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Abstract� Interactive formal proof and automated veri�cation based on decision
graphs are two contrasting formal hardware veri�cation techniques� In this paper�
we compare these two approaches� In particular� we consider HOL and MDG� The
former is an interactive theorem�proving system based on higher�order logic� while
the latter is an automatic system based on Multiway Decision Graphs� As the basis
for our comparison we have used both systems to independently verify a fabricated
ATM communications chip� the Fairisle � by � switch fabric�

�� Introduction

Formal hardware veri�cation techniques are attracting widespread interest
due to their potential to give very strong results about the correctness of
designs� Two very di�erent forms of formal veri�cation have arisen� in�
teractive proof and automated decision graph techniques� The aim of this
paper is to compare and contrast these two approaches using the hardware
implementation of an Asynchronous Transfer Mode �ATM� switch fabric as
a case study� Such a comparison is of use to the research community to help
improve both technologies and to researchers concerned with combining the
systems to get the best features of both� It is also of use to industrial users
considering adopting a hardware veri�cation technology�
We have based this comparison study on a signi�cant	 real hardware de�

sign� A similar approach was also taken by Angelo et al� 
�� when comparing
two proof systems� HOL and the BoyerMoore theorem prover� An alter�
native approach is to look at a wide range of small examples 
���� Such an
approach helps ensure that conclusions apply to more than just the example
considered� However	 a danger is that issues relevant to real designs are not
raised� For example	 a major concern for veri�cation technologies is whether
they scale to large designs� This is clearly of great interest to industry� If
only small examples are considered	 the problem does not arise� The two
approaches are clearly complementary	 and are both of importance�
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In this paper we compare interactive proof and automated decision graph
veri�cation� In the interactive proof approach	 the circuit and its behavioral
speci�cation are represented in the underlying logic of a general�purpose
theorem prover� The user interactively constructs a formal proof which
proves a theorem stating the correctness of the circuit� Many di�erent proof
systems with various forms of interaction have been used for this purpose�
In this paper we consider one such system� HOL 
���� It is an LCF style 
���
proof system based on higher�order logic�

In the automated decision graph approach the circuit is represented as a
decision diagram� Techniques such as reachability analysis are used to auto�
matically verify given properties of the circuit or verify machine equivalence�
We consider the MDG system� It uses a new class of decision graphs called
Multiway Decision Graphs 
��� They subsume the class of Bryant�s Re�
duced Ordered Binary Decision Diagrams �BDDs� 
�� while accommodating
abstract sorts and uninterpreted function symbols�

As the basis of our comparison	 we have used both HOL and MDG to in�
dependently verify the Fairisle 
��� � by � switch fabric� This is a fabricated
chip which forms the heart of an ATM communication switch� The device
has been used for real applications in the Cambridge Fairisle network	 de�
signed at the Computer Laboratory of the University of Cambridge� It does
the actual switching of data cells from input ports to output ports within
the ATM switch	 arbitrating clashes and sending acknowledgments� It was
not designed for the veri�cation case study� Indeed	 it was fabricated and
in use	 carrying real user data	 prior to any formal veri�cation attempt�

The outline of the paper is as follows� Section � describes related work
concerned with the veri�cation of network hardware� In Section � we give
a brief overview of the particular hardware considered� the Fairisle � by �
switch fabric� We describe its veri�cation using HOL in Section � and using
MDG in Section �� For each	 we overview the veri�cation method	 tools and
our experiences on this case study� Finally	 in Section � we draw conclusions�

�� Related Work

There has been a vast amount of work on formal hardware veri�cation�
There exists little	 however	 that is directly related to our study on verifying
network hardware components�

J� Herbert 
��� used HOL to formally verify the ECL chip� a local area
network interface which formed part of the Cambridge Fast Ring� This is
of roughly similar complexity to the circuit we considered	 though our HOL
proof took less time	 demonstrating the increased maturity of the system�

B� Chen et� al at Fujitsu Digital Technology Ltd� 
�� veri�ed an ATM cir�
cuit that makes high�speed switching operations at ��� MHz and consists
of about ���K gates� When the circuit was manufactured it showed an ab�
normal behavior under certain circumstances� Using the SMV tool 
���	 the
authors identi�ed the design error by checking some properties expressed in
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Computation Tree Logic 
���� Due to the restriction of the Boolean compu�
tation used by SMV and in order to avoid a state space explosion	 they had
to abstract the data width of addresses from � bits to � bit	 and the number
of addresses in the Write Address FIFO from ��� to �� Although the design
error was diagnosed	 there is no proof showing that the abstracted circuit
was itself correct�

K� Schneider et al� 
��� formally veri�ed the Fairisle � by � switch fabric
using a veri�cation system based on the HOL theorem prover	 MEPHISTO�
They described the structure of each of the modules used in the hardware
design hierarchically down to the gate level and provided their behavioral
speci�cations using so called hardware formulas 
���� These speci�cations
are much lower level than our speci�cations� The veri�cation of lower�level
hardware modules which implement the top�level block units was automated�
However	 the complete veri�cation of the intended overall behavior of the
switch fabric against its implementation was not accomplished� This was
done in our HOL veri�cation presented here	 though�

Other groups have also used the � by � fabric as a case study� Jakubiec
and Coupet�Grimal are using it in their work using the Coq proof system
for hardware veri�cation 
���� Garcez 
��� has also veri�ed some proper�
ties of the � by � fabric using the HSIS model checking tool 
��� More
recently	 Lu 
��� used the VIS tool 
�� to perform property checking on var�
ious abstracted models of the fabric� In addition	 he conducted equivalence
checking between behavioral and structural speci�cations of submodules of
the fabric written in Verilog� He also re�implemented the whole fabric using
the Synopsys synthesis tool and used the Verilog�XL simulator of Cadence
to graphically simulate all generated modules�

�� The Fairisle � by � Switch Fabric

The Fairisle switch forms the heart of the Fairisle network� It consists of
three types of components� input port controllers	 output port controllers
and a switch fabric �Figure ��� Each port controller is connected to a trans�
mission line and to the switch fabric� The port controllers synchronize in�
coming and outgoing data cells	 appending control information to the front
of the cells in a routing byte �Figure ��� In this paper	 we are concerned
with the veri�cation of the switch fabric which is the core of the Fairisle
ATM switch�

The routing byte �header� is stripped o� before the cell reaches the output
stage of the fabric� A cell consists of a �xed number of data bytes which
arrive one at a time� The fabric switches cells from the input ports to the
output ports according to the routing byte� If di�erent port controllers in�
ject cells destined for the same output port controller �indicated by route

bits in the routing byte� into the fabric at the same time	 then only one will
succeed� The others must retry later� The routing byte also includes a pri�
ority information bit �priority� that is used by the fabric during arbitration�
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Fig� �� The Fairisle ATM Switch

Arbitration takes place in two stages� First	 high priority cells are given
precedence	 and for the remaining cells the choice is made on a round�robin
basis� The input controllers are informed of whether their cell was successful
using acknowledgment lines� The fabric sends a negative acknowledgment
to the unsuccessful input ports	 and passes the acknowledgment from the
requested output port to the successful input port�

01234567

route priorityspare (unused) active

Fig� �� The Routing Byte �Header� of the Fairisle ATM Cell

The port controllers and switch fabric all use the same clock	 hence bytes
are received synchronously on all links� They also use a higher�level cell
frame clock�the frame start signal �Figure ��� It ensures that the port
controllers inject data cells into the fabric synchronously so that the routing
bytes arrive at the same time�
The behavior of the switch fabric is cyclic� In each cycle or frame	 it waits

for cells to arrive	 reads them in	 processes them	 sends successful ones to
the appropriate output ports	 and sends acknowledgments� It then waits
for the arrival of the next round of cells� The cells from all the input ports
start when the active bit of any one of their routing bytes goes high� The
fabric does not know when this will happen� However	 all the input port
controllers must start sending cells at the same time within the frame� If
no input port raises the active bit throughout the frame then the frame is
inactive�no cells are processed� Otherwise it is active�
As shown in Figure �	 the inputs to the fabric consist of the cell data lines	

the acknowledgments that pass in the reverse direction	 and the frame start
signal	 frame start 	 which is the only external control signal� The outputs
consist of the switched data	 and the switched and modi�ed acknowledg�
ment signals� Figure � shows a block diagram of the � by � switch fabric�
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It is composed of an arbitration unit �timing	 decoder	 priority �lter and
arbiters�	 an acknowledgment unit and a dataswitch unit� The timing block
controls the timing of the decision with respect to the frame start signal
and the time the routing byte arrives� The decoder reads the routing bytes
of the cells and decodes the port requests and priorities� The priority �lter
discards requests with low priority which are competing with high�priority
requests�
The resulting request situation for each output port are then passed to

the arbiters� The arbiters �in total four�one for each port� make arbitra�
tion decisions for each output port and pass the result to the other units
with the grant signal� Using the output disable signals	 the arbiters indicate
to the other units when a new arbitration decision has been made� The
dataswitch unit performs the actual switching of data from input port to
output port according to the latest arbitration decision� The acknowledg�
ment unit passes appropriate acknowledgment signals to the input ports�
Negative acknowledgments are sent until an arbitration decision is made�
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Fig� �� The Fairisle ATM Switch Fabric

Each of these units is repeatedly subdivided down to the logic gate level	
providing a hierarchy of modules� The design has a total of ��� basic compo�
nents �a multiple input logic gate or single bit �ip �op�� It is built on a ����
gate equivalent Xilinx programmable gate array� The switching element can
be clocked at �� MHz and currently frame start pulses occur every �� clock
cycles� The designers originally described the hardware using the Qudos
hardware description language �HDL� 
��� which was used for generating
the Xilinx netlist� The Qudos simulator was used to perform the original
�non�formal� validation�
The Fairisle Switch fabric is a good choice for a comparison study such

as this for several reasons� It is a real	 fabricated design which was not
designed as a veri�cation case study� It therefore gives a real test of the
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veri�cation systems� Hardware designed to be a veri�cation case study is
likely to be oversimpli�ed and thus miss problems that would arise for a real
design� Furthermore	 it combines both control hardware with a datapath�
This combination causes problems for traditional BDD�based veri�cation
systems� Control information also occurs in the data �the routing byte�
preventing veri�cation of a version with a reduced�width datapath from
being possible� While not being a trivial design	 it is simple enough for a
veri�cation to be performed in a reasonable amount of time�

�� The HOL Veri�cation of the Fabric

In the �rst study	 the Fabric was veri�ed using the HOL Theorem�Proving
System� This is an interactive proof system� The original HOL system was
intended as a tool for hardware veri�cation� However	 it is actually a general�
purpose proof system that has subsequently been used in a wide variety
of application areas� It provides a range of proof commands of varying
sophistication	 including rewriting tools and decision procedures� It is also
fully user�programmable	 allowing user�de�ned	 application�speci�c proof
tools to be developed�

��� The HOL Theorem�Proving System

The HOL�� theorem proving system is an LCF�style 
��� theorem prover
for higher�order logic 
���� The basic interface to the system is a Standard
ML interpreter� Standard ML is both the implementation language of the
system and the meta�language in which proofs are written� Proofs are input
to the system as calls to Standard ML functions�
The system is very �exible and a variety of di�erent proof styles are sup�

ported� The main styles	 however	 are forwards and backwards proof� In the
former style	 to create new theorems	 the user calls functions corresponding
to axioms or inference rules� The latter are applied to previously proved
theorems� Further theorems are created by applying other inference rules
to the newly created theorems� Eventually	 in this way	 the desired theorem
is proved� In backwards proof	 the user sets the desired theorem as a goal�
Tactics are then applied which break the goal into simpler subgoals in such
a way that if a corresponding inference rule was applied to the subgoals	 the
theorem of the goal would be obtained� Tactics are repeatedly applied to
the subgoals until they can be trivially proved	 at which point the original
goal can be made into a theorem� This is actually done by applying the
inference rules which correspond to the applied tactics in a forwards man�
ner	 automatically� In practice	 a mixture of these two styles is used	 with
forwards proof interspersed within backwards proofs�
The system represents theorems by a Standard ML abstract type� The

only way a theorem can be created is by applying a small set of primitive
inference rules that correspond to the primitive rules of higher�order logic�
More complex inference rules and tactics must ultimately call a series of
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primitive rules to do the work� This means that the user can have a great
deal of con�dence in the results of the system� User programming errors
cannot cause a non�theorem to be erroneously proved� That could only occur
if there were errors in the few	 relatively simple functions corresponding to
the primitive inference rules of the system�

��� The Structural Speci�cations

The structural speci�cation of a design describes its implementation� the
components it consists of and how they are wired together� The original
designers of the fabric used a relatively simple hardware description language
�HDL�	 called Qudos HDL	 to give structural descriptions of the hardware�
This description was used to simulate the design prior to fabrication� The
Xilinx netlist was also generated from this description� The descriptions
used in the veri�cation were hand�derived from the Qudos descriptions� An
example of a Qudos HDL speci�cation is given below�

DEF DMUX�T��d����	
�x�INdOut�����
�IO� xBar�IO

BEGIN Clb��XiCLBMAP�i���d�����
�x�d����	
�dOut�����
�

InvX�� XiINV�x�xBar�

B��
�� AO�d��
�xBar�d��
�x�dOut��
�

B��
�� AO�d��
�xBar�d�	
�x�dOut��
�

END

This is the description of a multiplexer circuit �see Figure ��� It takes a �
bit input d and a � bit input x	 producing a ��bit output dOut� xBar is
an internal signal� The Clb statement is a dummy declaration providing
information about the way the component design should be mapped into a
Xilinx gate array� The multiplexer implementation consists of three com�
ponents� XiINV is an inverter and the AO components are AND�OR logic
gates� Wiring between modules is indicated by the use of common variable
names� For example	 xBar is an output of the inverter and an input to the
AO gates�

AO

AO

dOut[0]

dOut[1]

xBar

d[0][0]

d[1][0]

d[1][1]

x

d[0][1]

Fig� �� The DMUX�T� multiplexer circuit
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The descriptions needed to perform a veri�cation are similar to those used
for simulation� However	 for veri�cation they must be written in a language
with a formally de�ned semantics	 which can be reasoned about easily� In the
HOL veri�cation	 higher�order logic itself was used for this purpose� The
formal speci�cations were developed by manually translating the original
description into higher�order logic� It would be straightforward to automate
this translation process� However	 no front�end translator from Qudos HDL
to HOL existed and it was beyond the scope of this study to implement
one� Clearly this would be desirable if a large number of designs written in
Qudos HDL were to be veri�ed�
Hardware components are modeled in HOL using relations on the inputs

and outputs 
���� For example	 XiINV�in�out� is used to represent an
inverter with a single input wire	 in	 and a single output wire	 out� An
input and output wire are in the relation XiINV if at all times the output
is a negated version of the input� The wires themselves are represented by
functions from time to the value on the wire at that time� For an inverter	
the values are represented by booleans� However	 wires can also hold more
complex values such as words �e�g�	 a byte�� The basic building blocks used
in the HOL speci�cations were the basic units of the simulator used by the
designers� logic gates �such as XiINV� and single bit registers�
Conjunction ��� is used to join multiple components� As in Qudos HDL	

the wiring is indicated by the use of the same variable as arguments to
di�erent modules� Individual bits of words are referenced using the SBIT

operator� Thus	 the following represents a circuit consisting of an inverter
and a single AO unit	 with the output of the former �xBar� being one of the
inputs of the latter�

XiINV�x�xBar� �
AO��y��xBar� y�� x�� dOut�

Internal wires can be hidden using the LOCAL quanti�er� This is actually
just an alternative name for the existential quanti�er� Thus	 to internalize
xBar in the above we could write�

LOCAL xBar�
XiINV�x�xBar� �
AO��y��xBar� y�� x�� dOut�

The following is a HOL version of the module de�nition	 that corresponds
directly to the full Qudos de�nition of the above multiplexer example�

DMUX�T���d�x��dOut� �

LOCAL xBar�
XiINV�x�xBar� �
AO��SBIT � d�xBar�SBIT � d� x�� SBIT � dOut� �
AO��SBIT � d�xBar� SBIT 	 d� x�� SBIT � dOut�
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As can be seen from this example	 Qudos structural descriptions can be
mimicked very closely in HOL up to surface syntax� However	 the extra
expressibility of HOL was used to simplify and generalize the description�
For example	 in HOL words of words are supported� Therefore	 a signal
carrying � bytes can be represented as a word of � ��bit words	 rather than
as � separate signals or as one ���bit signal� Similarly	 we can model the
input	 d	 of the multiplexer as � words of � bits �its natural structure�� Its
structural description then becomes�

DMUX�T���d�x��dOut� �

LOCAL xBar�
XiINV�x�xBar� �
AO��SBIT � �SBIT � d��xBar�SBIT � �SBIT � d�� x�� SBIT � dOut� �
AO��SBIT � �SBIT � d��xBar�SBIT � �SBIT � d�� x�� SBIT � dOut�

With the structured version of d	 the two occurrences of AO become the
same up to the inner indices� We can therefore improve on the above by
using a single occurrence of AO and the module duplication operator	 FOR�
It is just a bounded universal quanti�er�

DMUX�T���d�x��dOut� �

LOCAL xBar�
XiINV�x�xBar� �
FOR i �� � TO � �

AO��SBIT � �SBIT i d��xBar�SBIT � �SBIT i d�� x�� SBIT i dOut�

On a small example as above	 there is little if any improvement in readability�
The advantages are more pronounced in situations where the amount of
duplication is greater� The duplication operator reduces the need for the
same piece of code to be written out repeatedly	 reducing the amount of
code and the potential for mistakes� A major advantage is the opportunity
it gives for generic speci�cations where the number of copies is given as an
argument to the speci�cation�
In HOL	 arithmetic can also be used to specify which bit of a word is

connected to an input or output of a component� For example	 we can
specify that for all i	 the �i�th bit of an output is connected to the i�th bit
of a subcomponent� This	 again	 meant that for the fabric we could avoid
writing essentially identical pieces of code several times	 as was necessary
in the Qudos speci�cations� When an additional module	 used in several
places	 is introduced	 the veri�cation task is reduced� This is because that
module needs only be veri�ed once	 rather than for every instance�
It should be stressed that while the descriptions of the implementation

were modi�ed in the ways outlined above	 no simpli�cation was made to the
implementation itself to facilitate the veri�cation� The simpli�cations that
were made were to the surface description �such as grouping components
into extra modules�� The netlists of the structural speci�cations used were
intended to correspond to that actually implemented� This was not checked�
One way this could have been done was to compare the netlist descriptions
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derived from the two structural descriptions� However	 we did not have a
tool to derive the netlist from a HOL description�

��� The Behavioral Speci�cations

The behavioral speci�cation against which the structural speci�cation was
veri�ed describes the actual	 unsimpli�ed behavior of the switch fabric� It
is presented at a similar level of abstraction to that used informally by
the designers� It describes the switch behavior over a frame in terms of
timing behavior represented using interval operators� Such a description is
essentially a formalization of a timing diagram such as in Figure �� Within
the interval	 the values output are functions of the values input and state at
earlier times�
A frame is speci�ed to be an interval of time in which�

� at the start of the interval	 the frame start signal is high�

� at the end of the interval	 the frame start signal is high�

� the frame start signal is low at all other times in the interval� and

� the end time �te� is later than the start time �ts��

A frame can then be either active or inactive� This is determined by an
additional signal active derived from information in the cell headers� It
indicates the arrival of a cell� An inactive frame is one in which this signal
remains low throughout the frame� In an active frame	 it remains low until
some speci�ed active time �th�	 at which point it goes high� Its value for
the remainder of the frame is then unspeci�ed� This is shown in Figure ��
Other restrictions are placed on the precise time within the frame when the
active signal can occur� If it arises too close to the ends of the frame	 then
the fabric does not function correctly� The environment of the fabric must
ensure that this does not occur� The precise behavior in such situations can
be omitted from the speci�cations since it is erroneous� This is a di�erence
between the HOL and the MDG speci�cations� In the latter the behavior
in all circumstances must always be speci�ed� This means the amount of
speci�cation work is less in this respect in HOL�
As an example of a behavioral speci�cation	 consider the speci�cation for

the acknowledgment signal on a frame where cell headers arrive at time th�
The predicate AFRAME speci�es that we are dealing with intervals correspond�
ing to such active frames� The ackOut signal must be zeroed �speci�ed by
ZEROW� until time th��� Thereafter	 its value at a given time is speci�ed by
the function AckAframe� It depends on the arbitration decision made� This
in turn depends on the value of the data injected into the fabric at time th
�the header�	 the value of the last arbitration decision	 and the value of the
acknowledgments coming in from the output ports at the time in question�
This functional behavior is speci�ed by a function argument to the inter�
val operator	 DURING� This speci�cation is illustrated diagrammatically in
Figure ��



COMPARING HOL AND MDG� A CASE STUDY ��

ts

th

th+3

te
ts th te

ackAframe

defines

as an active
frame

, ,frameStart

active

ackIn

ackOut

Fig� �� The Timing Diagram for the Acknowledgment Output

�AFRAME ts th te frameStart active� �
STABLE �ts 	 �� �th 	 
� ackOut �ZEROW ���� �
DURING �th 	 
� �te 	 �� ackOut
�� t� AckAframe �d th� �last �th 	 ��� �ackIn t��

In the above	 last represents the state of the most recent arbitration deci�
sions� STABLE is an interval operator similar to DURING� It speci�es that the
given signal has some constant value over an interval� � is a lambda operator
introducing an un�named function� In the above it is used to give a function
that takes a time t as an argument� Thus DURING provides a series of times
�corresponding to the interval�� These are passed to the un�named function
which returns the value for that time�

Other clauses in the speci�cation describe the behavior over an inactive
frame in which no cells arrive� A similar set of clauses are given for the
behavior of the data output lines and the internal state	 last� A feature
of this style of speci�cation is that the cell frame is very explicit in the
description� This is a di�erence from the state machine based speci�cation
style used in MDG �described later��

In the HOL veri�cation	 it is not su�cient to simply provide a behavioral
speci�cation for the whole design� Each module is veri�ed independently	
as described in the next section� This means we must provide behavioral
speci�cations for each of the �� distinct modules in the design� However	
once done for a particular module	 this work does not need to be repeated
if the module is reused�

The speci�cations of the more complex modules at the top of the design
hierarchy were similar to that given above� The simpler ones at the bottom
of the hierarchy	 for which the frame structure was not applicable	 were
given point�time speci�cations rather than interval ones� For example	 the
speci�cation of DMUX�T� whose structural speci�cation was given earlier is�

DMUX�T� SPEC ��d� x�� dOut� �

� t� dOut t � Mux �x t� �d t�
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This states that at any time	 t	 the output	 dOut	 is a function of the inputs	
x and d	 at that point in time� That function is speci�ed by Mux� It is
de�ned in terms of general operators on the basic datatypes� BV which turns
a boolean into a natural number and BITS which selects the indicated bit
from each word within a word of words�

Mux x d � BITS �BV x� d

��� The Veri�cation Process

The veri�cation of the � by � switch fabric used standard techniques 
����
It was structured hierarchically following the module structure of the im�
plementation� This hierarchical	 modular nature of the proof facilitated the
management of the complexity of the proof� It gave a natural sub�division
of the proof� Each module could be veri�ed separately and independently of
the others� Both the structural and behavioral speci�cations of each module
were given as relations in higher�order logic� This meant that a correctness
statement could be stated using logical implication for �implements�� In
general	 the correctness statement thus had the form 
��	 ����

� assumptions on environment �
�structure � behavior�

i�e�	 under certain assumptions on the environment	 the structural speci�ca�
tion implements the behavioral speci�cation�
The internal state	 which is an explicit argument to the behavioral spec�

i�cation but implicit in the structural description �within the registers�	 is
represented by an existentially quanti�ed variable� Inputs and outputs are
represented by universally quanti�ed variables� Thus	 the overall correctness
statement �with details of word sizes omitted for the sake of exposition� has
the form�

� ackIn ackOut dOut d frameStart�
ENVIRONMENT frameStart d �
FABRIC�B� ��d�frameStart�ackIn�� �dOut�ackOut�� �
� last�
FABRIC�B� SPEC last ��d�frameStart�ackIn�� �dOut�ackOut��

The correct operation of the fabric relies on an assumption about the
environment� In particular	 cells must not arrive at certain times within two
clock cycles of a frame start� The relation ENVIRONMENT	 above	 speci�es
this condition in a general way� This di�ers from the MDG veri�cation
where the environment corresponds to one particular instance of the general
environment condition used here� Note that the MDG approach can be
advantageous for a large scale veri�cation as in some circumstances	 only
the behavior of the switch in its working environment is of practical interest�
A correctness theorem of the above form was proved for each module stat�

ing that its implementation �in terms of logic gates� satis�ed its speci�cation�
This was proved in several independent steps�
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��� All the module�s submodules were veri�ed �by applying this veri�ca�
tion approach recursively�� The correctness theorems obtained state
that the structural speci�cation �implementation� of each submodule
implies its behavioral speci�cation�

��� The module was veri�ed under the assumption that all its submodules
correctly implemented their behavioral speci�cations� In essence the
submodules were treated as black�boxes for the purposes of this step�
their behavioral speci�cations were used in the proof rather than their
implementations� A version of the structural speci�cation that refers
to the behavioral speci�cations of the submodules rather than their
implementations was used�

��� The new descriptions of the implementation of the module used in the
previous step were replaced by the original descriptions that refer to
the implementations of the submodules� This was done by appealing to
the correctness statements for the submodules� This gave the desired
theorem stating the correctness of the module�

Verifying the full design involved doing the above for the top level module�
The bottom level of the hierarchy consisted of logic gates and single�bit
registers� These were only speci�ed behaviorally� they were left as black�
boxes in the correctness theorem�
The proof of the correctness lemma for each module was split into several

parts� These parts corresponded to the separate intervals for each output
signal given in the behavioral speci�cation of the module� The proof for each
interval was essentially inductive� A lemma was proved that the implemen�
tation satis�ed the behavior at the start of the interval� It was also proved
that	 within the interval	 if the behavior was satis�ed at one time point	
then it was also satis�ed at the subsequent time point� From this it could
be deduced that the implementation was correct over the whole interval�
In conducting the overall proof	 the veri�er needs a very clear understand�

ing of why the design is correct	 since a proof is essentially a statement of
this� Thus performing a formal proof involves a deep investigation of the
design� It also provides a means to help achieve that understanding� Hav�
ing to write formal speci�cations for each module helps in this way� Having
to formulate the reasons why the implementation has that behavior gives
much greater insight� In addition to uncovering errors	 this can serve to
highlight anomalies in the design and suggest improvements	 simpli�cations
or alternatives 
���

��	 Time Taken

The module speci�cations �both behavioral and structural� were written
prior to any proof� This took between one and two person�months� No
breakdown of this time has been kept� Much of the time was spent in un�
derstanding the design� The structural speci�cations were adapted directly
from the Qudos HDL� The behavioral speci�cations were more di�cult� The
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speci�er had no previous knowledge of the design� There was a good English
overview of the intended function of the switch fabric� This also outlined
the function of the major components� While it gave a good introduction	
it was not su�cient to construct an unambiguous behavioral speci�cation of
all the modules� The behavioral speci�cations were instead constructed by
analyzing the HDL� This was very time�consuming�
Approximately two person�months were spent performing the veri�cation�

Of this	 one week was spent proving theorems of general use� Approximately
� weeks were spent verifying the upper modules of the arbitration unit	 and
a further week was spent on the top two modules of the switch� �� days
were spent combining the correctness theorems of the �� modules to give a
single correctness theorem for the whole circuit� The remaining time of just
over two weeks was spent proving the correctness theorems for the �� lower
level units� This can be seen in Figure � which shows the cumulative time
in person�days �assuming an ��hour day� taken to verify the separate mod�
ule�s lemmas� The proofs of the upper�level modules were generally more
time�consuming for several reasons� there were more intervals to consider�
they gave the behavior of several outputs� and those behaviors were de�ned
in terms of more complex notions� They also contained more errors which
severely hampered progress� The veri�er had not previously performed a
hardware veri�cation	 though was a competent HOL user� Apart from stan�
dard libraries	 the work did not build directly on previous theories�

CUMULATIVE TIME (PERSON-DAYS)
5 10 15 20 25 30

5

10

15

20

25

30

35

40

MODULES

VERIFIED

Fig� �� Time taken to verify the fabric modules using HOL

It takes several hours of machine time on a Sparc �� to completely rebuild
the proofs from scratch by re�running the scripts in batch mode� Single
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theories representing individual modules generally take minutes to rebuild�
A large proportion of the time is actually spent restarting HOL and loading
in appropriate parent theories and libraries for each theory� In the initial
development of the proof the machine time is generally not critical	 as the
human time is so much greater� However	 since the proof process consists
of a certain amount of replay of old proofs	 a speed�up would be desirable	
for example	 when mistakes are made in a proof�
If an existing design is to be adapted for new purposes	 it is important

that the new veri�cation can be done quickly� Since proof is very time
consuming this is especially important� This problem is attacked in several
ways in the HOL approach� the proofs can be made generic� their modular
nature means that only a�ected modules need to be reveri�ed� and proofs of
modules which have changed can often be replayed with only minor changes�
After the original veri�cation had been completed	 several variations on the
design were also veri�ed� These included real	 fabricated variations that
formed part of a �� by �� fabric� Although the � by � switch fabric took
several months to specify and verify	 the modi�ed versions took only a matter
of hours or days as can be seen from Figure �� Generic proofs were not used
to as great an extent as was possible in this study� This was because it was
generally easier to reason about speci�c values than general ones�
One of the biggest disadvantages of the HOL system is that its learn�

ing curve is very steep� Furthermore	 interactive proof is generally a time�
consuming activity even for an expert� Much time is spent dealing with
trivial details of a proof� Recent advances in the system such as new simpli�
�ers and decision procedures may alleviate these problems� However	 more
work is needed to bring the level of interaction with the system closer to
that of an informal proof�

��
 Errors

No errors were discovered in the fabricated hardware� Errors that had inad�
vertently been introduced in the HOL structural speci�cations �and could
just as easily have been in the implementation� were discovered� The origi�
nal versions of the HOL behavioral speci�cations of many modules contained
errors�
A strong indication of the source of detected errors was obtained� Because

each module was veri�ed independently	 the source of an error was immedi�
ately narrowed down to being in the current module	 or in the speci�cation
of one of its submodules� Furthermore	 because performing the proof in�
volves understanding why the design is correct	 the exact location of the
error was normally obvious from the way the proof failed� For example	 in
one of the dataswitch modules	 two wires were inadvertently swapped� This
was discovered because the subgoal ��T� F� 	 �F� T�� was generated in
the proof attempt� One side of this equality originated from the behavioral
speci�cation and one from the structural speci�cation� It was clear from
the context of the subgoal in the proof attempt that two wires were crossed�
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It was also clear which signals were involved� It was not immediately clear
which speci�cation �structural or behavioral� was wrong�

A further example of an error that was discovered concerned the time the
grant signal was read by the dataswitch� It was speci�ed that the two bits of
the grant signal from each arbiter were read on a single cycle� However	 the
implementation read them on consecutive cycles� This resulted in a subgoal
of the form grant t 	 grant �t� ��� No information was available in the
goal to allow this to be proven	 suggesting an error� On this occasion it was
in the speci�cation�

Occasionally	 false alarms occurred� an unprovable goal was obtained	
suggesting an error� However	 on closer inspection it was found that the
problem was that information had been lost in the course of the proof�
An example where information is lost is where an assumption	 t� � t�	 is
converted to t� � t� during the proof �perhaps to resolve the goal with a
lemma containing the latter as an assumption�� Here the information that
the two times are not equal is lost� Such a false alarm could lead to an
unnecessary change in the implementation being made�
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Many trivial typing errors were caught at an early stage by type�checking�
However	 many other trivial mistakes were made over the size of words and
signals� For example	 words of size � by � were inadvertently speci�ed as
� by � words� These errors were found during the proof process� It would
have been much better if they had been picked up earlier� This would have
been possible if dependent typing had been available 
����

��� Scalability

The HOL proof approach has the potential to be scalable to large designs
in a way that the MDG approach is not� Because the HOL approach is
modular and hierarchical	 increasing the size of the design does not neces�
sarily increase the complexity of the proof� Only new modules need to be
veri�ed�the new proof is built on top of the original� However	 in practice
the modules higher in the hierarchy generally take longer to verify� This
is demonstrated by the fact that two of the upper most modules took ap�
proximately half of the total veri�cation time�a matter of weeks� However	
it should be noted that the very top module which simply added various
delays to various inputs and outputs of the main module	 only took a day
to verify� It is	 thus	 not universally so�
The extra time arises in part because there are more cases to consider� The

situation is made worse if the interfaces between modules are left containing
a large amount of low�level detail� For example	 in the proof of the switch
fabric	 low�level modules required assumptions to be made about their in�
puts� These assumptions had to be dealt with in the proofs of higher�level
modules adding extra proof work manipulating and discharging them� If the
proof is to be tractable for large designs	 it is important that the interfaces
between modules are as clean as possible� The interfaces of the Fairisle fab�
ric could have been much simpler� We demonstrated this by redesigning the
fabric with cleaner interfaces� The new design was also veri�ed 
���

�� The MDG Veri�cation of the Fabric

In the second study	 the same circuit was veri�ed using a decision graph
approach� In our work	 a new class of decision diagrams called multiway

decision graphs �MDGs� was used to represent sets of states as well as the
transition and output relations 
��� Based on a new technique called ab�

stract implicit enumeration	 hardware veri�cation tools have been developed
which perform combinational circuit veri�cation	 safety property checking
and equivalence checking of two sequential machines 
���

	�� The MDG Veri�cation System

The formal system underlying MDGs is many�sorted �rst�order logic aug�
mented with a distinction between abstract and concrete sorts� Concrete
sorts have enumerations	 while abstract sorts do not� A data value can be
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represented by a single variable of abstract sort	 rather than by concrete
boolean variables� A data operation can be represented by an uninterpreted
function symbol�
A multiway decision graph �MDG� is a �nite directed acyclic graph �DAG�

where the leaf nodes are labeled by formulas	 the internal nodes are labeled
by terms	 and the edges issuing from an internal node are labeled by terms of
the same sort� MDGs essentially represent relations rather than functions�
MDGs must be reduced and ordered in a similar way to Bryant�s ROBDDs

��� Like ROBDDs	 the MDGs require a �xed node ordering� Currently	 the
node ordering has to be given by the user explicitly� Unlike ROBDDs where
all variables are boolean	 every variable used in the MDGs must be assigned
an appropriate sort	 and type de�nitions must be provided for all functions�
MDGs permit the description of the output and next state relations of

a state machine in a similar way to the way ROBDDs do for FSMs� We
call the model an abstract state machine �ASM�	 since it may represent an
unbounded class of FSMs	 depending on the interpretation of the abstract
sorts and operators� For circuits with large datapaths	 MDGs are thus
much more compact than ROBDDs� As the veri�cation is independent of
the width of the datapath	 the range of circuits that can be veri�ed is greatly
increased�
The MDG system is based on a carefully chosen set of well�de�ned con�

ditions which turn MDGs into canonical representations that can be ma�
nipulated by e�cient algorithms� These include algorithms for disjunction	
relational product �combination of conjunction and existential quanti�ca�
tion�	 pruning by subsumption �for testing of set inclusion� and reachability
analysis �using abstract implicit enumeration 
���� In addition	 a rewriting
ability �unconditional and conditional� is provided� It extends the scope of
these applications and can also be used to shrink the MDG size� Rewrite
rules may need to be provided to partially interpret the otherwise uninter�
preted function symbols�
Based on the above operators and algorithms	 a set of veri�cation appli�

cations have been developed including�
Combinational veri�cation� equivalence checking of inputoutput relations

for two combinational circuits� The MDGs representing the input�output
relation of each circuit are computed by the relational product algorithm
from the MDGs of the components of the circuit� It is then checked whether
the two MDGs are isomorphic	 taking advantage of the canonicity of MDGs�
Safety properties checking � using reachability analysis	 the state space

of a given sequential circuit �abstract state machine� is explored and it
is checked if a certain invariant holds in all the reachable states of this
sequential machine� The transition relation of the abstract state machine is
represented by an MDG computed using the relational product algorithm
applied to the MDGs of the components�
Sequential veri�cation� here the behavioral equivalence of two abstract

state machines �sequential circuits� is veri�ed by checking that the machines
produce the same sequence of outputs for every sequence of inputs� The
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same inputs are fed to the two machines and then reachability analysis is
performed on their product machine using an invariant asserting the equality
of the corresponding outputs in all reachable states�
Counter�example generation� When the invariant is not satis�ed during

safety property checking or sequential veri�cation	 a counter�example will
be provided to help the user identify the errors� A counter�example consists
of a list of assumptions	 inputs and state values at each clock cycle	 and
gives a trace for the erroneous output�
The MDG operators and veri�cation procedures are packaged as MDG

tools implemented in Prolog 
���� These MDG tools have been used for the
veri�cation of a set of known �combinational and sequential� benchmark cir�
cuits including the veri�cation of two simple	 non�pipelined microprocessors
against their instruction�set architectures 
��� In this paper	 we investigate
the veri�cation of a real circuit�the Fairisle ATM switch fabric� This circuit
is an order of magnitude larger than any other circuit veri�ed using MDGs�

	�� The Structural Speci�cations

The actual hardware implementation of the switch fabric was described at
two levels of abstraction	 namely a description of the original Qudos gate�
level implementation and a more abstract Register transfer Level �RTL�
description which holds for an arbitrary word width�
As with the HOL study	 the Qudos HDL gate�level description was trans�

lated into a suitable HDL description	 here a Prolog�style HDL	 called MDG�
HDL� As in the HOL study	 extra modularity was added over the Qudos de�
scriptions	 while leaving the underlying implementation unchanged� A struc�
tural description is usually a �hierarchical� network of components �modules�
connected by signals� MDG�HDL comes with a large library of prede�ned	
commonly used	 basic components �such as logic gates	 multiplexers	 regis�
ters	 bus drivers	 ROMs	 etc�� Multiplexers and registers can be modeled at
the Boolean or the abstract level using abstract terms as inputs and outputs�
As an example	 the following is the MDG�HDL description of the DMUX�T�

module given in Section ����

module�DMUX�T�
port�inputs��d�� bool� �d�� bool� �d�� bool� �d
� bool� �x� bool�

outputs��dOut�� bool� �dOut�� bool�
structure�

signals�xBar� bool�
component�InvX� NOT�input�x�output�xBar�
component�AO �� AO�input�d�� xBar� d�� x�output�dOut��
component�AO �� AO�input�d�� xBar� d
� x�output�dOut��

Here	 the components NOT and AO are basic components provided by the
MDG�HDL library� Note also that the data sorts of the interface and internal
signals must always be speci�ed� MDG does not provide a replication facility
equivalent to FOR nor an ability to structure words	 so this description cannot
be simpli�ed �abstracted� as in HOL�
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The �nal goal of the MDG veri�cation approach is to verify the hard�
ware implementation against a high�level behavioral speci�cation described
in terms of an abstract state machine� This cannot be done using the gate�
level model as such a direct veri�cation may rapidly lead to a state ex�
plosion� Hence	 besides the gate�level description	 a more abstract �RTL�
description of the implementation was also provided and which holds for
arbitrary word width� Here	 the data�in and data�out lines are modeled
using an abstract sort wordn� The active	 priority and route �elds are ac�
cessed through corresponding cross�operators �functions�� In addition to the
generic words and functions	 the RTL speci�cation also abstracts the behav�
ior of the dataswitch unit by modeling it using abstract data multiplexers
instead of logic gates� We thus obtain a simpler implementation model of
the dataswitch which re�ects the switching behavior in a more natural way
and is implemented with fewer components and signals� For example	 a set
of four DMUX�T� modules is modeled using a single multiplexer component�
For more details about the abstraction techniques used	 refer to 
����

	�� The Behavioral Speci�cations

MDG�HDL is also used for behavioral descriptions� A behavioral descrip�
tion is given by high�level constructs as ITE �If�Then�Else� formulas	 CASE
formulas or tabular representations� The tabular constructor is similar to
a truth table but allows �rst�order terms in rows� It can be used to de�ne
arbitrary logic relations� In the MDG study	 the behavioral speci�cation of
the switch fabric was given in two di�erent forms� ��� as a complete high�
level behavioral state machine and ��� as a set of properties which re�ect
the essential behavior of the switch fabric as it is used in its environment�
This latter form was mainly introduced to validate the speci�cations in early
stages of the project�

	���� ASM Behavioral Speci�cation

Starting from timing�diagrams describing the expected behavior of the switch
fabric	 a complete high�level behavioral speci�cation was derived in the form
of an abstract state machine �ASM�� This speci�cation was developed inde�
pendently of the actual hardware design and includes no restrictions with
respect to the frame size	 cell length and word width� It assumes that the
environment maintains certain timing constraints on the arrival of the frame
start signal and headers	 however� A schematic representation of the ASM
speci�cation of the � by � switch fabric is shown in Figure �� The symbols
t		 ts	 th and te in the �gure represent the initial time	 the time of arrival of
the frame start signal	 the time of arrival of the routing bytes and the time
of the end of a frame	 respectively� There are �� conceptual states� States
�	 � and � along the time axis t	 describe the initial behavior of the switch
fabric� States �	 �	 � and � along the time axis ts describe the behavior of
the switch on the arrival of a frame start signal� States � to �� along the
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time axis th describe the behavior of the switch fabric after the arrival of
the headers� The waiting loops in states �	 � and �� are illustrated in the
�gure by the non�zero natural numbers i	 j and k	 respectively� Figure �
also includes many meta�symbols used to keep the presentation simple� For
instance	 the symbols s and h denote a frame start and the arrival of a
routing byte �header�	 respectively	 and the symbol ��� denotes negation�
Thus	 �s and �h in Figure � mean the absence of a frame start signal
and the absence of a header	 respectively� The symbols a	 d and r inside a
conceptual state represent the computation of the acknowledgment output	
the data output and the round�robin arbitration	 respectively� The absence
of an acknowledgment or a data symbol means that no computation takes
place and the default value is output� The operations are de�ned by separate
state machines�
To formally describe this ASM using MDGs	 some basic sorts	 constants

and functions �cross�operators� were �rst introduced	 e�g� a concrete sort
port � f�� ��� �g	 an abstract sort wordn	 a constant zero of sort wordn and
a cross�operator rou of type 
wordn � port� representing the route �eld in
a header� Further	 the generation of the acknowledgment and data output
signals is described by case analysis on the result of the round�robin arbitra�
tion� This is done in MDG�HDL using if�then�else constructs� For example	
the acknowledgment output is described by four formulas determining the
value of ackOuti	 i � f�� ��� �g�

if ��co� � � and �ip� � i then �ackOuti � ackIn�
ef ��co� � � and �ip� � i then �ackOuti � ackIn�
ef ��co� � � and �ip� � i then �ackOuti � ackIn�
ef ��co� � � and �ip� � i then �ackOuti � ackIn�

else �ackOuti � �

Here coi �i � f�� ��� �g�	 of sort bool	 and ipi �i � f�� ��� �g�	 of sort port	 are
state variables generated by the round�robin computation which correspond
to the output disable and grant signals	 respectively �Figure ���
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	���� Speci�cation of Properties

Although the above ASM speci�cation describes the complete behavior of
the switch fabric	 a set of properties were also provided� They re�ect the
essential behavior of the switch fabric	 e�g�	 for checking of correct priority
computation	 circuit reset or data routing� These were used in an early
stage of the project to validate the fabric implementation� If we consider
the behavior of the fabric when operating in the intended real Fairisle switch
environment	 its cyclic behavior can be simulated as an environment state

machine having �� states as shown in Figure �� The machine generates the
frame start signal	 frame start 	 the headers	 h	 and the data	 d	 in the states
as indicated in Figure �� Normally	 d is a fresh abstract variable representing
data in the cell� and h can be instantiated according to the property to be
veri�ed� This diagram allowed us to map the time points t		 ts	 th and te to
speci�c states	 e�g� ts is mapped to states � or ��� th to state ��� and te to
state ��� Thus a time point t ranging	 for example	 between ts�� and th��
is expressed as the states ranging between states � ����� and �� ������ of
the environment machine�

... ... ......1 2 3 6 12 13 17 64 65 66 6867
d d d fsfs h d

Fig� �� The Environment State Machine of the Fairisle ATM

Based on this environment state machine	 the properties were described
as invariants which should hold in all reachable states of the speci�cation
model� In the following	 we give an example property	 P 	 which checks for
correct routing to port �� More precisely�

P � From th � � to te � �	 if input port � chooses output port � with the
priority bit set in the header and no other input port has its priority bit
set	 then the value on dataOut� will be equal to the value of dataIn�
four clock cycles earlier�

Let s be a state variable of the environment state machine of a concrete
sort having the enumeration 
������� Using the mapping of th�� and te�� to
the respective states �� ������ and �� ������	 P is expressed in MDG�HDL
using an ITE construct as�

P � if �s � f��� ��� ��g and priority����
� � ��� �� �� �� and route��� � �
then dataOut��� � dataIn����

where priority
����� indicates the priority bits for all input ports	 route
��
represents the routing bits for input port � and dataIn�
�� is the data input
on port � delayed by � clock cycles� Further examples of properties are
described in 
����
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	�� The Veri�cation Process

In the MDG approach	 the original gate�level implementation of the switch
fabric was �rst veri�ed against an RTL implementation� The RTL imple�
mentation was then veri�ed against a behavioral speci�cation given as an
abstract state machine �ASM�� Thus obtaining a complete veri�cation from
high�level behavior down to the gate level� In an early stage of the project	
some speci�c properties that re�ect the behavior of the fabric in its real
operating environment as described above were also veri�ed�

	���� Equivalence Checking

The behavioral equivalence between the original Qudos gate�level implemen�
tation and the abstract �RTL� hardware model is established if the two ma�
chines produce the same data outputs for all input sequences� This	 however	
cannot be done for an arbitrary word size n since the gate�level description
is not generic� We hence instantiate the data signals of the abstract model
to be � bits wide� This can be realized within the MDG environment using
uninterpreted functions �cross�operators� which encode and decode abstract
data to boolean data and vice�versa 
���� For instance	 decoding is realized
using � uninterpreted functions biti �i� ����� of type 
wordn � bool�	 which
extract the ith bit of an n�bit data word� We hence decode the � n�bit
data lines to a ���bit bundle� Encoding	 on the other hand	 is done using
one uninterpreted function concat� of type 
�bool � � � � � bool� � wordn�
which concatenates any � boolean signals to a single word and thus encodes
a bundle of �� boolean data signals to � signals of sort wordn� Using the
sequential equivalence checking facility of the MDG tools	 the abstract ma�
chine was veri�ed to be equivalent to the original gate�level one for a word
size equal to �	 i�e�

Gate�level structure � RTL��� structure ���

where RTL
�� means the ��bit version �instance� of the n�bit RTL implemen�
tation� Here we mean equivalence in the sense described for MDG sequential
veri�cation in Section ���� Note that since the data abstraction a�ects only
the dataswitch unit	 the veri�cation dealt mainly with the equivalence of
the dataswitch blocks at the two levels�
Based on implicit reachability analysis	 the equivalence of the behavioral

ASM speci�cation against the RTL hardware model was checked when both
are seen as abstract state machines� This ensures that the two machines
produce the same observable behavior by feeding them with the same inputs
and checking that an invariant stating the equivalence of their outputs holds
in every state using reachability analysis of the product machine 
���� For
this product machine	 an MDG representing a set of states encodes a relation
between �� concrete and �� abstract state variables 
���� The relation may
depend on data values	 encoded using cross�terms	 however� Cross�terms are
those terms resulting from the application of a cross�operator to an abstract
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variable	 e�g� act�d�	 where act is a cross�operator of type 
wordn � bool�
and d is an abstract variable of sort wordn� In ROBDDs	 � boolean variables
would be needed for each abstract variable of the MDGs �i�e�	 ��� boolean
variables for data�� In MDGs	 the encoding is done using abstract data	 yet
isomorphic graph sharing is exploited as in ROBDDs� Decisions on values
of abstract data are represented by cross�terms which also compose nodes
in the MDGs� Although cross�terms add complexity to the graph structure
in general	 the overhead is much smaller than the explosion induced from
encoding data in binary form� Using abstract reachability analysis	 the
veri�cation succeeded for an arbitrary word width	 n	 and any frame size and
cell length that respect the environment assumptions of the speci�cation	 i�e�

assumptions on environment �
�RTL�n� structure � ASM�n� behavior� ���

RTL
�� is an instance of RTL
n�� The two descriptions provide exactly
the same semantics� They di�er only in the syntactic use of the abstract
data sort wordn instead of the concrete sort word�� The same reasoning
is true for a behavior ASM
�� which is an ��bit instance of the behavior
ASM
n�� From the n�bit generic result in ���	 we hence deduce through
instantiation�

assumptions on environment �
�RTL��� structure � ASM��� behavior� �	�

By combining the two veri�cation steps ��� and ���	 we obtain a complete
veri�cation of the switch fabric from a high�level behavior down to the gate�
level implementation	 i�e�

assumptions on environment �
�Gate�level structure � ASM��� behavior� ���

In summary	 thanks to the management of the proof in two steps and to
the independence of the second veri�cation step from the datapath width	
we have been able to avoid a state explosion induced by data� Note	 however	
that we have not formally shown	 using the MDG tools	 the meta�rewriting
for theorem ��� nor the instantiation in theorem ���� The experimental
results on a Sparc station �� are recapitulated below in Table I	 including
the CPU time	 memory usage and the number of MDG nodes generated�

	���� Property Checking

Prior to the full veri�cation	 both behavioral and RTL structural speci��
cations were also checked against several speci�c safety properties of the
switch� This is useful as it gives a quick con�dence check at low cost� To
verify the properties �invariants�	 we compose the fabric with both the en�
vironment state machine described above and an additional delay circuit
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used to remember the input values that are to be compared with the out�
puts� This allows us to state the properties in terms of the equality between
�delayed� input and fabric output signals� Combining these machines	 we
obtain the required platform for checking if the invariant properties hold in
all reachable states of the speci�cation� Experimental results for the veri��
cation of four example properties are shown in Table I �where the previously
described property P is labeled P��� Although the properties veri�ed do not
represent the complete behavior of the switch fabric	 we were able to detect
several injected design errors in the structural description�

	�	 Time Taken

The user time required for the speci�cation and veri�cation is hard to de�
termine since it included the improvement of the MDG package	 writing
documentation	 etc� The translation of the Qudos design description to
the MDG�HDL gate�level structural model was straightforward and took
about one person�week� The description of the RTL structural speci�ca�
tion including modeling required about one person�week� The time spent
for understanding the expected behavior and writing the behavioral speci�
�cation was about one person�week� The time taken for the veri�cation of
the gate�level description against the RTL model	 including the adoption of
abstraction mechanisms and correction of description errors	 was about two
person�weeks� The veri�cation of the RTL structural speci�cation against
the behavioral model required about one person�week of work� The user
time required to set up four properties	 build the environment state ma�
chine	 conduct the property checking on the structural speci�cation and
interpret the results was about one person�week� Checking of these same
properties on the behavioral speci�cation took about one hour� The average
time for the injection and veri�cation of an introduced design error was less
than one person�hour� The experimental results in machine time are shown
in Table I which gives the CPU time �on a Sparc station ���	 memory usage
and the number of MDG nodes generated�

Veri	cation CPU Time �s� Memory �MB� MDG Nodes Generated

Gate
Level to RTL �� �� ����
RTL to Beh� Model ���� ��� �����
P�� Data Output Reset ��� �� ����
P�� Ack� Output Reset �� �� ���
P� Data Routing �� �� �����
P�� Ack� Output ��� �� ���
Error �i� �� � ����
Error �ii� ��� ��� ������
Error �iii� ���� ��� ����

Table I� Experimental Results for the MDG Veri	cation
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A disadvantage of MDGs is that much veri�cation time is spent �nding an
optimal variable ordering� This is crucial since a bad ordering easily leads to
a state space explosion� This occurred after an early ordering attempt� For
more information about the variable ordering problem	 which is common to
all ROBDD�based systems	 see 
���
Because the veri�cation is essentially automatic	 the amount of work re�

running a veri�cation for a new design is minimal compared to the initial
e�ort since the latter includes all the modeling aspects� Much of the e�ort
is spent on determining a suitable variable ordering� Depending on the kind
of design changes adopted	 it is not obvious if the original variable ordering
could still be used on a modi�ed design without major changes�
The MDG gate level speci�cation is a concrete description of the fabricated

implementation� In contrast	 the RTL structural and ASM behavioral spec�
i�cations are generic� They abstract away from frame	 cell and word sizes	
provided the environment timing assumptions are kept� Design implementa�
tion changes at the gate�level that still satisfy the RTL model behavior would
hence not a�ect the veri�cation against the ASM speci�cation� For property
checking	 speci�c assumptions about the operating environment were made	
�e�g�	 that the frame interval is �� cycles�� This is sound since the switch
fabric will in fact be used under the behest of its operating environment	
i�e� the port controllers� However	 while this reduces the veri�cation cost	 it
has the disadvantage that the veri�cation must be completely redone if the
operating environment changes� Still	 the work required is minor as only a
few parameters have to be changed in the description of the environment
state machine �which is a simple machine as described above��

	�
 Errors

As with the HOL study	 no errors were discovered in the implementation�
For experimental purposes	 however	 we injected several errors into the struc�
tural speci�cations and checked them using either the set of properties or
the behavioral model� Errors were automatically detected and identi�ed
using the counter�example facility� The injected errors included the main
errors introduced accidently in the HOL study	 discussed in Section ���� We
summarize here three further examples� �i� We exchanged the inputs to the
JK Flip�Flop that produces the output disable signal� This prevented the
circuit from resetting� �ii� We used	 at one point	 the priority information
of input port � instead of input port �� �iii� We used an AND gate instead
of an OR gate within the acknowledgment unit	 thus producing a faulty
ackOut
�� signal� Experimental results for these three errors	 which have
been checked by verifying the RTL model against the behavioral speci�ca�
tion	 are reported in Table I�
While checking properties on the hardware structural description	 we also

discovered some errors that we mistakenly introduced in the structural spec�
i�cations� However	 we were able to easily identify and correct these errors
using the counter�example facility of the MDG tools� Also	 during the veri��
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cation of the gate�level model	 we found a few errors in the description that
were introduced during the translation from Qudos HDL to MDG�HDL�
These were easily removed by comparing both descriptions	 since they in�
cluded the same collection of gates� Finally	 many trivial typing errors were
highlighted at an early stage of the description process by the error messages
output after each compilation of the speci�cation�s components�

	�� Scalability

Like any FSM�based veri�cation system	 the MDG proof approach is not
directly scalable to large designs� This is due to the possible state space
explosion that results from large designs� Unlike other ROBDD�based ap�
proaches	 however	 MDGs do not need to cope with the datapath complex�
ity since they use data of abstract sort and uninterpreted functions� Still	
a direct veri�cation of the gate�level model against the behavioral model
or even against the set of properties is practically impossible� We overcame
this problem by providing an abstract RTL structural speci�cation which we
instantiated for the veri�cation of the gate�level model� In order to handle
large designs	 major e�orts are in general required to set up the appropriate
model abstraction levels�

�� Conclusions

The MDG and HOL structural descriptions are very similar	 both to each
other and to the original designer�s description� HOL provides signi�cantly
more expressibility allowing more natural speci�cations� Some generic fea�
tures were included in the MDG description that were not in the HOL
description� This could have been done with only minimal additional e�ort	
however�
The behavioral descriptions of the two approaches are totally di�erent�

The MDG speci�cation is based on a state machine model while the HOL
one is based on interval operators� The latter explicitly describes the timing
behavior in terms of frames which correspond to whole ATM cells arriving�
This contrasts with the MDG speci�cations where the frame abstraction
is not used� the description is �rmly at the byte level� Both describe the
behavior in a clear and comprehensive form� Which of these is preferred is
perhaps a matter of taste�
An advantage of MDG is that a property speci�cation is easy to set up

and verify� Expected operating conditions can be used to simplify this	
even if the full speci�cation is more general� This is useful for verifying
that a speci�cation satis�es its requirements� It can greatly reduce the full
veri�cation cost by catching errors at an early stage�
Writing the behavioral speci�cations took longer in HOL	 as separate spec�

i�cations were needed for each module� In MDG this was not necessary
because the whole design was veri�ed in one go	 rather than a module at a
time� This also reduced the MDG veri�cation time because fewer mistakes
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Feature MDG HOL

Speci�cation

Behavioral Speci	cation � Time Taken �
Structural Speci	cation � Time Taken �
Behavioral Speci	cation � Expressibility � ��
Structural Speci	cation � Expressibility ��
Veri�cation

Machine Time Taken ��
Total Veri	cation Time Taken �
Veri	cation Time for Design Modi	cations � �
Property Checking �� �
Scalability ��
Con	dence in Tool ��
Error Detection

Detect Errors �� ��
Locating Errors �� �
Avoid Error Introduction �
False Error Reports ��
Design Aid

Impart Understanding of Design � ��
Suggesting Design Improvements � ��

Table II� Summary of the Comparison

were made� Moreover	 note that as the HOL project preceeded the MDG
work	 the understanding of the switch behavior achieved during the former
helped to speed up writing the MDG behavioral speci�cation to some extent�
The HOL veri�cation was much slower	 taking a matter of months� This

time includes the veri�cation of each of the modules and the veri�cation of
their combination� Using HOL	 a large number of lemmas had to be proved
and much e�ort was required to interactively create the proof scripts� For
example	 the time spent for the veri�cation of the dataswitch unit was about
� days� Here the proof script was about ��� lines long ��� KB�� The MDG
veri�cation was achieved automatically without the need of a proof script�
All that was required was the careful management of the MDG node ordering
�as with ROBDDs�� However	 this is a matter of hours or at most a few
days of work�
In both the HOL and MDG approaches	 the amount of work necessary

to verify a modi�ed design	 once the original has been veri�ed	 is greatly
reduced� Both allow generic veri�cation to be performed	 though HOL has
the potential to be more �exible� Because MDG is automated and fast	
the re�veri�cation times would largely be just the time taken to modify the
speci�cations and to �nd a new variable ordering� In the HOL approach	 the
behavioral speci�cations of many modules and the proof scripts themselves
may need to be modi�ed�
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An advantage of the HOL approach in contrast to the MDG method is
the con�dence in the tool the LCF approach o�ers� Although the MDG
software package has been successfully tested on several benchmarks and
has been considerably improved	 it is not yet a mature tool� It cannot
guarantee the same level of proof security as HOL� The main advantage
of the MDG approach is that it is much quicker and is automatic� On the
other hand the theorem proving approach is potentially scalable and involves
a comprehensive investigation of why the design works correctly� However	
these advantages are only likely to be realized in practice if the level of proofs
which must be provided to the system can be raised closer to the level of
informal proofs�

Both approaches successfully highlight errors	 and help determine their
location� However	 the way this information manifests itself di�ers� MDG is
more straightforward	 outputting a trace of the input sequence that leads to
the erroneous behavior� In HOL	 errors manifest themselves as unprovable
goals� The form of the goal	 the context of the proof and the veri�er�s
understanding of the proof are combined to track down the location	 and
understand its cause�

The MDG veri�cation approach is a black�box approach�the veri�er does
not need be concerned with the internal structure of the design being veri�ed�
This means that no understanding of the internals is obtained by doing the
veri�cation� In contrast	 HOL is a white�box approach� To complete the
veri�cation	 a very detailed understanding of the internal structure is needed�
The veri�er must know why the design works the way it does� The process
of doing the veri�cation helps the veri�er achieve this understanding� This
means that internal idiosyncracies in the implementation are likely to be
spotted	 as are other potential improvements� This occurred in the HOL
veri�cation of the � by � fabric and of the variations of it used for the �� by
�� fabric 
���

A summary of the main comparison points is given in Table II	 split into
the major areas of speci�cation �both e�ort involved in creating and general
readability understandability�� veri�cation� error detection and correction�
and the extent to which a veri�cation in the two systems has potential to
help improve designs beyond just �nding errors� MDG and HOL are each
given a rating of either a double�plus	 single�plus or nothing to indicate the
degree to which the system comes out favorably with respect to that feature�
These ratings are clearly fairly coarse�

In conclusion	 the major advantages of HOL are the expressibility of the
speci�cation language	 the con�dence a�orded in its results	 the potential
for scalability and the insight into the design that is obtained� The strength
of MDG is in its speed	 its relative ease of use and its error�detection capa�
bilities�
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