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Abstract

We present a framework for the formal verification of abstract state machine (ASM) designs using the multiway deci-
sion graphs (MDG) tool. ASM is a state based language for describing transition systems. MDG provides symbolic rep-
resentation of transition systems with support of abstract sorts and functions. We implemented a transformation tool that
automatically generates MDG models from ASM specifications. Then formal verification techniques provided by the
MDG tool, such as model checking or equivalence checking, can be applied on the generated models. We illustrate this
work with the case study of an ATM switch controller, in which behavior and structure were specified in ASM and, using
our ASM-MDG facility, are successfully verified with the MDG tool.
� 2007 Elsevier B.V. All rights reserved.
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1. Introduction

With the increasing reliance on digital systems,
errors in their design can cause failures, resulting
in the loss of time, money, and a long design cycle.
Large amounts of effort are required to correct an
error, especially when the error is discovered late
in the design process. For these reasons, we need
approaches that enable us to discover errors and
validate designs as early as possible. Convention-
ally, simulation has been the main debugging tech-
nique. However, due to the increasing complexity
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of digital VLSI systems, it is becoming impossible
to simulate large designs adequately. Therefore,
there has been a recent surge of interest in formal
verification and tool support for this task, such as
theorem proving, combinational and sequential
equivalence checking, and in particular model
checking [18].

Abstract state machines (ASM) [15] is a formal
specification method for software and hardware sys-
tems that has become successful for specifying and
verifying complex systems [5]. The formalism is used
as a modeling language in a variety of domains as it
has been used both in academic and industry con-
texts [5,16]. Multiway decision graphs (MDGs) [8]
are decision diagrams based on abstract representa-
tion of data and are used for modeling hardware
systems in first place. MDGs subsume and extend
.
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traditional ROBDDs (reduced ordered binary deci-
sion diagrams) [6] by abstract data sorts and unin-
terpreted function symbols.

This paper presents a tool to interface the ASM
Workbench [9] with the MDG applications in order
to enable the formal verification of ASM descrip-
tions. We chose to interface ASM with the MDG
tool for three reasons: first, both notions, ASM
and MDGs, are closely related to each other since
they are both based on a subset of many-sorted first
order logic. Second, MDGs as a data structure for
representing transition systems provide a powerful
means for abstraction that fit perfectly with those
of ASMs. Both notations support the use of
abstract types and uninterpreted functions. This
allows the user to model and to verify large or
potentially infinite models. Finally, providing the
MDG tool with a high-level modeling language,
namely ASM, would allow MDG users to model a
wide range of applications in a more elegant and
succinct manner [12].

For behavioral models, we develop the ASM-
MDG interface in two steps: in the first step, the
ASM model is transformed into a flat, simple tran-
sition system, called the intermediate language

(ASM-IL) [30]. The second step provides a transfor-
mation from ASM-IL into the syntax of the input
language of the MDG tool, MDG-HDL. For struc-
tural models we implemented a syntax transforma-
tion interface directly from ASM to MDG-HDL
where the ASM model is restricted to the MDG-
HDL library components. This is proved to be more
efficient than translating via ASM-IL, which would
provide a very large model. We have applied the
ASM-MDG interface to the Fairisle ATM switch
[20] as a case study, where we conducted MDG
model checking on the generated MDG-HDL mod-
els. We succeeded in model checking several proper-
ties on the ATM switch controller.

Interfacing ASM and MDG has been already
introduced in [30]. This work is closely related to
ours and parts of the results have been re-used here.
However, the overall aim of [30] has been to map
ASM models directly onto MDG data structures,
without utilizing the input notation MDG-HDL.
As a consequence, the interface is not providing
the user with the facilities of the MDG tool as a
black-box verification tool since the tool is only
working on MDG-HDL models. The work in [30]
also provided an interface from ASM models to
the SMV model checker [23] (using the SMV input
language). In contrast to SMV, the MDG tool pro-
vides a useful means for representing abstract mod-
els containing uninterpreted functions, where SMV
supports neither abstract data types nor uninter-
preted functions. This allows model checking on
an abstract level at which the state explosion prob-
lem can in some cases be avoided. This paper
extends our work presented in [12,13] by applying
the methodology on a real application, which is,
the Fairisle ATM switch. The Fairisle ATM switch
is a major case study compared to the applications
provided in [12,13]. It posed several experimental
challenges and much space about it is devoted in
this paper.

The rest of the paper is organized as follows. Sec-
tion 2 provides related work to ours. In Section 3,
we present the description of ASM and MDG. Sec-
tion 4 presents our ASM-MDG interface. Section 5
illustrates the efficiency our approach by applying
the interface on the case study of the Fairisle
ATM switch. Finally, Section 6 concludes the paper
with an outlook to future work.

2. Related work

Related work on the verification of ASM models
include the work of Spielmann [28], who investi-
gated the complexity of verifying a class of restricted
abstract state machine programs automatically.
Also in the work on real-time systems by Beauquier
and Slissenko [3], the verification problem is dis-
cussed for ASMs. These results are complemented
by our work since they remain in theory and neither
of the work above provides actual tool support for
the verification task.

Gargantini et al. [11] presented a framework for
automatic translation from ASM to PVS which is
a theorem prover based on higher-order logic [25].
They developed a set of PVS theories to define types
and functions modeling ASM universes and rules. A
set of PVS strategies is provided in order to simplify
the proof conduction. In [26], Schellhorn defined a
generic proof for the correctness of ASM refine-
ment. The author provided an embedding of ASM
into dynamic logic that allows formalizing proper-
ties of ASM, then developed a theory for the mod-
ularization of correctness proofs for ASM
refinements. The results are integrated into the
KIV (Karlsruhe interactive verifier) system.

Similar to the above two works, we are proposing
a framework to allow the verification of ASM mod-
els. We differ, however, through the fact that we
intend to apply automatic verification techniques,
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namely model checking and sequential equivalence
checking, rather than interactive theorem proving
such as in PVS. Furthermore, our approach is
founded on the use of the same natural level of
abstraction in both ASM and MDG. Finally, our
framework is targeted towards the modeling and
verification of hardware systems.

In [19], Kort et al. describe a hybrid formal hard-
ware verification tool linking MDG and the HOL
theorem prover [14] obtaining the advantages of
both verification paradigms. They provide an
embedding of the MDG input language in HOL,
implementing a linkage between HOL and MDG
and a series of HOL tactics that automate hierarchi-
cal verification. The MDG tool can be called from
HOL to perform verification of components that
are within its capabilities. Our work provides an
external interface to verify ASM designs, while this
work is based on using the MDG tool to verify sub-
gaols for the HOL theorem prover.

In [4], Börger and Stark provide a history and
survey of ASM research including ASM verifica-
tion, tool integration and linking ASM to verifica-
tion tools. From a more general perspective, the
work described by Shankar [27] and Katz and
Grumberg [17] are also related in that they provide
a tool framework comprising a general intermediate
language which allows one to interface a high-level
modeling language with a variety of tools.
3. Preliminaries

3.1. Abstract state machines

Abstract state machines (ASM) [15,16] is a spec-
ification method for software and hardware model-
ing. The system is modeled by means of states and
transition rules. The latter specify the behavior of
the system in terms of state changes which might
be guarded. The notation of ASM is efficient for
modeling a wide range of systems and algorithms
as the number of case studies demonstrates [16].

States are many-sorted first-order structures. A
structure is given with respect to a signature which
is a finite collection of function names, each of a
fixed arity. The given structure fixes the syntax by
naming sorts and functions. An algebra provides
domains (i.e., carrier sets) for the sorts and a suitable
symbol interpretation for the function symbols on
these domains, which assigns a meaning to the sig-
nature. Therefore, a state is defined as an algebra
of a given signature with domains and an interpreta-
tion for each function symbol.

ASM provides static functions, dynamic functions

and external functions. Static functions have a fixed
interpretation in each computation state and there-
fore, static functions never change their evaluation
during a run. They represent constants or primitive
operations of the system, such as combinational
logic blocks (in hardware specifications). Dynamic

functions change their interpretation during a run
as a result of the specified system’s behavior. Their
evaluation can be changed through the transitions
occurring in a computation step. They represent
the internal state of the system. The interpretation
of external functions is determined in each state by
the environment. Changes in external functions
which take place during a run are not controlled
by the system.

Variables and terms are used over the signature
as objects of the structure. A state transition into
the next state occurs when dynamic functions
change their evaluation. Locations and updates cap-
ture this notion.

A location of a state is a pair loc = (f,�a), where f is
a dynamic function symbol and �a is a tuple of ele-
ments in the domain of the function. The element
f(�a) at a state is the value of the location (f,�a) in that
state.

For changing values of locations the notion of an
update is used. An update of a state is a pair
a = (loc,val) where loc = (f,�a) is a location and val,
the update value, is a value in the function domain.
To fire an update at a state, the update value is set
to the new value of the location. As a consequence,
the overall dynamic function f is redefined to map
the location onto the new value.

Transition rules define the state transitions of an
ASM. While terms denote values, transition rules
denote update sets, which define the dynamic behav-
ior of an ASM. At each state all update sets are fired
simultaneously which causes a state change. All
locations that are not referred to in the update sets
remain unchanged. The ASM-SL is a specification
language developed for modeling in ASM [9].

3.2. Multiway decision graphs

Multiway decision graphs (MDGs) [8] have been
proposed as a solution to the state space explosion
problem of verification tools based on ROBDD
(reduced order binary decision diagrams) [6].
MDGs subsume ROBDDs, while accommodating
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abstract sorts and uninterpreted function symbols.
This significantly enhances the capability to verify
a broader range of systems than classical
ROBDD-based tools.

MDGs are based on a subset of many-sorted first
order logic, with a distinction between abstract and
concrete sorts (including the Boolean sort). Con-
crete sorts have an enumeration while abstract sorts
do not. The enumeration of a concrete sort is a set
of distinct constants of that sort. If a function is
of a concrete sort, while at least one of its domain
variables is abstract, then the function is referred
to as a cross-operator. The constants occurring in
the enumeration are referred to as individual con-

stants, and other constants as generic constants.
Concrete function symbols must have an explicit
definition; they can be eliminated and do not appear
in the MDG. Abstract function symbols and cross-
operators are uninterpreted.

Logic gates can be represented by MDGs simi-
larly to ROBDDs, because all inputs and outputs
are of Boolean type. Design descriptions at the
RTL involve the use of more complex functions
and data structures. For system descriptions the
MDG tool comes with a hardware description lan-
guage called MDG-HDL [32]. It allows the use of
abstract as well as concrete variables for represent-
ing data operations. A circuit can be described on
the structural level, as an implementation, or on
the behavioral level, as a specification. Often models
on both levels of abstraction are given and shown to
have equivalent behavior (e.g., by means of sequen-
tial equivalence checking). A structural description
is a collection of components connected by signals
that can be of abstract or concrete type. A behav-
ioural description (specification) is an MDG table,
which is similar to a truth table, but it allows first
order terms as entries in addition to concrete vari-
ables. Tables usually describe the transition, the
output relation, or the combinational functionality
of the system.

Based on MDGs, a tool set for the formal verifi-
cation of finite state systems (machines) has been
developed. It includes application procedures for
combinational and sequential equivalence checking
[8], invariant checking [8] and model checking [31].
The MDG tool has been used to verify a number
of non-trivial systems such as communication
switches and protocols [2,7,29,33–35]. In order to
verify designs with this tool, we first need to specify
the design in MDG-HDL in terms of a behavioral
and/or structural model. Moreover, an algebraic
specification is to be given to declare sorts, function
types, and generic constants that are used in the
MDG-HDL description. Rewrite rules that are
needed to interpret function symbols should be pro-
vided here as well. Like for ROBDDs, a symbol
order according to which the MDG is built should
be provided by the user. However, there are some
requirements on the node ordering of abstract vari-
ables and cross-operators (but not for concrete vari-
ables). This symbol order can affect critically the
size of the generated MDG.

4. ASM-MDG interface

To interface ASM and MDG we can benefit from
the fact that both formalisms have similar features.
Especially when modelling hardware systems, the
similarities in the way of modelling become appar-
ent. Both formalisms provide a powerful means to
model data issues using abstract types and uninter-

preted function symbols in order to fit larger models
into the validation and verification process. ASM
uses the notion of many-sorted first-order structures
to describe states of a system and adds transition
rules for modeling the system behavior during a
run. The MDG approach uses so-called ‘‘abstract
state machines’’ too in order to identify the system
that is to be analyzed. In ASM, we treat specific
sorts as abstract sorts and thus every function that
is applied to parameters of these sorts is either a
cross-term or an abstract function and has to be left
uninterpreted. MDG is able to handle these abstract
sorts, cross-terms, and uninterpreted functions since
they can be part of the graph structure as well as the
MDG-HDL syntax [32]. This interface will ulti-
mately allow the formal verification of ASM models
using the MDG tool. Fig. 1 shows an overview of
the expected ASM-MDG verification framework.

It consists of two complementary parts: the first
part generates MDG-HDL behavioral models from
ASM specifications, while the second part generates
MDG-HDL structural models. The two ASM mod-
els, one describing the behavior in terms of transi-
tion rules, the other describing the structure of the
design in terms of static functions, are separately
transformed into the corresponding MDG-HDL
models.

4.1. ASM-MDG interface using ASM-IL

In order to provide a generic interface for the
ASM-WB with different tools, ASM models are
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automatically translated into the intermediate lan-
guage ASM-IL as proposed in [30]. Based on
ASM-IL, we propose to built an interface to the
MDG tool. To transform an ASM model into an
ASM-IL model, all nested transition rules of the ori-
ginal ASM model are flattened and complex data
structures and functions are unfolded. Thus,
ASM-IL provides an interface language for repre-
senting state transitions in a very general way. It
can be readily transformed into the different input
languages when interfacing various tools. This gen-
erality, however, comes at the price of loosing struc-
tural information of the original ASM model.

Starting from the ASM-IL language, we built our
interface to the MDG tool as shown in Fig. 2.

In an ASM-IL representation each location is
associated with a set of guarded updates, each con-
sisting of a Boolean guard and an update value.
Locations are identified with state variables by map-
ping each location to a unique variable name.
Guards are mapped into simple Boolean terms.
Thus, an ASM model is represented by a set of
guarded updates in the form (loc, [guard, val]). This
set specifies for each location a set of guarded
updates. The new value of a location in the next
state will be the one for which the corresponding
guard is satisfied in the current state. If none of
the given guards evaluates to true in a state, the
value of the location remains unchanged in the next
state.

To transform ASM transition rules into an
ASM-IL representation as above, all nested rules
are flattened then mapped into simple guarded
updates using a simplification function. Each term
that occurs in an ASM rule is simplified until the
result contains only constants, locations and vari-
ables. Abstract functions and cross-operators are
left uninterpreted in ASM-IL. Only cross-operators
that match one of the standard relational operators
are mapped into a cross-term.

4.1.1. Transforming ASM-IL to MDG behavioral

models

To treat behavioral ASM-SL specifications, ASM
models are first translated into the ASM-IL as
shown in Fig. 3. The model is first parsed for syntax
check, ASM universes, functions, and transition
rules are collected. Then an analyzer generates the
ASM-IL representation. The behavior of the model
is described as a set of guards and updates for each
state variable (update location), the next state value
for each location is the corresponding value to the
first satisfied guard in the list. Otherwise, if there is
no guard satisfied, the location keeps its current state
value in the next state. From this ASM-IL model,
MDG-HDL behavioral descriptions are generated
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in terms of MDG tables. In addition, variable order
and algebraic specifications are produced.

For each location in the ASM model, we gener-
ate one table. The first row of the table contains
all variables in the model and any cross term or
function that occurs in the ASM-IL guarded update
expression of that location. The last element is the
location itself, it represents the variable in the next
state. Then we treat the list of (guard, value) pairs
one by one. An expression with one variable in
the guard is mapped into one row with all other
variables are set to the ‘‘don’t care’’ (‘‘*’’) symbol.
A conjunction is mapped into one row with each
variable or cross term assigned its value (vali), or
‘‘don’t care’’ if it does not occur in the expressions.
The result value becomes the entry of the last ele-
ment in the row, which gives the valuation of the
location. A disjunction is mapped into as many
rows as the number of variables and cross terms
in the expression. In each row, a value is assigned
to the corresponding variable, all others are ‘‘don’t
care’’ values. The last element of each of these rows
contains the value of the location as shown in Fig. 4.

4.1.2. Transforming ASM-IL to MDG structural

models

To transform an ASM-IL representation into
MDG-HDL structural code, we map locations,
guards and values into registers and signals. First,
for each location we create a state component in
MDG-HDL, represented as register. Each location
name is mapped into a signal that is connected to
the register’s output. The resulting value of the loca-
tion is mapped to a signal that is connected to the
register’s input. Transforming a whole model results
in a state machine (sequential circuit) in which the
number of state variables is equal to the number
of updated locations in the model.

Second, guards and values are transformed into
MDG-HDL components that are interconnected
with signals that evaluate to the next state value of
the location. Each pair (guard,value) is mapped into
a multiplexer where the guard is the control and the
value is one input. We connect these multiplexors
together in a hierarchical way as shown in Fig. 5.
The output of the cascade is connected to the input
of the state element representing the location. The
location is fed back into the last multiplexer in the
hierarchy to represent the case in which no guard
is satisfied and the value of the location remains
unchanged.

A guard is a Boolean ASM-IL expression. It might
contain concrete functions, uninterpreted functions,
or cross terms. Concrete functions can be default
Boolean operators or any other function. We map
these operators into MDG-HDL components that
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perform the same functionality. We apply the map-
ping function recursively to each guard expression –
creating the corresponding MDG-HDL components
until we get a constant value, or a variable.
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All default binary operators are mapped into
MDG-HDL logic gates. An equality expression
for a variable and the value true is simply mapped
into a signal with the variable name. Equality
expressions for a variable and the value false is
mapped into the corresponding negation MDG-
HDL component, not. Relational operators, as >,
>=, <, <=, etc., are mapped into MDG transform

components that can be viewed as uninterpreted.
All other cross terms, abstract functions, and unin-
terpreted functions are also mapped into transform.

Relational operators can be used with different
data sorts in ASM models, when they are used with
abstract data sorts, they are mapped into a cross-
operator. Operators which can be used with con-
crete data types other than Boolean, equal (=) and
not equal (!=), are mapped into tables. A table indi-
cates that the output signal of the table equals to
true (1) when var equals to val and false (0)
otherwise.

4.2. ASM-MDG syntactic transformation for

structural models

When an ASM model is translated into the
ASM-IL rules, all structured functions are flattened
into the primitive ones. The location-update pairs
are used to build the MDG-HDL structural model,
which is a set of components interconnected by
internal signals. The resulting MDG-HDL struc-
tural model becomes very large as only the prede-
fined basic MDG-HDL components are used.
Moreover, a large number of components results
in a large number of variables which makes it very
hard to generate a good variable order. As a conse-
quence, the transformation as introduced in Section
4.1.2 provides a potential bottleneck in our
approach.

To solve this problem, we provide for structural
designs a direct interface between ASM-SL and
MDG-HDL without using the intermediate repre-
sentation of ASM-IL. In order to keep this interface
simple and feasible, we implement it for a set of pre-
defined ASM functions without going into their
semantics. In other words, we define ASM static

functions that correspond to MDG-HDL primitive
components. We use these to built our ASM struc-
tural model, which then can be readily translated
into MDG-HDL structural model.

Fig. 6 shows the proposed ASM-MDG direct
interface for structural designs. In the first part,
ASM universes including all type declarations,
ASM functions including static, dynamic and exter-
nal functions, and transition rules that describe the
structure of the model are collected and then used to
construct design components, variables, functions
and sorts that represent the design. Finally,
MDG-HDL models are generated based on the
information collected in the previous step. Algebraic
specifications are produced based on the generic
constants, concrete sorts, abstract sorts, and unin-
terpreted functions. Variable ordering in turn is gen-
erated according to the relationship between
variables and functions in the design such that the
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order obeys the restrictions imposed by the MDG
tool [32]. It includes all variables and internal sig-
nals used in the model.

The generated MDG-HDL structural model is a
circuit description given as a netlist of components
interconnected with signals. Besides uninterpreted
functions and cross-operators, the current imple-
mentation of the tool supports the set of ASM func-
tions that can be mapped directly to MDG-HDL
library components [32]. Fig. 7 shows a structural
modeling of an ASM dynamic function (a), its map-
ping into MDG-HDL components (b), and the gen-
erated MDG-HDL components (c), where f1, . . . , fn

can be any of the MDG-HDL library functions, an
uninterpreted function or a cross operator, var is the
state variable, Sij are internal signals, and finally x
and y are ASM variables. All functions are declared
as function((inputs),output). This structure is recur-
sively treated until a predefined function is found,
which is syntactically mapped into the correspond-
ing MDH-HDL library components.

4.3. Algebraic specifications

We have to declare all data sorts and functions
before we use them in our MDG-HDL models. In
the MDG tool, there is a default abstract sort wordn

(for n-bit words) and a default concrete sort bool
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1 The full specification models in ASM as well as the generated
MDG-HDL models can be obtained from http://hvg.ece.concor-
dia.ca/Tools/ASMMDG/ITC/
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with the enumeration of [0, 1]. Any other abstract or
concrete sorts must be declared explicitly. An ASM-
IL representation preserves the enumeration for
each variable. Based on this, we declare a concrete
sort for each different enumeration. Abstract sorts
are declared according to the distinguished sorts
used in the ASM-SL model.

All functions and cross terms are also declared in
the algebraic specification in the same way. This
includes uninterpreted functions, cross terms and
relational operators. We declare any function that
occurs in the ASM-IL expressions in the algebraic
specification according to its arguments and target
sorts. We find its target sort from the domain of
the expression where it occurs.

4.4. Variable order

MDGs have some restrictions on the order of
abstract variables and cross-operators [32]. In order
to obey these restrictions, we explore all functions
and cross-operators in the ASM-IL expressions
and order the variables according to the dependen-
cies between abstract variables themselves and also
between abstract variables and cross terms or func-
tions. If a variable var1 depends on another variable
(or function) var2, then var2 is sorted above var2 in
the order file. Also if a cross term f depends on a
variable var1, then var1 should appear above f.
Fig. 8 depicts these dependencies.
For the direct syntactic mapping of structural
models, we build the variable order in the same
way as the design structure is constructed. Since
dependent variables or signals come last while
building the components, we just put them on bot-
tom of the variable order (e.g., signal S1 comes
below S12 in Fig. 7).

We illustrate the transformation on a case study
of an Island Tunnel controller [10], where we
provide ASM models for the specification and
implementation of the controller. Using our ASM-
MDG tool, we generated the corresponding
MDG-HDL models for both behavioral and struc-
tural models for each block, including: circuit
description, algebraic specifications, and variable
order1 [13].
5. Case study: Fairisle ATM port controller

In this section, we present our results of formally
verifying an ATM (asynchronous transfer mode)
switch [20] using the ASM-MDG tool proposed in
this paper. By this example, we show how to use
model checking to verify a design modeled in
ASM. The device we investigated is a part of a net-
work which carries real user data: the Fairisle ATM
network, designed and in use at the Computer Lab-
oratory of the University of Cambridge. The switch
consists of a Fairisle 4 by 4 switch fabric and four
Fairisle ATM port controllers. It performs the
actual switching of data cells and forms the heart
of the ATM Fairisle communication network.
Fig. 9 shows the Fairisle ATM switch ports.

The Fairisle ATM switch consists mainly of a
port controller and a switching fabric. The port con-
troller does only VCI (virtual channel identifier)
mapping and FIFO (first in first out) queuing. In
the original design, a Xilinx chip controls all its
functions, and it uses triple ported DRAMs to look
up the new VCI. It also uses a FIFO to do speed

http://hvg.ece.concordia.ca/Tools/ASMMDG/ITC/
http://hvg.ece.concordia.ca/Tools/ASMMDG/ITC/


Fig. 9. The Failisle ATM switch.
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matching with the transmission board. As shown in
Fig. 9, the port controller is connected to the Fairi-
sle ATM switch fabric, transmits ATM cells to the
fabric and receives acknowledgment signals from
it. Both the port controller and the switch fabric
use the same framestart signal to synchronize the
overall behavior [22].

The port controller consists of an input port con-
troller and an output port controller. It is able to
transmit one cell every 128 clock cycles. With a
clock frequency of 20 MHz, the maximum bit rate
is 80 Mbps. There are no service classification, no
scheduling or traffic shaping, no monitoring and
policing in this port controller, but we can give a
priority to an ATM cell, and this is done by pre-
Fig. 10. Format of received
loading the priority bit into the memory. The prior-
ity bit will be used for arbitration in the switch
fabric.

Fig. 10 shows the format of an ATM cell.
Received cells have 52 bytes: 48 data bytes, 2 VCI
bytes and 2 FAS (frame assignment sequence) bytes.
Transmitted cells have 54 bytes: 48 data bytes, 1
fabric routing byte (FRB), 1 Port controller Rout-
ing Byte (PRB), 2 VCI bytes and 2 FAS bytes. Since
each cell consumes 64 bytes memory, the memory,
which is 256k · 8 bit, can contain 4096 ATM cells.
This means that the port controller supports 4096
connections. To prevent two cells with the same
VCI arriving at the memory consecutively, only
one cell is allowed in the memory [22].
and transmitted cells.
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5.1. Behavior of the Fairisle port controller

The Fairisle port controller consists of an input
port controller and an output port controller. The
input port controller receives ATM cells from the
transmission board, and writes them into the mem-
ory at an address based on the value of the VCI. In
addition, the input port controller reads ATM cells
out of the memory and transmits them into the
switch fabric. If it receives a positive acknowledge-
ment signal, the input port controller will continue
transmitting data; otherwise, it will stop sending
data. The output port controller receives data cells
from the fabric, and sends acknowledgment signals
back to the fabric. If the output port controller
receives a data cell, it gives a positive acknowledg-
ment signal; otherwise, it sends a negative
acknowledgment.

The state transition of the input port controller
with 8 states (ip_idle, rx_wait, rx_store1, rx_stor-

e2, rx_data, tx_addr, tx_first_5 and tx_data) is
shown in Fig. 11, where conditions numbered from
1 to 15 are guards for the transition from one state
to another. Basically, rx_idle is the idle state;
rx_wait means the state of waiting for the start of
the cell signal (rx_ip_soc) to be asserted; rx_store1

and rx_store2 indicate the states that the input port
Fig. 11. State transition diagram o
controller stores the first and second VCI byte,
respectively; rx_data is the state of data transfer
from the transmission board to the input port con-
troller; tx_addr is the state of setting the memory
address; tx_first_5 means the state of transmitting
the first 5 bytes of data to the fabric; tx_data indi-
cates the state of transmitting the remaining data
into the fabric [22].
5.2. Structure of the Fairisle port controller

Fig. 12 shows the structure of the port controller.
It consists of an input port controller and an output
port controller. The input port controller processes
the signals from the transmission board, the mem-
ory and the fabric. The output port controller inter-
faces with the signals from the fabric and the output
FIFO.

The input port controller consists of an ip control-

ler, an ip cell counter and an address accumulator.
The ip controller, which coordinates the ip cell coun-

ter and the address accumulator, controls the data
reception, transmission, and memory read and write.
The ip cell count and address accumulator are up
counters that increment by 1 per data byte transfer.
In Fig. 12, the signals ip_mem_data, ip_mem_wr_en,
ip_mem_addr_r, ip_mem_addr_c, ip_mem_rd_req
f the ATM switch controller.



Fig. 12. Structure of the port controller.
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and mem_ip_data are the interface signals between
the input port controller and the cell memory. The
signals ip_mem_data and mem_ip_data mean the
data outputs to the cell memory and the data inputs
from the cell memory, respectively. Both signals
have an 8-bit bus width. The signals ip_mem_wr_en

and ip_mem_rd_req are the memory write enable
and memory read request signals, respectively. The
memory row and column addresses are provided
by ip_mem_addr_r and ip_mem_addr_c, respectively.
The rx_ip_data is an 8-bit data bus which is the data
input from the transmission board. The signals
rx_rd_req and rx_ip_soc indicate cell availability in
the transmission board and the start of a cell, respec-
tively. The rx_ip_soc signal corresponds to the
framestart mentioned above. The signal ip_rx_wr_en

demonstrates whether the input port controller is
able to accept a cell or not. The ip_fab_data is an
8-bit data bus which transfers data from the input
port controller to the fabric. The fab_ip_ack is the
acknowledgment signal which indicates whether
the current cell succeeded the transfer to the destined
switch fabric.

The output port controller consists of an op con-

troller and an op cell counter. The op controller gen-
erates the acknowledgment and SOC signals, and
controls the op cell counter. The op cell counter,
which is very similar to the ip cell counter, incre-
ments by one per data transfer. In Fig. 12, op_
fab_ack and fab_op_data are the signals in the
interface between the output port controller and
the fabric. fab_op_data is an 8-bit data bus from
the fabric to the output port controller. fab_op_ack

is acknowledgment signal generated by the output
port controller. In addition, there are op_fifo_data,
op_fifo_wr_en and op_fifo_soc signals between the
output port controller and the output FIFO. The
op_fifo_data is an 8-bit data path from the output
port controller to the FIFO. The op_fifo_wr_en is
the write enable signal for the output FIFO. The
signal op_fifo_soc indicates the start of a cell, and
it is asserted before the first byte data transfer.
The switch controller has, in addition, an external
reset signal (npc_rst_n).

There are two control signals (ctr_id and ctr_sz)
and one signal (ip_empty) inside the port controller.
ctr_id is an input disable register. When ctr_id

asserts, all the inputs are disable. During the period
of ctr_id = 1, the microprocessor could pre-load the
new VCIs, FRB and PRB into the memory. The
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MDG-HDL models can be obtained from http://hvg.ece.concor-
dia.ca/Tools/ASMMDG/ATM/
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register ctr_sz is for debugging purpose. When
ctr_sz is high, the memory address of the incoming
cell is not based on the old VCI values, instead,
the row address of the incoming cell is 0 and the col-
umn address is from 0 to 63. The control signal
ip_empty is used to indicate the status of the port
controller. When it is asserted, the input port con-
troller can accept a cell from the transmission
board; otherwise, a cell can be transmitted into the
fabric from the input port controller [22].

5.3. Modeling in ASM

We first modeled the behavioral state machine of
the port controller in ASM. The bytes counter can
be taken in ASM as a parameter of an abstract type
that represents any natural number. For illustration
purposes. Fig. 13 shows parts the ASM code for the
state machine which describes the behavior of the
port controller.

We first define a concrete domain CS_SORT,
that represents the state of the controller, with all
the enumerated state values. Then we define an
abstract data type and an abstract function
ip_cell_cnt that represents the bytes counter. We
use the dynamic function controllerState of sort
CS_SORT to represent the state of the controller.
Then we define the inputs of the controller as exter-
nal functions. At this point, we can describe the
behavior of the controller using transitions, where
each transition is guarded with a set of conditions
as shown above.

Next, we modeled in ASM the structural model
of the Fairisle port controller. This model represents
an implementation model, with abstraction applied
on the data transmission, since we consider trans-
mitting one byte similar to transmitting the rest of
data as discussed above. For illustration purposes,
Fig. 14 shows parts of the ASM code for the imple-
mentation of the state transition system of the
controller.

In the ATM switch, 50 bytes data are transferred
from transmission board to the input port control-
ler. Because a byte of data transfer has the same
behavior as the data transfer of other 49 bytes, we
could reduce the number of data transfers in the
verification. In the port controller, the number of
data transfer is controlled by counters, so we
abstract the scale of the counter to simplify our ver-
ification. In the port controller, the acknowledge
signal should be available 5 clock cycles after the
input port controller sends the first byte of data to
the fabric, so we could apply 12 bytes data in a cell
which includes 2 bytes VCIs, 2 bytes FAS and 8
bytes data. Accordingly, the counter size should be
reduced by 40 (52–12). Then we have to change
our environment machine from 64 state to 15 states
(10 states for data transfers and 5 states for
handshaking).

We also implemented the counter as a state tran-
sition system in ASM as shown in Fig. 15. Note in
here that we use the abstract values one, zero, and
max to represent the abstract counter. Similarly,
the uninterpreted function decr is used to represent
the operation of decrementing the counter, and is
defined in ASM as static function decr == MAP_
TO_FUN {abstract! abstract}.

5.4. MDG verification

Using our ASM-MDG tool, we generated the
corresponding MDG-HDL models for both behav-
ioral and structural models for each block, includ-
ing: circuit description, algebraic specifications,
and variable order.2

Once the generated MDG-HDL structural and
behavioral models were compiled successfully with
the MDG tool, we applied model checking on the
generated models. A set of properties were specified
in LMDG for this purpose. The Fairisle port control-
ler appends the new VCIs, FRB and PRB onto
ATM cells and transfers them into the fabric, so
its major properties could include registers reset,
memory addressing, cell counting, data and
acknowledgment transfer. Accordingly, we defined
the following six major properties, including safety
and liveness properties. Then we described them
formally in LMDG, where the symbols AG means
‘‘for all paths, in all states’’, F means ‘‘eventually/in

the future’’, ‘‘&’’ is the logical AND, and ‘‘!’’ is
the logical NOT.

Property 1. The port controller will be reset prop-
erly when either the reset signal (npc_rst_n) is zero
or the port controller input disable signal (ctr_id) is
asserted.

AG(((npc_rst_n = 0) or (ctl_id = 1))

=> (x = 0 and y = 0 and z = 0))

http://hvg.ece.concordia.ca/Tools/ASMMDG/ATM/
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Fig. 13. ASM code for the port controller behavioral state machine.
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Property 2. When the input port controller can
accept a cell, the transmission board has a cell to
send, and the input port controller is in debugging
state (ctr_sz = 1), then the cell will be transferred
to the input port controller and stored in the mem-
ory at the right location.

AG(((x = 1) and (y = 0) and (z = 1) and

(rx_rd_req = 1) and (ctr_sz = 1))

=> (ip_mem_data = rx_ip_data))
Property 3. When the input port controller can
accept a cell, the transmission board has a cell to
send, and the input port controller is in the normal
operation state (ctr_sz = 0), then the cell will be
transferred to the input port controller and stored
in the memory at the right location.

AG(((x = 1) and (y = 0) and (z = 1) and

(rx_rd_req = 1) and (ctr_sz = 0))

=> (ip_mem_data = rx_ip_data))
Property 4. While the input port controller is
receiving data, if the cell counter is equal to ‘‘1’’,
it will go to the initial state. In order to model
this property, we have to use the cross-operator
iseq(ip_cell_cnt,one) which only returns true if the
counter has the abstract value one.



Fig. 14. ASM code for the main state implementation.
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AG((iseq(ip_cell_cnt, one_))
and (x = 1 and y = 0 and z = 0) =>
(x = 0 and y = 0 and z = 0))

Property 5. The memory cannot be read and writ-
ten at the same time.
AG(!((ip_mem_rd_req = 1)

and (ip_mem_wr_en = 1)))
Property 6. The output port controller will send an
acknowledgment signal after it detects an incoming
cell.
AG((fab_op_data_0 = 1)

=> (op_fab_ack = 1))
All properties were verified successfully. The ver-
ification results for the set of properties on the Fairi-



Table 2
VIS model checking results

Property CPU time (s) Memory (MB) BDD nodes

Property 1 52 92 12,644
Property 2 198 198 284,563
Property 3 109 156 293,354
Property 4 378 201 304,731
Property 5 34 77 153,980
Property 6 76 89 197,091

Fig. 15. ASM code for the abstract counter in the port controller.
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sle ATM switch controller are given in Table 1. The
table indicates the CPU time in seconds, the mem-
ory usage in MB, and the number of generated
MDG nodes. We clearly notice that the CPU time,
memory usage and MDG nodes heavily depend on
the property under verification. Thanks to the
abstraction, we have a smaller number of MDG
nodes than the number of BDD nodes generated
by the VIS tool for the same properties, in addition
to less memory usage and less CPU time (see Table
2).

This ATM switch has been verified previously
using different approaches. Tahar et al. [29] used
the MDG tool to model the switch in MDG-HDL
Table 1
MDG model checking results

Property CPU time (s) Memory (MB) MDG nodes

Property 1 35 8 12,644
Property 2 47 11 15,678
Property 3 132 17 22,462
Property 4 82 13 18,551
Property 5 22 7 9832
Property 6 10 4 7225
and verified several properties for this switch. In
another work, Lu et al. [21,22] used the VIS model
checker in order to verify a Verilog implementation
of the switch, and they succeeded in verifying sev-
eral properties. Table 2 shows the verification
results they achieved. The fourth property in our
experiments is different from the one shown in [21]
in order to illustrate the use of cross-operators
and abstract data types in the modeling of the prop-
erty. We also model the switch on a higher level of
abstraction and used an automatic translation in
order to generate an MDG model that could be ver-
ified in the MDG tool. In addition, we achieved bet-
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ter performance in terms of CPU time, memory
consumed, and complexity of the graph built by
the verification tool, this is because the VIS tool is
based on BDDs and therefore has no support for
abstract data types. The abstraction we applied on
the model, which is supported by ASM modeling
and MDG verification, cannot be supported in
other verification tools such as VIS.

In our previous work [13], we applied the ASM–
MDG interface on the Island Tunnel Controller as a
case study. We conducted MDG model checking
and equivalence checking on the generated MDG–
HDL models where we verified several properties
on the design, and also verified that the implementa-
tion is equivalent to its specifications.3
6. Conclusion

We introduced a formal verification framework
interfacing ASMs (abstract state machines) to the
MDG (multiway decision graph) tool. this new
interface, called ‘‘ASM-MDG’’, enables ASM users
to exploit the fully automated verification tech-
niques provided by the MDG tool, namely equiva-
lence checking and model checking. On the other
hand, MDG users will be provided with a high-level
modeling language, namely ASM, which as MDG,
supports abstract data sorts and uninterpreted func-
tions. The interface automatically transforms mod-
els in the ASM specification language, ASM-SL,
into descriptions in the MDG hardware description
language, MDG-HDL. This transformation is done
in two ways. Firstly, we translate ASM-SL behav-
ioral and structural models into an intermediate lan-
guage, ASM-IL, and then transform this
intermediate model into the appropriate MDG-
HDL behavioral code. Secondly, we translate
ASM-SL structural models directly into MDG-
HDL netlist components using syntactic analysis
and transformation. Besides the MDG-HDL code,
the interface produces a static variable ordering that
satisfies the restrictions given by the MDG
approach, as well as the algebraic specification nec-
essary for the checking procedures, such as sort and
function definitions.

We have applied the ASM-MDG interface on the
Fairisle ATM switch controller as a larger case
3 The full specification models in ASM as well as the generated
MDG-HDL models can be obtained from http://hvg.ece.concor-
dia.ca/Tools/ASMMDG/ITC/
study. We conducted MDG model checking on
the generated MDG-HDL models and succeeded
in verifying several properties on the switch control-
ler. Although the case study of the Fairisle ATM
switch Controller is a hardware example and could
have also been modeled directly in MDG-HDL, the
benefits of extending the MDG tool with a general
high-level modeling language like ASM are easy to
realize once the user focuses on behavioral prob-
lems, which can be modeled on different levels of
abstraction in the same formalism (namely ASM).
Furthermore, the case study clearly demonstrates
the benefits of the MDG tool over ordinary
ROBDD-based tools, like VIS, namely, parameter-
ized models can be checked without instantiating
the parameters. In the case of the ATM switch Con-
troller, the model could be checked for an arbitrary
number of transferred bytes over the switch.

As a future work, we think that linking our work
to the MDG-HOL [19] hybrid tool will further
enable theorem proving for ASM models. Then,
different verification approaches can be applied on
one model: equivalence checking, model checking
and theorem proving. This is not yet available in
any verification framework for ASMs. The idea is
basically to divide the verification process into
tasks, that can be scheduled semi-automatically
according to the most suitable verification
approach. Interfacing new ASM languages, such
as AsmL [24], to the MDG tool can be interesting
and implemented following the same approach.
Also properties can be specified in a standard lan-
guage such as PSL [1] instead of the limited syntax
of the LMDG.
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