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Abstract Markov chains are extensively used in modeling different aspects of engineering and scientific systems, such
as performance of algorithms and reliability of systems. Different techniques have been developed for analyzing Markovian
models, for example, Markov Chain Monte Carlo based simulation, Markov Analyzer, and more recently probabilistic model-
checking. However, these techniques either do not guarantee accurate analysis or are not scalable. Higher-order-logic theorem
proving is a formal method that has the ability to overcome the above mentioned limitations. However, it is not mature
enough to handle all sorts of Markovian models. In this paper, we propose a formalization of Discrete-Time Markov Chain
(DTMC) that facilitates formal reasoning about time-homogeneous finite-state discrete-time Markov chain. In particular, we
provide a formal verification on some of its important properties, such as joint probabilities, Chapman-Kolmogorov equation,
reversibility property, using higher-order logic. To demonstrate the usefulness of our work, we analyze two applications: a
simplified binary communication channel and the Automatic Mail Quality Measurement protocol.
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1 Introduction

In our daily life, most of the natural phenomena are
random or unpredictable. To quantify the possibility
of the appearance of random events, probability theory
has been built up as an important branch of mathema-
tics for probabilistic analysis of the random phenomena.
As we know, the majority of the randomness has some
sort of time-dependency. For example, noise signals
vary with time, the duration of a telephone call is some-
how related to the time it is made, population growth
is time dependant and so is the case with chemical
reactions. Such random processes usually exhibit the
memoryless property[1], which means that the future
state depends only on the current state and is inde-
pendent of any past state. The random processes pos-
sessing such a memoryless property, also called Markov
property, are Markov processes. The study of Markov
process[1], which is a sub-branch of probability the-
ory, is extensively investigated and applied for ana-
lyzing systems in many different fields of science and
engineering. Some of their important applications in-
clude functional correctness and performance analysis
of telecommunication and security protocols, reliability
analysis of hardware circuits, software testing, Internet
page ranking and statistical mechanics.

Traditionally, simulation is the most commonly used

computer-based analysis technique for Markovian mod-
els. A typical example using this technique is apply-
ing Markov Chain Monte Carlo (MCMC) methods[2],
which involve sampling from the desired probability
distributions by constructing a Markov chain with
the desired distribution. Although some sophisticated
MCMC-based algorithms are capable of producing ex-
act samples in order to improve the accuracy of results,
in general the analysis can never be termed as 100% pre-
cise due to the inaccurate nature of simulation. Inac-
curate results, however, pose a serious threat in highly
sensitive and safety critical applications, such as, nu-
clear reactor control and aerospace software engineer-
ing. On the other hand, the additional computation
and unbounded running time introduced by these com-
plex algorithms are generally not acceptable due to the
increasingly shorter time-to-market and high producti-
vity increase requirements.

Other state-based approaches to analyzing Marko-
vian models include software packages, such as Markov
analyzers and reliability or performance evaluation
tools, which are all based on numerical methods[3]. Al-
though these software packages can be successfully ap-
plied to analyze large-scale Markovian models, the re-
sults cannot be guaranteed to be accurate because the
underlying iterative calculation are not 100% precise.
Another technique, Stochastic Petri Nets (SPN)[4], has
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been found as a powerful method for modeling and ana-
lyzing Markovian systems because it allows local state
modeling instead of global modeling. The key limit-
ing factor of the application of SPN models using this
approach is the complexity of their analysis.

Formal methods provide effective solutions to solve
the inaccuracy problem mentioned above. Due to
the extensive usage of Markov chains in analyzing
safety-critical systems, probabilistic model checking[5]

has been recently proposed for analyzing systems that
can be abstracted as Markovian models. Probabilistic
model checking tools are able to be used to conduct
precise system analysis by modeling the system beha-
viors, including the random components in a precise
logic and reasoning about the probabilistic properties
of the system. This technique offers exact solutions but
is limited by the state-space explosion problem[6] and
the time of analyzing some of the safety properties of a
system is largely dependent on the convergence speed
of the underlying algorithms. Similarly, we cannot ve-
rify generic mathematical expressions for probabilistic
analysis using probabilistic model checking due to the
inherent state-based nature of the approach. Thus, the
probabilistic model checking approach, even though is
capable of providing exact solutions automatically, is
quite limited in terms of supporting complicated sys-
tems and handling the accurate results of a wide variety
of systems and properties.

Another formal technique, higher-order logic intera-
ctive theorem proving[7], provides a conceptually sim-
ple formalism with a precise semantics, allowing secure
extensions for many mathematical theories, including
some parts of the Markov chain theory[8]. Due to the
highly expressive nature of higher-order logic and the
inherent soundness of theorem proving, this technique
is capable of providing precise analysis of all sorts of
Markovian models. However, the existing higher-order-
logic formalization of Markov chain theory[8] is not
rich enough to handle formal reasoning about many in-
teresting characteristics of Markovian models, such as
the reversibility of a Markov chain and stationary pro-
perties. This paper presents a formalization of discrete-
time Markov chain to raise the scope of formal rea-
soning about Markovian models in a higher-order-logic
theorem prover. Particularly, we focus on formali-
zing time-homogeneous Discrete-Time Markov Chain
(DTMC) with finite state space in higher-order logic.
We also formally verify some of the fundamental pro-
perties of a DTMC, such as, Joint Probability Distri-
bution, Chapman-Kolmogorov Equation, Reversibility

of a Markov Chain, and Steady-State Probabilities[1].
These properties play a vital role in reasoning about
many interesting characteristics while analyzing the
Markovian models of real-world systems as well as pave
the path to the verification of more advanced properties
related to DTMC. Also, this foundation can be ex-
tended to formalize Markov chains with infinite state
space, Continuous-Time Makrov Chains (CTMC) and
Hidden Markov Chain Models (HMMs). In order to il-
lustrate the effectiveness of our work and demonstrate
its utilization, we present the formal analysis of a sim-
plified binary communication channel and the perfor-
mance of some algorithms in the Automatic Mail Qua-
lity Measurement (AMQM) system.

The rest of this paper is organized as follows. In
Section 2, we present a brief review of the related work.
In Section 3, we provide some preliminaries that are re-
quired to understand the formalization described in the
rest of the paper. In Section 4, we will describe the pro-
posed higher-order-logic definition of DTMC with finite
state space. In Section 5, some important properties
of DTMC are formally verified based on the proposed
definition of DTMC. Then, in Section 6, we present
two applications for illustration purposes. Finally, we
conclude the paper in Section 7.

2 Related Work

As a conventional technique, simulation is very ef-
fective for industrial engineering. A large number of
software tools have been developed for the analysis of
Markovian systems. Due to the inherent nature of simu-
lation, the majority of the algorithms employed in soft-
ware tools provide approximate results. Markov Ana-
lyzers, such as MARCA① and DNAmaca[9], which con-
tain numerous matrix manipulation and numerical solu-
tion procedures, are powerful autonomous tools for ana-
lyzing large-scale Markovian models. Unfortunately,
most of their algorithms are based on iterative met-
hods that begin from some initial approximation and
end at some convergent point, which is the main source
of inaccuracy in such methods.

Many reliability evaluation software tools integrate
simulation and numerical analyzers for modeling and
analyzing the reliability, maintainability or safety of
systems using Markov methods. These tools offer
simplistic modeling approaches and are more flexi-
ble compared to traditional approaches, such as Fault
Tree[10]. Some prevalent tool examples are Möbius②

and PTC Windchill Markov③. Some other software

①MARCA. www4.ncsu.edu/∼billy/MARCA/marca.html, Jan. 2012.
②Möbius. www.mobius.illinois.edu, Jan. 2012.
③PTC Windchill Markov. www.ptc.com/products/windchill/markov, Jan. 2012.
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tools for evaluating performance, e.g., MACOM[11] and
HYDRA[12], take the advantages of a popular Marko-
vian algebra, i.e., PEPA④ to model systems and effi-
ciently compute passage time densities and quantities
in large-scale Markov chains. However, the algorithms
used to solve the models are based on approximations,
which lead to inaccuracies.

Stochastic Petri nets provide a versatile modeling
technique for stochastic systems. The most popular
softwares are SPNP[13] and GreatSPN⑤. These tools
can model, validate, and evaluate distributed systems
and analyze the dynamic events of models using dis-
tributions other than the exponential. Although they
can easily manage larger system models, most of the so-
lutions for computing the stationary probabilities of a
large-scale Markov chain are based on the iterative met-
hods or an initial approximation in order to reach the
convergent point. Obviously, iterative methods intro-
duce the approximation at different levels while calcu-
lating transient probabilities of a model and this results
in inaccurate analysis.

Numerous model checking tools have been proposed
in the open literature to formally analyze Markovian
systems, e.g., VESTA[14] is a statistical model checker,
MRMC⑥ is a tool for verifying Markov reward mod-
els, Ymer⑦ is used to verify probabilistic transient pro-
perties of Continuous-Time Markov Chains (CTMCs)
and Generalized Semi-Markov Processes (GSMPs), etc.
Probabilistic model checking[5,15] is the state-of-the-
art formal Markov chain analysis technique. PRISM⑧

is the most popular model checking tool, which sup-
ports the analysis of probabilistic properties of DTMC,
CTMC, and Markov Decision Processes (MDPs) and
has been used to analyze many practical systems in-
cluding communication and multimedia protocols. But
model checkers suffer from state-space explosion as well
as do not support the verification of generic mathemati-
cal expressions. Also, because of numerical methods
implemented in these tools, the final results cannot be
termed 100% accurate. Whereas, the proposed HOL
theorem proving based approach is capable of specify-
ing larger systems besides providing accurate results.

Theorem proving is an alternative formal method
used for conducting formal probabilistic analysis. Using
this method, the system to be analyzed is mathemati-
cally modeled in an appropriate logic and the properties
of interest are mathematically verified in a computer-

based formal tool. For instance, Nedzusiak[16] and
Bialas[17] were among the first ones who proposed to
formalize some probability theory in higher-order-logic.
Hurd[18] formalized some measure theory in higher-
order logic and proposed techniques to formalize dis-
crete random variables in HOL. Then, Hasan[19] ex-
tended Hurd’s work by providing the support to forma-
lize continuous random variables and verify statisti-
cal properties, such as, expectation and variance, for
both discrete and continuous random variables[20]. Re-
cently, Mhamdi[21] proposed a significant formalization
of entropy measures in HOL and presented a formali-
zation of measure theory based on extended reals using
the HOL theorem prover. Hölzl[22] has also formali-
zed three chapters of measure theory in Isabelle/HOL.
However, the work of Mhamdi and Hölzl do not include
the formalization of a particular probability space and
thus do not include the formal verification of distri-
bution properties of commonly used random variables
like the case of Hurd and Hasan. Random variables
play a vital role in constructing Markovian models of
real-world systems. Due to this reason, we built upon
the work of Hurd[18] and Hasan[19] to formalize DTMC
in higher-order logic and formally verify some of its
properties[8]. This formalization facilitates the reason-
ing about some aspects of DTMC. The current paper
extends this formalization by providing some additional
verified stationary properties and the formalization of
the reversible DTMC to reason about Markovian mod-
els. It also presents a couple of interesting case studies
in order to demonstrate the usefulness of the verified
DTMC properties in verifying the properties of practi-
cal systems using theorem proving.

3 Preliminaries

In this section, we provide a brief overview of the
HOL theorem prover and Hurd’s formalization[18] of
probability theory and random variables. These funda-
mental concepts will be used in the rest of this paper.

3.1 HOL Theorem Prover

HOL denotes a family of interactive theorem prov-
ing systems for conducting proofs in higher-order logic
by using the strongly-typed functional Meta-Language
(ML)[23] or its successors. Based on the first version de-
veloped by Mike Gordon[24], HOL88, HOL90, HOL98,
and HOL4 have been continuously developed. All these

④PEPA. www.dcs.ed.ac.uk/pepa, Jan. 2012.
⑤GreatSPN. www.di.unito.it/∼greatspn/index.html, Jan. 2012.
⑥MRMC. www.mrmc-tool.org/trac, Jan. 2012.
⑦Ymer. www.tempastic.org/ymer, Jan. 2011.
⑧PRISM. www.prismmodelchecker.org, Jan. 2012.
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tools are using Robin Milner’s Logic for Computable
Functions (LCF) approach[25]. As a system of de-
duction with a precise semantics, HOL4 is capable of
verifying a wide variety of hardware and software as
well as pure mathematics due to the high expressive-
ness higher-order logic. One of the key principles of
the HOL4 system is that its logical core consists of
only five axioms and eight inference rules and all the
subsequent theorems are verified based on these foun-
dations or any other previously verified theorems. It
supports both forward and backward proofs by apply-
ing tactics, which are ML functions that simplify goals
into subgoals. Over the past few decades, the formali-
zation of many foundational mathematical theories has
led to tremendous progress in HOL4. For example,
Harrison[26] formalized real numbers, topology, limits,
sequences and series, differentiation and integration and
his work is part of the current distribution of HOL.
Hurd[18] developed a probability theory and Hasan[19]

formalized statistical theorems for continuous random
variables and their Cumulative Distribution Function
(CDF) in the HOL4 system. Due to the undecidable
nature of higher-order logic, the users have to verify
theorems in an interactive way but in order to facilitate
this process, the HOL theorem prover provides many
proof assistants and automatic proof methods.

3.2 Probability Theory and Random Variables
in HOL

A measure space is defined as a triple (Ω,Σ, µ),
where Ω is a set, called the sample space, Σ repre-
sents a σ-algebra of subsets of Ω and the subsets are
usually referred to as measurable sets, and µ is a mea-
sure with domain Σ. A probability space is a measure
space (Ω,Σ,Pr) such that the measure, referred to as
the probability and denoted by Pr, of the sample space
is 1.

The measure theory developed by Hurd[18] defines
a measure space as a pair (Σ, µ). Whereas the sample
space, on which this pair is defined, is implicitly im-
plied from the higher-order-logic definitions to be equal
to the universal set of the appropriate data-type. Build-
ing upon this formalization, the probability space was
also defined in HOL as a pair (E ,P), where the domain
of P is the set E , which is a set of subsets of infinite
Boolean sequences B∞. Both P and E are defined using
the Carathéodory’s Extension Theorem, which ensures
that E is a σ-algebra: closed under complements and
countable unions.

Now, a random variable, which is one of the core
concepts in probabilistic analysis, is a fundamental pro-
babilistic function and thus can be modeled in higher-
order logic as a deterministic function, which accepts

the infinite Boolean sequence as an argument. These
deterministic functions make random choices based on
the result of popping the top most bit in the infinite
Boolean sequence and may pop as many random bits
as they need for their computation. When the func-
tions terminate, they return the result along with the
remaining portion of the infinite Boolean sequence to
be used by other programs. Thus, a random variable
which takes a parameter of type α and ranges over val-
ues of type β can be represented in HOL by the follow-
ing function.

F : α → B∞ → β ×B∞.

As an example, consider a Bernoulli (1
2 ) random

variable that returns 1 or 0 with equal probability 1
2 .

It has been formalized in higher-order logic as follows

∀ s. bit s =

(if shd s then 1 else 0, stl s),

where the functions shd and stl are the sequence
equivalents of the list operations “head” and “tail”,
respectively. The function bit accepts the infinite
Boolean sequence s and returns a pair. The first ele-
ment of the returned pair is a random number that is
either 0 or 1, depending on the Boolean value of the
top most element of s. Whereas, the second element of
the pair is the unused portion of the infinite Boolean
sequence, which in this case is the tail of the sequence.

Once random variables are formalized, as men-
tioned above, we can utilize the formalized probability
theory to reason about their probabilistic properties.
For example, the following Probability Mass Function
(PMF) property can be verified for the function bit
using the HOL theorem prover:

` P {s|FST (bit s) = 1} =
1
2
,

where the function FST selects the first component of a
pair and {x|C(x)} represents a set of all x that satisfy
the condition C.

The above approach has been successfully used to
formally verify most basic probability theorems[18],
such as the law of additivity, and conditional probabi-
lity related properties[27]. For instance, the conditional
probability has been formalized as:

Definition 1 (Conditional Probability).

` ∀ A B.

cond prob A B = P(A
⋂

B) / P(B).

It plays a vital role in our work. Another frequently
used formally verified theorem, needed for our work, is
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the Total Probability Theorem[27], which is described,
for a finite, mutually exclusive, and exhaustive sequence
Bi of events and an event A, as follows:

Pr(A) =
n−1∑

i=0

Pr(Bi)Pr(A|Bi). (1)

4 Formalization of DTMC in HOL

Given a probability space, a stochastic process
{Xt, t ∈ T} represents a sequence of random variables
X, where t represents the time that can be discrete
(represented by non-negative integers) or continuous
(represented by real numbers)[1]. The set of values
taken by each Xt, commonly called states, is referred
to as the state space Ω. Now, based on these defini-
tions, a Markov process can be defined as a stochastic
process with the Markov property. If a Markov pro-
cess has finite or countably infinite state space, then
it is called a Markov chain and satisfies the following
Markov property.

For all t, if state xi (∀i ∈ [0, t + 1]) is in the state
space, then

Pr{Xt+1 = xt+1|Xt = xt, . . . , X0 = x0}
= Pr{Xt+1 = xt+1|Xt = xt}. (2)

Additionally, if t ranges over nonnegative integers
or, in other words, the time is a discrete quantity,
and the states are in a finite discrete space, then such
a Markov chain is called a finite-state discrete-time
Markov chain. A Markov chain[1] is referred to as
the time-homogeneous Markov chain, if the conditional
probability Pr(Xn+1 = a|Xn = b) is independent of
n. Time-homogeneousity is an important concept in
analyzing Markovian models and therefore, in our de-
velopment, we focus on formalizing Time-Homogeneous
Discrete-Time Markov Chain with finite state space,
which we refer to in this paper as DTMC. A DTMC is
usually expressed by specifying[28]:
• an initial distribution defined by ∀s ∈ Ω, π0(s) =

Pr(X0 = s), π0(s) > 0, and
∑

s∈Ω π0(s) = 1.
• transition probabilities pij defined as ∀i, j ∈ Ω, pij

= Pr{Xt+1 = j|Xt = i}, pij > 0 and
∑

j∈Ω pij = 1.
Based on the above mentioned definition, the notion

of a DTMC in HOL can be formalized as the following
predicate:

Definition 2 (DTMC).

` ∀ X N x Linit Ltrans.
Time homo mc X N x Linit Ltrans

= (∀ i. i < N ⇒
(P{s | FST (X 0 s) = xi} = EL i Linit) ∧
(
∑N−1

k=0 EL k Linit = 1)) ∧

(∀ t i j. i < N ∧ j < N ⇒
(P{s | FST (X (t + 1) s) = xj}|
{s | FST (X t s) = xi}
= EL (i * N + j) Ltrans) ∧

(
∑N−1

k=0 EL (i * N + k) Ltrans = 1 ) ) ∧
(∀ t k. k < N ⇒

measurable {s|FST (X t s) = xk}) ∧

(∀ t.
N−1⋃

k=0

{s|FST (X t s)=xk}=UNIV) ∧
(∀t u v. u < N ∧ v < N ∧ u 6= v ⇒

disjoint {s|FST (X t s) = xu}
{s|FST (X t s) = xv}) ∧

(∀ i j m r t w L Lt.
((∀ k. k 6 r ⇒ EL k L < N) ∧
i < N ∧ j < N ∧ Lt ⊆ [m, r] ∧
m 6 r ∧ (Lt 6= ∅ ⇒ w + r < t) ∧
(P(

⋂
kεLt {s | FST (X (w + k) s)

= x(EL k L)}) 6= 0) ⇒
(P({s | FST (X (t + 1) s) = xj}|

{{s | FST (X t s) = xi}
⋂

(
⋂

kεLt {s | FST (X (w + k) s)
= x(EL k L)})})

= P({s | FST (X (t + 1) s) = xj}|
{s | FST (X t s)= xi}))).

The function Time homo mc accepts a sequence of
random variables X, the cardinality of the set of their
possible states N, a function x that accepts the index
and returns the value of the state corresponding to the
given DTMC, and two real number lists: the initial
states probability distribution Linit and the transition
probabilities Ltrans.

The predicate Time homo mc contains the following
conditions:
• The DTMC must follow the given initial distribu-

tion Linit, in which the summation of all the elements
is 1. The transition probabilities Ltrans, in which
the summation of each N elements is 1, is an intrinsic
characteristic of a stochastic matrix. In the condition
(∀ t i j. i < N ∧ j < N ⇒ (P{s | FST (X (t
+ 1) s) = xj}|{s | FST (X t s) = xi} = EL (i *
N + j) Ltrans) it is explicit that transition probabili-
ties are independent of time t, which implies the time
homogeneous property.
• All events involving the Markov chain ran-

dom variables are measurable (∀ t k. (k < N) ⇒
measurable {s | FST (X t s) = xk}).
• The union of all states forms the state space as

a universal set UNIV (∀ t.
⋃N−1

k=0
{s | FST (X t s)

= xk} = UNIV).
• The fifth condition ensures that the states in the

state space of a given Markov chain are mutually exclu-
sive (∀ t u v. (u < N) ∧ (v < N) ∧ (u 6= v)
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⇒ disjoint ({s | FST (X t s) = xu} {s | FST
(X t s) = xv})).
• The sixth condition corresponds to the memoryless

property in (2). We model the history of states in our
formalization by a list L, which contains the state ele-
ments ranging from 0 to N − 1. Thus, the list L, with
r − m + 1 elements or less, represents the indices of
passed states and its elements have to be less than N
(∀ k. (k ≤ r) ⇒ (EL k L < N)). In (

⋂
k∈Lt {s |

FST (X (w + k) s) = x(EL k L)}), where the func-
tion (EL k L) returns the k-th element of the list L,
it gives a general time index of every event and a flexi-
ble length of the event sequence. (k ∈ Lt) makes sure
that the passed states can be freely chosen from a set
Lt, which includes natural numbers and is a subset of
the interval [m, r] (Lt ⊆ [m, r]). The condition (Lt
6= ∅ ⇒ w + r < t) ensures that the states in this in-
tersection set are past states if the considered list Lt is
not empty. The reason why the passed states path is
expressed in such a complex way is that the underlying
information in the mathematic expression (2) including
many cases, such as,

∀ k ∈ [0, t), xk ∈ Ω

Pr{Xt+1 = xt+1|Xt = xt, Xk = xk}
= Pr{Xt+1 = xt+1|Xt = xt}. (3)

The last condition (P(
⋂

kεLt {s | FST (X (w + k)
s) = x(EL k L)}) 6= 0) is used to exclude the path of
passed states, which do not appear in the chain.

It is important to note that the type of X is num →
(num → bool) → ’a # (num → bool), so the value of
the state can be any type (in HOL, the arbitrary type
is represented as ’a automatically), which ranges over
a sequence with type (num → bool). This makes our
definition general enough to work with discrete-time
random variables of any data type.

5 Verification of Discrete-Time Markov Chain
Properties

In this section, we present the formal verification
of some of the most important properties of time-
homogeneous DTMC with finite-state space. The for-
mal verification of these properties not only ensures
the correctness of our formalization of DTMC, given
in Definition 2, but also paves the path to reason about
DTMC models of practical systems, as will be depicted
in Section 6.

5.1 Joint Probability

The joint probability of a Markov chain defines the
probability of events involving two or more random
variables associated with a chain. Joint probability is

very useful in analyzing multi-stage experiments, when
an event chain happens. Also, this concept is the
basis for joint probability generating function, which
is used in many different fields. Mathematically, the
joint probability of n + 1 discrete random variables
X0, X1, . . . , Xn in a Markov chain can be expressed
as[1]:

Pr{Xt = x0, . . . , Xt+n = xn}

=
( n−1∏

k=0

Pr{Xt+k+1 = xk+1|Xt+k = xk}
)
Pr{Xt = x0}.

(4)

We formalize this property in HOL as the following
theorem:

Theorem 1 (Joint Probability).

` ∀ X N x t n L Linit Ltrans.
Time homo mc X N x Linit Ltrans ∧
EVERY (λa. a < N) L ∧
n + 1 6 LENGTH L ⇒
P(

⋂n
k=0{s | FST (X (t + k) s)

= x(EL k L)})
= (

∏n−1
k=0P({s | FST (X (t + k + 1) s)

= x(EL (k+1) L)}|
{s | FST (X (t + k) s)

= x(EL k L)}))
P{s | FST (X t s) = x(EL 0 L)}.

The variables above are used in the same context
as Definition 2. The first assumption ensures that X is
a Markov chain. All elements of the indices sequence
L are less than N and the length of L is larger than
or equal to the length of the segment considered in the
joint events. The conclusion of the theorem represented
(4) in higher-order logic based on the probability theory
formalization, presented in Subsection 3.2. The proof
of Theorem 1 is based on induction on the variable n,
(1) and some arithmetic reasoning.

5.2 Chapman-Kolmogorov Equation

The Chapman-Kolmogorov equation[1] is a widely
used property of time homogeneous Markov chains as
it facilitates the use of a matrix theory for analyzing
large Markov chains. It basically gives the probability
of going from state i to j in m+n steps. Assuming the
first m steps take the system from state i to some inter-
mediate state k, which is in the state space Ω and the
remaining n steps then take the system from state k to
j, we can obtain the desired probability by adding the
probabilities associated with all the intermediate steps.

p
(m+n)
ij =

∑

k∈Ω

p
(n)
kj p

(m)
ik . (5)
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The notation pij (n) denotes the n-step transition
probabilities from state i to j.

p
(n)
ij = Pr{Xt+n = xj |Xt = xi}. (6)

When n = 1, p
(1)
ij is usually written as pij and (5)

becomes
p
(m+1)
ij =

∑

k∈Ω

pkjp
(m)
ik . (7)

Based on (5) and Definition 2, the Chapman-
Kolmogorov equation is formalized as follows.

Theorem 2 (Chapman-Kolmogorov Equation).

` ∀ X i j x N m n Linit Ltrans.
Time homo mc X N x Linit Ltrans ∧
i < N ∧ j < N ∧
(∀ a b. a < N ∧ b < N ⇒
P({s | FST (X 0 s) = xb}|
{s | FST (X 0 s) = xa})

= if (a = b) then 1 else 0) ⇒
P({s | FST (X (m + n) s) = xj}|
{s | FST (X 0 s) = xi})

=
∑N−1

k=0 (P({s | FST (X n s) = xj}|
{s | FST (X 0 s) = xk})

P({s | FST (X m s) = xk}|
{s | FST (X 0 s) = xi})).

The variables m and n denote the steps between two
states and both of them represent time. The first as-
sumption ensures that the random process X is a time
homogeneous DTMC, using Definition 2. The following
two assumptions, i < N and j < N, define the allowable
bounds for the index variables. The last assumption
defines the zero-step transition probabilities to be a δ
function, i.e.,

δab =
{

1, if a = b,

0, if a 6= b.

The conclusion of the theorem formally represents (5).
The proof of Theorem 2 again involves induction on

the variable n and both of the base and step cases are
discharged using the following lemma corresponding to
(7).

Lemma 1 (Multistep Transition Probability).

` ∀ X i j x m N Linit Ltrans.
Time homo mc X N x Linit Ltrans ∧
i < N ∧ j < N ⇒
P({s | FST (X (m + 1) s) = xj}|
{s | FST (X 0 s) = xi})

=
∑N−1

k=0 P({s | FST (X 1 s) = xj}|
{s | FST (X 0 s) = xk})

P({s | FST (X m s) = xk}|
{s | FST (X 0 s) = xi}).

The proof of Lemma 1 is primarily based on Defi-
nition 2 and the additivity property of conditional
probabilities.

5.3 Absolute Probabilities

The unconditional probabilities associated with
a Markov chain are referred to as the absolute
probabilities[1]. If the initial probability distribution
of the system being in a state, which has index k, is
given by Pr{X0 = xk} then the absolute probability of
the system being in state j is given by

p
(n)
j =Pr{Xn = xj}

=
∑N−1

k=0
Pr{X0 = xk}Pr{Xn = xj |X0 = xk}.

(8)

This shows that, given an initial probability distri-
bution and the n-step transition probabilities, the ab-
solute probabilities in the state j after n steps from the
start time 0 can be obtained by using this equation.
Based on our formal Markov chain definition, this pro-
perty has been formalized as the following theorem:

Theorem 3 (Absolute Probability).

` ∀ X j x N n Linit Ltrans.
Time homo mc X N x Linit Ltrans ∧
j < N ⇒
P{s | FST (X n s) = xj}
=

∑N−1
k=0 P{s | FST (X 0 s) = xk}

P({s | FST (X n s) = xj}|
{s | FST (X 0 s) = xk}).

The proof of Theorem 3 is based on the Total Proba-
bility Theorem along with some basic arithmetic and
probability theoretic reasoning.

5.4 Steady State Probabilities

In many applications, analyzing the stability of
Markovian models is of prime importance. For exam-
ple, we are interested in the probability of states as
time tends to infinity under certain conditions, like ir-
reducibility and aperiodicity.

Let {Xn, n > 0} be a Markov chain having state
space Ω and one-step transition probability pxy for go-
ing from a state with value x to a state with value y.
If π(x), x ∈ Ω, are nonnegative numbers summing to
one, and if y ∈ Ω,

π(y) =
∑

x∈Ω

π(x)pxy , (9)

then π is called a stationary distribution. The corre-
sponding HOL definition is as follows.
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Definition 3 (Stationary Distribution).

` ∀ p X x N n.
stationary dist p X x N n

= ∀ i. 0 6 p xi ∧
N−1∑

k=0

(p xk) = 1 ∧

(p xi =
N−1∑

k=0

p xkP({s|FST (X (n + 1) s)=xi}|

{s|FST (X n s) = xk})).
In this definition, xk and xi represent the variables

x and y of (9), respectively.
As a Markov chain with finite state space, the steady

state probabilities are defined to be a vector V j =
limn→∞ P(n). For a DTMC with one-step transition
probability pij , if V j exists for all j ∈ Ω, then V j

is known as the stationary probability vector of that
Markov chain. In other words, V j is a stationary dis-
tribution of a Markov chain if, ∀j ∈ Ω,
• 0 6 lim

n→∞
p
(n)
j ,

•
N−1∑

i=0

lim
n→∞

p
(n)
i = 1,

• lim
n→∞

p
(n)
j =

N−1∑

i=0

lim
n→∞

p
(n)
i pij .

The steady state probability is formalized in HOL
as follows.

Theorem 4 (Steady State Probability).

` ∀ X n x N Linit Ltrans.
Time homo mc X N x Linit Ltrans ∧
(∀ x j. ∃u.
P{s | FST (X n s) = xj} → u) ⇒

(stationary dist
(λx k. limn→∞P{s | FST (X n s) = xk})

X x N n).

The proof of Theorem 4 starts from rewriting the
goal using Definition 3 and then splitting it into
three subgoals. Utilizing the Probability Bounds
Theorem[27], we can prove the first subgoal 0 6
lim

n→∞
p
(n)
j . The proof of the second subgoal is primar-

ily based on the following lemma, which can be proved
using the Total Probability Theorem, given in (1).

Lemma 2.

` ∀ X x N i n Linit Ltrans.
Time homo mc X N x Linit Ltrans ∧
i < N ∧ (0 < P{s|FST (X 0 s)=xi}) ⇒∑N−1

j=0 P({s | FST (X n s) = xj}|
{s | FST (X 0 s) = xi} = 1.

Then, the last subgoal can be proved by applying
the linearity of limit of a sequence and the linearity of
real summation.

5.5 Generalized Stationary Distribution

If a discrete-time Markov chain with state space Ω
and one-step transition probability pxy has a probabi-
lity distribution π that satisfies the detailed balance
equations, given below,

∀x, y ∈ Ω, π(x)pxy = π(y)pxy , (10)

then this distribution π is stationary for pxy. This theo-
rem is called a generalized stationary theorem and can
be mathematically described as Theorem 5.

The detailed balance equations can be formalized in
higher-order logic as the following definition, where xi

and xj represent variables x and y of (10), respectively.
Definition 4 (Detailed Balance Equation).

` ∀ p X N.
db equations p X N
= ∀ x i j n. i < N ∧ j < N ∧

(p xi)P({s|FST (X (n + 1) s) = xj}|
{s|FST (X n s) = xi})

= (p xj)P({s|FST (X (n + 1) s) = xi}|
{s|FST (X n s) = xj}.

The first input variable p in the above predicate is
a function that accepts the state as the parameter and
returns the probability given in (10). Based on this defi-
nition, the stationary theorem can be defined as follows:

Theorem 5 (Generalized Stationary Distribution).

` ∀ X x N n Linit Ltrans.
Time homo mc X N x Linit Ltrans ∧
db equations

(λx i.P{s|FST (X n s)=xi}) X N ⇒
stationary dist

(λx k.P{s|FST (X n s)=xk}) X x N n.

Here, π(x) is specified as a function (λx i. P{s| FST
(X n s) = xi}). Similar to the proof of Theorem 4, the
proof of Theorem 5 is based on the Probability Bounds
Theorem, Lemma 2, and Definitions 3, 4.

5.6 Stationary Process

Stationary processes are frequently used stochastic
processes in analyzing time series, which is characteri-
zed by having weak white noise. Mathematically, a
stochastic process {Xt, t ∈ T} is said to be stationary
in the strict sense if ∀n > 1, t1, t2, . . . , tn, τ ∈ T , the
random variables Xt1 , Xt2 , . . . , Xtn have the same joint
distributions as Xt1+τ , Xt2+τ , . . . , Xtn+τ . In a discrete-
time stochastic process, τ is a natural number. From
its mathematical definition, we know that a stationary
process is different from the process with stationary dis-
tribution. In HOL, we formalize a stationary process
as follows.
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Definition 5 (Stationary Process).

` ∀ X N x.
stationary proc X N x
= ∀ L w t n.
(∀ t k. measurable {s|FST (X t s)=xk}) ∧

(∀ t.
N⋃

k=0

{s|FST (X t s)= xk}=UNIV) ∧
EVERY (λa. a < N) L ∧ n < LENGTH L ⇒
(P(

n⋂

k=0

{s|FST (X (w + k) s) = x(EL k L)})

= P(
n⋂

k=0

{s|FST (X (t + k) s) = x(EL k L)})).

In this definition, X represents the stochastic process.
N is the cardinality of the states in the states space. x
refers to a function, which provides the state value for
the given index augment. The list L contains all the
possible state indices. Variables w and t represent the
start time of two successive event sequences. n is the
number of the states considered in such a joint proba-
bility.

Basically, this definition defines a stochastic process
for which the joint probability does not depend on the
start time for all the possible sequences. The first condi-
tion in Definition 5 ensures that all the events possibly
involved in this process are measurable. The second
condition identifies the state space. Since the elements
of L represent state indices, they have to be less than
the cardinality of the state space and the length of L
should be longer than the number of events in such a
stochastic process.

Using this definition, we can prove that the PMF of
a stationary process is independent of the time.

Theorem 6 (PMF of a Stationary Process).

` ∀ X x i n t N.
stationary proc X N x ∧ i < N ⇒
(P{s | FST (X n s) = xi}
= P{s | FST (X t s) = xi}).

The proof of this theorem is based on Definition 5
and some arithmetic reasoning.

As mentioned in Section 5, a time-homogenous
Markov chain has stationary transition probabilities,
but the Markov chain itself does not need to be a statio-
nary process in general[29]. In fact, a time-homogeneous
Markov chain is stationary if and only if its initial dis-
tribution is stationary. We formally verified these re-
sults from two different perspectives: a stationary time-
homogenous Markov chain has stationary initial distri-
bution (as Theorem 7); and a time-homogenous Markov
chain with stationary initial distribution is always a
stationary process (as Theorem 8).

Theorem 7 (Stationary DTMC has Stationary Dis-
tribution).

` ∀ X x n N Linit Ltrans.
Time homo mc X N x Linit Ltrans ∧
stationary proc X N x ⇒
stationary dist
(λx i.P{s|FST (X n s)=xi}) X x N n.

The proof of Theorem 7 is based on the stationary
distribution definition along with Theorems 3 and 6. If
the variable n in Theorem 7 is assigned a value 0 then
the stationary DTMC is said to have a stationary ini-
tial distribution. In the next theorem, we verify that
if the initial distribution of a DTMC is stationary then
the corresponding Markov chain is stationary as well.

Theorem 8 (A DTMC with Stationary Initial Dis-
tribution is a Stationary Process).

` ∀ X x N Linit Ltrans.
Time homo mc X N x Linit Ltrans ∧
stationary dist

(λi.P{s|FST (X 0 s)=xi}) X x N 0 ⇒
stationary proc X N x.

We proceed with the verification of this theorem
by first rewriting the goal using Definitions 2 and 5
and then performing induction on the variable n of the
stationary process definition, given in Definition 5. The
base case is true obviously and the step case is proved
using Theorem 1.

Another interesting consequence of Theorems 6 and
8 is that if the initial distribution of a Markov chain is
a stationary distribution then its absolute distributions
are independent of n. That is, if the initial distribu-
tion satisfies (9), then the absolute distribution of this
Markov chain should be independent of n:

∀x t n j. j ∈ Ω ⇒ Pr(Xt = xj) = Pr(Xn = xj).

This theorem is formalized in HOL as
Theorem 9 (Stationary PMF).

` ∀ X x j t n N Linit Ltrans.
Time homo mc X N x Linit Ltrans ∧
j < N ∧
stationary dist

(λx i.P{s|FST (X 0 s)=xi}) X x N 0 ⇒
(P{s | FST (X t s) = xj}
= P{s | FST (X n s) = xj}).

5.7 Reversibility of Markov Chain

The concept of reversible processes is mainly applied
in the area of thermodynamics, while reversible Markov
chains are commonly used in MCMC-based approaches.
The main idea here is to construct a Markov chain
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based on a steady state distribution π, as given in (10).
Mathematically, a process is said to be reversible if the
joint probability of (X0, X1, . . . , Xn) is the same as the
joint probability of (Xn, Xn−1, . . . , X0). The follow-
ing theorem is used to verify that a time-homogeneous
Markov chain satisfying (10) is reversible.

Theorem 10 (Reversible Markov Chain).

` ∀ X t x n N Linit Ltrans L.
Time homo mc X N x Linit Ltrans ∧
db equations
(λx i.{s|FST (X t s) = xi}) X N) ∧
(EVERY (λa. a < N) L) ∧
(LENGTH L = n + 1) ⇒
(P(

⋂n
k=0{s|FST (X (t + k) s) = x(EL k L)})

= P(
⋂n

k=0 {s | FST (X (t + k) s)
= x(EL k (REVERSE L))})).

The first seven variables in the above theorem have
the same context as the ones used in Definition 2 and
the last variable L represents a sequence of state in-
dices, in the state space. The first two conditions are
the same as the ones used in Theorem 5. While the last
two constraint that all elements in L should be less than
the cardinality of the states in the state space because
in this theorem, n + 1 events are considered and thus
the length of the index sequence is n + 1. The above
theorem can be verified using induction on the variable
n. The base case is proved based on Theorem 5, in
which the absolute distribution of a time-homogeneous
Markov chain, which satisfies detail balance equations
has stationary distributions. Hence, its initial distri-
bution is also stationary. In the step case proof, we
reach the following subgoal after rewriting with the
joint probability relationship, given in Theorem 1.

Lemma 3.

` ∀ X t x n N Linit Ltrans L.
Time homo mc X N x Linit Ltrans ∧
db equations
(λx i.{s|FST (X t s) = xi}) X N∧

EVERY (λa. a < N) L ∧
LENGTH L = n + 1 ⇒
(

n−1∏

k=0

P({s|FST (X (t + k + 1) s)

= x(EL (k+1) L)}|
{s|FST (X (t + k) s) = x(EL k L)})

P{s|FST (X t s) = x(EL 0 L)}

=
n−1∏

k=0

P({s|FST (X (t + k + 1) s) = x(EL k L)}|

{s|FST (X (t + k) s) = x(EL (k+1) L)})
P{s|FST (X t s) = x(EL n L)}),

which can be verified based on Theorems 1 and 9 along
with arithmetic reasoning.

Mathematically, if a Markov chain is reversible, then
it has to have the memoryless property as well.

Pr{Xt = x0|Xt−1 = x1, . . . , X0 = xn}
= Pr{Xt = x0|Xt−1 = x1}. (11)

We formally verified this property as the following
theorem based on probabilistic and arithmetic reason-
ing in HOL.

Theorem 11 (Joint Probability of Reversible
DTMC).

` ∀ X t x N n Linit Ltrans.

Time homo mc X N x Linit Ltrans ∧
EVERY (λa. a < N) L ∧ n + 2 <= LENGTH L ∧
db equations

(λx i.{s|FST (X t s) = xi}) X N ∧
(∀n t. P(

⋂n
k=0{s|FST (X (t + k + 1) s)

= x(EL (k+1) L)}) 6= 0) ⇒
P({s|FST (X t s) = x(EL 0 L)}|⋂n

k=0{s|FST (X (t + k) s) = x(EL k L)})
= P({s|FST (X t s) = x(EL 0 L)}|

{s|FST (X (t + 1) s) = x(EL 1 L)}).

These formally verified theorems not only ensure the
correctness of our formal DTMC definitions, presented
in Section 4, but also facilitate reasoning about Marko-
vian models in a theorem prover. For illustration pur-
poses, we utilize this formalization to reason about two
applications in the next section. Besides that, these
properties can also be used to formalize and reason
about more advanced Markov chain theory concepts,
such as, classified Markov chains, Markov decision pro-
cess and semi Markov chains. The proof script is about
4 200 lines for the formal verification of the above men-
tioned properties.

6 Applications

In this section, we present two applications: a simpli-
fied binary communication channel[30] and the AMQM
protocol⑨.

6.1 Binary Communication Channel Analysis

A binary communication channel[30] is a channel
with binary inputs and outputs. The transmission
channel is assumed to be noisy or imperfect, i.e., it
is likely that the receiver gets the wrong digit. This

⑨Nokovic B, Sekerinski E. http://bnnsolution.com/TagsPaper.pdf, 2010.
Lyngsoe Company. http://www.lyngsoesystems.com/postal/quality monitoring.asp, Jan. 2012.
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channel can be modeled as a two-state DTMC with the
following state transition probabilities.

Pr {Xn+1 = 0 | Xn = 0} = 1− a;

Pr {Xn+1 = 1 |Xn = 0} = a;

Pr {Xn+1 = 0 |Xn = 1} = b;

Pr {Xn+1 = 1 |Xn = 1} = 1− b.

The corresponding state and channel diagrams are
given in Fig.1 and Fig.2, respectively.

Fig.1. State diagram.

Fig.2. Channel diagram.

The binary communication channel is widely used in
telecommunication theory as more complicated chan-
nels are modeled by cascading several of them. Here,
variables Xn−1 and Xn denote the digits leaving the
systems (n− 1)-th stage and entering the n-th one, re-
spectively. a and b are the crossover bit error probabili-
ties. Because X0 is also a random variable, the initial
state cannot be determined and thus Pr(X0 = 0) and
Pr(X0 = 1) cannot be 0 or 1. Although the initial dis-
tribution is unknown, the n-step transition probabilities
can be verified as the elements of the matrix in (12).
Also, the steady-state probabilities can be concluded as
that in (13).

P n =




b + a(1− a− b)n

a + b

a− a(1− a− b)n

a + b

b− b(1− a− b)n

a + b

a + b(1− a− b)n

a + b


 , (12)

lim
n→∞

P n =




b

a + b

a

a + b

b

a + b

a

a + b


 . (13)

Based on the description of the binary communica-
tion channel, it has been formalized in HOL as a generic
model, using Definition 6.

Definition 6 (Binary Communication Channel
Model).

` ∀ X x a b p q.
BCCM X x a b p q

= (Time homo mc X 2 x [p; q] [1-a; a; b; 1-b])∧
(|1 - a - b| < 1) ∧ (0 6 a 6 1) ∧
(0 6 b 6 1) ∧ (p + q = 1) ∧
(0 < p < 1) ∧ (0 < q < 1).

In this formal model, variable X represents the
Markov chain. The variable X represents a function
that provides the state at a given index. The function
x takes the indices 0 and 1 and returns the value of the
state, so that x0 = 0, x1 = 1. Variables a, b, p and
q are parameters of the functions of initial distribution
and transition probabilities.

The first condition ensures that X is a time-
homogeneous DTMC, with two states in the state
space. List [p; q] corresponds to Linit in Definition 2
and another list [1 - a; a; b; 1 - b] gives the one-
step transition probability matrix by combining all the
rows into a list and corresponds to Ltrans in Definition
2. The next three conditions define the allowable inter-
vals for parameters a and b to restrict the probability
terms in [0, 1]. It is important to note that, |1 - a
- b| < 1 ensures that both a and b cannot be equal
to 0 and 1 at the same time and thus avoids the zero
transition probabilities. The remaining conditions cor-
respond to the one-step transition probabilities.

Next, we use our formal model to reason about the
following properties, which correspond to (12) and (13).

Theorem 12 (n-th Step Transition Probabilities).

` ∀ X x a b n p q.

(BCCM X x a b p q) ⇒
(P({s|FST (X n s)=x0}|{s|FST (X 0 s)=x0})

=
b + a(1− a− b)n

a + b
) ∧

(P({s|FST (X n s)=x1}|{s|FST (X 0 s)=x0})

=
a− a(1− a− b)n

a + b
) ∧

(P({s|FST (X n s)=x0}|{s|FST (X 0 s)=x1})

=
b− b(1− a− b)n

a + b
) ∧

(P({s|FST (X n s)=x1}|{s|FST (X 0 s)=x1})

=
a + b(1− a− b)n

a + b
).



228 J. Comput. Sci. & Technol., Mar. 2013, Vol.28, No.2

Theorem 13 (Limiting State Probabilities).

` ∀ X x a b p q.
(BCCM X x a b p q) ⇒
( lim

n→∞
P({s|FST (X n s)=x0}|
{s|FST (X 0 s)=x0})= b

a+b) ∧
( lim

n→∞
P({s|FST (X n s)=x1}|
{s|FST (X 0 s)=x0})= a

a+b) ∧
( lim

n→∞
P({s|FST (X n s)=x0}|
{s|FST (X 0 s)=x1})= b

a+b) ∧
( lim

n→∞
P({s|FST (X n s)=x1}|
{s|FST (X 0 s)=x1})= a

a+b).

Theorem 12 has been verified by performing induc-
tion on n and then applying Lemma 1 and Lemma 2
along with some arithmetic reasoning. Theorem 12 is
then used to verify Theorem 13 along with the limit of
real sequence principles.

This small two-state DTMC case study clearly il-
lustrates the main strength of the proposed theorem
proving based technique against the probabilistic model
checking approach by allowing us to verify the desired
probabilistic characteristics as generic theorems that
are universally quantified for all allowable values of vari-
ables p, q, a, b and n. These variables can also be
specialized to specific values to obtain corresponding
precise conditional probabilistic values.

6.2 Analysis of Probability of Reaching a
State

In this subsection, we will study the probability of
reaching a targeted state in an Automatic Mail Quality
Measurement (AMQM) system based on the ISO/IEC
18000-7 Standard[31] by building upon our formalized
DTMC described in Section 4.

An AMQM system is used to measure the quality
of postal service transport and delivery by IPC (In-
ternational Post Corporation). It measures how fast
mail travels from one point to another by using an in-
planting process monitoring of the tag serial number
and recording the time when a message from the tag is
received. This kind of quality measurement of solutions
is based on Radio-Frequency Identification (RFID)[31],
which is a technology that identifies and tracks objects,
such as a product, an animal or a person by using ra-
dio waves to transfer data from an electronic tag, called
RFID tag. In the last decade, a large volume of research
was conducted on complying RFID systems with the
international standard ISO/IEC 18000-7. The AMQM
system exhibits some features of the ISO/IEC 18000-7
standard and hence its formal analysis is quite impor-
tant.

In an AMQM system, tags are intended for iden-
tifying the objects that are to be managed. The in-
terrogator communicates with the tag in its RF (ra-
dio frequency) communication range and controls the
protocol, reads information from the tag, directs the
tag to store data in some cases, and makes sure that
messages are delivered and are also valid. An in-
terrogator controls the messages that are transmitted
during their allotted time periods called slots and an
acknowledgement received for each message. Based on
the AMQM communication protocol, the timing dia-
gram of a tag collection process is depicted in Fig.3.

Fig.3. Tag collection process.

The communication sequence starts with a Wakeup
Period (WP), within which wake up signals are sent to
bring all tags in the ready state. The WP is followed
by a collection round named Command Period (CP),
which in turn consists of a collection command period,
a Listen Period (LP) and an Acknowledge Period (AP).
The interrogator then waits for the responses from the
tags that are sent randomly. The tag collection is done
based on a predetermined algorithm that complies with
the ISO/IEC 18000-7 standard. Thus, this system has
two properties:

1) The probability that a message can be delivered
successfully within i slots is 1− (

n−1
n

)i.
2) If the collection process is long enough, eventually

any message can be delivered successfully.
This communication protocol can be modeled as a

DTMC with four states: s0 (start), s1 (try), s2 (lost)
and s3 (delivered)[31], as shown in Fig.4.

In the start state, the message is generated. The
next state is always the state try and thus the probabi-
lity from the start state to try state is 1. The probabi-
lity of losing a message is α. Thus in the case of losing
a message, the system will move to the lost state with
probability α. Whereas, it moves to the delivered state
with probability β = 1−α in case of a successful trans-
mission. Hence, the probability that a message can be
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Fig.4. DTMC model of the AMQM protocol.

delivered successfully is β, which equals to 1−α. Once
a message is delivered successfully, the system moves
to the start state for getting ready to identify the other
tags in next time slot. When the collection process
ends, the system falls to sleep mode in order to mini-
mize power consumption. The state transition proba-
bility matrix, corresponding to the Markov chain given
in Fig.4, is as follows:

P =




0 1 0 0
0 0 1− 1/n 1/n
0 1 0 0
1 0 0 0


 , I =




1
0
0
0


 . (14)

Generally, the possible path of delivering a message
successfully can be expressed as:

π = (start, try, (lost, try)k
,delivered).

Here, k represents the number of iterations re-
quired for a successful message transmission. We use
Pr(¦delivered i) to represent the probability of delive-
ring a message within i trials. Then the probability
of reaching state s3 is given by the following equation
where n represents the number of tags.

Pr(¦delivered i) =
i−1∑

k=0

αkβ = 1−
(n− 1

n

)i

. (15)

As we know, if the collection process is long enough,
that is i tends to +∞, then finally the message al-
ways can be delivered successfully. So the probability
of delivering a message successfully in the future is

Pr(¦delivered) =
∞∑

k=0

αkβ =
β

1− α

=

1
n

1− n− 1
n

= 1. (16)

As mentioned before, the probability of reaching
the delivered state depends on the tag collection al-
gorithms, for example, in [31], an improved algorithm

is presented for fast tag collection. Thus, (15) and (16)
play a vital role in assessing the performance of a tag
collection algorithm. In this paper, we formally verify
these equations and our results can in turn be used to
formally reason about the effectiveness of a tag collec-
tion algorithm.

Based on the initial distribution and transition
probability matrix, this Markov chain corresponding to
the AMQM protocol model can be formalized as:

Definition 7 (AMQM Protocol Model).

` ∀ X x n.
AMQM MODEL X x n

= Time homo mc X 4 x [1; 0; 0; 0]
[0; 1; 0; 0;
0; 0; 1 - 1 / n; 1 / n;
0; 1; 0; 0;
1; 0; 0; 0]).

Here, X represents a stochastic process, and variable
x represents a function providing the state with a given
index and n represents the number of tags that are sent
randomly. The sole condition in this model constrains
X to be a time-homogeneous Markov chain with four
states. The initial distribution is expressed as a list [1;
0; 0; 0] and the transition probability matrix is also
shown as a list with row-major order, corresponding to
(14).

Now, the two properties presented in (15) and (16)
can be verified as:

Theorem 14 (Probability of Reaching Delivered
State in AMQM Protocol Model).

` ∀ X x n i.
(AMQM MODEL X x n) ∧ (n 6= 0) ⇒∑i−1

k=0P({s|FST (X (2 + k * 2) s) = x3}∩
(
⋂k−1

m=0({s|FST (X (3 + m * 2) s)=x1}
∩ {s|FST (X (2 + m * 2) s)=x2}) ∩
{s|FST (X 1 s) = x1} ∩
{s|FST (X 0 s) = x0})

= 1 - (n−1
n )i.

Theorem 15 (Reachability Probability of AMQM
Protocol).

` ∀ X x n.
(AMQM MODEL X x n) ∧ (n 6= 0) ⇒
lim

i→∞
(
∑i−1

k=0P({s|FST (X (2+k*2) s)=x3}∩
⋂k−1

m=0({s|FST (X (3+m*2) s)=x1}∩
{s|FST (X (2+m*2) s)=x2})∩
{s|FST (X 1 s) = x1}∩
{s|FST (X 0 s) = x0}) = 1.
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Theorem 14 corresponds to (15), in which i refers to
the number of trials required for successfully delivering
n tags. The condition n 6= 0 means that the system will
not be waken up if no tag is detected. The performance
of a tag collection algorithm can be evaluated by this
probability.

Theorem 15 verifies that the probability of reaching
the delivered state in infinite trials is 1. That is to say,
if the tag collection process is long enough, at last all
the tags generated at start state will be received by the
reader successfully.

In [32], the PRISM model checker has been used
to analyze the AMQM protocol described above. To
verify its correctness, the property expressed in Theo-
rem 15 was verified from the point of view of reach-
ing a good state in [32]. The verification of this pro-
perty is based on solving a group of linear equations
instead of verifying a Probabilistic Computation Tree
Logic (PCTL) expression mainly because this property
involves an infinite summation, which is impossible to
express in PCTL. Similarly, the collision probabilities,
corresponding to (15), have been verified for some spe-
cial cases using iterative algorithms. Due to the inhe-
rent nature of numerical methods based analysis, these
analyses cannot be termed accurate despite consuming
enormous computing resources. Moreover, these results
are not generic like the ones reported in Theorem 14 of
our paper, which means that the complete analysis has
to be redone in case the information about number of
tags or time slots changes. On the other hand, the
proposed theorem proving based approach allows us to
formally reason about the generic expressions of two of
the most important characteristics of the AMQM pro-
tocol, namely, probability of reaching delivered state
in AMQM protocol model and reachability probability
of AMQM protocol, and the results exactly match the
results obtained via paper-and-pencil proof methods.

7 Conclusions

Markov chains, which are stochastic processes with
memoryless property, are widely applied to model and
analyze a large number of engineering and scientific
problems. This paper presents a formalization of time-
homogeneous Markov chains with finite state space in
a higher-order-logic theorem prover. In particular, we
presented a formal definition of DTMC and formally ve-
rify some of its classical properties, such as joint proba-
bilities, absolute probabilities and stationary probabili-
ties, using the HOL theorem prover. This work facili-
tates the formal analysis of Markov chains and pro-
vides the foundations for formalizing more advanced
concepts of Markov chain theory, like classified Markov
chains. Due to the inherent soundness of the pro-

posed approach, it is guaranteed to provide exact an-
swers, which is a very useful feature while analyzing the
Markovian models associated with safety or mission-
critical systems. In order to illustrate the usefulness of
the proposed approach, we analyzed the n-step tran-
sition probabilities of a binary communication channel
and the probability of reaching some special state in
the AMQM protocol. Our results exactly match the
corresponding paper-and-pencil based analysis, which
ascertains the precise nature of the proposed approach.

The presented work opens the door to a new and
very promising research direction, i.e., integrating HOL
theorem proving in the domain of analyzing Markov
chain based system models. We are currently work-
ing on extending the set of formally verified properties
regarding DTMCs and extending our work to time-
inhomogeneous discrete-time Markov chains, which will
enable us to target a wider set of systems. We also plan
to build upon the formalization of continuous random
variables[19] and statistical properties[19-20] to formalize
continuous-time Markov chains to be able to formally
reason about statistical characteristics of a wider range
of Markovian models.
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