
A bug reproduction approach based on directed model checking and
crash traces

Mathieu Nayrolles1,*,†, Abdelwahab Hamou-Lhadj1, Sofiène Tahar1 and Alf Larsson2

1ECE, Concordia University, Montréal, Canada
2PLF System Management, Ericsson, R & D, Stockholm, Sweden

ABSTRACT

Reproducing a bug that caused a system to crash is an important task for uncovering the causes of the crash
and providing appropriate fixes. In this paper, we propose a novel crash reproduction approach that com-
bines directed model checking and backward slicing to identify the program statements needed to reproduce
a crash. Our approach, named JCHARMING (Java CrasH Automatic Reproduction by directed Model
checkING), uses information found in crash traces combined with static program slices to guide a model
checking engine in an optimal way. We show that JCHARMING is efficient in reproducing bugs from 10
different open source systems. Overall, JCHARMING is able to reproduce 80% of the bugs used in this
study in an average time of 19min. Copyright © 2016 John Wiley & Sons, Ltd.

Received 15 August 2015; Revised 2 February 2016; Accepted 4 April 2016

KEY WORDS: automatic bug reproduction; dynamic analysis; model checking; software maintenance

1. INTRODUCTION

The first (and perhaps main) step in understanding the cause of a field crash is to reproduce the bug that
caused the system to fail. A survey conducted with developers of major open source software systems
such as Apache, Mozilla, and Eclipse revealed that one of the most valuable piece of information that
can help locate and fix the cause of a crash is the one that can help reproduce it [1].

Bug reproduction is, however, a challenging task because of the limited amount of information
provided by the end users. There exist several bug reproduction techniques. They can be grouped
into two categories: (a) on-field record and in-house replay [2–4] and (b) in-house crash explanation
[5, 6]. The first category relies on instrumenting the system in order to capture objects and other
system components at runtime. When a faulty behavior occurs in the field, the stored objects, as
well as the entire heap, are sent to the developers along with the faulty methods to reproduce the
crash. These techniques tend to be simple to implement and yield good results, but they suffer from
two main limitations. First, code instrumentation comes with a non-negligible overhead on the
system. The second limitation is that the collected objects may contain sensitive information causing
customer privacy issues. The second category is composed of tools leveraging proprietary data in
order to provide hints on potential causes. While these techniques are efficient in improving our
comprehension of the bugs, they are not designed with the purpose of reproducing them.

In previous work, we proposed a hybrid approach called JCHARMING (Java CrasH Automatic
Reproduction by directed Model checkING) [7] that uses a combination of crash traces and model

*Correspondence to: Mathieu Nayrolles, SBA Research Lab, ECE, Concordia University, Sir George Williams Campus
1455 De, Maisonneuve Blvd., W. Montreal, QC H3G 1M8, Canada.
†E-mail: m_nayrol@encs.concordia.ca

Copyright © 2016 John Wiley & Sons, Ltd. 1 of 24

JOURNAL OF SOFTWARE: EVOLUTION AND PROCESS
J. Softw. Evol. Proc. 2017;29:e1789
Published online 18 May 2016 in Wiley Online Library (wileyonlinelibrary.com). DOI: 10.1002/smr.1789



checking to automatically reproduce bugs that caused field failures. Unlike existing techniques,
JCHARMING does not require instrumentation of the code. It does not need access to the content of
the heap either. Instead, JCHARMING uses the list of functions, that is, the crash trace, that are
output when an uncaught exception in Java occurs to guide a model checking engine to uncover the
statements that caused the crash. Note that a crash trace is sometimes referred to as a stack trace. In
this paper, we use these two terms interchangeably.

Model checking (also known as property checking) is a formal technique for automatically verifying
a set of properties of finite-state systems [8]. More specifically, this technique builds a graph where
each node represents one state of the program and the set of properties that needs to be verified in
each state. For real-world programs, model checking is often computationally impracticable because
of the state explosion problem [8]. To address this challenge and apply model checking on large
programs, we direct the model checking engine towards the crash using program slicing and the
content of the crash trace and, hence, reduce the search space. When applied to reproducing bugs of
seven open source systems, JCHARMING achieved 85% accuracy.

This paper extends our previous work [7] with the following main contributions: an extensive
validation of JCHARMING by conducting experiments with three additional systems: Mahout,
Hadoop, and ActiveMQ, bringing the total number of subject systems used to validate our approach
to 10 and the number of bugs to 30. It should be noted that the new systems are larger compared
with those used in [7]. The accuracy of JCHARMING when applied to the 30 bugs is 80%, which
is a slight decrease compared with the previous study. This is explained by the fact that the new
systems used in this study are relatively larger compared with those in [7]. Another important
contribution of this paper is a completely redesigned JUnit test case generation process. This paper
also includes a detailed analysis of additional bugs, an elaborated discussion of the results, and an
updated related work section.

The remainder of this paper is organized as follows: In Section 2, we present related work on crash
reproduction. In Section 3, we provide some background information on model checking.
JCHARMING is the topic of Section 4. Section 5 is dedicated to the case study, followed by threats
to validity. We conclude the paper and sketch future directions in Section 8.

2. RELATED WORK

In this section, we put the emphasis on how crash traces are used in crash reproduction tasks. Existing
studies can be divided into two distinct categories: (a) on-field record and in-house replay techniques
[2, 3, 9, 10] and (b) on-house crash understanding [7, 11–14].

These two categories yield varying results depending on the selected approach and are mainly
differentiated by the need for instrumentation. The first category of techniques oversees – by means
of instrumentation – the execution of the target system on the field in order to reproduce the crashes
in-house, whereas tools and approaches belonging to the second category only use data produced by
the crash such as the crash stack or the core dump at crash time. In the first category, tools record
different types of data such as the invoked methods [2], try-catch exceptions [15], or objects [4]. In
the second category, existing tools and approaches are aimed towards understanding the causes of a
crash, using data produced by the crash itself, such as a crash stack [14], previous – and controlled
– execution [13], and so on.

Tools and approaches that rely on instrumentation face common limitations such as the need to
instrument the source code in order to introduce logging mechanisms [2–4], which is known to slow
down the subject system. In addition, recording system behavior by means of instrumentation may
yield privacy concerns. Tools and approaches that only use data about a crash – such as core dump
or exception stack crashes – face a different set of limitations. They have to reconstruct the timeline
of events that have led to the crash [7–14]. Computing all the paths from the initial state of the
software to the crash point is an nondeterministic polynomial time-complete problem, and may
cause state-space explosion [14, 16].

In order to overcome these limitations, some researchers have proposed to use various SMT
(satisfiability modulo theories) solvers [17] and model checking techniques [18]. However, these

2 of 24 MATHIEU NAYROLLES ET AL.

Copyright © 2016 John Wiley & Sons, Ltd. J. Softw. Evol. Proc. 2017;29:e1789
DOI: 10.1002/smr



techniques require knowledge that goes beyond traditional software engineering, which hinders their
adoption [19].

It is worth mentioning that both categories share a common limitation. It is possible for the required
condition to reproduce a crash to be purely external such as the reading of a file that is only present on
the hard drive of the customer or the reception of a faulty network packet [7, 14]. It is almost
impossible to reproduce the bug without this input.

2.1. On-field record and in-house replay

Jaygarl et al. created OCAT (Object Capture-based Automated Testing) [4]. The authors’ approach
starts by capturing objects created by the program when it runs on-field in order to provide them to
an automated test process. The coverage of automated tests is often low because of lack of correctly
constructed objects. Also, the objects can be mutated by means of evolutionary algorithms. These
mutations target primitive fields in order to create even more objects and, therefore, improve the
code coverage. While not directly targeting the reproduction of a bug, OCAT is an approach that
was used as the main mechanism for bug reproduction systems.

Narayanasamy et al. [2] proposed BugNet, a tool that continuously records program execution for
deterministic replay debugging. According to the authors, the size of the recorded data needed to
reproduce a bug with high accuracy is around 10MB. This recording is then sent to the developers
and allows the deterministic replay of a bug. The authors argued that with nowadays Internet
bandwidth, the size of the recording is not an issue during the transmission of the recorded data.

Another approach in this category was proposed by Clause et al. [16]. The approach records the
execution of the program on the client side and compresses the generated data. Moreover, the
approach keeps compressed traces of all accessed documents in the operating system. This data is
sent to the developers to replay the execution of the program in a sandbox, simulating the client’s
environment. This special feature of the approach proposed by Clause et al. addresses the limitation
where crashes are caused by external causes. While the authors broaden the scope of reproducible
bugs, their approach records a lot of data that may be deemed private such as files used for the
proper operation of the operating system.

Timelapse [20] also addresses the problem of reproducing bugs using external data. The tool focuses
on web applications and allows developers to browse and visualize the execution traces recorded by
Dolos. Dolos captures and reuses user inputs and network responses to deterministically replay a
field crash. Also, both Timelapse and Dolos allow developers to use conventional tools such as
breakpoints and classical debuggers. Similar to the approach proposed by Clause ct et al. [16],
private data are recorded without obfuscation of any sort.

Another approach was proposed by Artzi et al. and named ReCrash. ReCrash records the object
states of the targeted programs [3]. The authors use an in-memory stack, which contains every
argument and object clone of the real execution in order to reproduce a crash via the automatic
generation of unit test cases. Unit test cases are used to provide hints to the developers about the
buggy code. This approach particularly suffers from the limitation related to slowing down the
execution. The overhead for full monitoring is considerably high (between 13% and 64% in some
cases). The authors propose an alternative solution in which they record only the methods
surrounding the crash. For this to work, the crash has to occur at least once, so they could use the
information causing the crash to identify the methods surrounding it. ReCrash was able to reproduce
100% (11/11) of the submitted bugs.

Similar to ReCrash, JRapture [9] is a capture/replay tool for observation-based testing. The tool
captures the execution of Java programs to replay it in-house. To capture the execution of a Java
program, the creators of JRapture used their own version of the JVM (Java virtual machine) and a
lightweight, transparent capture process. Using a customized JVM allows capturing any interactions
between a Java program and the system including GUI, files, and console inputs. These interactions
can be replayed later with exactly the same input sequence as seen during the capture phase.
However, using a custom JVM is not a practical solution. This is because, the authors’ approach
requires from users to install a JVM that might have some discrepancies with the original one and
yield bugs if used with other software applications. In our view, JRapture fails to address the

REPRODUCING BUG WITH DIRECTED MODEL CHECKING AND CRASH TRACES 3 of 24

Copyright © 2016 John Wiley & Sons, Ltd. J. Softw. Evol. Proc. 2017;29:e1789
DOI: 10.1002/smr



limitations caused by instrumentation because it imposes the installation of another JVM that can also
monitor other software systems than the intended ones. RECORE (REconstructing CORE dumps) is a
tool proposed by Robler et al. The tool instruments Java byte code to wrap every method in a try-catch
block while keeping a quasi-null overhead [15]. RECORE starts from the core dump and tries (with
evolutionary algorithms) to reproduce the same dump by executing the subject program many time.
When the generated dump matches the collected one, the approach has found the set of inputs
responsible for the failure and was able to reproduce 85% (6/7) of the submitted bugs.

The approaches presented at this point operate at the code level. There exist also techniques that
focus on recording user–GUI interactions [10, 21]. Roehm et al. extract the recorded data using
delta debugging [22], sequential pattern mining, and their combination to reproduce between 75%
and 90% of the submitted bugs while pruning 93% of the actions.

Among the approaches presented here, only the ones proposed by Clause et al. and Burg et al.
address the limitations incurred due to the need for external data at the cost, however, of privacy. To
address the limitations caused by instrumentation, the RECORE approach proposes to let users
choose where to put the bar between the speed of the subject program, privacy, and bug
reproduction efficiency. As an example, users can choose to contribute or not in improving the
software – policy employed by many major players such as Microsoft in Visual Studio or Mozilla in
Firefox – and propose different types of monitoring where the cost in terms of speed, privacy leaks,
and efficiency for reproducing the bug is clearly explained.

2.2. On-house crash explanation

On the other side of the picture, we have tools and approaches belonging to the on-house crash
explanation (or understanding), which are fewer but newer than on-field record and replaying tools.
Jin et al. proposed BugRedux for reproducing field failures for in-house debugging [11]. The tool
aims to synthesize in-house executions that mimic field failures. To do so, the authors use several
types of data collected in the field such as stack traces, crash stack at points of failure, and call
sequences. The data that successfully reproduced the field crash is sent to software developers to fix
the bug. BugRedux relies on several in-house executions that are synthesized so as to narrow down
the search scope, find the crash location, and finally reproduce the bug. However, these in-house
executions have to be conducted before the work on the bug really begins. Also, the in-house
executions suffer from the same limitation as unit testing, that is, the executions are based on the
developer’s knowledge and ability to develop exceptional scenarios in addition to the normal ones.
Based on the success of BugRedux, the authors built F3 (Fault localization for Field Failures) [12]
and MIMIC [13]. F3 performs many executions of a program on top of BugRedux in order to cover
different paths leading to the fault. It then generates many ‘pass’ and ‘fail’ paths, which can lead to
a better understanding of the bug. They also use grouping, profiling and filtering, to improve the
fault localization process. MIMIC further extends F3 by comparing a model of correct behavior with
failing executions and identifying violations of the model as potential explanations for failures.
While being close to our approach, BugRedux and F3 may require the call sequence and/or the
complete execution trace in order to achieve bug reproduction. When using only the crash traces
(referred to as call stack at crash time in their paper), the success rate of BugRedux significantly
drops to 37.5% (6/16). The call sequence and the complete execution trace required to reach 100%
accuracy can only be obtained through instrumentation and with an overhead ranging from 10% to
1066%. Chronicle [23] is an approach that supports remote debugging by capturing inputs in the
application through code instrumentation. The approach seems to have a low overhead on the
instrumented application, around 10%.

Likewise, Zamfir et al. proposed ESD [24], an execution synthesis approach that automatically
synthesizes failure execution using only the stack trace information. However, this stack trace is
extracted from the core dump and may not always contain the components that caused the crash.

To the best of our knowledge, the most complete work in this category is the one of Chen in his PhD
thesis [14]. Chen proposed an approach named STAR (Stack Trace-based Automatic crash
Reproduction). Using only the crash stack, STAR starts from the crash line and goes backward
towards the entry point of the program. During the backward process, STAR computes the required

4 of 24 MATHIEU NAYROLLES ET AL.

Copyright © 2016 John Wiley & Sons, Ltd. J. Softw. Evol. Proc. 2017;29:e1789
DOI: 10.1002/smr



condition using an SMT solver named Yices [17]. The objects that satisfy the required conditions are
generated and orchestrated inside a JUnit test case. The test is run, and the resulting crash stack is
compared with the original one. If both match, the bug is said to be reproduced. STAR aims to
tackle the state explosion problem of reproducing a bug by reconstructing the events in a backward
fashion and therefore saving numerous states to explore. STAR was able to reproduce 38 bugs out
of 64 (54.6%). Also, STAR is relatively easy to implement as it uses Yices [17] and potentially Z3
[25] (stated in their future work) that are well-supported SMT solvers.

Except for STAR, existing approaches that target the reproduction of field crashes require the
instrumentation of the code or the running platform in order to save the stack call or the objects to
successfully reproduce bugs. As we discussed earlier, such approaches yield good results 37.5% to
100%, but the instrumentation can cause a massive overhead (1% to 1066%) while running the
system. In addition, the data generated at runtime using instrumentation may contain sensitive
information.

JCHARMING’s directed model checking overcomes the state explosion problem of classical model
checking techniques and allows the generation of JUnit test cases in a reasonable amount of time.
JCHARMING is also easy to deploy. It does not require instrumentation and, hence, does not
require access to data that may potentially be considered confidential. Moreover, JCHARMING
offers better results than approaches that only use bug report data. Our approach was able to
reproduce 80% (24/30) of bugs and outperforms STAR (54.6%) and BugRedux (37.5%).

3. PRELIMINARIES

Model checking (also known as property checking) will, given a formally defined system (that could be
software [18] or hardware based [26]), check if the system meets a specification by testing exhaustively
all the states of the system under test (SUT), which can be represented by a Kripke [27] structure:

SUT ¼< S; S0; T ; L > (1)

where S is a set of states, S0 the set of initial states, T the transitions relations between states, and L the
labeling function, which labels a state with a set of atomic properties. Figure 1 presents a system with
four steps S0 to S3, which have five atomic properties p1 to p5. The labeling function L gives us the
properties that are true in a state:

L S0ð Þ ¼ p1f g; L S1ð Þ ¼ p1; p2f g; L S2ð Þ ¼ p3f g; L S3ð Þ ¼ p4; p5f g:
The SUT is said to satisfy a property p at a given time if there exists a sequence of states x leading to

a state where p holds. This can be written as

SUT ; xð Þ⊨ p: (2)

For the SUT of Figure 1, we can write (SUT, {S0, S1, S2})⊨ p3 because the sequence of states {S0,S1,
S2} will lead to a state S2 where p3 holds. However, (SUT, {S0,S1, S2})⊨ p3 only ensures that ∃ x such
that p is reached at some point in the execution of the program and not that p3 holds for ∀ x.

In JCHARMING, we assume that SUTs must not crash in a typical environment. In the framework
of this study, we consider a typical environment as any environment where the transitions between the
states represent the functionalities offered by the program. For example, in a typical environment, the

Figure 1. System with four steps S0 to S3, which have five atomic properties p1 to p5.

REPRODUCING BUG WITH DIRECTED MODEL CHECKING AND CRASH TRACES 5 of 24

Copyright © 2016 John Wiley & Sons, Ltd. J. Softw. Evol. Proc. 2017;29:e1789
DOI: 10.1002/smr



program heap or other memory spaces cannot be modified. Without this constraint, all programs could
be tagged as buggy because we could, for example, destroy objects in memory while the program
continues its execution. As we are interested in verifying the absence of unhandled exceptions in the
SUT, we aim to verify that for all possible combinations of states and transitions, there is no path
leading towards a crash. That is,

∀x: SUT ; xð Þ⊨ ¬c: (3)

If there exists a contradicting path (i.e., ∃ x such that (SUT, x)⊨ c), then the model checker engine
will output the path x (known as the counter-example), which can then be executed. The resulting
Java exception crash trace is compared with the original crash trace to assess if the bug is
reproduced. While being accurate and exhaustive in finding counter-examples, model checking
suffers from the state explosion problem, which hinders its applicability to large software systems.

To show the contrast between testing and model checking, we use the hypothetical example of
Figures 2, 3, and 4 and sketch the possible results of each approach. These figures depict a toy
program where, from the entry point, unknown calls are made (dotted points) and, at some points,
two methods are called. These methods, called Foo.Bar and Bar.Foo, implement a for loop
from 0 to loopCount. The only difference between these two methods is that the Bar.Foo
method throws an exception if i becomes larger than two. Hereafter, we denote this property as pi>2.

Figure 2 shows the program statements that could be covered using testing approaches. Testing
software is a demanding task where a set of techniques is used to test the SUT according to some
input. Software testing depends on how well the tester understands the SUT in order to write
relevant test cases that are likely to find errors in the program. Program testing is usually insufficient
because it is not exhaustive. In our case, using testing will mean that the tester knows what to look
for in order to detect the causes of the failure. We do not assume this knowledge in JCHARMING.

Model checking, on the other hand, explores each and every state of the program (Figure 3), which
makes it complete but impractical for real-world and large systems. To overcome the state explosion
problem of model checking, directed (or guided) model checking has been introduced [28, 29].
Directed model checking uses insights – generally heuristics – about the SUT in order to reduce the
number of states that need to be examined. Figure 4 explores only the states that may lead to a
specific location, in our case, the location of the fault. The challenge, however, is to design
techniques that can guide the model checking engine. As we will describe in the next section, we
use crash traces and program slicing to overcome this challenge.

Unlike model checking, directed model checking is not complete. In this work, our objective is not
to ensure absolute correctness of the program but to use directed model checking to ‘hunt’ for a bug
within the program.

Figure 2. A toy program under testing.

6 of 24 MATHIEU NAYROLLES ET AL.

Copyright © 2016 John Wiley & Sons, Ltd. J. Softw. Evol. Proc. 2017;29:e1789
DOI: 10.1002/smr



4. THE JCHARMING APPROACH

Figure 5 shows an overview of JCHARMING. @@The first step consists of collecting crash traces,
which contain raw lines displayed to the standard output when an uncaught exception in Java
occurs. In the second step, the crash traces are preprocessed by removing noise (mainly calls to Java
standard library methods). The next step is to apply backward slicing using static analysis to expand
the information contained in the crash trace while reducing the search space. The resulting slice
along with the crash trace are given as input to the model checking engine. The model checker
executes statements along the paths from the main function to the first line of the crash trace (i.e.,
the last method executed at crash time, also called the crash location point). Once the model checker
finds inconsistencies in the program leading to a crash, we take the crash stack generated by the
model checker and compare it with the original crash trace (after preprocessing). The last step is to
build a JUnit test, to be used by software engineers to reproduce the bug in a deterministic way.

4.1. Collecting crash traces

The first step of JCHARMING is to collect the crash trace caused by an uncaught exception. Crash
traces are usually included in crash reports and can therefore be automatically retrieved using a
simple regular expression. Figure 6 shows an example of a crash trace that contains the exception
thrown when executing the program depicted in Figures 2–4. More formally, we define a Java crash
trace T of size N as an ordered sequence of framesT= f0, f1, f2,…, fN. A frame represents either a
method call (with the location of the called method in the source code), an exception, or a wrapped
exception. In Figure 6, the frame f0 represents an exception, and the frame f7 represents a method

Figure 3. A toy program under model checking.

Figure 4. A toy program under directed model checking.

REPRODUCING BUG WITH DIRECTED MODEL CHECKING AND CRASH TRACES 7 of 24

Copyright © 2016 John Wiley & Sons, Ltd. J. Softw. Evol. Proc. 2017;29:e1789
DOI: 10.1002/smr



call to the method jsep.Foo.buggy, declared in file Foo.java at line 17. In this example, this is
the method that caused the exception. F6 represents a wrapped exception.

It is common in Java to have crash traces that contain wrapped exceptions. Such crash traces are
incomplete in the sense that they do not show all the method calls that are invoked from the entry
point of the program to the crash point. According to the Java documentation [30], line 8 of
Figure 6 should be interpreted as follows: ‘This line indicates that the remainder of the stack trace
for this exception matches the indicated number of frames from the bottom of the stack trace of the
exception that was caused by this exception (the “enclosing exception”). This shorthand can greatly
reduce the length of the output in the common case where a wrapped exception is thrown from the
same method as the “causative exception” is caught.’

In more details, Figure 6 contains a call to the Bar.foo() method – the crash location point – and
calls to Java standard library functions (in this case, GUI methods because the program was launched
using a GUI). As shown in Figure 6, we can see that the first line (referred to as frame f0, subsequently
the next line is called frame f1, etc.) does not represent the real crash point but it is only the last
exception of a chain of exceptions. Indeed, the InvalidActivity has been triggered by an
IndexOutOfBoundsException in jsep.Foo.buggy. This crash trace shows also an
example of nested try-catch blocks.

4.2. Preprocessing

In the preprocessing step, we first reconstruct and reorganize the crash trace in order to address the
problem of nested exceptions. Nested exception refers to the following structure in Java.

Figure 5. Overview of JCHARMING.

Figure 6. Java InvalidActivityException is thrown in the Bar.Foo loop if the control variable is greater
than 2.

1 java.io.IOException: Spill failed
…

14 Caused by: java.lang.IllegalArgumentException
…

28 Caused by: java.lang.NullPointerException

8 of 24 MATHIEU NAYROLLES ET AL.

Copyright © 2016 John Wiley & Sons, Ltd. J. Softw. Evol. Proc. 2017;29:e1789
DOI: 10.1002/smr



In such a case, we want to reproduce the root exception (line 28) that led to the other two (lines 14
and 1). This said, we remove the lines 1 to 14. Then, with the aim to guide the directed model checking
engine in an optimal way, we remove frames that are beyond our control. These refer to Java library
methods and third party libraries. In Figure 6, we can see that Java GUI and event management
components appear in the crash trace. We assume that these methods are not the cause of the crash;
otherwise, it means that there is something wrong with the Java Development Kit itself. If this is the
case, we will not be able to reproduce the crash. Note that removing these unneeded frames will
also reduce the search space of the model checker.

4.3. Building the backward static slice

Static analysis of programs consists of analyzing programs without executing them or making
assumptions about the inputs of the program. There exist many techniques to perform static analysis
(data flow analysis, control flow analysis, theorem proving, etc.) that can be used for debugging,
program comprehension, and performance analysis. Static slice is a type of static analysis, which
takes a program and slicing properties as input in order to create a smaller program with respect to
the slicing properties. An example of slicing properties could be to extract only the program
statements that modify a certain variable. Static slicing is particularly interesting for JCHARMING
as the sliced program, being smaller, will have a smaller state space. We illustrate the process of
static slicing using the example in Figure 7. In this figure, we show an example of an abstract
syntax tree, generated from a given a program (not shown in this paper). The black states could be
states that are impacted by given slicing properties. After the slicing, the final static slice contains
the black states and the states that are needed to reach them.

In JCHARMING, we use a particular static slicing known as backward static slicing [31]. A
backward slice contains all possible branches that may lead to a point n in the program from a point
m as well as the definition of the variables that control these branches [31]. In other words, the slice
of a program point n is the program subset that may influence the reachability of point n starting
from point m. The backward slice containing the branches and the definition of the variables leading
to n from m is noted as bslice[m← n]. Figure 8 presents an example of a backward static slice.

In JCHARMING, we compute a backward static slice between the location of the crash (which we
have in the crash trace) and the entry point of the program (i.e., the main function). However, for large
systems, a crash trace does not necessarily contain all the methods that have been executed starting

Figure 7. Hypothetical example of static program slicing.

Figure 8. Hypothetical example of backward static program slicing.

REPRODUCING BUG WITH DIRECTED MODEL CHECKING AND CRASH TRACES 9 of 24

Copyright © 2016 John Wiley & Sons, Ltd. J. Softw. Evol. Proc. 2017;29:e1789
DOI: 10.1002/smr



from the entry point of the program to the crash location point. We need to complete the content of the
crash trace by identifying all the statements that have been executed starting from the main function
until the last line of the preprocessed crash trace. In Figure 6, this will be the function call Bar.
Foo(), which happens to be also the crash location point. To achieve this, we turn to static analysis
by extracting a backward slice from the main function of the program to the Bar.Foo() method.

We perform backward static slicing between each frame to compensate for possible missing
information in the crash trace. More formally, the final backward slice is represented as follows:

bslice f n← f 0½ � ¼ bslice f 1←f 0½ �∪bslice f 2←f 1½ �∪…∪bslice f n←f n�1½ � (4)

Note that the union of the slices computed between each pair of frames must be a subset of the final
slice between f0 and the entry point of the program fn. More formally,

∪n�1

i¼0
bslice f iþ1←f i½ � ⊆ bslice f n← f 0½ �: (5)

Figure 9 presents an example that will help understand Equation (5). In this example, a toy program
composed of six methods a,…, f crashes in d with a crash trace T=e, f,d. The backward static slice from
the crash point d to the entry point a without using T will be {a,b,c,d,e, f} as we do not assume to know
the path taken to reach d. However, if we use the information in T to compute the backward static slice,
then some methods can be disregarded. The slice directed by T is {a,e, f,d}, which is a subset of {a,b,c,d,
e, f}. This example illustrates how a backward slice can be generated using the information in the crash trace.

In the worst case scenario where there exists one and only one transition between each two frames

(this is very unlikely for real and complex systems), bslice entry←f 0½ � and∪n

i¼0bslice f iþ1←f i½ � yield the same

set of states with a comparable computational cost because the number of branches to explore will be
the same in both cases.

Algorithm 1 is a high-level representation of how we compute the backward slice between each
frame. The algorithm takes as input the preprocessed crash trace T= f0, f1, f2,…, fN, the byte code of
the SUT, and the entry point. From lines 1 to 4, we initialize the different variables used by the
algorithm. Our algorithm needs to have the crash trace as an array of frames (line 1), the size N of
the crash trace (line 2), a null backward static slice (line 4), and an offset set to 1 (line 3). The
main loop of the algorithm begins at line 5 and ends at line 13. In this loop, we compute the static
slice between the current frame and the next one. If the slice is not empty, then we update the final
backward slice with the newly computed slice. In Algorithm 1, this is shown as a union between the
two slices. Note that this union preserves the order of the elements of the two slices. This can also
be seen as a concatenation operation. We describe this process in the subsequent paragraphs through
an example. If the computed slice is empty, it means that Frame i + 1 was corrupted, and then we
move to Frame i + 2 and so on. At the end of the algorithm, we compute the slice between the last
frame and the entry point of the program and update the final slice.

Figure 10 presents a step-by-step graphical representation of Algorithm 1. In this figure, a
hypothetical program, composed of 11 states (a,…, k), crashes at point k. The produced crash trace

Figure 9. Hypothetical example representing bslice[a← d] (left) versus ∪a

i¼dbslice f iþ1←f i½ � (right) for a crash
trace T= {d, f, e}.

10 of 24 MATHIEU NAYROLLES ET AL.

Copyright © 2016 John Wiley & Sons, Ltd. J. Softw. Evol. Proc. 2017;29:e1789
DOI: 10.1002/smr



is composed of six frames T= f0, f1, f2, f3, f4, f5. The frames represent k, i, h, d, b, and a, respectively. In
the crash trace, f3 is a corrupt frame and no longer matches a location inside the SUT. This can be the
result of a copy–paste error or a deliberate modification made by the reporter of the bug as shown in the
case study (Section 6). In such a situation, Algorithm 1 will begin by computing the backward static
slice between f0 (k) and f1 (i) and then between f1 (i) and f2 (h). At this point, we passed through the
for-loop (lines 5–12) two times, and in both cases, the backward static slice was not empty.
Consequently, the if statement was equal to true, and we combined both backward static slices in
the bSlice variable. bSlice is equal to {k, j, i, h}. Then, we want to compute the backward static
slice between f2 (h) and f3 (d). Unfortunately, f3 is corrupted and does not point towards a valid
location in the SUT. As a result, the slice between f2 (h) and f3 (d) will be empty, and we will go to
the else statement (line 10). Here, we simply increment offset by one in order to compute the
backward static slice between f2 (h) and f4 (b) instead of f2 (h) and f3 (d). f4 is valid, and the
backward static slice between f2 (h) and f4 (b) can be computed and merged to bSlice. Finally, we
compute the last slice between f4 (b) and f5 (a). The final backward static slice is k, i, h, d, b, and a.

Data: Crash Stack, BCode, Entry Point
Result: BSolve
Frame [] frames ← extract frames from crash stack;
Int n ← size of frames
Int offset ← 1;
Bslice bSlice ← ∅;
for i ← 0; (i n && offset n � 1); i++ do

BSlice currentBSlice ← backward slice from frames[i] to frames [i + offset];
if currentBSlice≠∅ then
bSlice ← bSlice ∪ currentBSlice;
offset ← 1;

else
offset ← offset + 1;

end
end

Algorithm 1
High-level algorithm computing the union of the slices

Figure 10. Steps of Algorithm 1 where f3 is corrupted.

REPRODUCING BUG WITH DIRECTED MODEL CHECKING AND CRASH TRACES 11 of 24

Copyright © 2016 John Wiley & Sons, Ltd. J. Softw. Evol. Proc. 2017;29:e1789
DOI: 10.1002/smr



Our algorithm, given an uncorrupted stack trace will be able to compute an optimum backward static
slice based on the frames (Figure 9) and compensate for frames corruption if needs to be by
offsetting the corrupted frame (Figure 10). The compensation of corrupted frames, obviously,
comes at the cost of a sub-optimum backward static slice. In our previous example, the transition
between b and h could have been omitted if f3 was not corrupted.

In the rare cases where the final slice is empty (this may happen in situations where the content of
the crash trace is seriously corrupted), JCHARMING would simply proceed with non-directed model
checking.

Note that while we allow in JCHARMING the possibility to resort to non-directed model checking,
none of the 30 bugs used in this study contained crash traces that were damaged enough for this fall
back mechanism to be used.

In order to compute the backward slice, we implement our algorithm as an add-on to the T. J.
Watson Libraries for Analysis (WALA) [32], which provides static analysis capabilities for Java
bytecode and JavaScript. WALA offers a very comprehensive API to perform static backward
slicing on Java bytecode from a specific point to another. We did not need to extend WALA to
perform our analysis.

Using backward slicing, the search space of the model checker that processes the example of
Figures 2–4, where a crash happens when i>2, is given by the following expression:

SlicedSUT ¼ ∪entry
i¼0

bslice f iþ1←f i½ � ⊆ SUT ; S0; T : ∪entry
i¼0

bslice f iþ1←f i½ � ⊆ T :SUT ; L

 !
(6)

where∪entry

i¼0 bslice f iþ1←f i½ � ⊆ SUT is the subset of states that can be reached in the computed backward

slice, S0 the set of initial states,T :∪entry

i¼0 bslice f iþ1rrowf i½ � the subset of transitions relations between states
that exist in the computed backward slice, and L the labeling function, which labels a state with a set of
atomic properties. Then, in the sliced SUT, we try to find

SlicedSUT ; xð Þ⊨ pi>2: (7)

That is, there exists a sequence of state transitions x that satisfies pi>2. The only frame that needs to
be valid for the backward static slice to be meaningful is f0. In Figure 6, f0 is at Foo. bar(Foo.
java : 10). If this line of the crash trace is corrupt, then JCHARMING cannot perform the slicing
because it does not know where to start the backward slicing. The result is a non-directed model
checking, which is likely to fail.

4.4. Directed model checking

The model checking engine we use in this paper is called JPF (Java PathFinder) [19], which is an
extensible JVM for Java bytecode verification. This tool was first created as a front-end for the
SPIN model checker [33] in 1999 before being open-sourced in 2005. The JPF model checker can
execute all the byte code instructions through a custom JVM – known as JVMJPF. Furthermore, JPF
is an explicit state model checker, very much like SPIN [33]. This is contrasted with a symbolic
model checker based on binary decision diagrams [34]. JPF designers have opted for a depth-first
traversal with backtracking because of its ability to check for temporal liveness properties.

More specifically, JPF’s core checks for defects that can be checked without defining any property.
These defects are called non-functional properties in JPF and cover deadlock, unhandled exceptions,
and assert expressions. In JCHARMING, we leverage the non-functional properties of JPF as we
want to compare the crash trace produced by unhandled exceptions with the crash trace of the bug
at hand. In other words, we do not need to define any property ourselves. This said, in JPF, one can
define properties by implementing listeners – very much like what we did in Section 4.6 – that
can monitor all actions taken by JPF, which enables the verification of temporal properties for
sequential and concurrent Java programs. One of the popular listeners of JPF is jpf-ltl.
This listener supports the verification of method invocations or local and global program variables.

12 of 24 MATHIEU NAYROLLES ET AL.

Copyright © 2016 John Wiley & Sons, Ltd. J. Softw. Evol. Proc. 2017;29:e1789
DOI: 10.1002/smr



jpf-ltl can verify temporal properties of method call sequences, linear relations between program
variables, and the combination of both. We intend to investigate the use of jpf-ltl and the LTL
logic to check multi-threaded related crashes as part of future work.

JPF is organized around five simple operations: (i) generate states; (ii) forward; (iii) backtrack; (iv)
restore state; and (v) check. In the forward operation, the model checking engine generates the next
state st + 1. Each state consists of three distinct components:

• The information of each thread. More specifically, a stack of frames corresponding to method
calls.

• The static variables of a given class.
• The instance variables of a given object.

If st + 1 has successors, then it is saved in a backtrack table to be restored later. The backtrack
operation consists of restoring the last state in the backtrack table. The restore operation allows
restoring any state. It can also be used to restore the entire program as it was the last time we chose
between two branches. After each forward, backtrack and restore state operations, the check
properties operation is triggered.

In order to direct JPF, we have to modify the generate states and the forward steps. The generate

states are populated with the states in ∪entry

i¼0 bslice f iþ1←f i½ �⊂SUT , and we adjust the forward step to

explore a state if the target state si+1 and the transition x to pass from the current state si to si + 1 are

in ∪entry

i¼0 bslice f iþ1←f i½ �⊂SUT and x:∪entry

i¼0 bslice f iþ1←f i½ �⊂x:SUT .

In other words, JPF does not generate each possible state for the SUT. Instead, JPF generates and
explores only the states that fall inside the backward static slice we computed in the previous step.
As shown in Figure 9, our backward static slice can greatly reduces the space search and is able to
compensate for corrupted frames. In short, the idea is that instead of going through all the states of
the program as a complete model checker would do, the backward slice directs the model checker to
explore only the states that might reach the targeted frame.

4.5. Validation

To validate the result of directed model checking, we modify the check properties step that checks if
the current sequence of state transition x satisfies a set of properties. If the current state transition x
can throw an exception, we execute x and compare the exception thrown with the original crash
trace (after preprocessing). If the two exceptions match, we conclude that the conditions needed to
trigger the failure have been met and the bug is reproduced.

However, as argued by Kim et al. in [35], the same failure can be reached from different paths of the
program. Although the states executed to reach the defect are not exactly the same, they might be
useful to enhance the understanding of the bug by software developers and speed up the deployment
of a fix. Therefore, in this paper, we consider a defect to be partially reproduced if the crash trace
generated from the model checker matches the original crash trace by a factor of t, where t is a
threshold specified by the user. The threshold, t, represents the percentage of identical frames
between both crash traces.

For our experiments (Section 6), we set the value of t to 80%. The choice of t should be guided by
the need to find the best trade-off between the reproducibility of the bug and the relevance of the
generated test cases (the tests should help reproduce the on-field crash). To determine the best t, we
made several incremental attempts, starting from t=10%. For each attempt, we increased t with a
factor of 5% and observed the number of bugs reproduced and the quality of the generated tests.
Having t=80% provided the best trade-off, this said, we anticipate that the tool that implements our
technique should allow software engineers to vary t depending on the bugs and the systems under
study. Based on our observations, we recommend, however, to set t to 80% as a baseline. It should
also be noted that we deliberately prevented JCHARMING to perform directed model checking with
a threshold below 50%. This is because the tests generated with such a low threshold during our
experiments did not yield qualitative results.

REPRODUCING BUG WITH DIRECTED MODEL CHECKING AND CRASH TRACES 13 of 24

Copyright © 2016 John Wiley & Sons, Ltd. J. Softw. Evol. Proc. 2017;29:e1789
DOI: 10.1002/smr



4.6. Generating test cases for bug reproduction

To help software developers reproduce the crash in a lab environment, we automatically produce the
JUnit test cases necessary to run the SUT to cause the bug.

To build a test suite that reproduces a defect, we need to create a set of objects used as arguments for
the methods that will enable us to travel from the entry point of the program to the defect location. JPF
has the ability to keep track of what happens during model checking in the form of traces containing
the visited states and the value of the variables. We leverage this capability to create the required
objects and call the methods leading to the failure location.

During the testing of the SUT, JPF emits a trace that is composed of the executed instructions. For
large systems, this trace can contain millions of instructions. It is stored in memory and therefore can
be queried while JPF is running. However, accessing the trace during the JPF execution considerably
slows down the checking process as both the querying mechanism and the JPF engine compete with
each other for resources. In order to allow JPF to use 100% of the available resources and still be
able to query the executed instructions, we implemented a listener that listens to the JPF trace
emitter. Each time a new instruction is processed by JPF, our listener catches it and saves it into a
MongoDB database to be queried in a post-mortem fashion. Figure 11 presents a high-level
architecture of the components of the JUnittest generation process.

When the validate step triggers a crash stack with a similarity larger than a factor t, the JUnit
generation engine queries the MongoDB database and fetches the sequence of instructions that led
to the crash of interest. Figure 11 contains a hypothetical sequence of instructions related to the
example of Figures 2–4, which reads : new jsme.Bar, invokespecial jsme.Bar(),
astore_1 [bar], aload_1 [bar], iconst_3, invokevirtual jsme.Bar.foo(int),
const_0, istore_2 [i], goto, iload_2 [i], iconst_2, if_icmple iinc 2 1, new
java.lang.Exception. From this sequence, we know that, to reproduce to crash of interest,
we have to (i) create a new object jsme.Bar (new jsme.Bar, invokespecial jsme.Bar
()); (ii) store the newly created object in a variable named bar (astore_1 [bar]); and (iii)
invoke the method jsme.Bar.foo(int) of the bar object with as value (aload_1 [bar],
iconst_3, invokevirtual jsme.Bar.foo(int)). Then, the jsme.Bar.foo(int)
method will execute the for-loop from i=0 until i=3 and throw an exception at i = 3 (const_0,
istore_2 [i], goto, iload_2 [i], iconst_2, if_icmple iinc 2 1, new java.
lang.Exception).

Figure 11. High-level architecture of the JUnit test case generation.

14 of 24 MATHIEU NAYROLLES ET AL.

Copyright © 2016 John Wiley & Sons, Ltd. J. Softw. Evol. Proc. 2017;29:e1789
DOI: 10.1002/smr



The generation of the JUnit test itself is based on templates and targets directly the SUT. Templates
are excerpts of Java source code with well-defined tags that will be replaced by values. We use
templates because the JUnit test cases have common structures. Figure 12 shows our template for
generating JUnit test cases. In this figure, each {% %} will be dynamically replaced by the
corresponding value when the JUnit test is generated. For example, {% SUT %} will be replaced by
Ant if the SUT is Ant. First, we declare four variables that contain the failure, the threshold
above, which a given bug is said to be partially reproduced, the differences, which count how
many lines differ between the original failure, the failure produced by JCHARMING, and a
StringTokenizer. The StringTokenizer allows to break the original failure into
tokens. Second, the test method where {%SUT%} is replaced by the name of the SUT and {%
STEPS%} by the steps to make the SUT crash. Then, the crash trace related to the crash is received
in the catch part of the try-catch block. In the catch part, we compute the number of lines
that do not match the original exception and store it into differences.1 Finally, the
assertTrue call will assert that the crash traces from the induced and the original crash are at
least threshold percent similar to each other.

5. CASE STUDIES

In this section, we show the effectiveness of JCHARMING to reproduce bugs in 10 open source
systems.2 The aim of the case studies is to answer the following question: Can we use crash traces
and directed model checking to reproduce on-field bugs in a reasonable amount of time?

5.1. Targeted systems

Table I shows the systems and their characteristics in terms of Kilo Line of Code and Number of
Classes

Apache Ant [36] is a popular command-line tool to build Makefiles. While it is mainly known for
Java applications, Apache Ant also allows building C and C++ applications. We choose to analyze
Apache Ant because it has been used by other researchers in similar studies.

ArgoUML [37] is one of the major players among the open source UML modeling tools. It has
many years of bug management, and similar to Apache Ant, it has been extensively used as a test
subject in many studies.

Figure 12. Simplified unit test template.

1This code has been replaced by //Count the differences to ease the reading.
2The bug reports used in this study and the result of JCHARMING are made available for download from https://re-
search.mathieu-nayrolles.com/jcharming/.

REPRODUCING BUG WITH DIRECTED MODEL CHECKING AND CRASH TRACES 15 of 24

Copyright © 2016 John Wiley & Sons, Ltd. J. Softw. Evol. Proc. 2017;29:e1789
DOI: 10.1002/smr

https://research.mathieu-nayrolles.com/jcharming/.
https://research.mathieu-nayrolles.com/jcharming/.


Dnsjava [38] is a tool for the implementation of the DNS mechanisms in Java. This tool can be used
for queries, zone transfers, and dynamic updates. It is not as large as the other two, but it still makes an
interesting case subject because it has been well maintained for the past decade. Also, this tool is used
in many other popular tools such as Aspirin, Muffin, and Scarab.

JfreeChart [39] is a well-known library that enables the creation of professional charts. Similar to
dnsjava, it has been maintained over a very long period of time. JfreeChart was created in 2005. It is
a relatively large application.

Apache Log4j [40] is a logging library for Java. This is not a very large library, but it is extensively
used by thousands of programs. As other Apache projects, this tool is well maintained by a strong open
source community and allows developers to submit bugs. The bugs that are in the bug reporting system
of Log4j are generally well documented. In addition, the majority of bugs contain crash traces, which
makes Log4j a good candidate system for this study.

MCT [41] stands for Mission Control Technologies and was developed by the NASA Ames
Research Center (the creators of JPF) for use in spaceflight mission operation. This tool benefits
from 2years of history and targets a very critical domain, Spacial Mission Control. Therefore, this
tool has to be particularly and carefully tested, and consequently, the remaining bugs should be hard
to discover and reproduce.

PDFBox [42] is another tool supported by the Apache Software Foundation since 2009 and was
created in 2008. PDFBox allows the creation of new PDF documents and the manipulation of
existing documents.

Hadoop [43] is a framework for storing and processing large datasets in a distributed environment. It
contains four main modules: Common, HDFS, YARN, and MapReduce. In this paper, we study the
Common module that contains the different libraries required by the other three modules.

Mahout [44] is a relatively new software application, built on top of Hadoop. We used Mahout
version 0.11, which was released in August 2015. Mahout supports various machine learning
algorithms with a focus on collaborative filtering, clustering, and classification.

Finally, ActiveMQ [45] is an open source messaging server that allows applications written in Java,
C, C++, C#, Ruby, Perl, or PHP to exchange messages using various protocols. ActiveMQ has been
actively maintained since it became an Apache Software Foundation project in 2005.

5.2. Bug selection and crash traces

In this study, we have selected the reproduced bugs randomly in order to avoid the introduction of any
bias. We selected a random number of bugs ranging from 1 to 10 for each SUT containing the word
‘exception’ and where the description of the bug contains a match to a regular expression designed
to find the pattern of a Java exception.

Table I. List of target systems in terms of KLoC, NoC, and Bug #ID.

SUT KLOC NoC Bug #ID

Ant 265 1233 38622, 41422
ArgoUML 58 1922 2603, 2558, 311, 1786
dnsjava 33 182 38
jfreechart 310 990 434, 664, 916
Log4j 70 363 11570, 40212, 41186, 45335,

46271, 47912, 47957
MCT 203 1267 440ed48
pdfbox 201 957 1412, 1359
Hadoop 308 6337 2893, 3093, 11,878
Mahout 287 1,242 486, 1367, 1594, 1635
ActiveMQ 205 3797 1054, 2880, 2880
Total 1517 17,348 30

KLoC, kilo line of code; MCT, Mission Control Technologies; NOC, number of classes; SUT, system under test.

16 of 24 MATHIEU NAYROLLES ET AL.

Copyright © 2016 John Wiley & Sons, Ltd. J. Softw. Evol. Proc. 2017;29:e1789
DOI: 10.1002/smr



6. RESULTS

Table II shows the results of JCHARMING in terms of Bug #ID, reproduction status, and execution
time (in minutes) of directed model checking, length of the counter-example (statements in the JUnit
test), and execution time (in minutes) for model checking. The experiments have been conducted on
a Linux machine (8GB of RAM and using Java 1.7.0_51).

• The result is noted as ‘Yes’ if the bug has been fully reproduced, meaning that the crash trace
generated by the model checker is identical to the crash trace collected during the failure of
the system.

• The result is ‘Partial’ if the similarity between the crash trace generated by the model checker and
the original crash trace is above t=80% and below t=100%. Given an 80% similarity threshold,
we consider partial reproduction as successful. A different threshold could be used.

• Finally, the result of the approach is reported as ‘No’ if either the similarity is below t< 80% or
the model checker failed to crash the system given the input we provided.

As we can see in Table II, we were able to reproduce 24 out of 30 bugs either completely or partially
(80% success ratio). The average time to reproduce a bug was 19min. The average time in cases where
JCHARMING failed to reproduce the bug was 11min. The maximum fail time was 42.3min, which
was the time required for JCHARMING to fill all the available memory and stop, and a ‘-‘ denotes
that JCHARMING reached a 60-min timeout. Finally, we report the number of statements in the

Table II. Effectiveness of JCHARMING using DMC in minutes, length of the generated JUnit tests
(CE length) and MC in minutes.

SUT Bug #ID Reprod. Time DMC CE length Time MC

Ant
38622 Yes 25.4 3 –
41422 No 42.3 – –

ArgoUML

2558 Partial 10.6 3 –
2603 Partial 9.4 3 –
311 Yes 11.3 10 –
1786 Partial 9.9 6 –

DnsJava 38 Yes 4 2 23

434 Yes 27.3 2 –
jFreeChart 664 Partial 31.2 3 –

916 Yes 26.4 4 –

11570 Yes 12.1 2 –
40212 Yes 15.8 3 –
41186 Partial 16.7 9 –

Log4j 45335 No 3.2 – –
46271 Yes 13.9 4 –
47912 Yes 12.3 3 –
47957 No 2 – –

MCT 440ed48 Yes 18.6 3 –

PDFBox
1412 Partial 19.7 4 –
1359 No 7.5 – –

Mahout

486 Partial 34.5 5 –
1367 Partial 21.1 7 –
1594 No 14.8 – –
1635 Yes 31.0 14 –

2893 Partial 7.4 3 32
Hadoop 3093 Yes 13.1 2 –

11878 Yes 17.4 6 –

1054 Yes 38.3 11 –
ActiveMQ 2880 Partial 27.4 6 –

5035 No 1 – –

CE, counter example; DMC, directed model checking; MC, model checking; MCT, Mission Control Technology.

REPRODUCING BUG WITH DIRECTED MODEL CHECKING AND CRASH TRACES 17 of 24

Copyright © 2016 John Wiley & Sons, Ltd. J. Softw. Evol. Proc. 2017;29:e1789
DOI: 10.1002/smr



produced JUnit test, which represents the length of the counter-example. While reproducing a bug is
the first step in understanding the cause of a field crash, the steps to reproduce the bug should be as
few as possible. It is important for counter-examples to be short to effectively help the developers
provide a fix. In average, JCHARMING counter-examples were composed of 5.04 Java statements,
which, in our view, is considered reasonable for our approach to be adopted by software developers.
This result demonstrates the effectiveness of our approach, more particularly, the use of backward
slicing to create a manageable search space that guides adequately the model checking engine. We
also demonstrated that our approach is usable in practice because it is also time efficient. Among the
30 different bugs we have tested, we will describe two bugs (chosen randomly) for each category
(successfully reproduced, partially reproduced, and not reproduced) for further analysis. The bug
report presented in the following sections are the original reports as submitted by the reporter. As
such, they contain typos and spelling mistakes that we did not correct.

6.1. Successfully reproduced

The first bug we describe in this discussion is the Bug #311 belonging to ArgoUML. This bug was
submitted in an earlier version of ArgoUML. This bug is very simple to manually reproduce thanks
to the extensive description provided by the reporter, which reads: ‘I open my first project (Untitled
Model by default). I choose to draw a Class Diagram. I add a class to the diagram. The class name
appears in the left browser panel. I can select the class by clicking on its name. I add an instance
variable to the class. The attribute name appears in the left browser panel. I can’t select the attribute
by clicking on its name. Exception occurred during event dispatching:’ The reporter also attached
the crash trace presented in Figure 13 that we used as input for JCHARMING:

The cause of this bug is that the reference to the attribute of the class was lost after being displayed
on the left panel of ArgoUML, and therefore, selecting it through a mouse click throws a null pointer
exception. In the subsequent version, ArgoUML developers added a Target Manager to keep the
reference of such object in the program. Using the crash trace, JCHARMING’s preprocessing step
removed the lines between lines 11 and 29 because they belong to the Java standard library and we
do not want either the static slice or the model checking engine to verify the Java standard library
but only the SUT. Then, the third step performs the static analysis following the process described

Figure 13. Crash trace reported for bug ArgoUML #311.

18 of 24 MATHIEU NAYROLLES ET AL.

Copyright © 2016 John Wiley & Sons, Ltd. J. Softw. Evol. Proc. 2017;29:e1789
DOI: 10.1002/smr



in Section 4.3. The fourth step performs the model checking on the static slice to produce the same
crash trace. More specifically, the model checker identifies that the method setTargetInternal
(Object o) could receive a null object that will result in a Null pointer exception.

The second reproduced bug we describe in this section is Bug #486 belonging to Mahout. The
submitter (Robin Anil) named the bug entry as ‘Null Pointer Exception running
DictionaryVectorizer with ngram=2 on Reuters dataset’. He simply copied the crash stack presented in
Figure 14 without further explanation.

Drew Farris,3 who was assigned to fix this bug, commented ‘Looks like this was due to an improper
use of the Gram default constructor that happened as a part of the 0.20.2teFarris certainly meant 0.10.2
which was the last refactor of the incriminated class, and the current version of Mahout is 0.11
refactoring work.’ While this quick comment, made only 2.5 h after the bug submission, was
insightful as shown in our generated test case,4 the fix happened in the CollocCombiner class
that is one of the Reducer5 available in Mahout. The fix (commit #f13833) involved creating an
iterator to combine the frequencies of the Gram and a null check of the final frequency.

JCHARMING’s preprocessing step removed the lines between lines 1 and 14 because they belong
to the second thrown exception because java.lang.NullPointerException occurred when
writing in a ByteArrayOutputStream. JCHARMING aims to reproduce the root exceptions
and not the exceptions that derive from other exceptions. This said, the java.io.
IOException: Spill failed was ignored, and our directed model checking engine focused,
with success, on reproducing the java.lang.NullPointerException.

6.2. Partially reproduced

As an example of a partially reproduced bug, we explore Bug #664 of the Jfreechart program. The
description provided by the reporter is: ‘In ChartPanel.mouseMoved there’s a line of code which
creates a new ChartMouseEvent using as first parameter the object returned by getChart(). For

Figure 14. Crash trace reported for bug Mahout #486.

3https://issues.apache.org/jira/browse/MAHOUT-486.
4As a reminder, the generated test cases are made available at research.mathieu-nayrolles.com/jcharming.
5As in Map/Reduce.

REPRODUCING BUG WITH DIRECTED MODEL CHECKING AND CRASH TRACES 19 of 24

Copyright © 2016 John Wiley & Sons, Ltd. J. Softw. Evol. Proc. 2017;29:e1789
DOI: 10.1002/smr



getChart() is legal to return null if the chart is null, but ChartMouseEvent’s constructor calls the parent
constructor which throws an IllegalArgumentException if the object passed in is null.’

The reporter provided the crash trace containing 42 lines and then replaced an unknown number of
lines by the following statement ‘< deleted entry >’. While JCHARMING successfully reproduced a
crash yielding almost the same trace as the original trace, the ‘<deleted entry>’ statement – which was
surrounded by calls to the standard Java library – was not suppressed and stayed in the crash trace. That
is, JCHARMING produced only the 6 (out of 7) first lines and reached 83% similarity and thus a partial
reproduction (Figure 15–18).

The second partially reproduced bug we present here is Bug #2893 belonging to Hadoop. This bug,
reported in February 2008 by Lohit Vijayarenu, was titled ‘checksum exceptions on trunk’ and
contained the following description: ‘While running jobs like Sort/WordCount on trunk I see few
task failures with ChecksumException. Re-running the tasks on different nodes succeeds. Here is the
stack’

Similarly to the first partially reproduced bug, the crash traces produced by our directed model
checking engine and the related test case did not match 100% of the attached crash stack. While
JCHARMING successfully reproduced the bug, the crash stack contains timestamps information
(e.g., 200802251721), which was logically different in our produced stack trace as we ran the
experiment years later.

In all bugs that were partially reproduced, we found that the differences between the crash trace
generated from the model checker and the original crash trace (after preprocessing) consists of a few
lines only.

6.3. Not reproduced

To conclude the discussion on the case study, we present a case where JCHARMING was unable to
reproduce the failure. For the Bug #47957, belonging to log4J and reported in late 2009 the author
wrote: ‘Configure SyslogAppender with a Layout class that does not exist; it throws a
NullPointerException. Following is the exception trace:’ and attached the following crash trace:

The first three lines are not produced by the standard execution of the SUT but by an
ExceptionHandler belonging to Struts [46]. Struts is an open source Model-View-Controller
framework for building Java web applications. JCHARMING examined the source code of log4J for
the crash location struts.CPExceptionHandler.execute and did not find it because this
method belongs to the source base of Struts – which uses log4j as a logging mechanism. As a result,
the backward slice was not produced, and we failed to perform the next steps. It is noteworthy that
the bug is marked as duplicate of the Bug #46271, which contains a proper crash trace. We believe
that JCHARMING could have successfully reproduced the crash, if it was applied to the original bug.

The second bug that we did not reproduce and that we present in this section belongs to Mahout. It
was reported by Jaehoon Ko on July 2014. Bug #1594 is titled ‘Example factorize-movielens-1M.sh
does not use HDFS and reads It seems that factorize-movielens-1M.sh does not use HDFS at all. All
paths look local paths, not HDFS. So the example crashes immeidately because it cannot find input
data from HDFS’:

This entry was marked as ‘Not A Problem’/‘WONT_FIX’ meaning that the reported bug was not a
bug in the first place. The resolution of this bug6 involved the modification of a bash script that Ko (the

6https://github.com/apache/mahout/pull/38#issuecomment-51436303

Figure 15. Crash trace reported for bug JFreeChart #664.

20 of 24 MATHIEU NAYROLLES ET AL.

Copyright © 2016 John Wiley & Sons, Ltd. J. Softw. Evol. Proc. 2017;29:e1789
DOI: 10.1002/smr

https://github.com/apache/mahout/pull/38#issuecomment-51436303


submitter) was using to query Mahout. In other words, the cause of the failure was external to Mahout
itself, and this is why JCHARMING could not reproduce it.

7. THREATS TO VALIDITY

The selection of SUTs is one of the common threats to validity for approaches aiming to improve the
understanding of a program’s behavior. It is possible that the selected programs share common
properties that we are not aware of and, therefore, invalidate our results. However, the SUTs
analyzed by JCHARMING are the same as the ones used in similar studies. Moreover, the SUTs
vary in terms of purpose, size, and history.

Another threat to validity lies in the way we have selected the bugs used in this study. We selected
the bugs randomly to avoid any bias. One may argue that a better approach would be to select bugs
based on complexity or other criteria (severity, etc.). We believe that a complex bug (if complexity
can at all be measured) may perhaps have an impact on the running time of the approach, but we
are not convinced that the accuracy of our approach depends on the complexity or the type of bugs
we use. Instead, it depends on the quality of the produced crash trace. This said, in theory, we may

Figure 17. Crash trace reported for bug log4J #47957.

Figure 16. Crash trace reported for bug Hadoop #2893.

Figure 18. Crash trace reported for bug Mahout #1594.

REPRODUCING BUG WITH DIRECTED MODEL CHECKING AND CRASH TRACES 21 of 24

Copyright © 2016 John Wiley & Sons, Ltd. J. Softw. Evol. Proc. 2017;29:e1789
DOI: 10.1002/smr



face situations where the crash trace is completely corrupted. In such cases, there is nothing that guides
the model checker. In other words, we will end up running a full model checker. It is difficult to
evaluate the number of times we may face this situation without conducting an empirical study on
the quality of crash traces. We defer this to future work.

In addition, we see a threat to validity that stems from the fact that we only used open source
systems. The results may not be generalizable to industrial systems. The last author of the paper
expressed an interest to apply these techniques to Ericsson systems. We intend to undertake these
studies in future work.

Field failures can also occur because of the running environment on which the program is executed.
For instance, the failure may have been caused by the reception of a network packet or the opening of a
given file located on the hard drive of the users. The resulting failures will hardly be reproducible by
JCHARMING.

Finally, the programs we used in this study are all written in the Java programming language and
JCHARMING leverages the crash traces produced by the JVM to reproduce bugs. This can limit the
generalization of the results. However, similar to Java, .Net, Python, and Ruby languages also
produce crash traces. Therefore, JCHARMING could be applied to other object-oriented languages.

In conclusion, internal and external validities have both been minimized by choosing a relatively
large set of different systems and using input data that can be found in other programming languages.

8. CONCLUSION AND FUTURE WORK

In this paper, we presented JCHARMING, an automatic bug reproduction technique that combines
crash traces and directed model checking. JCHARMING relies on crash traces and backward
program slices to direct a model checker. This way, we do not need to visit all the states of the
subject program, which would be computationally taxing. When applied to 30 bugs from 10 open
source systems, JCHARMING was able to successfully reproduce 80% of the bugs. The average
time to reproduce a bug was 19min, which is quite reasonable, given the complexity of reproducing
bugs that cause field crashes.

This said, JCHARMING suffers from three main limitations. The first one is that JCHARMING
cannot reproduce bugs caused by multi-threading. We can overcome this limitation by using
advanced features of the JPF model checker such as the jpf-ltl listener. The jpf-ltl listener
was designed to check temporal properties of concurrent Java programs. The second limitation is
that JCHARMING cannot be used if the bug is caused by external inputs. We can always build a
monitoring system to retrieve this data, but this may lead to privacy concerns. Finally, the third
limitation is that the performance of JCHARMING relies on the quality of the crash traces. This
limitation can be addressed by investigating techniques that can improve the reporting of crash
traces. For the time being, the bug reporters simply copy and paste (and modify) the crash traces
into the bug description. A better practice would be to automatically append the crash trace to the
bug report, for example, in a different field than the bug description.

For future work, in addition to addressing JCHARMING’s limitations, we need to experiment with
more (and complex) bugs with the dual aim to (i) improve and fine tune the approach and (ii) assess the
scalability of our approach when applied to even larger (and proprietary) systems. Finally, we need to
compare our approach with STAR [14], which is the closest approach to ours by running both methods
on the same set of systems and bugs. This comparative study can provide insights into the differences
in the use of symbolic analysis as it is in STAR and directed model checking, the core mechanism of
JCHARMING.

REFERENCES

1. Bettenburg N, Just S, Schröter A, Weiss C, Premraj R, Zimmermann T. What makes a good bug report? Proceedings
of the 16th ACM SIGSOFT International Symposium on Foundations of Software Engineering, ACM Press: New
York, New York, USA, 2008; 308. doi:10.1145/1453101.1453146. URL http://portal.acm.org/citation.cfm?
doid=1453101.1453146.

22 of 24 MATHIEU NAYROLLES ET AL.

Copyright © 2016 John Wiley & Sons, Ltd. J. Softw. Evol. Proc. 2017;29:e1789
DOI: 10.1002/smr

http://portal.acm.org/citation.cfm?doid=1453101.1453146
http://dx.doi.org/10.1145/1453101.1453146


2. Narayanasamy S, Pokam G, Calder B. BugNet: continuously recording program execution for deterministic replay
debugging. Proceedings of the 32nd annual International Symposium on Computer Architecture, vol. 33, ACM,
2005; 284–295. doi:10.1145/1080695.1069994. URL http://dl.acm.org/citation.cfm?id=1080695.1069994.

3. Artzi S, Kim S, Ernst MD. Recrash: making software failures reproducible by preserving object states. Proceedings
of the 22nd European Conference on Object-Oriented Programming, 2008; 542–565.

4. Jaygarl H, Kim S, Xie T, Chang CK. OCAT: object capture based automated testing. Proceedings of the 19th Inter-
national Symposium on Software Testing and Analysis, 2010; 159–170.

5. Manevich R, Sridharan M, Adams S. PSE: explaining program failures via postmortem static analysis. ACM
SIGSOFT Software Engineering Notes, 29, ACM, 2004; 63. doi:10.1145/1041685.1029907. URL http://dl.acm.
org/citation.cfm?id=1041685.1029907.

6. Chandra S, Fink SJ, Sridharan M. Snugglebug: a powerful approach to weakest preconditions. ACM Sigplan Notices
2009; 44ACM:363–374.

7. Nayrolles M, Hamou-Lhadj A, Sofiene T, Larsson A. JCHARMING: a bug reproduction approach using crash traces
and directed model checking. Proceedings of the 22nd International Conference on Software Analysis, Evolution,
and Reengineering, IEEE, 2015, 2015; 101–110.

8. Baier C, Katoen JP. Principles of Model Checking. Vol. 26202649. MIT Press: Cambridge, 2008.
9. Steven J, Chandra P, Fleck B, Podgurski A. jRapture: a capture/replay tool for observation-based testing. Proceed-

ings of the International Symposium on Software Testing and Analysis., 2000; 158–167.
10. Roehm T, Nosovic S, Bruegge B. Automated extraction of failure reproduction steps from user interaction traces.

2015 IEEE 22nd International Conference on Software Analysis, Evolution, and Reengineering (SANER), IEEE,
2015; 121–130. doi:10.1109/SANER.2015.7081822. URL http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?
arnumber =7081822.

11. Jin W, Orso A. BugRedux: reproducing field failures for in-house debugging. Proceedings of the 34th International
Conference on Software Engineering, IEEE, Ieee, 2012; 474–484. doi:10.1109/ICSE.2012.6227168. URL http://
ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber =6227168.

12. Jin W, Orso A. F3: fault localization for field failures. Proceedings of the 2013 International Symposium on Software
Testing and Analysis, ACM Press: New York, New York, USA, 2013; 213–223. doi:10.1145/2483760.2483763.
URL http://dl.acm.org/citation.cfm?doid=2483760.2483763.

13. Zuddas D, Jin W, Pastore F, Mariani L, Orso A. MIMIC: locating and understanding bugs by analyzing mimicked
executions. Proceedings of the 29th ACM/IEEE International Conference on Automated Software Engineering,
ACM Press: New York, New York, USA, 2014; 815–826. doi:10.1145/2642937.2643014. URL http://dl.acm.org/ci-
tation.cfm?id=2642937.2643014.

14. Chen N. STAR: stack trace based automatic crash reproduction. PhD Thesis, Honk Kong University of Science and
Technology 2013.

15. Rößler J, Zeller A, Fraser G, Zamfir C, Candea G. Reconstructing core dumps. Proceedings of the 6th International
Conference on Software Testing, Verification and Validation, IEEE, 2013. doi:10.1109/ICST.2013.18.

16. Clause J, Orso A. A technique for enabling and supporting debugging of field failures. Proceedings of the 29th In-
ternational Conference on Software Engineering, 2007; 261–270.

17. Dutertre B, Moura LD. The Yices SMT solver. Tool paper at http://yices.csl.sri.com/tool-paper.pdf 2006; 2(2).
18. Visser W, Havelund K, Brat G, Park S, Lerda F. Model checking programs. Automated Software Engineering 2003;

10Springer:203–232.
19. Visser W, Psreanu CS, Khurshid S. Test input generation with Java PathFinder. Proceedings of the 2004 ACM

SIGSOFT International Symposium on Software Testing and Analysis 2004; 97. doi:10.1145/1007512.1007526.
URL http://portal.acm.org/citation.cfm?doid=1007512.1007526.

20. Burg B, Bailey R, Ko AJ, Ernst MD. Interactive record/replay for web application debugging. Proceedings
of the 26th annual ACM symposium on User Interface Software and Technology, ACM Press: New York,
New York, USA, 2013; 473–484. doi:10.1145/2501988.2502050. URL http://dl.acm.org/citation.cfm?
id=2501988.2502050.

21. Herbold S, Grabowski J, Waack S, Bünting U. Improved bug reporting and reproduction through non-intrusive GUI
usage monitoring and automated replaying. 2011 IEEE Fourth International Conference on Software Testing, Veri-
fication and Validation Workshops, IEEE, 2011; 232–241. doi:10.1109/ICSTW.2011.66. URL http://ieeexplore.ieee.
org/articleDetails.jsp?arnumber=595441 4.

22. Zeller A, Hildebrandt R. Simplifying and isolating failure-inducing input. IEEE Transactions on Software Engineer-
ing 2002; 28(2):183–200, doi: 10.1109/32.988498. URL http://dl.acm.org/citation.cfm?id=506201.506206.

23. Bell J, Sarda N, Kaiser G. Chronicler: lightweight recording to reproduce field failures. 2013 35th International Con-
ference on Software Engineering (ICSE), IEEE, 2013; 362–371. doi:10.1109/ICSE.2013.6606582. URL http://
ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber =6606582.

24. Zamfir C, Candea G. Execution synthesis: a technique for automated software debugging. Proceedings of the 5th Eu-
ropean Conference on Computer Systems, 2010; 321–334.

25. De Moura L, Bjørner N. Z3: An efficient SMT solver. Tools and Algorithms for the Construction and Analysis of
Systems. Springer: Berlin Heidelberg. 2008; 337–340.

26. Kropf T. Introduction to Formal Hardware Verification: Methods and Tools for Designing Correct Circuits and
Systems, Secaucus. 1999.

27. Kripke SA. Semantical considerations on modal logic. Acta Philosophica Fennica 1963; 16(1963):83–94.

REPRODUCING BUG WITH DIRECTED MODEL CHECKING AND CRASH TRACES 23 of 24

Copyright © 2016 John Wiley & Sons, Ltd. J. Softw. Evol. Proc. 2017;29:e1789
DOI: 10.1002/smr

http://dx.doi.org/10.1145/1080695.1069994
http://dl.acm.org/citation.cfm?id=1041685.1029907
http://dx.doi.org/10.1145/1041685.1029907
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber =7081822
http://dx.doi.org/10.1109/SANER.2015.7081822
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber =6227168
http://dx.doi.org/10.1109/ICSE.2012.6227168
http://dx.doi.org/10.1145/2483760.2483763
http://dx.doi.org/10.1145/2483760.2483763
http://dl.acm.org/citation.cfm?id=2642937.2643014
http://dx.doi.org/10.1145/2642937.2643014
http://dx.doi.org/10.1109/ICST.2013.18
http://yices.csl.sri.com/tool-paper.pdf
http://dx.doi.org/10.1145/1007512.1007526
http://dx.doi.org/10.1145/1007512.1007526
http://dl.acm.org/citation.cfm?id=2501988.2502050
http://dx.doi.org/10.1145/2501988.2502050
http://ieeexplore.ieee.org/articleDetails.jsp?arnumber=595441 4
http://dx.doi.org/10.1109/ICSTW.2011.66
http://dx.doi.org/10.1109/32.988498
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber =6606582
http://dx.doi.org/10.1109/ICSE.2013.6606582


28. Edelkamp S, Leue S, Lluch-Lafuente A. Directed explicit-state model checking in the validation of communication
protocols. International Journal on Software Tools for Technology Transfer (STTT) 2004; 5(2-3):247–267.
doi:10.1007/s10009-002-0104-3. URL http://link.springer.com/10.1007/s10009-002-0104-3.

29. Edelkamp S, Schuppan V, Bosnacki D, Wijs A, Fehnker A, Aljazzar H. Survey on Directed Model Checking.
Springer: Berlin Heidelberg, 2008; 65–89.

30. Oracle. Throwable (Java Plateform SE6) 2011. URL http://docs.oracle.com/javase/6/docs/api/java/lang/
Throwable. html.

31. De Lucia A. Program slicing: methods and applications. International Working Conference on Source Code Analysis
and Manipulation, IEEE Computer Society, 2001; 144.

32. IBM. T. J. Watson Libraries for Analysis (WALA) 2006.
33. Holzmann GJ. The model checker SPIN. IEEE Transactions on Software Engineering 1997; 23(5):279–295.
34. McMillan KL. Symbolic Model Checking. Springer: US, 1993.
35. Kim S, Zimmermann T, Nagappan N. Crash graphs: an aggregated view of multiple crashes to improve crash triage.

International Conference on Dependable Systems and Networks (DSN), 2013; 486–493.
36. Apache Software Foundation. Apache Ant. 2000 URL http://ant.apache.org/.
37. CollabNet. Tigris.org: open source software engineering 2000 URL http://www.tigris.org/.
38. Wellington B. dnsjava 2013. URL http://www.dnsjava.org/.
39. Object Refinery Limited. JFreeChart 2005. URL http://jfree.org/jfreechart/.
40. The Apache Software Foundation. Log4j 2 Guide – Apache Log4j 2 1999. URL http://logging.apache.org/log4j/2.x/.
41. NASA. Open Mission Control Technologies 2009. URL https://sites.google.com/site/openmct/.
42. Apache Software Foundation. Apache PDFBox—A Java PDF Library 2014. URL http://pdfbox.apache.org/.
43. Apache Software Fundation. Hadoop 2011. URL http://hadoop.apache.org.
44. Apache Software Fundation. Mahout: scalable machine learning and data mining 2012. URL http://mahout.

apache.org.
45. Snyder B, Bosanac D, Davies R. ActiveMQ in Action. Manning Publications Co.: USA, 2011.
46. Apache Software Foundation. Apache Struts project 2000. URL http://struts.apache.org/.

24 of 24 MATHIEU NAYROLLES ET AL.

Copyright © 2016 John Wiley & Sons, Ltd. J. Softw. Evol. Proc. 2017;29:e1789
DOI: 10.1002/smr

http://dx.doi.org/10.1007/s10009-002-0104-3
http://docs.oracle.com/javase/6/docs/api/java/lang/Throwable. html
http://docs.oracle.com/javase/6/docs/api/java/lang/Throwable. html
http://ant.apache.org/
http://www.tigris.org/
http://www.dnsjava.org/
http://jfree.org/jfreechart/
http://logging.apache.org/log4j/2.x/
https://sites.google.com/site/openmct/
http://pdfbox.apache.org/
http://hadoop.apache.org
http://mahout.apache.org
http://mahout.apache.org
http://struts.apache.org/

