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a b s t r a c t

In this work we provide a methodology for the design and verification of a frequency domain equalizer.
The performance analysis of the equalizer is conducted using two methods: simulation based verification
in Simulink and System Generator and theorem proving techniques in Higher Order Logic. We conduct
both floating-point and fixed-point error estimations for the design in Simulink and System Generator,
respectively. Then, we use formal error analysis based on the theorem proving to verify an implementa-
tion of the frequency domain equalizer based on the Fast LMS algorithm. The formal error analysis and
simulation based error estimation of the algorithm intend to show that, when converting from one
number domain to another, the algorithm produces the same values with an accepted error margin
caused by the round-off error accumulation. This work shows the efficiency of combining simulation and
formal verification based methods in verifying complex systems such as the frequency domain equalizer.

& 2013 Elsevier Ltd. All rights reserved.

1. Introduction and motivation

With the recent technological growth, electronic devices have
invaded all aspects of our lives. These devices are getting more and
more compact and consequently more complex. The price of this
complexity is the challenge of delivering error-free devices, which
require thorough testing and verification at all stages of the design
flow. On the other hand, a faulty design can lead to costly delays
for the time-to-market. Therefore, design verification is necessary
to avoid such situations and is considered a bottleneck in the
design process. In order to verify that an implementation meets its
specifications, simulation is the most widely used technique in the
industry, because it is straightforward and does not need any
expertise. This simulation is based on the generation of test
patterns, and therefore, it does not provide full coverage for the
system under test. On the other hand, formal verification techni-
ques [1] are considered complementary to simulation as they can
provide full coverage for the system under test, and in addition,
they can catch corner case bugs in the design. Formal verification
does require a certain level of expertise to be efficiently used,
which may incur a considerable human resources cost.

Equalization is an application of adaptive filtering that can elim-
inate the inter-symbol interference caused by the noise in the
transmission environment. Uncountable adaptive algorithms are used
to regulate the filter or the equalizer coefficients in order to match the
output to the desired response. To decrease the filtering complexity,

the equalizer can be implemented in the frequency domain using the
Fast Fourier Transform (FFT) and the Inverse FFT (IFFT), where time
convolution is replaced by frequency multiplication. This method
offers low complexity growth in comparison with the time domain
method. Data processing and filtering require dealing with data at
different domains: real numbers, floating-point numbers, and fixed-
point numbers. The specification of an equalizer design can be given in
the floating-point domain, while the design implementation can be
conducted in the fixed-point domain. This conversion generates and
accumulates errors due to the different levels of accuracy provided by
each number's domain. Therefore, a frequency domain multiplication
based system must be tested thoroughly, and error analysis must be
conducted to be sure about the correctness of its operation.

Verifying the correctness of an equalizer is very challenging
because, firstly, its implementation can be based on an iterative
algorithm, secondly, it can contain multiple FFT and IFFT blocks,
and finally, it may contain multiple mathematical operators in
different number domains. As a result, errors are naturally gener-
ated during data conversion between these domains, and can
accumulate while performing various algorithmic iterations, FFT
and IFFT operations. Therefore, a particular implementation of
such a system must be verified in order to be sure that error
accumulation is within acceptable limits.

In this paper, we will present a design and verification
methodology for a frequency domain equalizer based on a combi-
nation of simulation and formal verification. This work is an
extension of [2], within which we used theorem proving techni-
ques in order to provide the error analysis for an implementation
of the frequency domain equalizer based on the Fast Least Mean
Square (Fast LMS) algorithm [3,4]. First, we will develop a model
for the Fast LMS algorithm specification at the floating-point
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number level of abstraction in Simulink [5]. Then we will conduct
simulation based verification in order to measure the floating-
point signal-to-noise ratio (SNR) error for this model. Next, we will
perform a multi-level formal error analysis to show that, when
converting from one number domain to another, the algorithm
produces the same values with an accepted error margin caused
by the round-off error accumulation. We conduct formal error
analysis at the floating-point, fixed-point, and real number
domains using the high order logic (HOL) theorem prover [6].
Finally, we will provide an implementation for the Fast LMS
algorithm in the frequency domain using the System Generator
for DSP [7] at the fixed-point number level of abstraction. Overall,
error estimation and analysis for both floating-point and fixed-
point models are required to show that the error generated in the
implementation of the algorithm conforms with the required
accuracy of conversion in the equalizer design to operate properly.

The rest of the paper is organized as follows: Section 2
discusses related work. Section 3 describes the frequency domain
equalizer implementation based on the Fast LMS algorithms.
Section 4 presents our design and verification methodology. In
Section 5 we present the Simulink model for the equalizer and
simulation based error estimation. In Section 6, the error analysis
of the frequency domain equalizer is formalized in HOL. Section 7
presents the System Generator based model of the equalizer and
its error estimation. Finally, Section 8 concludes the paper and
presents suggestions for future work directions.

2. Related work

The design and implementation of frequency domain equalizers is
considered vital since equalization is a fundamental process inmodern
communication systems. Wang et al. [8] presented an iterative
frequency–time domain equalizer for Advanced Television Systems
Committee (ATSC). In this approach, the multipath distortion in the
signal is first compensated with a frequency domain equalizer on a
block-by-block basis. Then, a time domain interference cancelation
algorithm is used to eliminate the inter-block and intra-block inter-
ference. These steps are repeated until the desired receiver perfor-
mance, in terms of SNR and symbol error rate, is achieved. In another
work, Luzio et al. [9] proposed a pragmatic iterative and non-iterative
Frequency-Domain Equalization design for offset modulation methods
in order to optimize the design for low-complexity transmitters and
efficient power amplification. Dinis et al. [10] designed a frequency-
domain equalizer for the receiver system that is optimized for Offset
Quaternary Phase Shift Keying. Both Luzio et al. [9] and Dinis et al. [10]
adopted bit error rate (BER) as reference for performance evaluation.

Recently, Sobaihi et al. [11] discussed the performance of an
orthogonal frequency division multiple access transceiver with
Frequency Domain Equalization based on time domain channel
estimation. They also provided an implementation on FPGA plat-
form. The authors measured the received signal constellation
before and after equalization and used the bit error rate with
SNR for their performance evaluation. Mori et al. [12] presented a
method to estimate the average block error rate performance of
star 32/64QAM schemes employing a frequency domain equalizer
in that is designed for orthogonal frequency division multiple
access systems. In addition, Komatsu et al. [13] presented an ASIC
hardware implementation of a frequency domain equalizer and
measured power consumption and BER for their design using
simulation. Mehana and Nosratinia [14,15] provided an analysis of
a single-carrier frequency domain equalizer for cyclic delay diver-
sity and Alamouti signaling schemes in order to obtain a threshold
rate for the full spatial–temporal diversity. Finally, Li et al. [16]
presented a sliding window frequency domain equalizer for multi-
mode systems which operates on the time-domain received signal.

The equalizer can be used for equalization in multi-mode
systems when different waveforms are supported. This technique
shows that equalizers are being developed and enhanced at a fast
pace, hence, new testing and verification techniques must also be
introduced in order to be sure about their correctness. In addition,
the design and the applications of the frequency domain equalizer
discussed above were concerned with performance parameters of
the equalization process in the frequency domain such as SNR,
symbol error rate, and block bit error rate. These parameters were
estimated using the simulation environment of MATLAB. However,
in all aforementioned methods, the error resulting from data
conversion between different number domains is never measured
or considered in the analysis. This error is due to handling the
design and implementation of the equalizer at different levels of
abstraction. Regardless of how small the error is, it can be
amplified when introduced into an algorithm with repetitive and
accumulative nature, such as frequency domain equalizer algo-
rithms. In this work, we consider the frequency domain equalizer
from this perspective and handle errors resulted from data
conversions for equalizer models at different levels of abstraction.

On the other hand, the use of formal methods in the analysis of
errors resulted from manipulating numbers at different levels of
abstraction is not new. Harisson [17] used the HOL-Light theorem
prover to approximate floating-point algorithms to their mathe-
matical counterparts. He mainly proved that the floating-point
exponential function has a correct overflow behavior and when
this overflow is absent, the result is linked to a precise error value.
In the analysis done by Harisson, the error represented as an
independent random variable, is calculated depending on the
arithmetic type and the rounding mode. Then, the mean square
error is given after performing the error analysis.

Akbarpour [18] continued the work of [17] and proposed an
error analysis framework based on theorem proving and dedicated
specially to DSP algorithms. The methodology is based on the idea
of representing the system in the three domains; the real, the
floating-point and the fixed-point. Then, he calculated the error in
the transitions from real to floating-point and real to fixed-point.
Finally, the error in the transition from floating-point to fixed-
point is driven by doing a subtraction between the two types of
error calculated before. To show the feasibility of his methodology,
Akbarpour applied his technique on digital filters [19] as well as on
a 16 point radix 2 FFT [20]. Abu Nasser [21,22] adopted the
methodology of Akbarpour [20] to study the error analysis of an
FFT–IFFT which is a combination of a 64 point radix 4 FFT and IFFT
blocks. Our work is also considered as an application of the formal
verification framework developed in [18] since it is dealing with
the error analysis of a frequency domain equalizer.

The application we verify in this work is considered more
complex and error prone than the design in [22], where there is
only a single combination of FFT and IFFT blocks, whereas our
system is composed of three FFTs and two IFFTs. In addition, the
frequency equalizer is based on arithmetic operations that use
numbers of real, floating-point and fixed-point types. Hence, the
formalization of error expressions and error analysis we intend to
perform on the design is based on a theorem for complex numbers
of the above different types. Finally, error analysis for the equalizer
requires formalizing input vectors to be able to store various
symbols in each iteration of the Fast LMS algorithm.

In summary, the contributions of this work compared to the state
of the art are summarized as follows: first, the use of formal methods
in the verification process of equalizers, in particular, theorem proving
technique. Second, the combination of both simulation and theorem
proving in the design and verification of frequency domain equalizers.
Third, the ability to handle a frequency domain equalizer at multiple
levels of abstraction, starting from the algorithmic level, then the time
domain level, then the frequency domain level, and finally the FPGA
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implementation level. Finally, the ability to make reuse existing
theorems in the HOL theorem prover and build upon them to verify
the correctness of the Fast LMS algorithm.

3. Frequency domain equalizer

Data alteration between the frequency domain and the time
domain requires the use of some tools ensuring the preservation of
data during this transition. The most useful tool enabling repre-
sentation of a signal in the frequency domain is the discrete
transform that helps to decrease the computational complexity
related to signal processing just like convolution. The Discrete
Fourier Transform (DFT) is used for the conversion of a discrete
signal from the time domain to the frequency domain.

The DFT has two important properties: Symmetry, which means
that the two elements XðkÞ and XðkþNÞ resulting by applying the DFT
on the signal x are the same. This is a periodicity with period N. The
second property is Convolution, where the time convolution theorem
declares that a convolution in time domain is transformed into a
simple multiplication in the frequency domain. Convolution is
expressed as xðnÞ ¼ x1ðmÞnx2ðnÞ ¼ F �1X1ðkÞX2ðkÞ, where x, x1 and x2
are the finite periodic signals, n is the circular convolution, and F �1 is
the Inverse Discrete Fourier Transform. This property allows using
multiplication in the frequency domain instead of using convolution in
time domain to reduce the complexity of the transformation. The Fast
Fourier Transform (FFT) is an efficient transform algorithm between
the two domains. The FFT algorithm computes one cycle of the DFT.
Similarly, its inverse computes one cycle of the DFT inverse. The FFT
and its inverse are the basic building blocks for frequency equalizers.

One implementation of the frequency domain equalizer [3,4] is
based on an adaptive frequency domain algorithm called the Fast

Least Mean Square (FLMS) algorithm. Fig. 1 illustrates the FLMS
algorithm, where we use lower case variables to represent the
signal in the time domain, and upper case variables to represent the
signal in the frequency domain. The algorithm works as follows:

1. The FFT is applied on a 2N input block obtained from the input
signal

UðkÞ ¼ FFTfuðnÞg

2. The equalizer output in the frequency domain is obtained by
multiplying U(k) by the filter coefficients W(k), where these
coefficients are adjusted in every round

YðkÞ ¼ UðkÞ �WðkÞ
Then, Y(K) is converted into the time domain by applying IFFT

yðnÞ ¼ IFFTfYðkÞg
Only the last N samples must be kept for circular convolution,
hence the Save Last Block operation is applied on

yðnÞ ¼ yðNþ1-2NÞ

3. Next, error in the signal is calculated by subtracting the current
equalizer output y(n) from the desired signal d(n)

eðnÞ ¼ dðnÞ�yðnÞ

4. Then, the error is transformed into the frequency domain E(k)
by applying FFT on e(n) after appending N zeros to the signal

EðkÞ ¼ FFTfzeros; eðnÞg

5. The conjugate of the U(k) is calculated using the conjugate
function (*), and it is multiplied by the error in the frequency
domain E(k)

GðkÞ ¼ EðkÞ � UnðkÞ

6. Then, an IFFT is applied on G(k) to transfer it to the time
domain

gðnÞ ¼ IFFTfGðkÞg

7. Since only the first N samples of this result are kept for the
circular convolution, the last block is delated

gðnÞ ¼ gð1-NÞ

8. Next, zeros are appended to g(n) so that 2N point FFT can be
applied on g(n) and the result is multiplied by the step size
parameter μ

ZðkÞ ¼ μ � FFTfgðnÞ; zerosg
This message, Z(k), is used in order to update the equalizer
coefficients for next round, Wðkþ1Þ, by adding it to the filter
coefficients of this round, W(k)

Wðkþ1Þ ¼WðkÞþZðkÞ

9. The next input block, uðnþ1Þ is then processed using the
updated equalizer coefficients, Wðkþ1Þ. The iterative algorithm
will cause the error to decrease because the coefficients are
being updated progressively.

The above algorithm is based on the overlap-save convolution
algorithm [3], where updating the equalizer coefficients in the
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Fig. 1. Frequency domain equalizer design using the Fast LMS algorithm [6].
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frequency domain is done block by block instead of sample by
sample.

4. Problem definition

To decrease the filtering complexity, an equalizer can be imple-
mented in the frequency domain using the Fast Fourier Transform
(FFT) and Inverse FFT (IFFT), where time convolution is replaced by
frequency multiplication. This method offers low complexity growth
in comparison with the time domain method. Data processing and
filtering requires dealing with data at different domains: real
number, floating-point number, and fixed-point number domains.
The specification of an equalizer design can be given in the floating-
point domain, while the design implementation can be conducted in
the fixed-point domain. This conversion generates and accumulates
errors due to the different level of accuracy provided by each
number's domain.

In order to understand the problem, assume a real number, x,
that is represented at the floating and fixed point levels by xfp and
xfxp, respectively, in the equalization process described above. A
limited number of bits must be used in each of these representa-
tions, hence, a rounding error is generated. The rounding error for
floating-point representations can be defined as δ such that
xfp ¼ xð1þδÞ. Similarly, the rounding error for fixed-point repre-
sentations can be defined as ε such that xfxp ¼ xð1þεÞ. When
applying an equalization algorithm such as the Fast LMS, numbers
are handled at the frequency domain level using fixed-point,

rather than floating-point in the time domain, or real number
domain in the actual design specification. Therefore, an error is
generated due to the difference in the precision between these
number domains. In addition, this error can accumulate when
arithmetic operations such as addition and multiplication are
applied in a repetitive manner [23].

In summary, a frequency domain multiplication based system
must be tested thoroughly, and error analysis must be conducted to
be sure about the correctness of its operation. In this work, we will
use both simulation and formal analysis in order to measure this
error and verify that the rounding error is within the design
requirements during the implementation of the Fast LMS algorithm.

5. Design and verification methodology

In order to achieve a certain level of assurance we use a
theorem proving based verification in order to provide formal
error analysis for the equalizer in the frequency domain. The
equalizer implementation is based on an iterative algorithm that
contains multiple FFT and IFFT blocks. In addition, multiple
mathematical operations are needed in different number domains:
real, floating-point and fixed-point. As a result, errors are naturally
generated during data conversion between these domains, and
can accumulate while performing various algorithmic iterations,
which are FFT and IFFT operations. However, the Fast LMS algo-
rithm requires accuracy of conversion between different number
domains in order to operate properly. Therefore, the formal error

Floating Point and Fixed Point Arithmetic 
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HOL Model 

Fast LMS Algorithm 

Fixed Point  
HOL Model 
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Fp-Error 
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Fig. 2. Design and verification methodology for the Fast LMS algorithm.
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analysis of the algorithm intends to show that, when converting
from one number domain to another, the algorithm produces the
same values with an accepted error margin caused by the round-
off error accumulation.

Then, we perform the formal error analysis to verify an imple-
mentation of the equalizer based on the Fast LMS algorithm. HOL
theorem proving is used in order to provide formal error analysis
for the design at different number domains. The expressiveness of
HOL allows us to model the equalizer in all three number domains:
floating-point, fixed-point, and real number domains. Errors are
formally estimated by approximating the floating-point and the
fixed-point designs to the real domain values.

Fig. 2 illustrates the design for verification methodology for the
frequency domain equalizer based on the Fast LMS algorithm. In
the first step, the formal specifications for the FLMS algorithm are
obtained based on floating-point arithmetics. Then, the design is
modeled in Simulink using a floating-point arithmetic toolbox.
Simulink is used in order to estimate the SNR for the design in the
frequency domain based on the floating-point arithmetic model.
Hence, the SNR error estimation is obtained for the floating-point
level design.

Next, we conduct formal error analysis at the floating-point,
fixed-point, and real number domains. First, we obtained a
floating-point HOL model for the design specification of the
frequency domain equalizer. Then, we obtained a fixed-point
HOL model based on the design implementation. Thereafter, we
use HOL in order to calculate both the floating-point and fixed-
point errors compared to the real number domain values. These
two errors were used to obtain floating-point to fixed-point error
analysis. On the other hand, we obtained a floating-point to fixed-
point error analysis based on simulated SNR floating-point and
fixed-point errors obtained by simulating Simulink and System
Generator models, respectively.

Then, we build a System Generator design implementation
model for the equalizer in the frequency domain for the Fast LMS
algorithm. This design implementation is obtained using fixed-
point arithmetics. Similar to the floating-point level design, the
System Generator is used to provide a DSP implementation in
order to estimate the SNR for the design in the frequency domains,
where the error was estimated based on the fixed-point arithmetic
model. Hence, the SNR error estimation is obtained for the fixed-
point level design. Finally, we provide an FPGA based implementa-
tion for the Fast LMS algorithm.

Finally, we performed SNR error analysis between the Simulink
model at the floating-point number abstraction level and the

System Generator models at the fixed-point number abstraction
level. The error analysis should be confirmed by the error analysis
conducted using the formal analysis. In summary, the steps that
we followed in our design and verification methodology were as
follows:

� Model the frequency domain equalizer in Simulink in the
floating-point domain (FLMS specification).

� Obtain SNR error estimation for the design specification at the
floating-point domain abstraction level in Simulink.

� Model the frequency domain equalizer in HOL in the floating-
point domain (FLMS HOL specification).

� Model the frequency domain equalizer in HOL in the fixed-
point domain (FLMS HOL implementation).

� Perform formal error analysis in HOL.
� Implement the frequency domain equalizer in System Genera-

tor for DSP in the fixed-point domain (FLMS implementation).
� Obtain SNR error estimation for the design implementation at

the fixed-point domain abstraction level in System Generator.
� Simulation based SNR error analysis between fixed-point and

floating-point.
� Validate the SNR error analysis with formal error analysis.

This above approach shows the efficiency of combining simula-
tion and formal verification based methods in the design and
verification of complex systems such as the frequency domain
equalizer.

6. Error estimation in Simulink

Error estimation is conducted for the Fast LMS algorithm using
simulation in the Simulink environment. The simulation is based
on error estimation for the 4-tap frequency domain equalizer,
which converges after almost 200 symbols to reach the value of
�40 dB. On the other hand, an FPGA based implementation is
simulated for a 2-tap equalizer on the one million gate Spartan
3 FPGA board. The results obtained from the Simulink model were
better than those obtained from the System Generator model
because Simulink uses a floating-point description while System
Generator uses a fixed-point one. The Simulink model for the Fast
LMS algorithm block diagram can be found in [24].

Testing based verification for the Fast LMS algorithm is
obtained by estimating the error generated in every step. The
accuracy of the verification process was affected thoughtfully by
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Fig. 3. Signal constellation before and after the Fast LMS-based equalization.
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the method used in the framework to model numbers, be it
floating-point or fixed-point. In addition, the verification process
was based on applying a specific number of iterations, therefore in
order to get more assurance about generated error, more simula-
tion is required. For a certain level of assurance, specifically, in
safety critical applications, simulation time becomes tremendous,
and hence, we use theorem proving based verification in order to
provide formal error analysis of the Fast LMS algorithm.

The implementation of the frequency domain equalizer is based on
an adaptive frequency domain algorithm (Fast LMS). In this sectionwe
use Simulink in order to test the performance of the equalizer. The
following simulation parameters for channel characteristics are used
throughout all our simulations: SNR¼40 dB, Transmitted symbols¼
10 000, and μ¼ 0:002. Fig. 3(a) and (b) presents the constellation of
the input signal to the equalizer and the constellation of its output
signal. Part (a) shows that the input signal to the equalizer is very
noisy. After equalization, a constellation of 16-QAM was obtained,
which means that the frequency domain equalizer eliminates the
inter-symbol interference.

The error estimation curve for the Fast LMS equalizer shows
that it converges within only 200 symbols to reach a steady error
rate equal to �40 dB for an SNR of 40 dB. This implies that the
frequency domain equalizer is more efficient than the time
domain equalizer. The Fast LMS algorithm as the adaptive algo-
rithm for the equalizer gives an error rate equal to 1.83%. Fig. 4

illustrates the equalizer error estimation for the Fast LMS in the
frequency domain.

The architecture of the Fast LMS-based equalizer is modeled in
the Simulink environment as a transmission chain. Fig. 5 shows
the building blocks of a Fast LMS frequency domain equalizer
where the 4-tap frequency domain is used. In this equalizer
architecture, three FFT blocks and two IFFT blocks are used to
allow the alternation between the time domain and the frequency
domain.

Fig. 6 shows the constellation of the equalizer output signal.
The constellation shows no noise which implies that the equalizer
is working perfectly. The 4-tap frequency domain equalizer con-
verges after around 200 symbols to a steady value of �40 dB. The
error estimation curve for the 4-tap equalizer is shown in Fig. 7.

7. Formal error analysis

Higher-order-logic (HOL) theorem proving [25] is a formal
method that is used to conduct precise analysis of various systems.
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It is based on a system of deduction with precise semantics and is
expressive enough to be used for the precise specification of
systems such as the frequency domain equalizer. The HOL theorem
prover framework [6] is an interactive tool dedicated to conduct
proofs in higher-order logic. There are only four types of terms in
HOL: variables, constants, function application and lambda terms
[6]. The main core of HOL consists of five axioms and eight
inference rules. All the theories existing in HOL are built on the
top of them. All the theories should be proved before they are
added to the HOL inference system.

7.1. Methodology

The verification methodology, as depicted in Fig. 8, is based on
a formal model for numbers in three different domains: fixed-
point (FXP), floating-point (FP), and real domains and a valuation
procedure for numbers conversion. Based on this conversion, error
analysis is performed between the actual real values obtained and
the converted ones from both floating-point and fixed-point
domains. Finally, further analysis is performed to show the error
analysis between the fixed-point and the floating-point.

In this verification methodology, the Fast LMS algorithm should
be formalized in the three number domains in the same way it is
defined above. The valuation functions should be used in order to
return real approximations of the floating-point and fixed-point
algorithms. In our error analysis we obtain the rounding error
between the FXP to Real and FP to Real error analysis. These are
defined as the difference between the approximations of the fixed-
point and the floating-point algorithms and the real specification.

To perform the error analysis of the Fast LMS algorithm, we
used the existing theories in HOL and built on top of them the
necessary theories to reason about error generation and accumu-
lation in the equalizer. For the floating-point and the fixed-point
modeling of the design, we used, respectively, the formalization of
the IEEE 754 standard based floating-point arithmetic [19] and the
fixed-point arithmetic HOL theorems developed by Akbarpour
et al. [23].

7.2. Modeling the frequency domain equalizer in HOL

To formalize the error due to the floating-point rounding in
HOL, we use two fundamental theorems, the first one deals with
floating-point rounding error, and states that if x is a real number
within the floating-point range, then xR ¼ xð1þδÞ; jδjr2�p, while
the second one deals with fixed-point rounding error, and states
that if x is a real number within the fixed-point range, then
xR ¼ ðxþεÞ; jεjr2� fracbitsðXÞ, where p is the precision of the
floating-point format, x is the real number, and xR is the
floating-point value. The rounding error in the floating-point
domain is multiplicative, while it is additive in the fixed-point
domain [23]. Evaluating arithmetic operations, denoted as ⋆, in
the floating-point domain is defined as flðx⋆yÞ ¼ ðx⋆yÞð1þδÞ,
where jδjr2�p. Similarly, in the fixed-point domain it is defined
as flðx⋆yÞ ¼ ðx⋆yÞþε, where jεjr2� fracbitsðXÞ.

In order to model the error analysis of the frequency domain
equalizer, existing HOL theories developed by Abdullah [18] were
used. In addition, theories for complex numbers and many other
required functions like the complex sum in all three number
domains had to be defined as described in the sequel.

7.2.1. Real-numbers domain modeling
Modeling the frequency domain equalizer using HOL in real do-

main requires formalizing complex numbers. We defined complex

Fig. 7. Error estimation in the frequency domain.

Valuation

Fxp to Real
Error Analysis

Fp to Real
Error Analysis

Fxp to Fp
Error Analysis

FLMS Fxp FLMS Fp

Valuation

Fxp Real
FLMS Value

Fp Real
FLMS Value

Fxp Error Fp Error

Real FLSM

Fig. 8. Error analysis verification methodology in HOL.

A. Souari et al. / Microelectronics Journal 45 (2014) 167–178 173



as a new datatype based on a pair of real numbers as shown
below:

Complex¼ ‘def complex of (real # real)

The real and imaginary parts of a complex number are also
formalized in HOL:

Re_def¼ ‘def Re (complex (a,b))¼a

Im_def¼ ‘def Im (complex (a,b))¼b

We also define properties on complex numbers that are needed
to model the equalizer in HOL. For instance, the conjugation is
formalized using this definition:

CNJ¼ ‘def 8 z:CNJz¼ complexðRez;:ImzÞ

where : in the above expression represents the conjugate of
the imaginary part of the complex number, i.e., its negative
value.

Arithmetic operations on complex numbers such as addition,
subtraction and multiplication were also defined in HOL and
properties about these operations were proved, such as complex
multiplication and complex addition commutativity. The principal
n-roots of unity is a fundamental building block for these arith-
metic operations, hence it was defined in HOL using Euler's
identity as follows:

principal_root
¼ ‘def 8nk:principal_rootnk
¼ complex ð cos nnknΠ=:2; sin nnknΠ=:2Þ

One fundamental function that is used in both FFT and IFFT is the
complex summation which is defined in HOL recursively as
follows:

rec_sum_def
¼ ‘def rec_sumðn;0Þf
¼ complexð0;0Þ4rec_sum ðn;SUCmÞf
¼rec_sum (n,m)f þ f (n þ m)

where n and 0 are the upper and lower indices, respectively, and f
is a function. Based on these definitions, we define both FFT and
IFFT in real time domain using HOL as follows:

real_FFT_def
¼ ‘def 8xk:real_FFTxk
¼rec_sum (0,3) (\n:principal_rootnknELnx)

real_IFFT_def
¼ ‘def 8Lk:real_FFTxk
¼complex_4 nrec_sum (0,3) (\n. principal_root n

knEL n L)

where complex constant was defined as

complex_4_def¼ ‘defcomplex_4¼ complexð1=4;0Þ

We adopted the function EL from the pairTheory in order to extract
the nth element of a complex list L. The term \n in the real_FFT_def
and real_IFFT_def theorems is a lambda-abstraction which shows
that sum is a function of n.

7.2.2. Floating-point domain modeling
Complex numbers modeling in this domain is similar to

the real domain except that here the complex numbers are

represented as pair of floats

complex¼ ‘def complexof ðfloat#floatÞ

Floating-point complex summation is defined using as follows:

float_complex_sum_def
¼ ‘def float_complex_sum (n,0) f
¼float_complex (float (0,0,0),float (0,0,0)) 4
float_complex_sum (n,SUC m) f¼float_complex_sum
(n,m) f þ f (n þ m)

This definition explains how to add two complex numbers in the
floating point domain. This addition creates a rounding error,
which shall be modeled in HOL as well. Therefore, we built on top
of the IEEE floating-point rounding formalization by Harrison [17]
in order to define a floating-point complex rounding function
using the predefined round function to calculate the rounding
value of a floating-point complex number as follows:

float_complex_round_def
¼ ‘def 8z:float_complex_roundz
¼float_complex (float (round float_format
To_nearest (Re z)),
float (round float_format To_nearest (Im z)))

The inverse function of rounding is called valuation, it gives the
equivalent real of any floating-point number. It is defined in HOL
as Val. For the valuation of the complex numbers of type float we
define the function float_complex_val

float_complex_val_def
¼ ‘def 8z:float_complex_valz
¼complex (Val (float_Re z),Val (float_Im z))

In order to model both FFT and IFFT blocks in the floating-point
domain, we used the functions float_principal_root and float_prin-
cipal_root_1 to define float_FFT and float_IFFT, respectively. These
two former functions provide the rounding results of the two
functions principal_root and principal_root_1 defined in the pre-
vious section above. The definition of FFT and IFFT in HOL is given
as

float_FFT_def
¼ ‘def 8xk:float_FFTxk
¼float_complex_sum (0,3) (\n. float_principal_root n

k n EL n x)

float_IFFT_def
¼ ‘def 8Lk:float_IFFTxk
¼ float_complex_4nfloat_complex_sum (0,3)

(\n. float_principal_root_1 n kn EL n L)

These two definitions provide the implementation of the FFT
and IFFT in HOL based on floating-point complex numbers
summation.

7.2.3. Fixed-point domain modeling
The formalization of the Fast LMS algorithm in HOL in the

fixed-point domain is different from the formalization in the other
two domains. This is due to the use of the primitive parameters for
arbitrary attributes related to fixed-point numbers. We used fxp to
define complex numbers in the fixed-point domain. Retrieving the
real and imaginary parts of a complex number of type fxp is
achieved using fxp_Re and fxp_Im, respectively. Complex addition,
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complex subtraction and complex multiplication are defined using
functions fxp_complex_add, fxp_complex_sub and fxp_complex_mul,
respectively. As we mentioned, the definition of the complex
summation for the fixed-point domain is given as

fxp_complex_sum_def
¼ ‘def fxp_complex_sum (n,0) X f

¼fxp_complex (fxp (WORD (REPLICATE (streamlength

(X)) F),X),
fxp (WORD (REPLICATE (streamlength (X)) F),X)) 4
fxp_complex_sum (n,SUC m) X f

¼fxp_complex_add X (fxp_complex_sum (n,m) X f) (f

(n þ m))

The function Fxp_round converts a real number into its fixed-point
equivalent number. To perform rounding of a complex number
of type fxp, we defined the function fxp_complex_round_def
as follows:

fxp_complex_round_def
¼ ‘def 8 X z. fxp_complex_round X z

¼fxp_complex (Fxp_round X Re(z), Fxp_round X Im

(z))

To obtain the real value of a fixed-point number, we use the
function value that is defined in the fxpTheory in HOL. The function
fxp_complex_value is defined to perform the valuation of fixed-
point complex numbers as follows:

fxp_complex_value
¼ ‘def 8 z. fxp_complex_value z

¼complex (value fxp_Re (z), value fxp_Im (z))

Similar to the floating-point domain, we formalize the FFT and IFFT
blocks in the fixed-point domain as follows:

fxp_FFT_def
¼ ‘def 8 X x k. fxp_FFT X x k

¼fxp_complex_sum (0,3) X (\n. (fxp_complex_mul X

(fxp_principal_root X n k) (EL n x) ))

fxp_IFFT_def
¼ ‘def 8 X L k. fxp_IFFT X L k

¼fxp_complex_mul X (fxp_complex_4 X)

(fxp_complex_sum (0,3) X

(\n.(fxp_complex_mul X (fxp_principal_root_1 X n

k) (EL n L) )))

where fxp_complex_4 X refers to the term 1=N in the IFFT equation.
It is a constant complex number which value is equal to 1/4
since the number of taps, N, adopted for our design is equal to 4.
These definitions provide the implementation of the FFT and IFFT
in HOL based on fixed-point complex numbers summation
function.

7.3. Error analysis of the frequency domain equalizer in HOL

In order to perform error analysis in HOL, a theorem for every
building block of the design must be defined and proved. Then,
one comprehensive theorem for the whole design is required to
show the validity of rounding and error accumulation. In this
section, we will discuss the major theorems we defined for error
analysis of the design. The structure and relationship between
these theorems is shown in Fig. 9.

We start by formalizing errors in the floating-point domain for
the designs using the lemma float_complex_val, denoted as Valf p .

The lemma is formalized in HOL as follows:

float_complex_val
¼ ‘ lemma8 z. float_complex_val z

¼complex(Val(float_Re z),Val (float_Im z))

Similarly, we formalize errors in the fixed-point domain using
the lemma float_complex_val, denoted as Valf x . This lemma is
formalized in HOL as follows:

fxp_complex_value
¼ ‘ lemma8 z. fxp_complex_value z

¼complex(value(fxp_Re z),value(fxp_Im z))

The effect of these functions on the arithmetic operations is
inherited from the effect of the function Val and value. The
function Val is used to define the rounding error due to the
valuation of the floating-point in real number. The effect of the
Val function on arithmetic operations is defined as

8ab � (e � ValðaþbÞ ¼ ðValaþValbÞnð1þeÞ
8ab � (e � Valða�bÞ ¼ ðVala�ValbÞnð1þeÞ
8ab � (e � ValðanbÞ ¼ ðValanValbÞnð1þeÞ

where a and b are the two floating-point numbers and e a real
number. e in the above lemmas defines the error caused by the
valuation of the fixed-point in real number. The effect of the value
function on arithmetic operations is given as

8abX � (e � valueðFxpAddXabÞ ¼ valueaþvaluebþe

8abX � (e � valueðFxpSubXabÞ ¼ valuea�valuebþe

8abX � (e � valueðFxpMulXabÞ ¼ valueanvaluebþe

Fig. 9. Structure of HOL theorems for the equalizer.
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These lemmas are dedicated to complete the error analysis for
rounding numbers between different domains, and will be used to
formalize FFT and IFFT in the next section.

7.4. Fast LMS error analysis

The major theorems we defined for the equalizer design are
shown in Fig. 9. In order to perform complete error analysis for the
whole design, each block of the Fast LMS algorithm described
above in Fig. 1 must be formalized in HOL. As shown in the figure
below, the theorems for every block intend to show the validity of
rounding and error accumulation.

The first theorem deals with error analysis between the real
and the floating-point representations of the FFT block. It consists
of a simple subtraction between the floating-point valuation and
the real valuation of FFT. Using C for composing a complex
number, Pf p for the float principal root function, P for the real
principal root, and ∑k

n ¼ 0 for rec_sum_def, this theorem, denoted
as EFRFp , is formalized as follows:

‘ thm8x; y; k � (e1; e2; e3 � EFRFp ðx; y; kÞ
¼ Valf p ðPf p ð0; kÞnELð0; yÞnCð1þe3;0ÞÞ
þValf p ðPf p ð1; kÞnELð1; yÞnCð1þe2;0ÞÞ
þValf p ðPf p ð2; kÞnELð2; yÞnCð1þe1;0ÞÞ�∑3

n ¼ 0ðPðn; kÞnELðn; xÞÞ

This HOL theorem defines the rounding error for the FFT block
between real and floating point number domains, and is based on
the valuation function, complex numbers, and summation defini-
tions. This rounding error represents the error in the equalization
process at the floating-point number domain contributed by the
FFT block.

The real to fixed-point error analysis of the FFT is established by
proving that the produced error is equivalent to subtraction
between the valuated fixed-point FFT expression and the real
one. Using MUL for complex multiplication, and Pf x for the fixed-
point principal root function, this error, denoted as EFRFx , is
formalized as follows:

‘ thm8x; y;X; k � (e1; e2; e3 � EFRFx ðx; y;X; kÞ
¼ Valf x ðMULðX; Pf x ðX;0; kÞ; ELð0; yÞÞÞþCðe3; e3Þ
þValf x ðMULðX; Pf x ðX;1; kÞ; ELð1; yÞÞÞþCðe2; e2Þ
þValf x ðMULðX; Pf x ðX;2; kÞ; ELð2; yÞÞÞþCðe1; e1Þ
�∑3

n ¼ 0ðPðn; kÞnELðn; xÞÞ

Once the real to fixed-point error analysis is achieved, the
fixed-point to floating-point error analysis of the FFT block is
obtained by deducting the results of the real to floating-point and
the real to fixed-point error expressions as given in Fig. 8 above.
The following theorem, denoted as EFFpFx , is defined in order to
formalize the fixed-point to floating-point error analysis of the FFT.
This error is formalized as follows:

‘ thm8x; xp; xf ;X; k � (e1; e2; e3; e4; e5; e6 � EFFpFx ðx; xp; xf ;X; kÞ
¼ Valf x ðMULðX; Pf x ðX;0; kÞ; ELð0; xf ÞÞÞþCðe3; e3Þ
þValf x ðMULðX; Pf x ðX;1; kÞ; ELð1; xf ÞÞÞþCðe2; e2Þ
þValf x ðMULðX; Pf x ðX;2; kÞ; ELð2; xf ÞÞÞþCðe1; e1Þ
�ðValf p ðPf p ð0; kÞnELð0; xpÞÞnCð1þe6;0Þ
þValf p ðPf p ð1; kÞnELð1; xpÞÞnCð1þe5;0Þ
þValf p ðPf p ð2; kÞnELð1; xpÞÞnCð1þe4;0ÞÞ

Similar theorems were defined and proven for the IFFT block.
For illustration purposes, the theorem for real to floating-point

error, denoted as EIRFp , is formalized as follows:

‘ thm8L; Lx; k � (e; e1; e2; e3 � EIRFp ðL; Lx; kÞ
¼ Valf p ðC4f nCð1þe;0ÞnððValf p ðPif x ð0; kÞ; ELð0; LxÞÞ
nCð1þe3;0ÞþValf p ðPif x ð1; kÞ; ELð1; LxÞÞÞnCð1þe2;0Þ
þValf p ðPif x ð2; kÞ; ELð2; LxÞÞÞnCð1þe1;0ÞÞ
�C4n∑3

n ¼ 0ðPf x ðn; kÞnELðn; xÞÞ

Having an HOL theorem defined and proved for every building
block of the design, one comprehensive theorem for the whole
algorithms that defines the blocks of the design together. The HOL
theorem [24] is used to obtain the rounding error from each block
and accumulate it together with the error produced by the
successor block in the design as depicted in Fig. 9. Eventually,
the rounding error is obtained for the whole design and validated
for the algorithm. This theorem is proved in HOL, which verifies
that the rounding and accumulated error produced by steps of the
algorithm are within the accepted range given in the specification
of the design. Theorems for error analysis of the blocks of the
frequency domain equalizer that were formalized and proved in
HOL are presented in [24].

7.5. Discussion

Many existing theories in HOL, e.g., arithmeticTheory, realThe-
ory, listTheory, pairTheory, realLib, numLib, floatTheory, fxpTheory,
ieeeTheory, ..., were used to derive the rounding error analysis of
the frequency domain equalizer. The definitions of the Fast LMS
algorithmwere formalized and proved based on these theories. All
the definitions were formalized first in the real domain, and then
all the arithmetic operators were overloaded to build the design in
the floating-point and fixed-point domains using floatTheory and
fxpTheory, respectively.

The equalizer application shows that formal error analysis is
applicable on larger scale systems such as the one we have
analyzed, which is traditionally analyzed with paper and pencil
or simulation based techniques based on estimating the error.
Formal analysis proves that the implementation meets its speci-
fication with 100% coverage, something that is not feasible in
simulation. In addition compared to the classical analytical tech-
nique, this method is computerized and has been conducted using
an interactive tool, and, the theorems can be efficiently reused to
verify other designs that make use of the same algorithm.

Some specific error analysis theorems that were used in this
work were defined and proven by Akbarpour [18] and Abdullah
[21]. However, we had to build our own theorems on top of these
in order to formalize and verify every block of the Fast LMS
algorithm, and consequently define one single theorem for the
whole design that we included in [24]. This shows that relevant
theorems that are proven in HOL can be reused efficiently in order
to verify complex systems of similar properties. In fact, scalability
of HOL theorems is one of its best features, since all proven
theorems can be reused efficiently to verify other designs, which
reduces time and effort, in particular while using the interactive
HOL framework environment.

8. Error estimation in system generator

In order to provide an implementation for the equalizer, we
first build a System Generator design implementation model in
the frequency domain for the Fast LMS algorithm. This design
implementation is obtained using fixed-point arithmetics. The
system generator is used to provide a DSP implementation in
order to estimate the SNR for the design in the frequency domains,
where the error was estimated based on the fixed-point arithmetic
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model. Hence, the SNR error estimation is obtained for the fixed-
point level design.

The design contains elementary blocks from the Xilinx block set
which are essentially multipliers, adders, FFT, IFFT and sub-systems
performing complex multiplication. The System Generator model for
the Fast LMS algorithm block diagram can be found in [24]. The signal
constellations as well as the error estimation curve given by Figs. 10
and 11, respectively, show that the equalizer eliminates the inter-
symbol interference from the noisy input signal. The error estimation
curve shows that the equalizer converges after around 100 symbols to
a steady value of �15 dB, while Simulink simulations showed that the
equalizer converges into its steady state value of �40 dB.

The SNR error analysis is calculated by comparing the SNR error
given by the fixed-point frequency domain equalizer that was
implemented using System Generator for DSP blocks and the
estimated SNR error given by the floating-point equalizer that
was implemented using Simulink blocks. In our case, the SNR error
given by the fixed-point equalizer is equal to �15 dB while the

SNR error generated by the floating-point equalizer is valued to
�40 dB. The main reason for this difference is the change of the
number domain from the floating-point at the specification level
of abstraction into the fixed-point at the implementation level of
abstraction. Hence, this error produced by the equalizer is due to
the conversion between these two number domains. This error
confirms the definition of the rounding error that was defined
above for both floating-point and fixed-point domains compared
to the real number domain:

xFp ¼ xð1þδÞ; jδjr2�p

xFxp ¼ ðxþεÞ; jεjr2� fracbitsðXÞ;

where p is the precision of the floating-point format, x is the real
number, xFp is the floating-point value, and xFxp is the fixed-
point value.

In these representations, we have three errors that were
recognized by our results: the error in equalization due to
representing the signal in the floating-point domain, i.e., δ, the
error in equalization due to representing the signal in the fixed-
point domain, i.e., ε, and the error in representing the signal with
two different precisions, i.e., δ�ε. The accumulation of the latter
error leads to a difference between the two error rate values
equals to �25 dB, where the error rate value in the floating-point
domain is equal to �40 dB, and the error rate value in the fixed-
point domain is equal to �15 dB. On the other hand, the HOL
formal error analysis proved that the signal value in the floating-
point domain is equal to its fixed-point counterpart plus an error
within a certain margin, hence, verifying that δ�ε was within the
acceptable error range according to the design specifications.

9. Conclusion and future work

In this work, we proposed a design and verification methodol-
ogy for a frequency domain equalizer implemented using the Fast
LMS algorithm in the frequency domain where a number of
mathematical operations are performed on numbers in three
different domains: floating-point, fixed-point and real numbers.
As a result, errors are naturally generated during data conversions
between these domains, and can accumulate while performing
various algorithmic iterations, such as FFT and IFFT operations. The
proposed methodology for the design and verification of the
frequency domain equalizer spreads over various design flow

Fig. 10. Signal constellation after frequency domain equalization in System
Generator.

Fig. 11. Error estimation curve.
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levels considering different number domains: real, floating-point,
and fixed-point.

In this paper, we first implemented the frequency domain
equalizer in Simulink in the floating-point domain based on the
Fast LMS algorithm specifications. This model is used to estimate
the SNR in the design. The equalization error generated in the
simulation is estimated to be around �40 dB. This error is due to
the rounding of the signal at the floating-point number domain.
Next, we used formal techniques in order to perform formal error
analysis between a floating-point HOL model and a fixed-point
HOL model of the frequency domain equalizer. To achieve this,
theorem proving was used to provide formal error analysis for the
frequency domain equalizer. This required data is to be converted
between the fixed-point and the floating-point domains, which in
turn produces errors that can accumulate during the several
iterations of the algorithm. To perform this analysis, basic formal
definitions and theorems were required in order to handle
iterative nature of the algorithm and the multiple FFT and IFFT
blocks in the equalizer. The formal error analysis was used to show
that errors in the equalizer algorithm that occur while converting
from one number domain to the another are within the accepted
range based on the design specification of the equalizer. However,
this was not a straightforward task and required building on
existing HOL theorems for error analysis as well as the derivation
of new expressions for the accumulation of round-off error in the
algorithm.

Finally, in order to cover all the design flow levels, we implemented
the frequency domain equalizer in the System Generator for DSP
based on the Fast LMS design implementation at the fixed-point
domain level of abstraction. This implementation is used to conduct
SNR error estimation by simulating the design model in the System
Generator. Simulation curves showed that equalization generated an
error of �15 dB. This error is due to the rounding of the signal at the
fixed-point number domain compared to the real value. We then
conducted simulation based SNR error analysis between fixed-point
and floating-point for above specifications and implementations. In
fact, the error generated at the fixed-point number domain is larger
than the error generated at the floating-point number domain. This is
due to the lower precision of the fixed-point domain. This difference
was formally proved to be within the acceptable precision as stated in
the design specification. This application showed that performance
analysis for the equalizer can be conducted using both formal error
analysis and simulation based error analysis in order to cover various
levels of the design flow.

As future work, we plan to extend the current work and
perform error analysis using the GAPPA framework developed by
Melquiond [26]. Another interesting approach is to use first order
theorem proving to verify properties about the functional behavior
of the equalizer.
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