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Multiway Decision Graphs (MDGs) have recently been proposed as an efficient represen-
tation for RTL designs. In this paper, we illustrate the MDG-based formal verification
technique on the example of the Island Tunnel Controller. We investigate several tech-
niques on how to deal with the nontermination problem of abstract state exploration,
including a novel method based on retiming and circuit transformation. We provide
comparative experimental results for the verification of a number of properties for the
example using two well-known ROBDD-based verification tools, namely, SMV (Sym-
bolic Model Verifier) and VIS (Verification Interacting with Synthesis), and we show the
strength of the MDG approach to handling arbitrary data widths.
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1. Introduction

ROBDDs1 have proven to be a powerful tool for automated hardware verification.2,3

However, they require a Boolean representation of the circuit and the size of a

ROBDD grows, sometimes exponentially, with the number of Boolean variables.

Therefore, ROBDD-based verification cannot be directly applied to mixed control-

data-path circuits with large data words. There are two ways to alleviate the prob-

lem. The first one is to reduce the complexity of hardware designs by means of data
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abstraction.4,5 The second one is to represent hardware designs at different levels

of abstraction, and verify the designs hierarchically.

Recently, a number of ROBDD extensions, such as BMDs6 and HDDs,7 have

been developed to represent arithmetic functions more compactly than ROBDDs.

There also emerged a number of other methods8–10 that verify the overall func-

tionality of Register-Transfer Level designs at an abstract level. For instance, they

use abstract variables to denote data signals and uninterpreted function symbols to

denote data operations. A new class of decision graphs, called Multiway Decision

Graphs (MDGs),8 has been proposed that comprises, but is much broader than

the class of ROBDDs. Underlying MDGs is a subset of a many-sorted first-order

logic with a distinction between concrete and abstract sorts. A concrete sort has

a finite enumeration while an abstract sort does not. Hence, a data signal can be

represented by a single variable of abstract sort, rather than by a vector of Boolean

variables, and a data operation can be viewed as a black box represented by an

uninterpreted function symbol. MDGs are thus more compact than ROBDDs for

mixed control-data-path designs, especially when there are data transformations

and feedbacks from data-path to control.

A basic set of MDG operators and a reachability analysis algorithm based on

abstract implicit enumeration are described in Ref. 8. The reachability algorithm

verifies whether an invariant holds in all reachable states of an Abstract State Ma-

chine (ASM).11 One application of the algorithm is the verification of observational

equivalence of synchronous circuits. In Refs. 9 and 12, the authors proposed a va-

lidity checking algorithm for processor verification, which is also based on the use of

abstract sorts and uninterpreted function symbols. A logic expression representing

the correctness statement is generated using symbolic simulation. The algorithm is

then used to check its validity. With carefully chosen heuristics for avoiding expo-

nential case splitting, they verified a subset of the DLX RISC pipeline processor9

and a protocol processor (PP).12

Cyrluk and Narendran10 defined a first-order temporal logic-Ground Temporal

Logic (GTL) which also uses uninterpreted function symbols. Using a decidable

fragment of GTL, they can automate the verification in the PVS theorem prover.

These methods, however, are not applicable to verification problems that require

state-space exploration. They cannot represent sets of states and compute fixpoints

on sets of states. MDGs, on the other hand, provide a tool for both validity checking

and verification based on state-space exploration. Unfortunately, the reachability

analysis algorithm of MDGs suffers in many cases from an important problem,

namely nontermination when computing the set of reachable states. This could

be a severe limitation on the use of MDGs as a verification tool. To illustrate

this problem, consider an abstract description of a conventional (nonpipelined)

microprocessor where a state variable pc of abstract sort represents the program

counter, a generic constant zero of the same abstract sort denotes the initial value

of pc, and an abstract function symbol inc describes how the program counter is
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incremented by a nonbranch instruction. The MDG representing the set of reachable

states of the microprocessor would contain states of the form:

(pc, inc(· · · inc
︸ ︷︷ ︸

k

(zero) · · ·))

for every k ≥ 0.

Consequently, there is no finite MDG representation of the set of reachable

states and the reachability algorithm will not terminate. This typical form of non-

termination is due to the fact that the terms can be arbitrarily large and arbitrarily

many. This problem could be avoided for certain class of circuit as it is suggested in

Ref. 8 where the authors present a method based on the generalization of the state

variable that causes divergence, like the variable pc in the example. Rather than

starting the reachability analysis with a generic constant zero as the value of pc, a

fresha variable is assigned to pc at the beginning of the analysis. As a consequence,

the initial set of states represented by pc thus represents any state, hence any incre-

mentation of pc leads the ASM to a state where the new value of pc is an instance of

its arbitrary value of the initial state. Another interesting solution to this problem

is investigated in Ref. 20. Aı̈t Mohamed et al. uses a special kind of terms instead

of a fresh variable to start reachability analysis. These terms schematize the infinite

MDG generated during reachability analysis so that it is possible to deal explicitly

with infinite objects, by finite means.

In this paper, we investigate another kind of circuits for which the generalization

approach cannot be directly applied. We analyze the reasons why failures occur in

these circuits. In fact, the detailed analysis of the problem leads us to an original

solution based on circuit transformations. The idea is to retime the original design

and then carry out an appropriate structural transformation. The reachability anal-

ysis terminates on the transformed designs. We use the Island Tunnel Controller

(ITC)13 as a case study to illustrate how the retiming technique is applied. This ex-

ample was originally used to illustrate the notation of a heterogeneous logic system

supporting diagrams as logic entities.13 However, no verification experiments were

performed. Although the ITC example is small and does not represent the scale of

designs we can verify, it is ideal for illustration of the techniques we propose for

the nontermination problem, and it allows to illustrate most current MDG-based

verification techniques. The rest of the paper is organized as follows: In Sec. 2, we

briefly review Multiway Decision Graphs. The Island Tunnel Controller example

is introduced in Sec. 3. We describe the model of the ITC at an abstract level in

Sec. 4. In Sec. 5, we study the termination problem of abstract state enumeration,

and discuss state generalization. Some heuristics are proposed for state generaliza-

tion. In Sec. 6, we examine retiming and additional circuit transformations that

help to avoid nontermination. In Sec. 7, we present the verification of a number of

aA fresh variable is disjoint from all the other variables.
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invariants on the ITC example. We also report on experimental results, including

a comparison with the results obtained using SMV and VIS. Finally, in Sec. 8 we

conclude the paper.

2. MDGs and MDG-Based Verification Approaches

The formal logic underlying MDGs is a many-sorted first-order logic, augmented

with the distinction between abstract sorts and concrete sorts. This is motivated

by the natural division of datapath and control circuitry in RTL designs. Concrete

sorts have enumerations which are sets of individual constants, while abstract sorts

do not. Variables of concrete sorts are used for representing control signals, and

variables of abstract sorts are used for representing datapath signals. Data opera-

tions are represented by uninterpreted function symbols. An n-ary function symbol

has a type α1 × · · · × αn → αn+1, where α1 · · ·αn+1 are sorts. The distinction

between abstract and concrete sorts leads to a distinction between three kinds of

function symbols. Let f be a function symbol of type α1×· · ·×αn → αn+1. If αn+1

is an abstract sort, then f is an abstract function symbol. If all the α1 · · ·αn+1 are

concrete, then f is a concrete function symbol. If αn+1 is concrete while at least

one of α1 · · ·αn is abstract, then we refer to f as a cross-operator ; cross-operators

are useful for modeling feedback signals from the datapath to the control circuitry.

A Multiway Decision Graph (MDG) is a finite, Directed Acyclic Graph (DAG).

An internal node of a MDG can be a variable of a concrete sort with its edge labels

being the individual constants in the enumeration of the sort; or it can be a variable

of abstract sort and its edges are labeled by abstract terms of the same sort; or it

can be a cross-term (whose function symbol is a cross-operator). A MDG may only

have one leaf node denoted as True, which means all paths in the MDG are true

formulas. Thus, MDGs essentially represent relations rather than functions. Just

as Bryant’s ROBDDs1 must be reduced and ordered, MDGs must also be reduced

and ordered, and obey a set of other well-formedness conditions given in Ref. 8. We

developed a set of MDG algorithms for computing disjunction, relational product

(conjunction followed by existential quantification2) and pruning-by-subsumption

(PbyS). A detailed description of the algorithms can be found in Ref. 8.

A state machine is described using finite sets of input, state and output vari-

ables, which are pairwise disjoint. The behavior of a state machine is defined by

its transition/output relations, together with a set of initial states. An abstract

description of the state machine, called abstract state machine,11 is obtained by

letting some data input, state or output variables be of an abstract sort, and the

datapath operations be uninterpreted function symbols. Just as ROBDDs are used

to represent sets of states, and transition/output relations for finite state machines,

MDGs are used to compactly encode sets of (abstract) states and transition/output

relations for abstract state machines. We thus lift the implicit enumeration2,3 tech-

nique from the Boolean level to the abstract level, and refer to it as implicit abstract

enumeration.8 Starting from the initial set of states, the set of states reached in
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one transition is computed by the relational product operation. The frontier-set of

states is obtained by pruning (removing) the already visited states from the set of

newly reached states using pruning-by-subsumption. If the frontier-set of states is

empty, then a least fixed point is reached and the reachability analysis procedure

terminates. Otherwise, the newly reached states are merged (using disjunction) with

the already visited states and the procedure continues the next iteration with the

states in the frontier-set as the initial set of states.

One of the variations of the reachability analysis is invariant checking and the

verification of observational equivalence of two ASMs verified as an invariant of the

product ASM. When an invariant is violated at some stage of the reachability anal-

ysis, a counterexample facility gives a sequence of input-state pairs leading from

the initial state to the faulty behavior. We also have an equivalence checking pro-

cedure for combinational circuits that takes advantage of the canonicity of MDGs.8

The MDG operators and verification procedures are packaged as MDG tools.14

3. The Island Tunnel Controller

The Island Tunnel Controller (ITC) example was originally introduced by Fisler

and Johnson.13 There is a lane tunnel connecting the mainland to a small island,

as shown in Fig. 1. At each end of the tunnel, there is a traffic light. There are four

sensors for detecting the presence of vehicles: one at tunnel entrance (ie), one at

tunnel exit on the island side (ix), one at tunnel entrance (me) and one at tunnel

exit on the mainland side (mx). It is assumed that all cars are finite in length, that

no car gets stuck in the tunnel, that cars do not exit the tunnel before entering the

tunnel, that cars do not leave the tunnel entrance without traveling through the

tunnel, and that there is sufficient distance between two cars such that the sensors

can distinguish the cars.

In Ref. 13, an additional constraint is imposed: “at most sixteen cars may be

on the island at any time”. The number “sixteen” can be taken as a parameter

and it can be any natural number. Thus the constraint may be read: “at most n

(n ≥ 0) cars may be on the island at any time”. With ROBDD-based verification,

the performance depends on the particular instance of n, as we shall see in Sec. 7.

Tunnel
mx
me

ix
ie

irl
igl

mgl
mrl

Island

Mainland

Fig. 1. The Island Tunnel Controller.
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Condition

ready

if (ic+ =1)

else if (ic- =1) /\ (ic=0)/
then n_ic := ic + 1;

then n_ic := ic - 1;
else n_ic := ic;

Conventions:

(d)

Output

ready

if (itc+ = 1) or (mtc+ =1)

else if ((itc- = 1) or (mtc- =1)) and (tc=0)/
then n_tc := tc + 1;

then n_tc := tc - 1;
else n_tc :=tc;

(e)

Fig. 2. The state transition diagrams of the Island Tunnel Controller: (a) Island light controller,
(b) mainland light controller, (c) tunnel controller, (d) island counter and (e) tunnel counter.
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Fisler and Johnson13 proposed a specification of ITC using three communicating

controllers. Their state transition diagrams are shown in Fig. 2 (Figs. 2(a)–2(c) are

taken from Ref. 13 except that 16 is replaced by n). The Island Light Controller

(ILC) (Fig. 2(a)) has four states: green, entering, red and exiting. The outputs

igl and irl control the green and red lights on the island side, respectively; iu

indicates that the cars from the island side are currently occupying the tunnel, and

ir indicates that ILC is requesting the tunnel. The input iy requests ILC to release

control of the tunnel, and ig grants control of the tunnel. A similar set of signals

is defined for the Mainland Light Controller (MLC). The Tunnel Controller (TC)

processes the requests for access issued by the ILC and MLC. The island and the

tunnel counters keep track of the numbers of cars currently on the island and in

the tunnel, respectively. For the tunnel counter, at each clock cycle, the count tc is

increased by 1 depending on signals itc+ and mtc+ or decremented by 1 depending

on itc− and mtc− unless it is already 0. The island counter operates in a similar

way, except that the increment and decrement signals are ic+ and ic−, respectively.

4. MDG-Model of the Island Tunnel Controller

We take as specification the ITC state transition diagrams in Fig. 2. In this section,

we show how they are modeled as abstract state machines.

Both the island and the tunnel counters have each only one control state,

ready, hence no control state variable is needed. An abstract state variable ic (tc)

itc+

mtc+

itc-

mtc-

0
1

0
1

mtc-

itc-

mtc+

0

1

1

1 0 1

0

mtc-

0

0

1

1

n_tc

equz(tc)equz(tc)

n_tc
tcdec(tc)

0

T

n_tc

tc

inc(tc)
0 1

Fig. 3. Transition relation MDG of the tunnel counter.
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represents the current count number. At each clock cycle, the count is updated

according to the control signals. In this abstract description of a counter, the count

ic (tc) is of abstract sort, say wordn for n-bit words. The control signals (ic+, ic−,

etc.) are of bool sort with the enumeration {0, 1}. The uninterpreted function inc of

type [wordn → wordn] denotes the operation of increment by 1, and dec of the same

type denotes decrement by 1. The cross-function equz(tc) of type [wordn → bool]

represents the condition “tc = 0” and models the feedback from counter to the

control circuitry. Figure 3 shows the MDG of the transition relation of the tunnel

counter for a specific variable order.

Each of the controllers can have a single control state variable which takes all the

possible states as its values. Thus the enumeration of those states constitutes the

(concrete) sort of the variable. Let is, ms and ts be the control state variables of

the three controllers ILC, MLC and TC, respectively. We assign the variables is

and ms (and also their next state variables n is and n ms) the sort mi sort having

the enumeration {green, red, entering, exiting}. Similarly, we let variables ts and

n ts be of concrete sort ts sort which has the enumeration {dispatch, i use, m use,

i clear, m clear}. All other control signals (ie, ix, me, mx, etc.) are of sort bool.

The condition “ic < n” is represented by the cross-function lessN(ic) of type

[wordn → bool].

An implementation is a netlist of components connected by signals. It is de-

scribed using predefined component definitions in MDG–HDL which is our descrip-

tion language. The specification is also modeled as an ASM represented by MDGs,

compiled from its MDG-HDL description (which is our description language).

5. Termination of Abstract State Enumeration

5.1. Review

An abstract state machine may have an infinite number of states due to the ab-

stract variables and the uninterpreted nature of function symbols. Thus the least

fixed point may not be reached in state enumeration. In Ref. 8, the nontermina-

tion problem is explained and a solution is given to a class of problems known as

processor-like circuits by generalizing the initial state (i.e., by replacing abstract

constants with abstract variables as initial values of some registers). Informally, a

processor-like circuit usually starts from a ready state, performs data operations

in one or more cycles and then returns to the ready state. We first briefly review

the initial state generalization method on the tunnel counter (Fig. 2(e)) which is a

processor-like circuit.

Let the initial state of the tunnel counter be a generic constant zero of the

abstract sort wordn. Figure 4(a) shows the MDGs N0, S1 and N1 representing the

set of initial states, the set of states reached in one transition, and the frontier set

of states, respectively. There are three paths in S1, i.e., there are three abstract

states. The state tc = zero is subsumed by N0 and is thus pruned. The state

(tc = dec(zero)) ∧ (equz(zero) = 0) is, in fact, an unreachable state. If we rewrite
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S1

T

tc

dec(zero)

equz(zero)

zero inc(zero)

0

N1

T

tc

inc(zero)

T

tc

N0

zero

(a)

N1

F

T

tc

N 0

a

S1

T

tc

0

dec(a) inc(a)a

equz(a)

(b)

Fig. 4. Nontermination problem and initial state generalization method for the tunnel counter.

equz(zero) to an individual constant 1 using the rewrite rule equz(zero) → 1, it

yields a contradiction (1 = 0) and the path can be eliminated. The frontier-set of

states N1 thus contains the only state tc = inc(zero). If we continue the reacha-

bility analysis with N1, at the kth iteration we will have the state tc = inck(zero)

(where inck(zero) is a short hand for inc(· · · (inc(zero)) · · ·)). This illustrates the

nontermination problem due to the fact that the terms that label the edges can be

arbitrarily large and hence arbitrarily many.

The nontermination problem can be avoided by generalizing the initial value

zero of the state variable tc to a freshb abstract variable a. Then, as shown in

Fig. 4(b), the states tc = inc(a) and (tc = dec(a)) ∧ (equz(a) = 0) in S1 become

instances of tc = a, under the substitutions inc(a)/a or dec(a)/a, respectively. They

thus can be pruned and the state exploration procedure terminates right away (the

MDG N1 = False represents an empty set). Note that the method may have false

negatives since the reachable state space is enlarged by the state generalization. For

instance, the state (tc = dec(a)) ∧ (equz(a) = 0) becomes a reachable state and it

covers the previously unreachable state (tc = dec(zero)) ∧ (equz(zero) = 0).

5.2. Delayed state generalization

As shown in Fig. 2, the complete ITC specification is composed of five communi-

cating state machines. Among them, the tunnel and the island counters are typical

processor-like circuits. However, the composed ASM is no more a processor-like

circuit, and the initial state generalization technique is not applicable directly. In

the following, we present a new state generalization technique which solves the non-

termination problem for a larger class of circuits. To simplify the presentation, we

consider only a specification consisting of the ASMs in Figs. 2(a)–2(c) and 2(e).

bA fresh variable is disjoint from all other variables.
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(Red, Red, Dispatch)

......

(Green, Red, Dispatch) (Entering, Red, Dispatch)

/\ (equz(tc)=1)

 if (me=0) /\ (mx=0) 
/\ (ie=1) /\ (ix=0)

if (me=0) /\ (mx=0)/\(ie=0)

 if (me=0) /\ (mx=0) 
/\ (ie=1) 

 if (me=0) /\ (mx=0) 
/\ (iy=0) /\ (ie=1)

 if (me=0) /\
(mx=0) /\
(iy=0) /\ (ie=0)

if (me=0) /\ (mx=0) /\ (iy=1)

L

then {n_tc <- tc} then {n_tc <- tc}

then {n_tc <- tc} 

then {n_tc <- tc}

then {n_tc<-inc(tc} 

then {n_tc <- tc}

Fig. 5. A fraction of the state transition diagram for the composed machine.
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Initially, we assume there are no cars in the tunnel. Therefore, the tunnel counter

is reset to zero. To be safe, the lights on both the island and the mainland sides

are reset to red, and the tunnel controller is in the state dispatch, ready to take

requests. The set of initial states thus includes only one state (is = red) ∧ (ms =

red) ∧ (ts = dispatch) ∧ (tc = zero). In Fig. 5, we show a small fraction of the

state transition diagram of the composed machine related to the transitions of the

ILC between the states red and green, and the cycles between green and entering.

MLC and TC keep their initial state values.

To illustrate the failure of the initial state generalization method on this exam-

ple, we again try the above method by setting the initial state to (is = red)∧(ms =

red)∧ (ts = dispatch)∧ (tc = a) where a is an abstract variable of sort wordn. Fig-

ure 6 shows the MDGs representing the set of newly reached states (Si, i = 1, 2, . . .)

and the frontier sets (Ni, i = 0, 1, 2, . . .) in three iterations following the transitions

depicted in Fig. 5.

Starting from N0, after three transitions, the set S3 of newly reached states

contains two states: (is = green) ∧ (ms = red) ∧ (ts = dispatch) ∧ (tc = inc(a)) ∧

(equz(a) = 1) and (is = entering)∧ (ms = red)∧ (ts = dispatch)∧ (tc = inc(a))∧

(equz(a) = 1), where the latter is subsumed by N2. However, the former cannot be
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Fig. 7. State enumeration using the extended state generalization technique.

subsumed by N1 since inc(a)/a is not a valid substitution in this case. If we continue

the reachability analysis with N3, the value of tc will become inc(· · · inc(a) · · ·) with

an unbounded number of inc.

A closer examination of this nontermination problem shows that the iterations

from N1 to N3 represents the loop L (Fig. 5) with a data operation inc on the

abstract state variable tc. This loop, in fact, resembles the ASM of a processor-like

circuit. The state (is = green)∧(ms = red)∧(ts = dispatch)∧(tc = a)∧(equz(a) =

1) in N1 can thus be considered as the initial (entry) state of loop L. However, N1 is

not a generalized state because of the assumption equz(a) = 1, which is the reason

for nontermination.

The above analysis leads to a characterization of a processor-like loop. Such

a processor-like loop starts from a control state and returns to this control state

after one or more transitions, with data registers updated according to the data

operations. Note that a processor-like circuit is represented by an ASM having

one and only one processor-like loop. This suggests that it is the entry state of

a processor-like loop that should be generalized rather than the initial state of

the state machine. In the above example, we have to generalize the state (is =

green) ∧ (ms = red) ∧ (ts = dispatch) ∧ (tc = a) ∧ (equz(a) = 1) in N1 instead of

the states in N0. Figure 7 shows the state enumeration procedure using the extended

method. Starting from N0, S1 is reached in one transition: {(is = green) ∧ (ms =

red) ∧ (ts = dispatch) ∧ (tc = zero) ∧ (equz(zero) = 1)}. This can be simplified

to {(is = green) ∧ (ms = red) ∧ (ts = dispatch) ∧ (tc = zero)} using the rewrite

rule equz(zero) → 1. As this state is the entry state of the processor-like loop L,

we generalize the constant value of tc to a fresh abstract variable a and remove

the constraint equz(a) = 1. Thus the frontier set of states becomes N ′

1 = {(is =

green)∧(ms = red)∧(ts = dispatch)∧(tc = a)}. After two transitions, the frontier-

set N3 becomes {(is = green) ∧ (ms = red) ∧ (ts = dispatch) ∧ (tc = inc(a))},

where the only state in this set is subsumed by N ′

1 under substitution inc(a)/a,

terminating the reachability analysis.
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It remains to determine now, when and on which state variables the general-

ization is to be performed, i.e., how to identify processor-like loops and how to

perform the generalization operation. For some circuits, e.g., simple microproces-

sors, it is possible to identify all processor-like loops by inspection and to perform

state generalization manually on the entry states of the loops. However, in general,

to find the entry states of all processor-like loops could be very difficult. In the

next subsection, we propose a simple heuristic method, while in Sec. 6 we provide

a general method based on circuit transformations.

5.3. Heuristic state generalization

We developed a heuristic method for state generalization based on the following

observation: reachability analysis terminates if we generalize any state within a

processor-like loop. Once we generalize a state in a loop, it covers all the abstract

states having the same control state values, thus guaranteeing termination.

One method is to perform generalization on every abstract state variable at

each clock cycle, i.e., to replace every term that labels an edge issuing from an

abstract node with a fresh abstract variable. However, the reachable state space is

unnecessarily enlarged since states that are not involved processor-like loops, are

also generalized.

As a trade-off, we propose a heuristic solution to this problem: After a certain

number of state transitions (specified by the user), if the MDG size of the frontier-set

keeps increasing, the value of each state variable in the MDG is generalized. With

this heuristics, the state to be generalized is more likely to be within a processor-like

loop.

Termination of the abstract state enumeration can be obtained at the cost of

false negatives introduced by the state generalization. If the reachability analysis

succeeds, we know that the invariant holds even for the enlarged set of reachable

states, but if it does not, then we have to examine, e.g., by simulation, whether the

counterexample thus produced corresponds to an actual design error. Usually, find-

ing new heuristics is not trivial and requires a lot of expertise. This observation leads

us to think of a systematic technique that could help in avoiding nontermination.

In the next section, we propose a method based on structural transformation and

retiming of the nonterminating ASM. We discuss the method on a simple example

before applying it to the Island Tunnel Controller example.

6. Retiming and Transformation for Nontermination Problem

Originally, retiming algorithms address the problem of minimizing the cycle-time

or the area of synchronous circuits by changing the position of the registers.15

In the first case, retiming aims at placing the registers in appropriate positions,

so that the critical pathsc they embrace are as short as possible. In the second

ci.e., the longest path between a pair of registers.
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S0 S1

if   r=0  then   n_pc = zero 

if  f(pc) = 1 and r=1 then n_pc = inc(pc) 

if  r=1 then 

       n_pc=inc(pc)
if  f(pc) = 0  or 

      r=0  then 

         n_pc=pc

pc =
 zero 

Fig. 8. A simple processor-like loop ASM M .
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Fig. 9. First MDGs generated for the ASM.

case, retiming corresponds to minimizing the overall number of registers. A new

application for retiming is investigated here. More precisely, we use rules of forward

retiming to place the registers in appropriate positions such that the reachability

analysis terminates after interpretation of the cross-operator on the initial (or reset)

state.

We use a simple processor-like loop circuit to explain our method. This example

is inspired by the ITC model and is shown in Fig. 8. It represents a state machine

with two states, s0 and s1. A single register, reg, is used to encode the two states.

The reachability analysis for this machine does not terminate even if we gen-

eralize the state variable pc. Analysis of the first MDG generated in this example

indicates that the cross-operator f is the cause of the nontermination. The MDGs

in Fig. 9 are generated after two transitions of the ASM M . It shows the MDGs I ,

Nk and Fk(k = 1, 2) representing the set of initial states, the set of states reached

in two transitions, and the frontier set of states, respectively.
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The initial state represented by the MDG I consists of reg = 0 and pc = a,

where a is a fresh variable. From this initial state, the ASM can loop on the first

state, where reg keeps the value 0 and pc the value a, under the condition f(a) = 0;

or it can reach the state s1, where reg takes the value 1 and pc the value inc(a),

under the condition f(a) = 1. This is represented in Fig. 9 by the MDG N1 which

contains two paths. The frontier set (MDG F1) is computed by removing the path

on the left-hand side since it is subsumed by the path from the initial state (MDG

I). The MDG N2 represents the reachable states from the frontier set (MDG F1)

in one step. If r = 0, then the ASM goes back to the initial state with the value zero

loaded in the state variable pc. If r = 1, then the ASM stays in S1 with reg = 1

and pc contaning inc(inc(a)). The path on the left-hand side of N2 is subsumed by

the single path of the MDG I because this latter is more general than the former

which is thus removed. For the path on the right-hand side of N2, pc = inc(inc(a))

is an instance of the state pc = inc(a) in N2, but the presence of the same guard

f(a) in the paths causes failure of the termination, since there is no appropriate

substitution to match the state reg = 1∧ pc = inc(inc(a)) ∧ f(a) = 1 (path on the

right-hand side of N2) with the state reg = 1 ∧ pc = inc(a) ∧ f(a) = 1 (path on

the right-hand side of N1). Let us point out that this guard is generated from the

initial state, where pc would have the initial value zero. Hence the argument of f

would have been zero.

Suppose we know that under a specific interpretation in the use context of the

circuit, the value of the f(zero) is 1. It would be possible to use this information

to eliminate the guard, f(zero) = 1, by using the rule f(zero) → 1. Unfortunately,

this rule does not apply when we generalize to a as shown in the example. The

basic idea to solve this kind of nontermination is to use the partial interpretation

of the cross-operator and to delay the generalization until after the interpretation.

To recover this information lost by generalization, we could save it in a new state

variable. This state variable (register) must be found in the ASM structure by

redistributing the existing registers so as not to change the original behavior. For

this purpose, we use the rules of forward retiming. A new register will thus appear at

the output of the cross-operator f . Forward retiming always guarantees to find the

initial values for all registers. In general, we need additional circuit transformation,

to maintain the interpreted value of the cross-term as long as it remains valid.

Since retiming is usually applied to a structural description of the circuit, it is

necessary to extract the circuit from the ASM description. This extraction may

lead to a complex circuit where retiming may be difficult. To limit the retiming to

just the necessary portion of the ASM, we decompose the original machine, say M ,

into two inter-dependent sub-machines M1 and M2. M1 represents the control-part

and contains only concrete state variables while M2 represents the data-part that

depends on the state of M1 and contains abstract state variables. M1 is thus a

copy of M without abstract state variables and M2 is reduced to a single control

state. The result of this decomposition as applied to the ASM of Fig. 8 is shown in

Figs. 10 and 11. M1 communicates its state information to M2 through the output
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S0 S1

  out_f = 0  or       r=0
r=0

out_f = 1 and r=1

  r=1 

Fig. 10. The control-part (M1) of the ASM M .
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Fig. 11. The data-part (M2) of the ASM M .

signal out reg, while M2 communicates the condition on the pc value through the

output of the cross-term f , out f . Note that the two machines share the primary

inputs. By this decomposition, we have isolated the nontermination problem in

M2 that can be retimed as needed, i.e., to obtain a register at the output of the

cross-term f .

In Fig. 12, we show the structural description of M2 and its connection to M1.

The inputs of M1 are r and f(pc), and its ouput is reg which gives the information

about the current state of M1 to M2.

The structural description of M2 includes a data register pc, an 8 to 1 multi-

plexer, and two functional blocks represented by the uninterpreted function symbol

inc and f . inc takes pc as its input and produces the abstract value inc(pc). f is a

cross-term that takes as its abstract input pc and produces a concrete output out f

of sort bool. The transition relation of M2 is defined as followsd:

dFor simplicity, the conditional equation: if a then b else c is written: a → b|c.
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zero

zero

out_reg

out_fr

Fig. 12. Structural description of M2 and its connections to M1.

(out reg = 0 ∧ out f = 1 ∧ r = 1)

∨(out reg = 1 ∧ r = 1) → pc′ = inc(pc)

|out reg = 1 ∧ r = 0 → pc′ = zero

|pc′ = pc

In order to obtain a register at the output of f , we retime M2 by moving the

register pc forward to the input of inc and the output of f . The result of the retiming

is shown in Fig. 13.

At the output of f , the register pc is replaced by a register pc f of sort bool, and

at the input of inc it is replaced by a register pc inc. Since the initial value of the

register pc was the generic constant zero, the equivalent initial state for the retimed

circuit is obtained by letting the appropriate initial values for the two registers

pc inc and f pc. These values are obtained by propagating the initial state to the

new register positions. It follows that the initial value of inc pc is zero and the

initial value of pc f is f(zero), which is equal to 1.e

This partial interpretation of f must be retained until the control machine M1

uses the condition f(zero) = 1. Furthermore, when M1 and M2 return back to their

initial states, the initial value (i.e., 1) of the register pc f must be reloaded. The

logic which controls the register pc f can be implemented by a multiplexer, having

eRecall that to avoid nontermination of the reachability analysis, we must use the partial inter-
pretation, f(zero) = 1.
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mux

zero

zero

r

pc_f

Fig. 13. Structural description of M2 after retiming and its connections to M1.

as control signals the primary input r, the register reg which provides information

about the current state of the M1 and the pc f itself. In order to implement this

control for pc f , we use the equation related to pc f from Fig. 13, where pc f =

f(pc inc). The next state for the register pc f is given by pc f ′ = f(pc inc′).

Replacing pc inc′ by its value, which is the same as pc′, we get:

(out reg = 0 ∧ pc f = 1 ∧ r = 1)

∨(out reg = 1 ∧ r = 1) → pc′ f = f(inc(pc inc))

|out reg = 1 ∧ r = 0 → pc′ f = f(zero)

|pc′ f = f(pc inc)

Note that in the third case, the register pc inc keeps its previous value and thus

pc f does too. In the second case pc inc loads the initial value zero and pc f loads

f(zero), and in the first case pc f contains a new value depending on the result

of f(inc(pc inc)). This case analysis on pc inc′ can be implemented by an 8 to 1

multiplexer as shown in Fig. 14.

Reachability analysis applied for the modified circuit terminates, as shown by

the sequences of MDGs presented in Fig. 15. The initial state is reg = 0, pc f = 1,

and the value of pc inc is generalized to a variable a. The initial value 1 of pc f

represents the partial interpretation of f(zero) (Fig. 15, MDG I). From this initial
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Fig. 15. MDGs generated for the retimed ASM.

state, the ASM can stay there if r = 0 or it can reach the state where reg takes

the value 1 and pc inc takes the value inc(a). pc f takes the value f(inc(a)) which

is represented by the MDG N1 with two paths on which pc f is either 0 or 1

depending on the value of f(inc(a)). The path on the right-hand side in N1 is

subsumed by I , but the path on the left-hand side represents a new state. F1
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represents the frontier set obtained by removing the path on right-hand side. The

reachable states from the frontier set are represented by N2. If r = 1, the machine

stays in this state and increments the counter such that reg = 1, pc = inc(inc(a)),

and R = f(inc(inc(a))). If r = 0, the transition leads back to the initial state by

loading the value zero to pc inc and the value 1 to pc f . The path on left-hand side

of N2 is subsumed by the single path of I , by letting a to zero, and the two paths

on the right-hand side of N2 are subsumed by the paths of N1 by substituting a

in N1 by inc(a). Thus all the paths of N2 are removed and the frontier set F2 is

empty, thus terminating the reachability analysis.

We applied this technique on the ITC example. The abstract state enumeration

successfully terminates during the reachability analysis. Experimental results for

property checking on the ITC are discussed in the next section.

7. Checking Invariants on the Island Tunnel Controller

In this section we discuss the various verification experiments that we performed

on the ITC example. All experiments (including those using SMV and VIS) were

carried out on a Sun SPARCstation 10. In the subsequent tables, column T ime

is the CPU time in seconds used for compiling the circuit descriptions and for

the invariant checking, including the counterexample generation if any. Column

Mem is the memory allocated in MB. Column #Nodes is the total number of

MDG (or ROBDD) nodes generated. Property checking is useful for verifying that

a specification satisfies certain requirements. We list below three simple properties

(invariants) that we verified.f We also provide the corresponding CTL formulas

used for invariant checking by the tools SMV (V2.4.4)16 and VIS.17

P1: Cars never travel both in directions in the tunnel at the same time.

AG (!((igl = 1) & (mgl = 1))).

P2: The tunnel counter is never signaled to increment simultaneously by ILC and

MLC.

AG (!((itc+ = 1) & (mtc+ = 1))).

P3: The island counter is never signaled to increment and decrement

simultaneously.

AG (!((ic− = 1) & (ic+ = 1))).

For the purpose of comparison, we first show the experimental results for the

verification of the above example invariants (P1, P2 and P3) using FSM-based

methods. For MDG tools, the counts tc and ic are now assigned a concrete sort

according to the counter width which is determined by the instantiation of the

constraint, i.e., the maximum number of cars that are allowed on the island.

fFisler and Johnson13 proposed a set of properties that the ITC design should satisfy. Currently,
we consider only the variation of invariants.



February 17, 2005 10:47 WSPC/123-JCSC 00188

1130 O. Aı̈t Mohamed et al.

Table 1. Invariant checking of ITC specifications (“—” means that the verification did not ter-
minate in certain amount of time, and “ * ” means that the verification was not possible).

SMV VIS MDG

Counter Time Mem # Nodes Time Mem # Nodes Time Mem # Nodes
width (s) (MB) (s) (MB) (s) (MB)

4 bits 1.2 1.2 10043 15.4 0.5 6492 430 8 19670

5 bits 4.1 1.2 10463 18.9 0.5 3887 810 10 27668

6 bits 16.7 1.2 11240 44.5 0.6 8902 1719 15 41751

7 bits 79.7 1.2 15047 429.9 1.2 33447 5486 26 69911

8 bits 360 1.6 29474 1686 2.4 43428 — — —

9 bits 1564 2.1 59292 7584 5.1 128426 — — —

10 bits 6263 3.2 117890 31255 9.9 327090 — — —

11 bits — — — — — — — — —

n bits * * * * * * 55 2.7 4329

Table 1 shows the results for checking the conjunction of P1, P2 and P3 for

various values of n. The MDG tools can also verify the parameterized implementa-

tion having n bits, which is not the case for SMV and VIS. For the SMV columns,

the T ime is the user time, while for VIS and MDG columns, it is the elapsed time

including loading the Verilog or MDG-HDL description file, compilation and in-

variant checking. For SMV and VIS, we used the node ordering generated by the

systems, and used manual ordering in MDG since no heuristic ordering algorithm

is available yet. Many different factors affect the experimental results shown in the

table. The three tools use different integer encoding, different variable ordering,

and different partitioning of the transition relation. Notwithstanding these differ-

ences, the table clearly shows the following: (i) Time increases exponentially with

the counter width for concrete representations of the problem, and (ii) the MDG

figures are substantially greater than the others for concrete representations. This

is because the MDG data structure and its algorithms are far more complicated

than those of ROBDDs. The last row in Table 1 gives the results when we model

the design as an ASM instead of an FSM. To avoid the nontermination problem, we

use the heuristic state generalization technique and the method based on retiming

and the circuit transformation on the complete ITC specification composed of the

five ASMs of Fig. 2. In these cases, the verification is performed efficiently using

MDGs in time independent of the data-path width.

It may be argued that the data abstraction method4,5 is sufficient to imply the

correctness of this ITC example, i.e., we reduce n to a small number encoded by

a few bits, e.g., 2 bits (4), 4 bits (16), etc. Yet in general, the equivalence of the

reduced circuit against the original one is not verified mechanically. Also, it is not

always obvious how to construct an appropriate data abstract function, or such data

abstraction may not even be possible. One such example is the 4× 4 Fairisle ATM



February 17, 2005 10:47 WSPC/123-JCSC 00188

MDG-Based State Enumeration by Retiming and Circuit Transformation 1131

Table 2. Verification of P1, P2 and P3

for the transformed model.

Properties Time Mem # Node

P1, P2, P3 11.59 7.9 7287

switch fabric recently verified using MDGs,18,19 where the datapath contains mixed

data and control information. In general, if the control information needs n bits,

then it is impossible to reduce the word width to less than n. Hence, in this case the

ROBDD-based data-path reduction technique is not applicable. On the other hand,

using the MDG-based approach, we naturally allow the abstract representation of

data-path while the control information is extracted using cross-functions.

In Table 2, we show the result of the verification of the properties P1, P2 and

P3 for the retimed model. In this case, the number of MDGs nodes is higher in

the retimed specification, because additional state variables were added by retim-

ing. This affects memory usage, however, the CPU time is five times shorter than

with the generalization heuristic as the reachability analysis terminates much faster

without re-exploring the same transition.

8. Conclusions

In this paper, we demonstrated the feasibility of the MDG-based hardware verifi-

cation at the RT level on a non trivial example — the Island Tunnel Controller.

We investigated in details the nontermination problem of abstract state enumera-

tion and presented a novel method based on circuit retiming and transformation

to overcome this problem. We performed various verification experiments on the

example including combinational verification, behavioral equivalence checking, and

invariant checking. Furthermore, we gave a comparative evaluation of the results

from invariant checking with the ROBDD-based tools SMV and VIS, and showed

the strength of MDG approach by handling arbitrary data widths.
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