their corresponding HOL formalizations are shown in Table 1, where X and
Y represent the time of occurrence of events X and Y, respectively.

It is worth mentioning that if the inputs of the Simultaneous operator are basic
events with continuous failure distributions, then the output of this operator can
never fail [12]. This is because the time of failure is continuous, and the possibility
that two system components failing at the same time can be neglected. As a conse-
quence, it is assumed in the algebraic approach that any two different basic events

Table 1: Definitions of Identity Elements and Temporal Operators

Element/Operator Mathematical Expression Formalization
Always element d(ALWAY S) = 0 ⊢ ALWAYS = (λs. (0:extreal))
Never element d(NEVER) = +∞ ⊢ NEVER = (λs. PosInf)

Before d(X�Y )=
{
d(X), d(X) < d(Y )
+∞, d(X) ≥ d(Y )

⊢ ∀X Y. D_BEFORE X Y =
(λs. if X s < Y s then X s else PosInf)

Simultaneous d(X∆Y )=
{
d(X), d(X) = d(Y )
+∞, d(X) ̸= d(Y )

⊢ ∀X Y. D_SIMULT X Y =
(λs. if X s = Y s then X s else PosInf)

Inclusive Before d(X�Y )=
{
d(X), d(X) ≤ d(Y )
+∞, d(X) > d(Y )

⊢ ∀ X Y. D_INCLUSIVE_BEFORE X Y =
(λs. if X s ≤ Y s then X s else PosInf)
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can never fail at the same time. This can be expressed for basic failure events of the
inputs of the given DFT as [12]:

d(X∆Y ) = NEV ER (4)

3.2 Formalization of FT Gates and Simplification Theorems

Our formalization of all FT gates; static and dynamic, and their mathematical
expressions [12] are presented in Table 2.

Table 2: DFT Gates

Gate Mathematical Expression Formalization

d(X · Y ) = max(d(X), d(Y )) ⊢ ∀X Y. D_AND X Y = (λs. max (X s)(Y s))

AND

d(X + Y ) = min(d(X), d(Y )) ⊢ ∀X Y. D_OR X Y = (λs. min (X s)(Y s))

OR

d(QPAND) =
{
d(Y ), d(X) ≤ d(Y )
+∞, d(X) > d(Y )

⊢ ∀X Y. PAND X Y =
(λs. if X s ≤ Y s then Y s else PosInf)

PAND

d(XT ) = min(d(X), d(T )) ⊢ ∀X T. FDEP X T = (λs. min (X s)(T s))

FDEP

d(QCSP ) =
{
d(X), d(Y ) < d(X)
+∞, d(Y ) ≥ d(X)

⊢ ∀X Y. CSP Y X =
(λs. if Y s < X s then X s else PosInf)

d(QHSP ) = max(d(Y ), d(X)) ⊢ ∀X Y. HSP Y X = (λs. max (Y s)(X s))

Spare
d(QWSP ) = d(Y · (Xd � Y )+

Xa · (Y �Xa)+
Y∆Xa + Y∆Xd

⊢ ∀Y X_a X_d. WSP Y X_a X_d =
D_OR(D_OR(D_OR (D_AND Y (D_BEFORE X_d Y))

(D_AND X_a (D_BEFORE Y X_a)))
(D_SIMULT Y X_a))(D_SIMULT Y X_d)

d(Q1) = d(X · (Zd �X)+
Za · (X � Za)+
X · (Y �X))

⊢ ∀X Y Z_a Z_d.
shared_spare X Y Z_a Z_d =
D_OR (D_OR (D_AND X (D_BEFORE Z_d X))
(D_AND Z_a (D_BEFORE X Z_a)))
(D_AND X (D_BEFORE Y X)))

Shared
Spare
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3.2.1 AND and OR Gates

The AND (·) and OR (+) gates can be modeled based on the time of occurrence of
their output events. For the AND gate, the output occurs when both of its input
events occur and the time of occurrence of the output is modeled as the maximum
time of occurrence of both input events [12]. For the OR gate, the output occurs
once one of its input events occurs. Therefore, we formalize it as the minimum time
of occurrence of the inputs [12]. In Table 2, max and min are the HOL4 functions that
represent the maximum and the minimum functions, respectively. It is important to
notice that we define the AND and OR gates as lambda abstracted functions that
accept two inputs that are also functions. This would enable defining the inputs later
as random variables to represent the time of failure function of system components.
This also applies to the formal definitions of the rest of DFT gates.

3.2.2 Priority AND Gate (PAND)

The PAND gate, shown in Table 2, captures the sequence of occurrence (failure)
of its inputs. The output event of this gate occurs if all input events occur in a
certain sequence (conventionally from left to right). In Table 2, we provide both the
mathematical and formal definitions of the PAND gate. Then we verify that the
behavior of the PAND can also be represented using the temporal operators as [12]:

Q = Y · (X � Y ) (5)

We verify the above relationship in HOL4 as follows:

Theorem 3.1. ⊢ ∀X Y. PAND X Y = D_AND Y (D_INCLUSIVE_BEFORE X Y)

This result ascertains that the behavior of PAND gate is correctly captured in our
formal definition. It is worth mentioning that in [12] the PAND gate is defined as
Equation (5). However, we define it using a mathematical expression as in Table 2,
which represents its actual behavior, and then verify that this definition is equal to
the definition provided in [12] as in Theorem 3.1.

3.2.3 Functional DEPdency Gate (FDEP)

The FDEP is used to model the dependencies in the failure behavior between the
system components. In other words, it is used when the failure of one component
triggers the failure of another. For the FDEP gate, shown in Table 2, event X can
occur if it is triggered by the failure of T or if it occurs by itself. As a result, the
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occurrence time of XT (triggered X) equals the minimum time of occurrence of T
and X. From the FDEP definition, we can notice that its behavior is equivalent to
the behavior of the OR gate.

3.2.4 Spare Gates

Modeling spare parts in real systems is necessary when analyzing the probability of
failure of the overall system, as these spares are used to replace the main parts after
their failure. The main part Y of the spare gate, shown in Table 2, is replaced by
the spare part X after a failure occurs. The spare gate has three variants depending
on the type of the spare:

• Cold SPare Gate (CSP): The spare part can only fail while it is active.

• Hot SPare Gate (HSP): The spare part can fail in both the active and the
dormant states with the same probability.

• Warm SPare Gate (WSP): The spare part can fail in both the dormant
and active states with different probabilities.

While manipulating the structure function of the DFT, it is required to distinguish
between the two states of the spare part, i.e., the active state and the dormant state,
therefore a different variable is assigned to each state. For example, for the spare
gate in Table 2, variable X is assigned Xd and Xa for the dormant and active states,
respectively [12]. This is required in case of a WSP gate, where the spare part has
two different states. Recall that in the case of a CSP gate, it is not necessary to use
these subscripts, since the spare part in the CSP gate does not work in the dormant
state. Therefore, the active state only affects the DFT behavior and is included in
the expressions. In the HSP gate, the spare part has the same behavior for both
states and no subscript is required to distinguish between these two.

It can be noticed from the definition of the WSP gate that the output of the
spare occurs in two cases; if the spare fails in its dormant state, then the main part
fails or the main part fails then the spare is activated and then it fails in its active
state. The last two terms in the WSP definition cover the possibility that the spare
and the main part fail at the same time. This can happen if the main part and
the spare are functionally dependent on the same trigger. The WSP represents the
general case for the spare gates, while the CSP and HSP represent special cases of
the WSP , where the spare cannot fail or is fully functioning in its dormant state. We
have defined mathematical expressions for both the CSP gate for basic events and
the HSP gate to facilitate using their expressions in DFT analysis. However, as will
be seen shortly, we have verified that the behavior of our expressions is equivalent to
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a WSP under certain conditions. For the CSP gate, the output occurs if the main
part fails then the spare is activated and then the spare fails while it is active. Since
the spare part of the HSP has the same failure distribution in both of its states,
the output of the HSP occurs when both inputs (main and spare) fail. Therefore,
its behavior is equivalent to an AND gate. We formally verify that the WSP gate is
equivalent to an HSP gate when the spare part in its dormant state is equal to its
active state.

Theorem 3.2. ⊢ ∀X Y. WSP Y X X = HSP Y X

Moreover, we formally verify that the WSP gate is equivalent to a CSP gate, if
the spare part cannot fail in its dormant state. We formally verify this as:

Theorem 3.3. ⊢ ∀X_a X_d Y. (X_d = NEVER) ∧
(∀s. ALL_DISTINCT [Y s; X_a s]) ⇒ WSP Y X_a X_d = CSP Y X_a

where X_d = NEVER indicates that the spare part cannot fail in its dormant state,
and ALL_DISTINCT ensures that the inputs cannot fail at the same time. This is
because we defined the CSP gate for basic events. As can be seen from the above
theorem, the CSP gate only deals with the active state of the spare, therefore, when
dealing with a CSP there is no need to use the subscript.

In some real-world applications, a spare part can replace one of two main parts.
This case is represented using shared spare gates as shown in Table 2 [8]. The
expression of the output Q1 of the first gate is listed in Table 2 [12]. This expression
implies that the output Q1 of this gate occurs in three different situations: (i) if the
main part X fails, then the spare fails while it is active (Za), (ii) if the spare part
fails in its dormant state Zd, then the main part fails, or (iii) if the second main part
(of the other gate) Y fails before X, and thus the spare is not available to replace
X when it fails. We use the DFT operators to model the behavior of this gate, as
shown in Table 2.

In the DFT algebraic approach, many simplification theorems exist and are used
to reduce the structure function of the top event [12]. In [8], we verified over 80
simplification theorems. However, these theorems were based on our old definitions
of the DFT gates and operators that cannot cater for probabilistic analysis. We
verify all these theorems for the new definitions, presented in this paper, and the
details can be accessed from [7]. These simplification theorems range from simple
ones, such as commutativity of the AND, OR and Simultaneous operator, to more
complex ones that include combinations of all the operators. Table 3 includes some
of these verified properties.
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Table 3: Examples of Formally Verified Simplification Theorems

DFT Algebra Theorems HOL Theorems
X+Y=Y+X ⊢ ∀X Y. D_OR X Y = D_OR Y X
X.NEV ER=NEV ER ⊢ ∀X. D_AND X NEVER = NEVER

X�(Y+Z)=(X�Y ).(X�Z) ⊢ ∀ X Y Z. D_BEFORE X (D_OR Y Z) =
D_AND (D_BEFORE X Y)(D_BEFORE X Z)

X�(Y+Z)=(X�Y ).(X�Z)

⊢ ∀ X Y Z. D_INCLUSIVE_BEFORE X (D_OR Y Z) =

D_AND (D_INCLUSIVE_BEFORE X Y)

(D_INCLUSIVE_BEFORE X Z)

(X�Y )+(X∆Y )=X�Y
⊢ ∀X Y. D_OR (D_INCLUSIVE_BEFORE X Y)
(D_SIMULT X Y) = D_INCLUSIVE_BEFORE X Y

4 Formal Verification of DFT Probabilistic Behavior
In order to formally verify the probability of failure of the top event of a DFT, it is
required to formally model and verify the probability of failure expression for each
DFT gate. We assume that the basic events of the DFT are independent. However,
in some cases these events can be dependent; in particular in the case of CSP and
WSP, where the failure of the main part affects the operation and failure of the spare
part. We handle this by first introducing the probabilistic behavior of the gates for
independent events, then we present the probabilistic behavior of the WSP and
the CSP gates, which deal with dependent events. At the end of this section, we
present a summary of the challenges that we faced during the formalization of the
probabilistic failure behavior of DFT gates.

4.1 Probabilistic Behavior of Gates with Independent Events
Assuming that we are interested in finding the probability of failure until time t, the
following four expressions can be used to express the probability of any DFT gate
with independent basic events [12]:

Pr{X · Y }(t) = FX(t)× FY (t) (6a)
Pr{X + Y }(t) = FX(t) + FY (t)− FX(t)× FY (t) (6b)

Pr{Y · (X � Y )}(t) =
∫ t

0
fY (y) FX(y) dy (6c)

Pr{X � Y }(t) =
∫ t

0
fX(x)(1− FY (x)) dx (6d)
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where FX and FY represent the CDFs of the random variables X and Y , respectively,
and fX and fY represent their corresponding PDFs.

Equation (6a) represents the probability of the AND and HSP gates, which re-
sults from the probability of intersection of two independent events. Equation (6b)
describes the probability of the OR and FDEP gates, which corresponds to the prob-
ability of union of two independent events. Equation (6c) represents the probability
of having two basic events occurring in sequence one after the other until time t,
i.e., Pr(X < Y ) until time t or Pr(X < Y ∧ Y ≤ t), which is the failure probability
of the PAND for basic events. Finally, the probability of the Before operator is
represented by Equation (6d), which is the probability of having event X occurring
before event Y until time t, i.e., Pr(X < Y ∧ X ≤ t). The difference between the
last two events (before and after) is that in the before event, we are just interested
in finding the probability of failure of X until time t with the condition that X fails
before Y . So, it is not necessary that Y fails. While in the after event, we find the
probability of failure of Y until time t with the condition that Y fails after X. So,
it is required that both X and Y fail in sequence.

Since the probability is applied for sets that belong to the events of the probabil-
ity space, we define a DFT_event that satisfies the condition that the input function
is less than or equal to time t, which represents the moment of time until which we
are interested in finding the probability of failure. Without this DFT_event, there
is no possible way to apply the probability directly to DFT gates. We first need
to create the DFT_event for the time-to-failure function of the output event of any
gate or DFT, then apply the probability to it.

Definition 4.1.
⊢ ∀p X t. DFT_event p X t = {s | X s ≤ Normal t} ∩ p_space p

where Normal typecasts the type of t from real to extreal, p represents the prob-
ability space and X represents the time-to-failure function.

We formally verify the equivalence between the probability of the DFT_event of
an extended real function and its equivalent CDF of the real version of the func-
tion as:
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Theorem 4.1.
⊢ ∀X p t. (∀s. X s ̸= PosInf ∧ 0 ≤ X s) ⇒

(CDF p (λs. real (X s)) t = prob p (DFT_event p X t))

where real is mirror opposite to the typecasting Normal operator. This typecasting
is required as the DFT_event is defined for extreal data-type, and the CDF is
defined for real random variables only. Therefore, it is required to ensure that the
input function does not equal +∞ and is greater than or equal to 0 since it represents
the time of failure of a system component.

4.1.1 Probabilistic Behavior of AND, HSP, OR and FDEP Gates

To formally verify Equations (6a) and (6b), we verify the equivalence of the DFT
event of the AND gate to the intersection of two events and the OR as the union:

Lemma 4.1.
⊢ ∀p t X Y.

DFT_event p (D_AND X Y) t = DFT_event p X t ∩ DFT_event p Y t

Lemma 4.2.
⊢ ∀p t X Y.

DFT_event p (D_OR X Y) t = DFT_event p X t ∪ DFT_event p Y t

Based on the independence of random variables and using Theorem 4.1, we
formally verify Equation (6a) in HOL4 as:

Theorem 4.2.
⊢ ∀p t X Y. rv_gt0_ninfinity [X; Y] ∧

indep_var p lborel (λs. real (X s)) lborel (λs. real (Y s)) ⇒
(prob p (DFT_event p (D_AND X Y) t) =
CDF p (λs. real (X s)) t * CDF p (λs. real (Y s)) t

where indep_var ensures the independence of the random variables, X and Y , over
the Lebesgue-Borel (lborel) measure [20]. rv_gt0_ninfinity is required since we
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are dealing with the real versions of the random variables. It is a logical condition,
since any real-world component will eventually fail, so we are interested only in
dealing with the time of failure that is not ∞.

In Theorem 4.2, the random variables are type-casted as real-valued, using the
operator real, to function over the Lebesgue-Borel (lborel) measure. lborel is
purposely used here to facilitate the Lebesgue integration over the real line when
expressing the probabilities of the before and after events. Theorem 4.2 represents
the probability of the AND gate and the HSP gate, since the behavior of the HSP
is equivalent to the behavior of the AND gate.

We formally verify Equation (6b) based on the probabilistic PIE and the inde-
pendence of random variables and using Theorem 4.1 as:

Theorem 4.3.
⊢ ∀p t X Y. rv_gt0_ninfinity [X; Y] ∧

All_distinct_events p [X;Y] t ∧
indep_var p lborel (λs. real (X s)) lborel (λs. real (Y s)) ⇒
(prob p (DFT_event p (D_OR X Y) t) =
CDF p (λs. real (X s)) t + CDF p (λs. real (X s)) t -
CDF p (λs. real (X s)) t × CDF p (λs. real (Y s)) t)

where All_distinct_events ascertains that the event sets are not equal. We for-
mally define it as:

Definition 4.2.
⊢ All_distinct_events p L t =

ALL_DISTINCT (MAP (λx. DFT_event p x t) L

where ALL_DISTINCT is a HOL4 predicate, which ensures that the elements of its
input list are not equal, MAP is a function that applies the input function (λx.
DFT_event p x t) to all the elements in the list L and returns a list. This condition
is required for the probabilistic PIE.

Theorem 4.3 provides the probability of the OR gate as well as the FDEP gate,
since the behavior of the FDEP is equivalent to the OR gate.

It is worth noting that in [12], Equations (6a) and (6b) were just presented
without any information on how to link them to the definitions of the AND and OR
gates. We should recall that the AND and OR gates are defined as the maximum and
minimum of their operands. Looking at these definitions does not give any knowledge
about how the probability of the AND gate is equivalent to the probability of the
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intersection or how the probability of the OR gate is equal to the probability of
the union. However, using our formalization and utilizing our formal definition of
DFT_event, we are able to verify that the DFT_event of the AND gate is equal to the
intersection of the input events and that the DFT_event of the OR gate is equal to
the union of the input events. Based on this, we can ensure that the probability of
the AND and OR gates are represented using Equations (6a) and (6b), respectively.

4.1.2 Probabilistic Behavior of PAND Gate and Before Operator

We verify Equations (6c) and (6d) as Theorems 4.4 and 4.5, respectively.

Theorem 4.4.
⊢ ∀X Y p fy t.

rv_gt0_ninfinity [X; Y] ∧ 0 ≤ t ∧ prob_space p ∧
indep_var p lborel (λs. real (X s)) lborel (λs. real (Y s)) ∧
distributed p lborel (λs. real (Y s)) fy ∧ (∀y. 0 ≤ fy y) ∧
cont_CDF p (λs. real (X s)) ∧
measurable_CDF p (λs. real (X s)) ⇒
(prob p (DFT_event p (Y·(X�Y)) t) =
pos_fn_integral lborel

(λy. fy y *
(indicator_fn {w | 0 ≤ w ∧ w ≤ t} y *
CDF p (λs. real (X s)) y)))

Theorem 4.5.
⊢ ∀X Y p fy t.

rv_gt0_ninfinity [X; Y] ∧ 0 ≤ t ∧ prob_space p ∧
indep_var p lborel (λs. real (X s)) lborel (λs. real (Y s)) ∧
distributed p lborel (λs. real (X s)) fx ∧ (∀x. 0 ≤ fx x) ∧
measurable_CDF p (λ s. real (Y s)) ⇒
(prob p (DFT_event p (X � Y) t) =
pos_fn_integral lborel

(λx. fx x *
(indicator_fn {u | 0 ≤ u ∧ u ≤ t} x *
(1- CDF p (λs real (Y s)) x)))

where pos_fn_integral is the Lebesgue integral for positive functions [15], fy and
fx are the PDF of random variables of the real version of functions Y and X, respec-
tively. cont_CDF is required in Theorem 4.4 as we need to prove that Pr(X ≤ t) and
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Pr(X < t) are equal, and this is not valid unless the CDF function is continuous
(cont).

Verifying Theorems 4.4 and 4.5 is not a straightforward task due to the involve-
ment of Lebesgue integration. To the best of our knowledge, this is the first time
that these proofs are formally verified in a theorem prover, where we are able to
identify the exact steps to reach the final form of Theorems 4.4 and 4.5. In addition,
in [12], Equation (6c) is presented without any proof, while a proof is presented for
Equation (6d) that is based mainly on the probability of disjoint events and utilizes
derivatives to reach the final expression. However, we have been able to verify the
same expression of Equation (6d), but following a different and simpler proof, which
is similar to the proof of Equation (6c) to reach the final form of Theorem 4.5 with-
out using derivatives. We first prove the probability of sets of real random variables
in the form of integration before extending the proofs to extended real functions.

Proof Strategy for Theorem 4.4

To verify Theorem 4.4, we first express the event set that corresponds to the inte-
gration in Equation (6c) as:

(X,Y )−1{(u,w) | u < w ∧ 0 ≤ w ∧ w ≤ t} (7)

Then we verify that the probability of this set can be written using the integration
as in Equation (6c). Therefore, we verify the relationship between the distribution
and the integration of positive functions using the push forward measure (distr):

Theorem 4.6.
⊢ ∀X p M A.

measure_space M ∧
random_variable X p (m_space M, measurable_sets M) ∧
A ∈ measurable_sets M ⇒
(distribution p X A =
pos_fn_integral (distr p M X) (indicator_fn A))

It is worth mentioning that this theorem can be used in the verification process
of other applications and not only for DFT analysis. We use Theorem 4.6 to verify
the relationship between the probability and the integration of the joint distribution
FXY of two independent random variables as:

Pr(X,Y )−1(A) =
∫

1A dFXY (8)

490



Probabilistic Analysis of Dynamic Fault Trees using HOL

We formalize this relationship in HOL4 and use a property, which converts the
distribution of a pair measure of independent measures into the pair measure of
the individual distributions [20], to split the integral of joint distributions into two
integrals of the individual distributions (

∫ ∫
1AdFXdFY ). In order to reach the final

form of Equation (6c), we express it in the form of two integrals:

∫ t

0
fY (y)× FX(y) dy =

∫ t

0

∫ y

−∞
fY (y)× fX(x) dx dy (9a)

=
∫ t

0
fY (y)

( ∫ y

−∞
fX(x) dx

)
dy (9b)

The problem in Equations (9a) and (9b) lies in the fact that the outer integral
is a function of the inner integral, i.e., for the inner integral we are integrating until
y which is the variable of the outer integral. To be able to handle this formally, we
verify that the indicator function of the set in Equation (7) can be written in the
form of the multiplication of two indicator functions, where one is a function of the
other.

Lemma 4.3.
⊢ ∀x y t.

indicator_fn {(u,w) | u < w ∧ 0 ≤ w ∧ w ≤ t}(x,y) =
indicator_fn {w| 0 ≤ w ∧ w ≤ t} y * indicator_fn {u|u < y} x

In order to use the above-mentioned lemma and the set on the left hand side,
we need to verify that this set is measurable in the two dimensional borel space,
i.e., the set belongs to the measurable sets of pair_measure lborel lborel. This
property can be verified based on the fact that the countable union of measurable
sets is also measurable. We verify this fact on the rational numbers Q as follows:

Theorem 4.7.
⊢ ∀m s.

measure_space m ∧ (∀n. n ∈ Q_set ⇒ s n ∈ measurable_sets m) ⇒
BIGUNION (IMAGE s Q_set) ∈ measurable_sets m

where m in our case is pair_measure lborel lborel. This theorem is generic and
can be used in other contexts than DFTs.

The purpose of using the set of rational numbers is that we need a countable set
that can be used to express the set in Lemma 4.3 as the union of borel rectangles.
We verify this in HOL4 as:
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Lemma 4.4.
⊢ ∀t. BIGUNION

{{u | u < real q} × {w | real q < w ∧ 0 ≤ w ∧ w ≤ t} |
q ∈ Q_set} =

{(u,w) | u < w ∧ 0 ≤ w ∧ w ≤ t}

Besides this, we also verify a lemma that the sets in the union of Lemma 4.4 are
measurable sets in the pair_measure lborel lborel as:

Lemma 4.5.
⊢ ∀t q. {u | u < real q} × {w | real q < w ∧ 0 ≤ w ∧ w ≤ t} ∈

measurable_sets (pair_measure lborel lborel)

We can use the proof steps of the previous lemmas to verify the same properties
for similar sets, which is essential for other gates expressions. This facilitates dealing
with other events in the future, by following the steps in our proof.

By using the above lemmas, we can reason that the original set is a measurable
set in the pair_measure lborel lborel as:

Lemma 4.6.
⊢ ∀t. {(u,w) | u < w ∧ 0 ≤ w ∧ w ≤ t} ∈

measurable_sets (pair_measure lborel lborel)

We use Lemmas 4.3 and 4.6 to verify that the expression given in Equation (9b) is
equal to

∫
A dFXdFY , where A is the set that specifies the boundaries of the integral.

We verify this in HOL4 using the push forward measure as:

Lemma 4.7.
⊢ ∀X Y p t.

prob_space p ∧ indep_var p lborel X lborel Y ⇒
(pos_fn_integral (pair_measure (distr p lborel X)

(distr p lborel Y))
(λ(x,y). indicator_fn{(u,w) |u < w ∧ 0 ≤ w ∧ w ≤ t }(x,y) =

pos_fn_integral (distr p lborel Y)
(λy. indicator_fn {w|0 ≤ w ∧ w ≤ t} y *

pos_fn_integral(distr p lborel X)
(λx. indicator_fn {u | u < y} x)))
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where pair_measure (distr p lborel X) (distr p lborel Y) represents the
joint distribution of the push forward measures of random variables X and Y over
the borel space.

We verify several essential properties for CDF in order to prove that the inner
integral of Lemma 4.7 is equal to FX(y) or formally to (CDF p X y). In order to have
the PDF of random variable Y in the integral, we assume that the random variable Y
has a PDF by defining a density measure for Y . We ported the following definition,
distributed, from Isabelle/HOL [11], where f in this definition is the PDF of
random variable X, and the measure part of the density measure is the integral of
this PDF. Using this definition, the integral of f is equal to the distribution of the
random variable X.

Definition 4.3.
⊢ ∀p M X f.

distributed p M X f ⇔
X ∈
measurable(m_space p,measurable_sets p)

(m_space M,measurable_sets M) ∧
f ∈ measurable(m_space M,measurable_sets M) Borel ∧
AE M {x | 0 ≤ f x} ∧ (distr p M X = density M f)

where density is the density measure, and AE M {x | 0 ≤ f x } ensures that
the PDF f is almost everywhere positive over the measure M. We also use a
theorem that replaces the integration with respect to the density measure by the
PDF with respect to the original measure (lborel in our case) [11]. In addition
to the previously verified theorems, we also prove some additional properties,
such as sigma finite measure for the push forward measure over the borel space
(sigma_finite_measure (distr p lborel X)). We also verify that the space
generated by the pair measure of two distributions over the borel space is sigma
algebra (sigma_algebra (m_space (pair_measure (distr p lborel X)(distr
p lborel Y)), measurable_sets (pair_measure (distr p lborel X)(distr
p lborel Y)))). Moreover, we verify that the space generated by the space
and the measurable sets of the pair measure of lborel is also a sigma algebra
(sigma_algebra (m_space (pair_measure lborel lborel), measurable_sets
(pair_measure lborel lborel))). Finally, we prove that the set of the left-hand
side of Equation (6c) is equal to the set that corresponds to the integration of the
right-hand side of the same equation as:
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Lemma 4.8.
⊢ ∀p t X Y.

rv_gt0_ninfinity [X; Y] ∧ 0 ≤ t ⇒
(DFT_event p (Y·(X�Y)) t =
PREIMAGE (λx. (real (X x), real (Y x)))

{(u,w) | u < w ∧ 0 ≤ w ∧ w ≤ t} ∩ p_space p

Based on all the above mentioned lemmas, we are able to verify the original goal
for Equation (6c) as in Theorem 4.4.

Proof Strategy for Theorem 4.5

For the verification of Theorem 4.5, we follow almost the same steps for the previous
proof. We start by first writing the event set for the integration as:

(X,Y )−1{(u,w) | 0 ≤ u ∧ u ≤ t ∧ u < w } (10)
Then, we describe the indicator function of this set as the multiplication of two

indicator functions as:

Lemma 4.9.
⊢ ∀x y t.

indicator_fn {(u,w) | 0 ≤ u ∧ u ≤ t ∧ u < w}(x,y) =
indicator_fn {u | 0 ≤ u ∧ u ≤ t} x * indicator_fn {w | x < w} y

Similar to the procedure, explained previously for the set of the after event in
Lemmas 4.4, 4.5 and 4.6, we verify that the set of the before event is a measurable
set in the pair_measure lborel lborel.

Finally, we rewrite Equation (6d) as:

Pr{X � Y }(t) =
∫ t

0

∫ ∞

x
fX(x) fY (y) dy dx

=
∫ t

0
fX(x)

( ∫ ∞

x
fY (y) dy

)
dx

(11)

We verify some additional properties for the CDF in order to complete the proof.
For example, we verify that

∫∞
x fY (y) dy is equal to 1 − FY (x). Similarly, we also

formally verify that the event of the left-hand side of Equation (6d) is equal to the
set that corresponds to the integration of the right-hand side of the same equation.
We use the set in Equation (10) to verify this as:
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Lemma 4.10.
⊢ ∀p t X Y.

rv_gt0_ninfinity [X; Y] ∧ 0 ≤ t ⇒
(DFT_event p (X�Y) t =
PREIMAGE (λs. (real (X s),real (Y s)))

{(u,w) | 0 ≤ u ∧ u < w ∧ u ≤ t} ∩ p_space p

Based on all these verified theorems, we are able to formally verify Theorem 4.5.
So far, we presented the formal verification of the probabilistic behavior of:

• The AND and HSP gates using Theorem 4.2 (since they are equivalent).

• The probability of the OR and FDEP gates using Theorem 4.3 (since they are
equivalent).

• The probability of the PAND gate for basic events using Theorem 4.4.

• The probability of the Before operator using Theorem 4.5.

There is no probability of failure for the Simultaneous operator as it is eliminated
for basic events according to Equation (4). This implies that the probability of the
Inclusive Before operator is equal to the probability of the Before operator for basic
events.

4.2 Probabilistic Behavior of Gates with Dependent Events
The probabilistic behavior of the CSP and WSP requires dealing with dependent
events, as the failure of the main part affects the behavior of the spare part. There-
fore, it is required to approach the proof in a different manner.

For the CSP , the failure distribution of the spare part is affected by the failure
time of the main part, as the cold spare starts working after the failure of the main
part. Hence, the failure distribution of the spare part is dependent on the failure of
the main part. The probability of failure for the output event of a CSP with Y as
the main part and X as the spare part is given by [12]:

Pr(QCSP )(t) =
∫ t

0

( ∫ t

v
f(Xa|Y=v)(u)du

)
fY (v)dv (12)

where f(Xa|Y=v) is the conditional probability density function for the spare part in
its active state (Xa) given that the main part(Y ) has failed at time v. As mentioned
previously, the subscript of Xa can be omitted, since the spare part of the CSP

495



Elderhalli, Ahmad, Hasan and Tahar

gate does not work in its dormant state and we are only concerned with the active
state, so using X directly with CSP means that we are dealing with the active state
and not the dormant one. It can be noticed from Equation (12) that the failure
distribution of the spare part is affected by the failure of the main part. Hence, these
two input events are not independent, and we cannot utilize the previously verified
relationships in Section 4.1 to verify the probabilistic behavior of the CSP gate.

For the WSP gate with two basic events, the output fails in two cases, Case 1:
when the main part fails, then the spare fails in its active state (this case is similar
to the CSP case); Case 2: when the spare part fails in its dormant state, then the
main part fails with no spare to replace it. In the latter case, the failure distribution
of the spare part in its dormant state is independent of the main part. Hence, we
can use the previously verified expressions for this case. The probability expression
for a WSP with X as the spare part (Xa for the active state and Xd for the dormant
state) and Y as the main part is expressed as [12]:

Pr(QWSP )(t) =
∫ t

0

( ∫ t

v
f(Xa|Y=v)(u)du

)
fY (v)dv +

∫ t

0
fY (u)FXd(u)du (13)

where FXd is the CDF of X in its dormant state. The first part of Equation (13)
represents the probability of a CSP and the second part represents the probability
when the spare fails before the main part. For the second part, Y and Xd are
considered to be independent as the failure of one of them does not affect the failure
of the second and hence we can use Equation (6c) for this case.

We verify Equations (12) and (13) as Theorems 4.8 and 4.9, respectively.

Theorem 4.8.
⊢ ∀p X Y f_xy f_y f_cond t.

rv_gt0_ninfinity [X; Y] ∧ 0 ≤ t ∧
(∀y.

cond_density lborel lborel p
(λs. real (X s)) (λs. real (Y s)) y f_xy f_y f_cond) ∧

prob_space p ∧ den_gt0_ninfinity f_xy f_y f_cond ⇒
(prob p (DFT_event p (CSP Y X) t) =
pos_fn_integral lborel

(λy.
indicator_fn {u | 0 ≤ u ∧ u ≤ t} y * f_y y *
pos_fn_integral lborel

(λx. indicator_fn {w | y < w ∧ w ≤ t} x * f_cond y x )))
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Theorem 4.9.
⊢ ∀p Y X_a X_d t f_y f_xy f_cond.

prob_space p ∧ (∀s. ALL_DISTINCT [X_a s; X_d s; Y s]) ∧
(D_AND X_a X_d = NEVER) ∧ rv_gt0_ninfinity [X_a; X_d; Y] ∧ 0 ≤ t ∧
(∀y.

cond_density lborel lborel p
(λs. real (X_a s))(λs. real (Y s)) y f_xy f_y f_cond) ∧

den_gt0_ninfinity f_xy f_y f_cond ∧
indep_var p lborel (λs. real (X_d s)) lborel (λs. real (Y s)) ∧
cont_CDF p (λs. real (X_d s)) ∧
measurable_CDF p (λs. real (X_d s)) ⇒
(prob p (DFT_event p (WSP Y X_a X_d) t) =
pos_fn_integral lborel

(λy.
indicator_fn {u | 0 ≤ u ∧ u ≤ t} y * f_y y *
pos_fn_integral lborel

(λx. indicator_fn {w | y < w ∧ w ≤ t} x * f_cond y x ))+
pos_fn_integral lborel

(λy.
f_y y *
(indicator_fn {u | 0 ≤ u ∧ u ≤ t} y *
CDF p (λs. real (X_d s)) y )))

where p is the probability space, f_xy is the joint density function for X and Y , f_y
is the marginal density function for Y , cond_density defines the conditional density
function (f_cond) for X given that (Y = y) and den_gt0_ninfinity ensures the
proper values for the density functions as mentioned in Section 2.

It is noticed that the spare part in the CSP is used without any subscript, i.e., it
is used as X, since the spare has only one state in the CSP, which is the active state.
Therefore, there is no need to use any subscript to distinguish between the dormant
and the active states. While in the WSP, we need to distinguish between the two
states, i.e., active and dormant, hence the usage of Xa and Xd. For Theorem 4.9,
the condition D_AND X_a X_d = NEVER ensures that the spare part can only fail in
one of its states but not both. This condition is different from D_SIMULT X_a X_d =
NEVER, as the former means that if one of the inputs occurs, then the other cannot
occur at all. While the latter means that both inputs cannot occur at the same
time, they can occur at different times. This second condition is ensured in our case
using ALL_DISTINCT. In addition, it is assumed that the spare part in the dormant
(Xd) state is independent of the main part Y since the failure of the spare part in its
dormant state is not affected by the failure of the main part. As with the previous
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theorems in Section 4.1, we need to use the typecast operator real with the random
variables, since the random variables are of type extreal and the integral over the
lborel requires real random variables.

In [12], a proof has been introduced for the above expressions, which is based
mainly on the total expectation theorem [4]. However, we have been able to con-
duct the same proof in a simpler manner based on conditional density functions as
explained below.

Proof Strategy for Theorem 4.8 (CSP Gate)

In order to verify Theorem 4.8, we formalize the conditional density function as [3]:

Definition 4.4.
⊢ ∀M1 M2 p X Y y f_xy f_y f_cond.

cond_density M1 M2 p X Y y f_xy f_y f_cond ⇔
random_variable X p (m_space M1, measurable_sets M1) ∧
random_variable Y p (m_space M2, measurable_sets M2) ∧
distributed p (pair_measure M1 M2) (λx. (X x, Y x)) f_xy ∧
distributed p M2 Y f_y ∧ (f_cond y = (λx. f(x,y) / f_y y))

where p is the probability space, M1 and M2 are the measure spaces that the random
variables X and Y map to, respectively (we will use lborel in our case), f_xy is
the joint density function for X and Y , f_y is the marginal density function of Y
and finally, f_cond is the conditional density function of X given (Y = y).

The conditional density function definition ensures that X and Y are random
variables with joint density function f_xy and a marginal density function f_y. It
is noticed from the definition of the conditional density function f_cond that it is
a function of x only, and it can have different variants depending on the value of Y
that we are conditioning at, i.e., y. This is why f_cond takes y as a parameter.

From Definition 4.4, we formally verify the following relationship between the
conditional density, the joint density and the marginal density functions, given that
fY (y) ̸= 0:

fXY (x, y) = fX|Y=y(x)× fY (y) (14)

The above equation can be formalised in HOL4 as:
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Theorem 4.10.
⊢ ∀M1 M2 p X Y f_cond x y f_xy f_y.

(∀y. f_y y ̸= 0 ∧ f_y y ̸= PosInf ∧ f_y y ̸= NegInf) ∧
cond_density M1 M2 p X Y y f_xy f_y f_cond ⇒
(f_xy (x,y) = f_cond y x * f_y y)

The condition f_y y ̸= 0 is required, as this function will be used in the de-
nominator of the conditional density and it cannot equal to 0. In addition, since we
are dealing with extended-real numbers, f_y y cannot equal infinity. This theorem
is applicable to any conditional density function that satisfies the given conditions.

The second step in verifying the expression of the CSP is by verifying that the
probability of the joint random variables is equal to the iterated integrals of the joint
density function. This can be expressed as:

Pr(X,Y )−1(A) =
∫ ∫

1A × fXY (x, y)dx dy (15)

We use Theorem 4.6 to verify this in HOL4 as:

Theorem 4.11.
⊢ ∀p X Y f_xy A.

distributed p (pair_measure lborel lborel) (λx. (X x, Y x)) f_xy ∧
prob_space p ∧ (∀x. 0 ≤ f_xy x) ∧
A ∈ measurable_sets (pair_measure lborel lborel)⇒
(prob p (PREIMAGE (λx. (X x, Y x)) A ∩ p_space p) =
pos_fn_integral lborel

(λy.
pos_fn_integral lborel

(λx. indicator_fn A (x,y) * f_xy (x,y))))

Then, we express the probability of the joint random variables using the condi-
tional density function as:

Pr(X,Y )−1(A) =
∫ ∫

1A × f(X|Y=y)(x)× fY (y) dx dy (16)

We verify this in HOL4, using Theorems 4.10 and 4.11, as:
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Theorem 4.12.
⊢ ∀p X Y f_xy f_y f_cond A.

(∀y. cond_density lborel lborel p X Y y f_xy f_y f_cond) ∧
prob_space p ∧ (∀x. 0 ≤ f_xy x) ∧
(∀y. 0 < f_y y ∧ f_y y ̸= PosInf) ∧
A ∈ measurable_sets (pair_measure lborel lborel)⇒
(prob p (PREIMAGE (λx. (X x, Y x)) A ∩ p_space p) =
pos_fn_integral lborel

(λy.
pos_fn_integral lborel

(λx. indicator_fn A (x,y) * f_cond y x * f_ y y )))

In order to be able to reach the final form of Equation (12), we need first to
express the event set that corresponds to the integration in Equation (12) as:

(X,Y )−1{(x, y) | y < x ∧ x ≤ t ∧ 0 ≤ y ∧ y ≤ t} (17)

We verify in HOL4 that this set corresponds to the DFT_event of the CSP gate as:

Lemma 4.11.
⊢ ∀X Y p t.

rv_gt0_ninfinity [X; Y] ∧ 0 ≤ t ⇒
(DFT_event p (CSP Y X) t =
PREIMAGE (λs. (real (X s), real (Y s)))

{(x,y)| y < x ∧ x ≤ t ∧ 0 ≤ y ∧ y ≤ t} ∩ p_space p)

In addition, we verify that the event set in Lemma 4.11 is measurable in
pair_measure lborel lborel. Finally, we verify that the indicator function of the
set in Lemma 4.11 can be expressed as the multiplication of two indicator functions
to determine the boundaries of the iterated integrals in Equation (12) as:

Lemma 4.12.
⊢ ∀x y t.

indicator_fn {(w,u) | u < w ∧ w ≤ t ∧ 0 ≤ u ∧ u ≤ t} (x,y) =
indicator_fn {w | y < w ∧ w ≤ t} x *
indicator_fn {u | 0 ≤ u ∧ u ≤ t} y

Using all these verified theorems and lemmas, we formally verify Theorem 4.8.
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Proof Strategy for Theorem 4.9 (WSP Gate)

For the verification of Theorem 4.9, it is evident that the probability expression
involves the probability of the CSP gate in addition to the probability of the after
expression of Theorem 4.4. Therefore, we choose to verify that the event of the WSP
for basic events is equivalent to the union of two sets as:

Lemma 4.13.
⊢ ∀p Y X_a x_d t.

(∀s. 0 ≤ Y s) ∧ (∀s. ALL_DISTINCT [X_a s; X_d s; Y s]) ∧
(D_AND X_a X_d = NEVER) ⇒
(DFT_event p (WSP Y X_a X_d) t =

{s | Y s < X_a s ∧ X_a s ≤ Normal t ∧
0 ≤ Y s ∧ Y s ≤ t} ∩ p_space p ∪

{s | X_d s < Y s ∧ Y s ≤ Normal t } ∩ p_space p)

Then, we verify that the above two sets are disjoint. As these two sets are
disjoints then the probability of the original set is equivalent to the sum of the
probabilities of the disjoint sets. Based on this, we verify that the probability of
the first set ({s | Y s < X_a s ∧ X_a s ≤ Normal t ∧ 0 ≤ Y s ∧ Y s ≤ t}
∩ p_space p) is equal to the probability of the CSP gate, which will result in the
first term in the addition of the conclusion of Theorem 4.9. We also verify that the
probability of the second set in Lemma 4.13 ({s | X_d s < Y s ∧ Y s ≤ Normal
t} ∩ p_space p)) is expressed using Theorem 4.4, which will result in the second
term of the addition of the conclusion of Theorem 4.9. As a result, we have the
probability of the WSP as in Theorem 4.9.

In this section, we formally verified the probabilistic behavior of the DFT gates:
AND, OR, HSP, FDEP, PAND, CSP, WSP and the Before operator besides the
formalization of expressions for Pr(X < Y ∧ Y ≤ t) and Pr(X < Y ∧X ≤ t).

These verified properties are generic, i.e., universally quantified for all distribu-
tion and density functions, and can be used to formally verify the probability of
failure expression of any DFT. The HOL4 proof script for this verification as well
as the gate definitions is available at [7].

4.3 Summary of Formalization Challenges
In this section, we summarize the main challenges that we faced during our formal-
ization of the DFT gates, which allows us to formally analyze DFTs in a theorem
prover.
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The first challenge is resolving the data-types issue. The problem in the data-
types is that the gates and operators are defined as functions that return extreal.
This is mainly required because we need to model +∞ that represents the NEVER
condition. However, this data-type cannot be used to represent random variables
over the lborel measure. Any random variable defined from a probability space
to the lborel measure should return real data-type. This is required because we
need to integrate the density and distribution functions over the real line. Therefore,
we need random variables that return extreal to model the gates but at the same
return real to be used with lborel. We resolved this issue by using extreal to
model the gates, but when we are conducting the probabilistic analysis we use the
real version of the random variable (λ. real (X s)).

Secondly, after modeling the DFT and expressing the structure function of the
top event using the DFT gates and operators, it is required to conduct the proba-
bilistic failure analysis of the top event. However, the structure function cannot be
used directly since it is a time-to-failure function not a set. Furthermore, in [12],
there is no clear information on how to create the DFT event and link it to the
structure function of the DFT top event or any other event in the fault tree. Using
our formalization, we have been able to clearly and formally define a DFT_event that
is used to create the set of moments of time until the time of failure t, as explained
in Definition 4.1.

Thirdly, the probabilities of the AND and OR gates are directly presented in [12]
as the probability of the intersection and union (Equations (6a) and (6b), respec-
tively). However, the AND and the OR are defined using the maximum and mini-
mum of their input operands, respectively. There is no information in [12] on how
the AND and OR gates are related to the intersection and union of the input events.
Using our formalization, we have been able to verify the relationship between the
AND and the interaction of the input events utilizing our defined DFT_event. In a
similar way, we verified the relationship between the OR gate and the union of the
input events.

Another contribution is represented by introducing a formal proof in a theorem
prover for the probability of failure of the PAND and Before operator, which are
represented by Pr(X < Y ) in both forms, i.e., Pr(X < Y ∧ Y ≤ t) and Pr(X <
Y ∧X ≤ t). As mentioned earlier, the first proof of these (Pr(X < Y ∧ Y ≤ t)) is
not provided in [12], while the second one (Pr(X < Y ∧X ≤ t)) is presented in a
different manner that involves derivatives. In our formalization, we presented, for
the first time, the formal proof for Pr(X < Y ) in both its formats, i.e., Pr(X <
Y ∧ Y ≤ t) that represents the probability of the PAND gate for basic events; and
Pr(X < Y ∧ X ≤ t) that represents the probability of the before operator. In
addition, we presented a formal proof for the probability of the WSP and CSP
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gates based on conditional density functions, which we defined, while the proof of
these gates is presented in [12] based on the law of total expectation.

Finally, while performing all of these formalizations and proofs in HOL, we iden-
tified several missing assumptions or conditions that were required to ensure the
correctness of the theorems. For example, ensuring the proper values for the input
random variables that represent the time-to-failure functions of the system com-
ponents. These important assumptions were either unavailable in [12] or are not
explicitly presented as a requirement in the final form of the theorems in [12].

It is important to highlight that the main benefit of having the formalization
of DFT in higher-order logic is that it enables conducting the formal DFT analysis
within the sound environment of a theorem prover, which is very useful in the context
of safety-critical systems.

5 Formal Verification of the Cardiac Assist System
In order to illustrate the utilization of our formalized probabilistic behavior of the
gates and operators in the last section, we present a DFT-based formal failure anal-
ysis of the Cardiac Assist System, shown in Figure 1 [5].

We first provide generic steps that can be followed in order to use our formal-
ization of the DFTs to conduct the formal analysis of DFTs in the form of generic
expressions of failure probabilities. These steps are:

1. Determine the structure function of the top event of the DFT.
2. Simplify the structure function and formally verify that the simplified version

is equal to the original function obtained in step (1).
3. Create the DFT_event of the structure function.
4. Express the DFT_event of the top event as the union of multiple input events.
5. Apply the probabilistic PIE to the union of events generated in the previ-

ous step, then simplify the result of the PIE. This will result in having the
summation of the probabilities of the intersection of the different events that
contribute to the failure of the top event of the DFT.

6. Replace each term in the result of the PIE by its probabilistic expression based
on the verified expressions in Section 4 for each gate and operator.

Step (5) requires proving many lemmas that are necessary for manipulating the
result of the PIE. For example, we need to verify the associativity property of addi-
tion for a large group of numbers (in case of the Cardiac Assist system, we verified
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Figure 1: Cardiac Assist System

this property for 63 numbers). Although this seems a trivial task, it requires deal-
ing with extreal numbers, which includes proving that for all combinations of the
inputs, the result of the addition cannot equal to ∞. Step (5) also requires verifying
the power set of events in a recursive way to generate a set of all combinations of the
events, which is required by the PIE. Moreover, based on the independence of the
input random variables, we need to verify the independence of several combinations
of random variables (in the Cardiac Assist system, we verified that any two random
variables out of the ten are independent, then three out of ten,... etc). We have
verified these generic lemmas and they can be easily reused with other similar case
studies and thus can reduce the proof efforts significantly.

In the rest of this section, we illustrate the utilization of the previous steps to
perform the formal DFT analysis of the Cardiac Assist System to provide a generic
expression for the probability of failure of the top event. The Cardiac Assist system
consists of three main subsystems: pumps, motors and CPUs. The system has two
main pumps (PA and PB) with a shared spare PS. It has three motors MS, MA,
and MB, where MB replaces MA after failure. Finally, the system has one main
CPU (P ) and a spare CPU (B). Both CPUs are functionally dependent on a trigger,
which is the union of the crossbar switch (CS) and the system supervisor (SS). In
this case study, we are assuming that the spare gates are HSPs.

Our goal is to verify the probability of failure of the Cardiac Assist system by
applying the probabilistic PIE considering that the input events are independent.
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This can be represented mathematically as:

Pr(Q) =FCS(t) + FSS(t) +
∫ t

0
fMA(y)× FMS(y) dy +

FMA(t)× FMB(t) + FP (t)× FB(t) + FPA(t)× FPB(t)× FPS(t)

− ...+ ...− FCS(t) × FSS(t)×
( ∫ t

0
fMA(y)× FMS(y) dy

)

× FMA(t)× FMB(t)× FP (t)× FB(t)× FPA(t)× FPB(t)× FPS(t)

(18)

We verify Equation (18) for generic probability CDF and PDF in HOL4 as:

Theorem 5.1.
⊢ ∀CS SS MA MS MB P B PA PB PS p t f_MA.

0 ≤ t ∧ prob_space p ∧
ALL_DISTINCT_RV [CS;SS;MA;MS;MB;P;B;PA;PB;PS] p t ∧
indep_vars_sets [CS;SS;MA;MS;MB;P;B;PA;PB;PS] p t ∧
distributed p lborel (λs. real (MA s)) f_MA ∧ (∀y. 0 ≤ f_MA y) ∧
cont_CDF p (λs. real (MS s)) ∧
measurable_CDF p (λs. real (MS s)) ⇒
(prob p

(DFT_event p
((shared_spare PA PB PS PS)·(shared_spare PB PA PS PS)+
(PAND MS MA)+(HSP MA MB)+
(HSP (FDEP(CS + SS) P)(FDEP(CS + SS) B))) t) =

CDF p (λs. real (CS s)) t + CDF p (λs. real (SS s)) t +
pos_fn_integral lborel

(λy.
f_MA y * (indicator_fn {u | 0 ≤ u ∧ u ≤ t} y *
CDF p (λs. real (MS s)) y)) +

CDF p (λs. real (MA s)) t * CDF p (λs. real (MB s)) t +
CDF p (λs. real (P s)) t * CDF p (λs. real (B s)) t +
CDF p (λs. real (PA s)) t * CDF p (λs. real (PB s)) t *
CDF p (λs. real (PS s)) t - ....+...-
CDF p (λs. real (CS s)) t * CDF p (λs. real (SS s)) t *
pos_fn_integral lborel

(λy.
f_MA y * (indicator_fn {u | 0 ≤ u ∧ u ≤ t} y *
CDF p (λs. real (MS s)) y)) *

CDF p (λs. real (MB s)) t * CDF p (λs. real (P s)) t *
CDF p (λs. real (B s)) t * CDF p (λs. real (PA s)) t *
CDF p (λs. real (PB s)) t * CDF p (λs. real (PS s)) t)
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where 0 ≤ t ensures that the time t is greater than or equal to 0, prob_space p
indicates that p is a probability space, ALL_DISTINCT_RV is a predicate which ensures
that all inputs and their event sets are not equal and their values are greater than or
equal to 0 but they cannot equal +∞. This assumption is a realistic one, since for
any component in a system the time of failure will always be greater than or equal
to 0 and the component will eventually fail. The predicate indep_vars_sets adds
the condition that all random variables and their event sets are independent. The
predicate (distributed p lborel (λs. real (MA s)) f_MA) indicates that the
real random variable of MA has the density function f_MA. The last two predicates
in the goal ensures that the CDF of the real random variable of MS is continuous
and measurable from the real line to the extreal one (real-borel to extreal-borel).

We verify several intermediate lemmas to prove Theorem 5.1. We first verify a
reduced form of the given DFT and, then we verify the probability expression of the
verified reduced version.

Lemma 5.1.
⊢ ∀CS SS MA MS MB P B PA PB PS.

(∀s. ALL_DISTINCT [MA s; MS s; PA s; PB s; PS s]) ⇒
((shared_spare PA PB PS PS)·(shared_spare PB PA PS PS) +
(PAND MS MA) +
(HSP MA MB)+(HSP (FDEP(CS + SS) P)(FDEP(CS + SS) B)) =
CS + SS + (MA·(MS � MA)) + MA·MB + P·B + PA·PB·PS)

In the above lemma, (shared_spare PA PB PS PS)·(shared_spare PB PA PS
PS) represents the pumps part of the DFT, (PAND MS MA)+(HSP MA MB) repre-
sents the motors parts and finally the CPUs part is represented by (HSP (FDEP(CS
+ SS) P)(FDEP(CS + SS) B). The predicate ALL_DISTINCT ensures that all basic
events cannot fail at the same time. Since we assumed that all spare gates are HSPs,
the spare input PS for the shared spare gates is the same for both the active and
dormant states.

In order to find the probability of the top event, we utilize the formally verified
reduced version of the structure function and encapsulate it into a DFT_event, as the
probability can only be applied to sets. To utilize the probabilistic PIE, we express
the DFT_event of the Cardiac Assist system as the union of events.
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Lemma 5.2.
⊢ ∀PA PB PS MS MA MB CS SS P B p t.

DFT_event p
(CS + SS + (MA·(MS � MA)) + MA·MB + P·B + PA·PB·PS) t =

union_list
[DFT_event p CS t; DFT_event p SS t;
DFT_event p (MA·(MS � MA)) t;
DFT_event p (MA·MB) t;
DFT_event p (P·B) t; DFT_event p (PA·PB·PS) t]

From Lemma 5.2, we can notice that the top event is constructed from the union
of six different sets. Applying the probabilistic PIE on the union of these sets (6
sets) generates 63 different terms (combinations). We verify several lemmas to be
able to use the theorem of the probabilistic PIE [1] for the union list of these six
sets. For example, we formally verify that:

Lemma 5.3.
⊢ ∀A B C D E K.

{t | t SUBSET {A; B; C; D; E; k} ∧ t ̸= {}} =
{{A}; {B}; {C}; {D}; {E}; {k}; {A; B}; {A; C};...;
{A; B; C; D; E; k}}

The result of Lemma 5.3 is a set of 63 different sets. We had to apply the SIGMA
function that results from the sum_set in the PIE theorem. Therefore we verify the
following lemma for 63 sets.

Lemma 5.4.
⊢ ∀A B C D E K.

ALL_DISTINCT [A;B;C;D;E;k] ∧
(∀x. x ∈{{A};{B};{C};{D};{E};{k};...;{A; B; C; D; E; k}} ⇒

f x ̸= PosInf) ⇒
(SIGMA f {{A};{B};...;{A; B; C; D; E; k}} =
f {A} + f {B} +...+ f {A; B; C; D; E; k}

After verifying all these lemmas and based on the reduced DFT expression we
are able to verify the probability of the Cardiac Assist system (Equation 18) into
Theorem 5.1.
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The first part of the conclusion of Theorem 5.1 corresponds to the original DFT
(without reduction). In the verification of this theorem, we use Lemma 5.1 to re-
place the original DFT with the reduced one. Then, we use Lemma 5.2 to represent
the DFT_event as a union list. After representing the left-hand side of the conclu-
sion of Theorem 5.1 as a union list, we use Lemmas 5.3, 5.4 and the probabilistic
PIE theorem [1] to prove this goal. After applying the probabilistic PIE, the result-
ing 63 subgoals should be proven based on the verified theorems of the probability
of DFT gates. Therefore, applying the probabilistic PIE will not directly verify
the current theorem, it is rather required to verify several intermediate subgoals
after applying the PIE. In addition, after applying the PIE, it is necessary to ap-
ply the simplification theorems again since the application of the PIE results in
intersecting the events. This means that further simplifications needed to be done.
The first 6 terms in the right-hand side of the conclusion of Theorem 5.1 corre-
spond to the probability of the elements of the list in Lemma 5.2. For example,
CDF p (λs. real (CS s)) t represents the probability of DFT_event p CS t,
which is FCS(t), according to Theorem 4.1. pos_fn_integral lborel(λy. f_MA
y *(indicator_fn {u |0 ≤ u ∧ u ≤ t} y * CDF p (λs. real (MS s)) y))
represents the probability of DFT_event p (MA·(MS � MA)) t, which is

∫ t
0 fMA(y)×

FMS(y) dy, according to Theorem 4.4. The following terms in the conclusion of The-
orem 5.1 correspond to finding the probability of the intersection of each pair in the
list, then each 3 elements then 4 elements until we reach the last term in the right-
hand side of the goal, which corresponds to the probability of the intersection of
all elements in the list. Since all six elements in the union list are independent,
the probability of their intersection is equal to the multiplication of the individual
probabilities. The verification of Theorem 5.1 required around 6000 lines of proof
script and took only 40 man-hours. This process was significantly facilitated thanks
to the availability of the formally verified intermediate lemmas. The proof effort for
the formal verification of these lemmas involved 12000 lines of code and about 320
man-hours. These lemmas can be easily reused for verifying similar systems that
can be represented as the union of 6 events. In addition, these lemmas can also be
useful in verifying larger systems based on similar proof steps identified above. As
a future work, we plan to use machine learning techniques to automate the proof
process of similar systems. This would facilitate the reusability of this work with
users who are not much familiar with HOL or the underlying details of our verified
theorems.

It is important to note that we have been able to verify the probability of the
Cardiac Assist system for generic distributions and density functions, which can
be instantiated later with specific functions according to the required constraints,
without any need to repeat the whole process from the beginning. It is worth men-
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tioning that such results cannot be obtained using PMCs, as they can only generate
the probability of failure after specifying the failure rates of the components. In
addition, PMCs are only limited to exponential distribution which does not con-
sider the aging factor in any system. However, using our formalization for generic
expression, it can be used with any probability distribution and density function as
long as they are integrable, which makes it a more general and accurate alternative
to the existing techniques.

6 Conclusions
In this paper, we proposed to conduct the probabilistic analysis of DFTs within
the HOL4 theorem prover and thus obtain formally verified probability of failure
expressions for generic probability distributions and density functions. We verified
many simplification theorems for DFT gates and operators that allow formal rea-
soning about the reduction of the structure function of the DFT top event into a
simpler form. In particular, we verified the probability of the intersection and the
union of independent events to provide the probability of the AND, OR, FDEP and
HSP gates. Moreover, we verified the probability of a sequence of two failing events
(Pr(X < Y )) in two forms, i.e, Pr(X < Y ∧Y ≤ t) and Pr(X < Y ∧X ≤ t), which,
to the best of our knowledge, is another novel contribution. These expressions are
used to formally express the probability of the PAND gate and the before opera-
tor. Similarly, we also verified the probabilistic behavior of the spare gates, which
required dealing with dependent events and conditional density functions. To illus-
trate the effectiveness of our formalization, we presented the formal analysis of the
Cardiac Assist System, which is a safety-critical system. Using our formalization, we
were able to provide generic results for the probability of failure of this system, i.e.,
for any distributions and density functions. It is evident that such results cannot be
obtained using simulation nor using model checking. This highlights the importance
of our proposed work, besides the fact that it inherits the sound and expressive
nature of HOL theorem proving.
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