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Abstract Image processing and computer vision applications are usually complex in
terms of the large amount of processed data and high computation loads. To cope with
this, optimization techniques and high-performance hardware platforms are required.
Since these applications present many opportunities for parallelism, heterogeneous
parallel platforms (HPPs) are an interesting choice, offering a good balance between
high computation capabilities and flexibility to handle a large spectrum of application
features. Applications such as image filtering and edge detection make extensive use
of finite difference method to solve partial derivative equations, which computational
pattern is called stencil computation. Stencil computations are known as memory-
bound, so that reducing high-latency memory access becomes the biggest challenge
to reach high performance. In this paper, we present our methodology as a basis of
a performance tuning framework to optimize the implementation of multiple sten-
cil computations on HPPs. Results show that our approach outperforms SDK-based
methodologies, improving performance. Moreover, using the proposed approach, the
developer has the ability of investigating efficiently the performance of the stencil
computations before implementing actual code on the target platforms.
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1 Introduction

Modern applications, such as image processing and computer vision, are becoming
more andmore complex [9]. This complexity implies a large amount of processed data
and high computation loads, under very tight constraints, such as real-time execution
and power consumption awareness. To cope with this, optimization techniques and
high-performance hardware platforms are required.

Parallelizing computationally intensive imaging tasks is not a new topic per se [1–4].
However, considering the domains of image processing and computer vision, it is safe
to say that they present many opportunities for parallelism that can be exploited by par-
allel platforms. These platforms may be found in high-performance computers (HPC)
or embedded computers. Recently, both HPC and embedded computers are moving
toward a heterogeneous computing. They are employing both central processing units
(CPUs) and graphics processing units (GPUs) to achieve highest performance. For
instance, the supercomputer code-named Titan uses almost 300,000 CPU cores and
up to 18,000 GPU cards for processing purposes [6].

Thus, heterogeneous parallel platforms (HPPs) are an interesting choice that can
respect the above-mentioned constraints. They offer a good balance between high
computation capabilities and flexibility to handle large spectrum of applications fea-
tures [16]. Most of these platforms adopt a host–device model and, usually, the host
is a cache-based heavy multi-core CPU while the device is essentially a scratchpad
memory-based light many-core CPU or GPU.

Under the domain of image processing a broad spectrum of computation can be
done including pattern recognition for several purposes [13,17]. Still, applications
such as image filtering and edge detection make extensive use of the finite difference
method to solve partial derivative equations (PDEs). The computational pattern which
expresses the finite difference method is called stencil computation [8]. In stencil
computation, each point of the computed space is updated depending on the points at
its neighborhood, which is called stencil. Figure 1 depicts a representation of a stencil
(updated element, in the figure) surrounded by its neighbors (neighbor elements, in
the figure).

In order to implement computer vision and image processing applications on HPPs,
a number of parameters have to be considered. Stencil computations are known as
memory-bound computation, so that reducing high-latency memory access becomes
the biggest challenge to reach high performance.

To overcome this issue, it is needed to ensure better data locality through the efficient
use of low-latency scratchpad shared memory [11]. However, this is not obvious for
the developer, especially due to the existence of:

1. a complex application data access pattern, and
2. resource constraints, such as the available low-latency memory space and the

maximum number of executed threads.
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Fig. 1 Stencil representation

Therefore, a tuning framework is mandatory to guide the developer to reach high
performance while respecting those constraints.

In this paper, we present our methodology as a basis of a performance tuning
framework to optimize the implementation of multiple stencil computations on HPPs.
In this context, the main contribution of this paper is the definition and development
of a new performance tuning framework for stencil computation targeting HPPs. We
provide a framework tool that takes into account characteristics of both the application
and the target architecture while considering multiple stencils computation, which
allowsmore complex applications to be optimized using our framework. The emphasis
is put on HPP platforms that follow host–device architectural model where the host
corresponds to a multi-core CPU and the device corresponds to a many-core GPU.

Also, the framework is based on a step-wise methodology that helps the developer,
who seeks to optimize the stencil implementation on GPU-based platforms, to answer
these three main questions:

1. What are the stencils that may be fused to reduce access to high-latency memory
by keeping the effective data in the low-latency memory as long as possible?

2. How to find the appropriate tile size and tile shape that may fit with the low-latency
memory size and which provides optimal performances?

3. What is the best mapping of the computation load onto the threads hierarchy (grids
and blocks of threads)?

The rest of the paper is organized as follows. Section 2 presents more details on
stencil computations and strategies for their parallelization. Section 3 surveys the state-
of-the-art on improving the implementation of stencil computation on parallel plat-
forms. Section 4 describes in detail our proposed performance tuning framework for
stencil computation running on GPU-based HPP platforms. Section 5 gives the experi-
mental results applied on two image processing applications and provides comparison
between a basic implementation and an improved one using the proposed framework.
Finally, Sect. 6 concludes this paper presenting a summary of the achieved work.
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Fig. 2 Possibilities of stencil shapes. a Horizontal 1D stencil. b Vertical 1D stencil. c 2D stencil

2 Basic concepts

This section presents basic concepts regarding stencil computation and its implemen-
tation strategies for parallel platforms. The reader who is familiar with these concepts
may feel comfortable in going directly to Sect. 3, where we show state-of-the art
studies.

2.1 Stencil computation

As mentioned before, the stencil computation is the computational pattern that
expresses the finite difference method. The stencil itself may be defined by three
properties:

1. stencil operations, that is, the type of operations performed on neighbor points to
update the central point;

2. stencil shape, that is, the topology of the neighbor points that are unchanged during
the computation. Figure 2 depicts three possible situations regarding horizontal
and vertical 1D, and 2D computations (namely a, b and c in the figure), and

3. stencil space, that is, the space of points that need to be updated. In general, this
space is a regular structured multi-dimensional grid.

Also, the stencil computation may take several forms, such as:

• single-stencil computation, where a single stencil is applied only once on the stencil
space. For example, we have image convolution on rows;

• multiple stencils computation, where a sequence of different stencils is applied on
the stencil space. The Canny edge detection is an example of this form, and

• iterative stencils computation, where one or several stencils are applied on the
stencil space repeatedly and the number of iterations may be known at compile
time. In this case, we have simulationswith fixed number of time steps, or unknown
at compile time that depend on a certain condition. As example we have image
shape refining.
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It is important to highlight that, in this work, we focus on the multiple stencils
computation. However, our approach may also be applied for iterative stencils com-
putations.

2.2 Parallelization strategies for stencil computation

When implementing stencil computations on GPU-based HPP platforms, many con-
siderations have to be taken into account. They vary according to the complexity of
the target platform and the particular properties of stencil computations. These com-
putations are known to be memory bound showing a low compute intensity (the ratio
of computing operations by the memory accesses). Thus, the main emphasis is put on
improving data access time by improving the data locality. This is guaranteed by the
use of low-latency memory, such as scratchpad shared memory, as much as possible.
Two techniques are proposed in literature to improve the data locality: spatial tiling
and temporal tiling [8].

Stencil computations are applied on a large amount data that usually surpasses the
number of cores, and even the number of threads available on the target hardware
platforms. As a consequence, to achieve an improved implementation with optimal
locality, the spatial tiling technique is commonly used.

The tiling technique consists in splitting the data or the stencil space into tiles. Each
tile is then processed by one or by a group of threads. In a GPU-based platform, each
tile is loaded once in the shared memory. Then it is processed iteratively by a group
of threads sharing this tile. This makes the data access to each element of the tile very
fast.

However, by dividing the data into tiles, the border dependency problem arises.
The elements at the borders of each tile need their neighbors to be updated. Since
these neighbors are belonging to a different tile, the access to this data will imply in
a considerable overhead due to extra communications and synchronizations.

To overcome this overhead, an approach named overlapped tiling [12] is adopted.
This approach consists in augmenting each tile with extra elements called halos, which
are loaded and re-computed twice in two neighbor tiles according to one dimension.
Nevertheless, this implies in re-loading and re-computing overhead that are propor-
tional to the number of halos and their sizes.

In this case, the biggest challenge is to reduce the number of halos by choosing
the appropriate tile layout. An example illustrated in Fig. 3 shows that depending on
the tiling, both the number and the size of needed halos will change. The tiling of the
stencil space shown in Fig. 3a may follow two different options: the tiling 1, depicted
in Fig. 3b or the tiling 2, shown in Fig. 3c, where the halos are in gray color. It is
possible to observe that the tiling 1 involves a larger number of halos than tiling 2. In
tiling 1 we have overlapped tiling (represented with dashed lines in the figure), since
the dependencies are involved at both left and right sides of the tile.

Apart from spatial tiling, the temporal tiling technique is used for the iterative and
multiple stencil computations. Since they involve many intermediate data, we need to
increase the data reuse. In a naive implementation, each timewe update an intermediate
data, we would access the high-latency memory (device memory). In an optimized
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Fig. 3 Tiling variants. a Original stencil space. b Tiling 1. c Tiling 2

implementation, we will keep the intermediate data in the low-latency memory for as
long as they are needed by the computation.

In a GPU implementation, each single-stencil computation is usually implemented
as a separate kernel.1 Since the shared memory does not preserve the data between
two kernel launches, multiple stencils have to be fused in one stencil to be launched
only once in the case of temporal tiling.

However, by fusing multiple stencils, we have to deal with dependency at borders.
To do that, we need to load the appropriate halos and find the number of allocated
data and their size. Nevertheless, this definition depends on their lifetimes during the
fused stencil computation.

A non-optimized fusion may affect significantly the performance when the shared
memory is inefficiently used. Also, performance is affected if both loading and
re-computing overheads become more significant when compared to the efficient
computation. Moreover, by allocating a large-sized data in the shared memory, the
occupancy rate2 will be reduced, as will the concurrency degree.

3 Related work

Stencil computation is a well-known class of computations used in various domains
ranging from physics simulations to image processing. A lot of effort has been spent in
improving both its productivity and its performance for awide range of target hardware
platforms and, in particular, GPU-based platforms. This effort takes various forms,
such as:

1. improving stencil computation runtime, by elaborating algorithmic and coding
optimizations that may be implemented in specific compilers or as templates in
specialized libraries;

2. performance tuning tools, by developing tuning tools, and/or;

1 A kernel is a function that runs on a GPU. One kernel is executed at a time and many threads execute
each kernel.
2 Occupancy rate is defined as the ratio of the number of allocated threads by the limit allowed by each
streaming multiprocessor (SM).

123



474 T. L. B. Cheikh et al.

3. evaluation of stencil computation implementations, by elaborating specialized
high-level frameworks based on the definition of new domain-specific languages
(DSL) for stencil computations.

Following is a brief discussion of related work classified according to the these
mentioned forms.

3.1 Related work on improving stencil computation runtime

Several work improve the stencil computation runtime by proposing a number of
algorithmic and coding optimizations such as cache-oblivious algorithms, space and
temporal blocking via tiling, overlapped tiling and register blocking. The work pre-
sented in [20] proposes a set of code optimizations implemented in a domain-specific
compiler called Pochoir. Many approaches have focused on different levels of block-
ing to improve cache locality on both multi-core CPU and GPU architectures. Datta
et al. studied and evaluated several optimization such as array padding, multi-level
blocking, loop unrolling and reordering for stencil computation on a wide variety
of hardware architectures [8]. In [12], the authors propose an automatic paralleliza-
tion of stencil computations that aims to execute tiles in a load balanced manner.
For such they propose the use of overlapped tiling that aims to eliminate inter-tile
dependencies. Such approach is effective and is employed in our framework. In [11]
the authors propose the use of split tiling for GPUs, also aiming automatic paral-
lelization. In this case, the main idea is to avoid redundant computations that are
introduced by the overlapped tiling technique, mentioned above. In [19], the authors
explore different data access strategies to improve the performance of stencil ker-
nels. They propose an algorithm that aims to optimize the determination of the
boundary data elements (halo regions). Unlike the automatic parallelization approach,
which is known as a conservative approach, our work is based on a framework that
offers the possibility to employ deep optimization techniques as overlapped tiling and
padding in order to reach highly tuned implementations of multiple stencil computa-
tion.

3.2 Related work on performance tuning tools

There are studies that focus in developing tuning tools that target the optimization of
one or more of these metrics: the tiling size, the halo size, the compute intensity, and
the thread blocks’ size for GPUs.

Meng et al. developed an analytical performance model that automatically selects
the halo size, which gives the best speedup on GPUs [15]. However, this model is
limited to iterative stencil loops where only one stencil is involved in the whole pro-
gram and, thus, not applicable to more complex code involving multiple stencils. On
the other hand, Refs. [18,21] deal with complex iterative multiple stencils where they
study the impact of several combinations of kernels fusion/fission on compute intensity
for GPUs via an exhaustive search. However they do not provide an analytical model
to guide the search process. In [22] the authors show how tiling can be used for perfor-
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mance tuning on different models of GPUs. For such the authors implement different
tiling strategies aiming to prove that it is hard to achieve a generic tiling strategy that
suits every GPU model. Examples of features that can interfere in the tiling technique
performance are: number of registers per shared memory (SM), active threads per SM,
total scratchpad memory, global memory size among others. When comparing to our
work, our main contribution against these studies is to define a complete tuning frame-
work based on an analytical model to optimize the implementation of multiple stencils
computation.

3.3 Evaluation of stencil computation implementations

Some other contributions are focused on evaluating the suitability of target platforms
while running stencil computations. Specific compute capabilities of each platform
were investigated and some effective implementation strategies were developed to
deliver the best possible performances. In [10], the authors optimize the implemen-
tation of stencil computations on accelerated processing units (APU) by proposing a
hybrid approach. The main idea is to assign different parts of the stencil computation
to different APU processors. Since border treatments are source of high cost of com-
putation and memory divergence, they are assigned to the CPU, whereas the regular
computation is assigned to the GPU part. The authors in [5] compare the computation
performance of two successive families of both discrete and integrated GPUs while
running stencil code. In their paper, they evaluate the impact of PCI express3 on per-
formance levels. In the same direction, the authors in [14] evaluate the impact of PCI
express on performances in the case of multi-GPU platform. Such studies have guided
us towards the implementation of a GPU-based solution.

3.4 Positioning our approach

In summary, several approaches have been previously proposed for improving sten-
cil computation performance and productivity. Complier-based approaches propose
conservative tuning performance. On the other hand, implementation evaluations pro-
pose some explorations but they are not based on well-defined tuning frameworks.
Finally, few approaches propose tuning frameworks, but are limited to iterative stencil
computation. Comparing with these contributions, the main strengths of the proposed
approach are:

1. as opposed to conservative approaches, our framework is based on an analytical
model taking into account the characteristics of the application as well as the
characteristics of the targeted architecture, and

2. by considering multiple stencils computation, more complex applications may be
optimized using our framework.

3 Peripheral component interconnect express.
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Fig. 4 Proposed methodology

4 The proposed framework

In this section, we describe our proposed performance tuning framework specifi-
cally designed for stencil computation running on a GPU-based HPP platform. The
framework takes into account characteristics of both the application and the target
architecture. Still, by allowing multiple stencil computations, the proposed frame-
work can be used by a large set of applications. Ourmethodology to build the proposed
framework follows four basic steps, depicted in Fig. 4.

The methodology steps are:

• Step 1: formulation for stencil computation running on HPP This formulation
allows abstracting implementation details while keeping the relevant aspects that
have an impact on performance. The high-level representation can then be pro-
jected on a performance model to predict the performance. Thus, the developer
does not have to implement a full functional code in CUDA or OpenCL for every
parallel version to check its performance. Details about the formulation and illus-
trative examples of high-level representations are provided in Sect. 4.1.
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• Step 2: generates all possible parameters’ configurations depending on the target
platform For each configuration, we need to define parameters such as the resource
usage (sharedmemory usage, thread occupancy and the number of resident blocks)
and the number of iterations needed to compute the full stencil space. The outputs
of this step are used later to select the set of optimal configurations with best
performances. Details about this step are provided in Sect. 4.2.

• Step 3: determines the influential parameters on performance metrics and identifies
those that can be controlled by the developer to tune performance For this purpose,
we profile three data access patterns used in three stencil shapes, which are the
basic stencils used in a majority of image processing applications. Details about
this step are provided in Sect. 4.3.

• Step 4: we provide at this step a performance model for stencil computation This
model takes as input the resource usage and the computation load provided by step
2, and the impact of a set of controlled parameters on performance metrics that
are provided by step 3. This performance model allows to assign to each imple-
mentation configuration a computational cost that is used to determine the highest
performance configurations. Details about this step are provided in Sect. 4.5.

4.1 Formulation of stencil computation running on HPP (step 1)

In this section, we define the first step of our methodology. We provide a formulation
for a stencil-based program that runs on an HPP based on a host–device schema. We
analyze the particular case of a CPU–GPU platform, as depicted in Fig. 5.

To achieve our goal, we first define a formulation for a general program running on
HPP. Second, we define a particular formulation for stencil computation.

4.1.1 Assumptions and simplifications

In this work, we consider 2D grids since we are essentially targeting image processing
and computer vision applications. However, the proposed framework still is applica-
ble for 3D grids. In our formulation, we consider only data transfer between host
and device. We omit the representation of host program since we focus essentially on
processing on the GPU. A particular emphasis is put on multiple stencil computations
running on such platforms. As assumption, we suppose that the studied stencils are
symmetric and grids are regular Cartesian grids. The formulation is a single-stencil-
based formulation. A single stencil is a stencil that performs a single processing and
produces only one output grid, but may consume more than one input grid. The sten-
cils involving more than one processing and more than one output grid need to be
decomposed into separate single stencils, so they can be supported by the proposed
formulation.

4.1.2 Formulation of program running on HPP

The main formulation terms and their corresponding descriptions are summarized in
Table 1.
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Fig. 5 Abstract model of heterogeneous parallel platform (HPP)

Table 1 Summary of main formulation terms and notations

Symbol Description

→ Sequence of actions

: Type

= Definition

Term Description

DTransfer Data transfer between host memory and global memory

DAccess Data access from/to global memory or shared memory

Proc Processing that includes computation and data access

Comp Computation that does not include data access

Sync Synchronization mechanism

At platform-level, we consider two main types of memory MemType: (i) high-
latency global memory, denoted by Global Mem, and (ii) low-latency scratchpad
shared memory, denoted by ShMem. Memory type MemT ype is defined by:
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MemT ype : Global Mem|ShMem. (1)

In our formulation, a program running on an HPP is represented as a skeleton
expressed as a sequence of processing, denoted by Proc, data-transfers, denoted by
DTransfer, and synchronization, denoted by Sync:

Program → Proc DT rans f er Sync. (2)

A processing is further expressed as a sequence of data accesses, denoted by
D Access, an operation, denoted by Op, and synchronization, denoted by Sync:

Proc → D Access Op Sync. (3)

Procmayhave different processing types.We focus in particular on stencil process-
ing, detailed in Sect. 4.1.4:

ProcT ype : Stencil Proc|Other. (4)

As for synchronization mechanisms Sync, there are of two types:

1. barrier-based synchronization—BarrierSync, that denotes the synchronization
between threads belonging to the same thread block, and

2. event-based synchronization—EventSync, that denotes the synchronization
between different streams.

Thus, the definition of the type of synchronizationmechanism is defined as follows:

SyncT ype : Barrier Sync|Event Sync. (5)

Still, DTransfer can be classified in the following types:

1. HostT oDevice, which denotes data transfer from the host memory to the device
memory;

2. DeviceT oHost , which denotes data transfer fromdevicememory to hostmemory,
and

3. Device, which denotes transfers within the device memory.

Thus, the definition for DTransferType is as follows:

DT rans f erT ype : HostT oDevice|DeviceT oHost |DeviceT oDevice. (6)

Dtransfer is also defined by the transfer type, denoted by Dtrans f erT ype and the
parameters:

1. #E Lem, used to denote the number of transferred elements, and
2. ElemSize, used to denote the size (in bytes) of an element, depending on its type

(char , integer , f loat , etc.).
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Thus, the definitions of the transfer type are as follows:

DT rans f er De f = DT rans f erT ype(#Elem, ElemSize). (7)

A data access type DAccessType could be a load or a store operation from/to Glob-
alMem or ShMem. Hence, the types of data access: DAccessType are defined by:

D AccessT ype : Load|Store. (8)

A data access definition D Access De f is expressed by D AccessT ype and by (i)
the number of accessed elements #Elem, and (ii) the element size ElemSize:

D Access De f = D AccessT ype(MemT ype, #Elem, ElemSize). (9)

Still, operations can be classified into: (i) integer I ; (ii) single precision S P , and
(iii) double precision D P . Thus, an operation type OpT ype is expressed by:

OpT ype : I |S P|D P. (10)

Finally, Op is defined by the type of operation OpT ype and the number of opera-
tions: #Op, as follows:

OpDef = OpT ype(#Op). (11)

4.1.3 Example of program running on HPP

This section illustrates the presented formulation using a simple image blending appli-
cation, depicted in Fig. 6, as example. An image is represented as a 2D grid of pixels
of size I M = I My × I Mx , where I My and I Mx are, respectively, the height and
the width of the image. Each pixel is located in the grid by its coordinates y and x .
The blending superposes two input images: in I mg1 and in I mg2 that are assigned
with different weights by varying a factor α. The operation of blending is given by the
following equation:

Fig. 6 Image blending
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out I mg(y, x) = (1 − α) × in I mg1(y, x) + α × in I mg2(y, x). (12)

The following Listing 1 shows the code skeleton of two grayscale images blending
running on HPP, expressed using the proposed formulation terms. The input images of
size I My × I Mx are transferred from Host Mem to Global Mem. The images stored
in Global Mem are divided into tiles of size (T L = T L y × T Lx ) over the parallel
thread blocks. Each thread block Blk iterates over its assigned number of tiles denoted
by #T L . At the last stage, the resultant tile is stored in the Global Mem.

Listing 1 Code skeleton of blending program

DTransfer:HostToDevice( I M , 1);
DTransfer:HostToDevice( I M , 1);
For i = 1 To #BlkSM
{

DAccess:Load(GlobalMem, T L , 1);
DAccess:Load(GlobalMem, T L , 1);
Op: I (T L ) ;
DAccess:Store(GlobalMem, T L , 1);

}
DTransfer:DeviceToHost( I M , 1);

4.1.4 Formulation of stencil-based processing

After defining a program running on HPP, this section shows a particular type of
processing—StencilProc, which is the stencil-based processing. StencilProc is defined
by the following sequence:

Stencil Proc → D Access(Stencil) Op(Stencil) Sync(Stencil). (13)

In our framework, we define as simple stencil the one that consumes one or multiple
grids but produces only one grid. In typical stencil processing, each input grid is divided
into tiles of size T L over a number of thread blocks #Blk. In order to accelerate
processing via accessing low-latency memory ShMem, each tile is loaded to ShMem
to be processed by a given thread block.

Since each thread block has a view of only a part of the data, restricted to what
is loaded on the local address space allocated for it, the problem of dependency at
borders will arise. To handle it efficiently, a well-known technique called overlapped
tiling [12] is employed. This technique consists in augmenting each tile with extra
halo elements H , as shown in Fig. 7.

In this case, we define each tile size (T L = T L y × T Lx ) and each halo size
(H = Hy × Hx ), so the augmented tile of size T L ′ loaded into the shared memory is
defined by:

T L ′ = (T L y + 2 × Hy) × (T Lx + 2 × Hx ). (14)

A stencil is defined in our formulation by its identifier Stencil I D and the parame-
ters:

1. a set of pairs of input grid inGridi and its corresponding halo Hi ;

123



482 T. L. B. Cheikh et al.

xMIbuSsuidar

SubIMy

Filter:

Fig. 7 Convolution on rows

2. an output grid outGrid, and
3. a transition function TransFunc shown in expression (15).

In stencil computation, each element of the output grid is calculated depending on
the element’s values at its current position and its neighborhood of an input grid, by
applying a transition function T rans Func. For each dimension dim, the size of the
stencil is calculated as (2× Hdim + 1), where H is the halo added to the input grid to
compute the elements of the output grid.

Stencil De f = Stencil I D

(
#inGrid⋃

i

{(inGridi , Hi )} , outGrid, T rans Func

)

(15)
Grid defines an N -dimensional Cartesian grid when has its identifier Grid I D, its

number of dimensions #Dim, its size Size = ∏#Dim
dim Si zedim and the size of each

element ElemSize, expressed in bytes.

Grid Def = Grid I D(#Dim, Size, ElemSize) (16)

TransFunc defines the stencil operation Op on one grid element and is expressed
by:

T rans FuncDef = OpT ype(#Op). (17)

The number of operations, denoted by #Op is given by the following expression:

#Op =
#inGrids∑

i

(
#Dim∏
dim

((2 × Hi,dim + 1)

)
(18)

4.1.5 Example of stencil-based processing

As example of stencil-based processing, we consider a simple image convolution on
rows. The input image is of size I M = I My × I Mx , where I My and I Mx are,
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respectively, the height and the width of the image. The operation of convolution is
performed on each pixel of the image by applying an 1D filter (of aperture size of
2 × radius + 1) centered on that pixel. The result of convolution is stored at the
centered pixel in the output image as shown previously in Fig. 7. The convolution
operation is given by:

out I mg(y, x) =
radius∑

−radius

in I mg(y, x + k) × f ilter(k + radius). (19)

The convolution processing of the defined formulation for stencil computation is
given in expression (20). Conv is the transition function that performs the convolution
operation and it is defined by expression (21).

Stencil(Convolution)= StencilConv((in I mg, radius), out I mg, Conv) (20)

Conv = S P(#Op(Conv)) (21)

#Op(Conv) = 2 × radius + 1. (22)

In the following, we present the code skeletons of two different versions:

1. the first version, without shared memory usage (see Listing 2 for details), and
2. the second version, which uses the shared memory (see Listing 3 for details).

For both versions, the input image of size I M is transferred from Host Mem to
Global Mem. The image stored in Global Mem is divided into tiles of size (T L =
T L y × T Lx ) over the parallel thread blocks. Each thread block Blk iterates over its
assigned number of tiles denoted by #T L Blk . For convolution that uses sharedmemory,
each tile is augmented with an extra halo: (2 × radius) and stored in ShMem. The
size of the augmented tile is denoted by T L ′ is given by:

T L ′ = T L y × (T Lx + 2 × radius). (23)

Also, in both versions, the convolution is applied on each tile element by performing
(2 × radius + 1) loads and single precision operations. The output tile is stored to
Global Mem and all the output tiles forming the output image out I mg are transferred
back to the host memory.

Listing 2 Code skeleton of convolution without shared memory

W= 2∗radius+1;
DTransfer:HostToDevice( I M , 4);
For i = 1 To #BlkSM
{

DAccess:Load(GlobalMem, W × T L , 4);
Op: I (W × T L ) ;
DAccess:Store(GlobalMem, T L , 4);

}
DTransfer:DeviceToHost( I M , 4);
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Listing 3 Code skeleton of convolution with shared memory

W= 2∗radius+1;
DTransfer:HostToDevice( I M , 4);
For i = 1 To #BlkSM
{

DAccess:Load(GlobalMem, T L ′ , 4);
DAccess:Store(ShMem, T L ′ , 4);
Sync:BarrierSync
DAccess:Load(ShMem, W × T L , 4);
Op:SP(W × T L ) ;
DAccess:Store(GlobalMem, T L , 4);

}
DTransfer:DeviceToHost( I M , 4);

4.2 Fusion and thread configuration (step 2)

In this section, we define the second step of our methodology. The program character-
istics, such as the data grid size, its dimensions, and the halo size are the main input.
This step is divided in two sub-steps:

1. sub-step 1 for each tile placed in the shared memory, it computes the total halo
size needed to be added to avoid any extra data exchange with the global memory.
This step is performed for each fusion combination defined by the developer and
depends on the halo size defined for each stencil during the stencil formulation at
Step 1. At the end of this sub-step, the total halo size for each tile is extracted and
injected to the second sub-step, and

2. sub-step 2 it takes as input both the number of tiles placed in shared memory and
the halo size computed previously. It generates a number of possible configura-
tion under the architecture constraints. For each generated configuration, a set of
resource usage is also provided.

4.2.1 Stencil fusion problem

In iterative stencil computation, stencil fusion (also called time tiling) is anoptimization
technique, which consists of grouping a number of stencils together. In our case, this
optimization is done in a single step, where all possible configurations are generated
automatically. This technique allows better data locality, especially in the case of
GPUs. Since the data access to global memory has an expensive computational cost,
the idea is to fuse several stencils and let the intermediate data resident in the shared
memory for as long as possible. However, the fusion has some side effects, such
as extra data load and re-computation overheads, which are necessary to avoid data
updates via the access to global memory.

The implementation of fusion on GPUs is not an easy task especially when dealing
with multiple stencil shapes and data grids. The developer has the challenge of deter-
mining the size and the shape of halos that will be added to each involved grid in the
computation of the fused stencils. Also, another challenge is to figure out which sten-
cils should be fused. An example of different stencil combinations is shown in Fig. 8.
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Fig. 8 Fusion combinations

In order to help developers to implement the best stencil fusion combination, we
provide a tool to compute the appropriate halo size and shape to be added to each
involved data grid for a selected fused stencils. The algorithm implemented at this
stage can be seen in Algorithm 1 and is described below. The output of this tool serves
as input for a second tool, which provides all possible thread mapping configurations
and their correspondingGPU resource usage for the selected fused stencils. The second
tool is described in Sect. 4.2.3. At the final stage, an analytical performance model
(described in Sect. 4.5) is used to provide the possible configurations according to
their computational costs.

Algorithm 1: Halo size computation algorithm
Input : Weighted DAG of Fused Stencils
Output: H ′

i : Total Halo Size for each shGridi

foreach shGridi do
Intialize H ′

i = 0
end
foreach outGrid j do

foreach shGridi do
Compute H ′(i, j) = LongestPath(shGridi , outGrid j )
Update H ′

i = max(H ′
i , H ′(i, j))

end
end

Astencil-based application shownas input application inFig. 9 could be represented
as a weighted direct acyclic graph (DAG).

In this case, vertices represent the data grids Gi , the edges represent the stencils
and their weights represent the halo size H to be added for the stencil computation.
Each halo is denoted by H(inGrid, outGrid), which defines the halo to be added to
inGrid to compute outGrid. When we apply fusion to a group of stencils, all grids
are loaded in the shared memory with the exception of the output grids, represented
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Fig. 9 Representation of fused stencils

as black vertices. All grids loaded in the shared memory denoted by shGrids are
represented as white vertices.

The total halo size to be added to grids loaded in shared memory to update the
output grids needs to be determined in order to solve the dependency problem and to
avoid any extra data exchange with the global memory. For this purpose, the initial
graph is treated as two separate graphs, being one for each output grid.

Then, for each graphwe determine the halo size to be added to each shGrid in order
to compute the output grid for that graph. A halowith size H ′(i, j) is added to shGridi

in order to compute outGrid j . To find this size, the problem is reduced to a longest
path problem. In this case, H ′(i, j) is the longest path length separating the vertices
shGridi and outGrid j . At the final stage, the total halo size is the maximum size
among all the halo sizes to be added to compute each output grid, as shown in Eq. 24.

H ′
i = max

j
(H ′(i, j)), ∀i ∈ shGrids, ∀ j ∈ outGrids. (24)

4.2.2 Example of stencil fusion

To illustrate our approach, we apply fusion on an image processing application. As
example we use the Gaussian blur filter operation, which consists of two successive
separate 1D convolution operations applied on rows and on columns. Gaussian blur
can be represented as two successive stencils, as shown in Fig. 10. The first stencil
is a 1D horizontal convolution involving a halo of size r . The second stencil is a 1D
vertical convolution involving a halo of size r . The representation of the two stencils
using our formulation is shown in Table 2. The code skeleton of the fused Gaussian
blur is illustrated in Listing 4. In this case, the halos added to each grid G1 and G2, in
the shared memory, are given by:
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Fig. 10 Gaussian blur fusion

Table 2 Gaussian blur stencils

Operation Stencil
⋃#inGrid

i {inGridi : (Hi,y , Hi,x )}, outGrid

Convolution on row S1 G1 : (0, r), G2

Convolution on col. S2 G2 : (r, 0), G3

{
H ′
2 = H(2, 3) = r × 1

H ′
1 = H(1, 2) + H(2, 3) = r × r.

(25)

Listing 4 Code skeleton of fused Gaussian blur

H ′
1 = (r, r) ;

H ′
2 = (r, 0) ;

T L ′
1 = (T L y + H ′

1,y) × (T Lx + H ′
1,x ) ;

T L ′
2 = (T L y + H ′

2,y) × (T Lx + H ′
2,x ) ;

DTransfer:HostToDevice( I M , 4);
For i = 1 To #BlkSM
{

\ \ load Input Tile in ShMem
DAccess:Load(GlobalMem, T L ′

1 , 4);
DAccess:Store(ShMem, T L ′

1 , 4);
Sync:BarrierSync
\ \S1
DAccess:Load(ShMem, (2 × H1 + 1) × T L ′

2 , 4);
Op:SP((2 × H1 + 1) × T L ′

2 ) ;
DAccess:Store(ShMem, T L ′

2 , 4);
Sync:BarrierSync
\ \S2
DAccess:Load(ShMem, (2 × H2 + 1) × T L , 4);
Op:SP((2 × H1 + 1) × T L ) ;
DAccess:Store(GlobalMem, T L , 4);

}
DTransfer:DeviceToHost( I M , 4);
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Fig. 11 Tiling and thread block configuration

4.2.3 Tile size and thread block configuration problem

Tile size and thread mapping problem is depicted in Fig. 11 and can be reduced to
these questions:

• How to divide the data grid into tiles?
• How to assign thread blocks to tiles?
• How thread blocks may be distributed across streaming multiprocessors?

It is important to do a good choice of the thread block configuration and the tile
size processed by each block. To highlight that, we show an example of performance
differences of different configurations of the convolution program on three GPU archi-
tectures: (i) GTX 590 (Fermi), (ii) GTX 780 (Kepler) and (iii) GTX 750 (Maxwell).

Each configuration is a tuple of parameters (Ty, Tx , Ny, Nx ), where the first two
define the thread block size, and the last two define the number of elements processed
by each thread. The tile size processed by each thread block is given by Eq. 26. Figure
12 shows the execution time of several configurations. We observe that performance
vary significantly from a range of configurations to another. Also, we observe that the
best configurations set varies from one architecture to another.

T L = (Ty × Ny) × (Tx × Nx ). (26)

To deal with the large space of possible configurations and to guide the choice of
the best set of configuration, we developed a tool that takes as input:
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Fig. 12 Execution time of convolution on rows kernel (ms)

Table 3 Platform specification

Parameter Description GTX 590 (2.0) GTX 780 (3.5) GTX 750 (5.0)

T Max
Blk,dim Maximum # of

threads per
block at the
dimension dim

1024 1024 1024

T Max
Blk Maximum # of

threads per
block

1024 1024 1024

T Max
SM Maximum # of

threads per SM
1536 2048 2048

Blk Max
SM Maximum # of

blocks per SM
8 16 32

Smem Max
Blk Maximum

ShMem per
block

48 KB 48 KB 48 KB

Smem Max
SM Maximum

ShMem per SM
48 KB 48 KB 64 KB

#SM Number of SMs 16 12 4

1. the halo size involved for each stencil loaded in the shared memory. These halo
sizes are computed with the first stage of the tool described in Sect. 4.2.1, and

2. the GPU architecture specification as well as the resource constraints, which are
defined as follows and summarized in Table 3.

This tool offers an exhaustive coverage of all possible configurations that may
be implemented for a given application on a given GPU architecture. The algo-
rithm responsible for computing the resource usage for each possible configuration is
described in Algorithm 2.
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For each configuration, the initial tile size is set by Eq. 26. The number of elements
processed by each thread at dimension y and x are denoted as Ny and Nx , respectively.
A thread block is defined by Ty and Tx to denote the #T hreads at each dimension.
To augment the initial tile by halo, we use the padding technique, which consists on
adding extra elements to the halo in order to align the augmented tile size to the thread
block size. This technique helps to avoid divergent computation paths and allows
better alignment with memory access. Therefore, both Ty and Tx must be greater than
the maximum halo size on, respectively, y and x dimension. Equation 27 defines the
size of the augmented tile with the needed halo for the stencil computation. The halo
added to the initial tile is given by H ′

y and H ′
x for, respectively, y and x dimension.

The used shared memory per block is defined in Eq. 28, where Smem Blk is the total
size of the augmented tiles for each input grid. The #Res BlkSM expressed in Eq. 29
is determined with respect of the platform constraints and Smem Blk .

T L ′
i =

(
Ny +

⌈
H ′

i,y

Ty

⌉)
×

(
Nx +

⌈
H ′

i,x

Tx

⌉)
× (Ty × Tx )\∀inGridi (27)

Smem Blk =
#inGrids∑

i

(T L ′
i × ElemSize(inGridi )) (28)

#Res BlkSM = min

(⌊
Smemmax

SM

Smem Blk

⌋
,

⌊
T max

SM

TBlk

⌋
, #Blkmax

SM

)
(29)

Algorithm 2: Resource usage computation algorithm
Input : Gi : (Hi,y, Hi,x ): Halo size needed for the number of tiles in ShMems
Input : (I My, I Mx ): Data grid size
Input : #SM, SmemMax

Blk , Smem Max
SM , Blk Max

SM , T Max
Blk , T Max

SM : Architecture
specification

foreach configuration (T hy, T hx , Ny, Nx ) do
if Ty ≥ 2 × Hy and Tx ≥ 2 × Hx and Ty × Tx ≤ T hBlk then

Compute Smem Blk = ∑
i T L ′

i × ElemSize(inGridi );

Compute #Res Blk = Min(	 SmemSM
Smem Blk


, #Blk Max
SM );

Compute Occupancy = #Res Blk×Ty×Tx

T Max
SM

;

Compute #i terSM = 	 I M
#SM×#Res BlkSM ×T L 
;

Compute #Rem BlkSM = � I M−#i ter×#Res BlkSM ×#SM×T L
TBlk

�;
end

end

4.3 Influential factors on performance (step 3)

This section defines the third step of our methodology, where we provide a list of
the main influential factors on GPU performance. These factors are used to setup the
performance model. This step is performed only if there is a new used architecture
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where the impact of the influential parameters on performance vary. In the following,
we present the list of the main influential factors on performance:

• halo size, as each data grid is divided into tiles where each tile is augmented with
extra neighbor elements (halo) to respect dependencies at borders. The halo size
depends on the way the grid is split and on the properties of computations as
depicted previously in Fig. 3. If we divide the grid according to the orthogonal
direction to that where the larger number of neighbors are involved, the size of
halo increases and yields additional data load and recomputation overheads;

• thread occupancy, which is the rate of actual resident threads by the maximum
allowed resident threads per SM (see Eq. 30). Low thread occupancy prevents both
memory latency and arithmetic latency hiding;

• branch divergence. When threads from the same warp follow different paths due
to conditional statements, their execution is serialized.

Occupancy = #Res Blocks

Blk Max
SM

(30)

• memory access coalescing and alignment. Aligned memory accesses occur when
the first address of a device memory is an even multiple of the cache granularity
used to service the transaction (either 32 bytes for L2 cache or 128 bytes for L1
cache). Coalesced memory accesses occur when all 32 threads in a warp access a
contiguous chunk of memory. When threads access non-coalesced memory loca-
tions we see the performance dropping significantly, and

• shared memory bank access. If different parallel threads from the samewarp access
the same memory bank, the memory access to shared memory is serialized.

4.4 Controlled parameters

In this section, we provide the parameters related to influential factors on performance
and that can be controlled by the developer at the programming level. These parameters
are:

1. Data grid decomposition and fusion. In order tominimize the halo size and increase
the effective computation rate, the developer has tomanage the data grid decompo-
sition according to the tile size and shape. Another parameter that has an immediate
impact on both halo size and thread occupancy is the total size of fused grids stored
in the sharedmemory. The developer has to select the number of stencils andwhich
ones to fuse, in order to reach high-performance computation.

2. Thread block configuration. HPP runtime for both CUDA and OpenCL organize
threads into grids of thread blocks and these blocks may have 1D, 2D or 3D
layout. The developer can choose the thread block size and its shape. However,
this choice depends on several constraints imposed by both hardware architecture
and the runtime constraints, as mentioned in Sect. 4.2.3.

• Thread block size—it affects the occupancy rate and by consequence: (i) the
degree of concurrency, and (ii) both arithmetic operations and memory latency
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hiding. Thread block size has also an impact on the amount of the remaining
work load. By selecting a small block size, many blocks could be mapped into
one SM. This allows better fit with shared memory size when the problem
size is not regular and does not match exactly the resource limits. Also, since
the number of blocks is not distributed equally to the available SMs, small
block size gives better load balancing. However, small block size introduces
more overhead due to the number of halos that have to be loaded. On the other
side, by selecting a large block size, fewer blocks could be mapped into the
SM in order to respect the maximum number of threads allowed per SM. In
many cases, this will introduce a bad fit with the resource constraints and,
by consequence, an inefficient use of available computation capability of the
hardware platform. However, since the number of loaded halos is proportional
to the number of thread blocks, the overhead due to the halo loading and
recomputation is minimized.

• Thread block layout—it affects the memory access efficiency. The number
of threads Tx has an immediate impact on the memory alignment and banked
sharedmemory access efficiency. Examples ofmemory efficiency impact of Tx

for 1D horizontal stencil, 1D vertical stencil and 2D stencil are shown, respec-
tively, in Tables 4, 5, and 6. The number of transactions per memory request
for both shared memory and global memory is immediately related to Tx . We
observe that the number of transaction per request to shared memory doubles
when Tx is not multiple of a memory banks number size in the 1D horizontal

Table 4 # Transactions per
request (1D horizontal stencil)

Tx Shared load Shared store Global load Global store

8 2 2 5.72 8

16 2 2 4.83 4

32 1 1 4.35 4.42

64 1 1 4 4

128 1 1 4.29 4

Table 5 # Transactions per
request (1D vertical stencil)

Tx Shared load Shared store Global load Global store

4 1 1 7.7 8

8 1 1 4 8

16 1 1 4 4

32 1 1 4 4

64 1 1 4 4

Table 6 # Transactions per
request (2D stencil)

Tx Shared load Shared store Global load Global store

8 1 1 4.79 8

16 1 1 4.34 4

32 1 1 4.16 4

64 1 1 4.51 4
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stencil computation. The number of transactions per request to global memory
doubles when Tx is not multiple of a half warp, and this number increases as
Tx decreases. The thread block layout has also an impact on the halo loading
and recomputation overhead. Depending on the halo layout imposed by the
application, the user has to choose the better block layout that minimizes this
overhead and utilizes better the hardware computation capability.

4.5 Performance model for stencil computation (step 4)

This section defines the fourth and final step of our methodology. At this level, we
present our performancemodel used to compute the time cost of stencil-based process-
ing on NVIDIA GPUs. This performance model takes two inputs:

1. the program characteristics defined at the first step as well as the resource usage
and the computation amount, and

2. the influential parameters on performance that were defined at the third step and
are used to set up our performance model.

We provide a general performance model that considers the computation, the syn-
chronization and the memory operations as basic processing operations as those
mentioned previously. The proposed performancemodel focuses on device processing
times.

The processing time (Tproc) is defined as a sum of: (i) the data access time
(TD Access); (ii) the synchronization time (TSync), and (iii) the operation time (TOp).
Equation 31 brings the formal definition.

TProc = TD Access + TSync + TOp. (31)

The operation time is expressed in Eq. 32 as a function of (i) the operation latency
denoted by LatOp; (ii) the number of performed operations denoted by #Op, and (iii)
the operation throughput denoted by OpT h.

TOp = LatOp + #Op

OpT h(OpT ype)
. (32)

Table 7 gives the throughputs in number of operations per clock cycle of the main
operations for different NVIDIA GPU architectures.

The operation latency could be expressed as a function of the number of resident
warps #ResWar p per SM (see Eq. 33).

⎧⎪⎨
⎪⎩

LatOp = f (#ResWar p)

LatD AccessT ype = f (#ResWar p)

#T ransD AccessT ype = f (Tx )

(33)

LatOp is equal to zero if #ResWar p is greater than a minimum number of resi-
dent warps denoted by #ResWar pmin . Based on the NVIDIA programming guide,
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Table 7 Throughput of main operations per clock cycle [7]

Compute capability 2.0 3.5 5.0

32-Bit floating-point add, multiply, multiply-add 32 192 128

64-Bit floating-point add, multiply, multiply-add 16 64 1

32-Bit square root, special functions 4 32 32

32-Bit integer add, subtract 32 160 128

32-Bit integer multiply, multiply-add 16 32 32

Table 8 Average memory latency in clock cycles [7]

Compute capability 2.0 3.5 5.0

Global memory latency (clock cycle) 600 300 300

Shared memory latency (clock cycle) 16 16 16

Global memory clock rate (MHz) 4008 6008 5000

Global memory bus width (bit) 384 384 256

Theoretical global mem. bandwidth (GB/s) 164 288 224

Shared mem. bandwidth (GB/s) 1476 2592 2016

ResWar p has to be at least 24 warps for Fermi and 44 warps for Kepler to hide
latency operations. Data access time denoted by TD Access is expressed in Eq. 34
as a sum of latency time denoted by LatDaccessT ype and the time needed to access
#Elem × ElemSize bytes.

T MemT ype
D AccessT ype = Lat MemT ype

D AccessT ype + #T rans MemT ype
D AccessT ype × #Elem × ElemSize

BWMemT ype × W ar p
(34)

Table 8 gives the latency in clock cycle and the bandwidth of both shared memory
and global memory for different NVIDIA GPU architectures.

The total processing time on device is given by the processing time of the most
loaded SM. First, we express the maximum work load that could be assigned to one
SM by using the model given below. The number of thread block assigned to an SM
is denoted by #BlkSM . It is expressed in Eq. 35 as a number of compute iterations
denoted by #i terSM multiplied by the number of resident blocks per SM denoted
by #Res BlkSM and the number of remaining blocks denoted by #Rem BlkSM and
expressed in Eq. 36.

#BlkSM = #i terSM × #Res BlkSM + #Rem BlkSM (35)

#Rem BlkSM =
⌈

I M − #i ter × #Res BlkSM × #SM × T L

TBlk

⌉
(36)

The #i terSM is expressed in Eq. 37 as the number of iterations needed per SM to
compute its portion of the total data grid of size I M at the rate of #Res BlkSM per
computation step, where each resident thread block computes one tile of size T L .
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#i terSM =
⌊

I M

#SM × #Res BlkSM × T L

⌋
(37)

To ensure the load balancing, our framework employs a number of techniques such
as the overlapped tiling technique and the padding technique. The work proposed in
[11] shows that the overlapped tiling technique in the context of multi-core CPUs
reduces the communication costs and improves load balancing at the price of rela-
tively low overhead introduced by the replicated computation. The padding technique
eliminates divergent paths which ensures homogeneous workload for all threads. In
addition, our framework provides a metric that is related directly to the load balancing
which is the number of remaining blocks per SM. This metric provides the extra work
allocated to some SMs. Since this extra work affects the total runtime of a projected
configuration, this value is minimized for the kept optimal configurations and accord-
ingly the load balancing is more respected. To validate the load balancing aspect, we
perform a profiling of the optimal configurations using the NVIDIA Nsight tool.

5 Experimental results

In order to validate our framework, we implement two real image processing applica-
tions on three NVIDIA GPU architectures using the developed tuning tool. First, we
provide the experimental results of a relatively simple application. Second, we provide
the experimental results of a more complex application involving multiple stencils.

5.1 Experimental environment

We use two main hardware platforms as host:

1. 2x AMD Opteron 6128 CPU with total of 16 cores running at 2 GHz, and
2. AMD 5800K integrating four cores running at 4.3 GHz.

In the first platform, our experiments are performed on a Maxwell NVIDIA GTX
750 GPU. In the second platform, our experiments are performed on two NVIDIA
architectures: Fermi with NVIDIA GTX 590 and Kepler with NVIDIA GTX 780. As
programming model, we use CUDA to program the NVIDIA GPUs.

5.2 Case study: Gaussian blur

Gaussian blur is represented as two successive stencils. First, we compare the perfor-
mance of the configuration obtained by the tuning tool with an SDK implementation
for two different NVIDIA GPU architectures. The tuned configuration is denoted as
Tuned S1 and Tuned S2 for the stencils S1 and S2, respectively. SDK S1 and SDK
S2 denote the stencils implemented in the CUDA SDK with a default thread block
configuration. The experiments are performed on two image sizes: (1) 4096 × 4096
and (2) 8192 × 8192. The target GPUs are GTX 590, GTX 780 and GTX 750. All the
details about the implemented stencils are given in Table 9.
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Table 9 Gaussian blur stencils

Operation Stencil
⋃#inGrid

i {inGridi : (Hi,y , Hi,x )}, outGrid

Convolution on row S1 G1 : (1, 7), G2

Convolution on col. S2 G2 : (7, 1), G3

Fused Gauss (S1, S2) G1 : (1, 7), G2 : (7, 1), G3
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Fig. 13 Performance comparison of different separate Gaussian blur stencil implementations

We show that the tuned configuration outperforms the default SDK implementation
in all cases. Thegain of the tuned implementation over the default SDK implementation
varies depending on the architecture and the image size. The gain is more relevant in
the case of large images and in particular for GTX 780 compared to little gain for
GTX 750. All the experimental results are shown in Fig. 13.

Next, Fig. 14 depicts the experimental results of an implementation of both non-
fused Gaussian and fused Gaussian blur on three NVIDIA GPU architectures. We
observe that the tuned configuration outperforms a basic implementation having the
configuration (Ty, Tx , Ny, Nx ) = (16, 16, 1, 1) for both non-fused and fused versions.

5.3 Solution space exploration

The tuned implementation of a stencil computation for a particular GPU architecture
is reached by exploring the large solution space which includes all possible configu-
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Fig. 14 Performance comparison of different implementations of non-fused and fused Gaussian blur

Fig. 15 Exploration runtime for convolution kernel with different filter sizes

rations. In the proposed framework, we perform an efficient exploration space based
on a number of guidelines provided by the GPU vendors according to the thread
occupancy ratio and the thread block sizes. This optimization enables to reduce the
exploration space size and the exploration runtime. In Fig. 15, we represent the results
of an exhaustive search for a convolution on rows with different filter sizes. Both
the number of configurations and the corresponding exploration runtime are repre-
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Fig. 16 Filtered exploration runtime for convolution kernel with different filter sizes

sented. The optimized exploration is represented in Fig. 16. The exploration runtime
is reduced considerably since only relevant configurations for each GPU architecture
are explored.

5.4 Case study: Canny edge detection application

To evaluate our tuning tool, we study the Canny edge detection (CED) algorithm,
which can be expressed as a sequence of several stencil operations. A representation
of CED under the form of a sequence of stencils is illustrated in Fig. 17.

The stencil S1 is a convolution on the horizontal direction and the stencil S2 is
the convolution in the vertical direction. The sequence of these two stencils form the
Gaussian blur stage. The sequence consisting in S3 and S4, and the sequence consist-
ing in S5 and S6 form, respectively, the gradients at X and Y direction stages. Both
S3 and S5 are convolution in the horizontal direction. S4 and S6 are convolution in
the vertical direction. S7 represents the magnitude calculation stage while S8 repre-
sents the non-maximum suppression. All the stencil parameters are summarized in
Table 10.

We evaluate the tuning performance over four fusion combinations ofCEDwith two
image sizes (1) 2048 × 2048 and (2) 4096 × 4096. The different fusion combinations
are summarized in Table 11, where stencils between () are the fused stencils, stencils
separated by the symbol | are the non-fused stencils and number of grids allocated in
the shared memory are denoted by #shGrids.

For each fusion combination, we compare the performance of a basic implemen-
tation and a tuned configuration for three NVIDIA GPU architectures. The results of
the performance comparison on GTX 590, GTX 780 and GTX 750 are represented,
respectively, in Fig. 18a–c.
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Fig. 17 Canny edge detection stencils

Table 10 CED stencils

Operation Stencil
⋃#inGrid

i {(inGridi , Hi )} , outGrid

Gaussian blur row S1 {(G1, 0 × 3)} , G2

Gaussian blur col. S2 {(G2, 3 × 0)} , G3

Gradient X row S3 {(G3, 0 × 3)} , G4

Gradient X col. S4 {(G4, 3 × 0)} , G5

Gradient Y row S5 {(G3, 0 × 3)} , G6

Gradient Y col. S6 {(G6, 3 × 0)} , G7

Magnitude S7 {(G5, 0 × 0), (G7, 0 × 0)} , G8

Non-maximum suppression S8 {(G5, 0 × 0), (G7, 0 × 0), (G8, 1 × 1)} , G9

As first observation, we show that tuned configuration outperforms the basic imple-
mentation in the case of several fusion combinations. We can conclude also that
the stencil fusion F2 provides the highest performance for the three GPUs. This
is explained by the fact that F2 fuses the largest number of stencils while it allocates
the lowest number of grids in the shared memory. The large number of fused stencils
improves data locality and avoids the global memory exchanges. Moreover, when the
number of allocated grids in the shared memory is small, we can load larger tiles and,
as consequence, reduce the number of computation iterations, increasing performance.

Based on these observations and on the tuning performance results, the developer
has the ability to investigate efficiently the performance of several number of fusion
combinations.
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Table 11 CED fused stencils

Fused version Fused stencils #shGrids

F1 (S1, S2)–(S3, S4)–(S5, S6)–S7–S8 2–2–2–0–0

F2 (S1, S2, S3, S4, S5, S6)–S7–S8 2–0–0

F3 (S1, S2, S3, S4, S5, S6)–(S7, S8) 2–3

F4 (S1, S2, S3, S4, S5, S6, S7, S8) 4
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Fig. 18 Performance comparison of basic and tuned implementation for different fusions on NVIDIA
GPUs. a GTX 590. b GTX 780. c GTX 750

6 Conclusion

In this paper, we present our methodology for optimizing stencil computations in
HPPs. The methodology was the basis of a performance tuning framework that allows
multiple stencil computations to be developed.
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This framework increases the design space exploration by taking into account
characteristics of both the application and the target architecture. The proposed
methodology is based on four major steps:

1. program formulation;
2. fusion and tiling configuration;
3. performance model setup, and
4. projection of program characteristics and configurations on performance model.

To automate the process following this methodology, we show a tool that generates
all possible implementation configurations on a given GPU specification to provide
the resource usage on that architecture. We believe that this feature is very useful
for the developer to have an early overview of a given program configuration with-
out the need to implement it on the real hardware. The proposed tool supports also
the fusion problem where the developer can test the performance of several fusion
combinations and their suitable configurations without writing a complete code for
each combination. In order to find a set of optimal configurations, the tool enables the
designer to explore the relevant configurations on the proposed performance model.
The framework is validated through two concrete image processing applications: (i)
the Gaussian blur filter operation, and (ii) the Canny edge detection implemented by
performing different fusion combinations. Our implementations target three different
NVIDIA GPU architectures. Future work includes improving the data access to the
shared memory. Also, we plan to include at least other platforms besides NVIDIA’s.
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