
Formal Reliability Analysis
Using Theorem Proving

Osman Hasan, Student Member, IEEE, Sofiène Tahar, Senior Member, IEEE, and

Naeem Abbasi, Student Member, IEEE

Abstract—Reliability analysis has become a tool of fundamental importance to virtually all electrical and computer engineers because

of the extensive usage of hardware systems in safety and mission critical domains, such as medicine, military, and transportation. Due

to the strong relationship between reliability theory and probabilistic notions, computer simulation techniques have been traditionally

used to perform reliability analysis. However, simulation provides less accurate results and cannot handle large-scale systems due to

its enormous CPU time requirements. To ensure accurate and complete reliability analysis and thus more reliable hardware designs,

we propose to conduct a formal reliability analysis of systems within the sound core of a higher order logic theorem prover (HOL). In

this paper, we present the higher order logic formalization of some fundamental reliability theory concepts, which can be built upon to

precisely analyze the reliability of various engineering systems. The proposed approach and formalization is then utilized to analyze

the repairability conditions for a reconfigurable memory array in the presence of stuck-at and coupling faults.

Index Terms—Formal models, performance and reliability, theorem proving, memory structures.

Ç

1 INTRODUCTION

RELIABILITY analysis involves the application of various
mathematical techniques for the prediction of reliability-

related parameters, such as a system’s resistance to failure
and its ability to perform a required function under some
given conditions. Reliability analysis relies heavily on the
concepts of probability and statistics due to the enormous
amount of random or unpredictable components associated
with the reliability parameters of a system. Examples include
failures due to fabrication faults and electromigration
phenomena in System-on-Chips (SoCs). Moreover, these
systems act upon and within complex environments that
themselves have certain elements of unpredictability, such
as corrosion, vibration, and temperature variations. Due to
these random components, establishing the reliability of a
system under all circumstances usually becomes impracti-
cally expensive. The engineering approach to analyze the
reliability of a system with these kinds of unavoidable
elements of randomness and uncertainty is to use probabil-
istic analysis. The main idea is to mathematically model the
random and unpredictable elements of the given system
and its environment by appropriate random variables. The
probabilistic and statistical properties of these random
variables are then used to judge the system’s reliability
regarding parameters of interest.

Today, simulation is the most commonly used computer-
based reliability analysis technique. Most simulation soft-
wares provide a programming environment for defining
functions that approximate random variables for probability

distributions. The random elements in a given system are
modeled by these functions, and the system is analyzed
using computer simulation techniques [1], such as the
Monte Carlo Method [2], where the main idea is to
approximately answer a query on a probability distribution
by analyzing a large number of samples. Statistical
quantities, such as average and variance, may then be
calculated, based on the data collected during the sampling
process, using their mathematical relations in a computer.
Due to the inherent nature of simulation, the reliability
analysis results attained by this technique can never be
termed as 100 percent accurate. Moreover, simulation
requires an enormous amount of CPU time for attaining
meaningful estimates. We generally need to acquire hun-
dreds of thousands of samples to estimate the desired
probabilistic quantities and this fact makes the simulation
approach impractical when each sample acquisition step
involves extensive computations.

The accuracy of hardware system reliability analysis
results has become imperative these days because of the
extensive usage of these systems in safety-critical areas. One
of the unfortunate incidents, related to the inaccurate
reliability analysis of systems, is the loss of the Mars Polar
Lander [3] in December 1999. The Mars Polar Lander; a
$165 million NASA spacecraft launched to survey Martian
conditions, is believed to be lost mainly because of its engine
shutdown while it was still 40 meters above the Mars surface.
The engine shutdown happened due to the vibrations caused
by the deployment of the lander’s legs, i.e., a random
behavior that gave false indication that the spacecraft had
landed. In order to avoid incidents like this, simulation
should not be relied upon for the reliability analysis of
systems that are supposed to be used in safety-critical
domains.

Formal methods [4] are capable of conducting precise
system analysis and thus overcome the above-mentioned
limitations of simulation. The main principle behind formal

IEEE TRANSACTIONS ON COMPUTERS, VOL. 59, NO. 5, MAY 2010 579

. The authors are with the Department of Electrical and Computer
Engineering, Concordia University, 1455 De Maisonneuve Blvd. West,
EV005.139, Montreal, QC H3G 1M8, Canada.
E-mail: {o_hasan, tahar, n_ab}@ece.concordia.ca.

Manuscript received 11 Nov. 2008; revised 4 Apr. 2009; accepted 2 Sept.
2009; published online 23 Oct. 2009.
Recommended for acceptance by C. Bolchini and D. Sciuto.
For information on obtaining reprints of this article, please send e-mail to:
tc@computer.org, and reference IEEECS Log Number TCSI-2008-11-0569.
Digital Object Identifier no. 10.1109/TC.2009.165.

0018-9340/10/$26.00 � 2010 IEEE Published by the IEEE Computer Society

analysis of a system is to construct a computer-based
mathematical model of the given system and formally
verify, within a computer, that this model meets rigorous
specifications of intended behavior. Two of the most
commonly used formal verification methods are model
checking [5] and higher order logic theorem proving [6].
Model checking is an automatic verification approach for
systems that can be expressed as a finite-state machine.
higher order logic theorem proving, on the other hand, is an
interactive approach but is more flexible in terms of tackling
a variety of systems.

Both model checking and theorem proving have been
successfully used for the precise functional correctness of a
broad range of hardware systems. On the other hand, due to
the strong relationship between reliability theory and
randomness, their usage for reliability analysis has been
somewhat limited. The major limitations being the restricted
system expressibility and the inability to precisely reason
about statistical properties, such as variance and tail dis-
tribution bounds, in the case of model checking and the fear of
huge proof efforts involved in reasoning about random
components of a system in the case of theorem proving.

We believe that the recent developments in the formali-
zation of probability theory concepts in higher order logic
[7], [8] can be extended upon to conduct reliability analysis
in a higher order logic theorem prover. The main objective of
this paper is to minimize the interactive proof efforts for
conducting reliability analysis in a theorem prover by
presenting the higher order logic formalization of some
core reliability theory concepts. More specifically, we
present a formal definition of reliability, which can be used
to formally express the reliability characteristic of a system
or component in higher order logic, and the verification of
Markov and Chebyshev’s inequalities [9], which play a vital
role in the formal estimation of failure probabilities in the
reliability analysis of systems. These results can be built
upon to reason about the reliability characteristics of a
system in a higher order logic theorem prover and thus tend
to minimize the associated modeling and verification efforts.

The utilization and effectiveness of the proposed ap-
proach for handling real-world reliability analysis problems,
is demonstrated through the reliability analysis of reconfi-
gurable memory arrays in the presence of stuck-at and
coupling faults [10], which are two of the most commonly
found faults in memory arrays. Stuck-at faults occur when a
memory cell never changes its state, i.e., it is always stuck in
one state. Whereas, a coupling fault occurs when a write
operation in one cell changes the contents of another cell in
the memory array. In order to ensure reliable operation of
memory arrays, some redundancy is usually added to
memory arrays during the design phase. This way even after
fabrication, we can repair the memory faults by replacing
the rows or columns of the memory array containing faulty
memory cells with the available spare rows or columns.
Memories fabricated with these spare rows and columns are
usually termed as reconfigurable memory arrays. This techni-
que poses an interesting solution to the memory faults
problem but comes with a bigger design challenge of
estimating the right number of spare rows and columns
for meeting reliability specifications. If a combination of

spare rows and columns exists such that all faults from the
memory array can be eliminated then such a combination of
spare rows and columns is called a repair solution, and the
array is called repairable. The repairability problem of a
reconfigurable memory array is similar to the vertex cover
problem of the bipartite graph and is known to be an NP
complete problem [11]. Thus, probabilistic techniques are
usually utilized to obtain reasonable solutions. In this paper,
the proposed reliability analysis approach is used for
attaining precise solutions to the above-mentioned repair-
ability problem.

The state-of-the-art reliability analysis approach for the
repairability problem of reconfigurable memory arrays is
simulation, which usually fails to produce precise results
due to its inherent limitations and the large capacities of
memory arrays. Since reconfigurable memory arrays are an
integral component of essentially all SoC designs these
days and hence are quite frequently used in safety-critical
areas, the inaccuracies and inadequacies of simulation in
this domain may even result in the loss of human lives.
Therefore, the precise solutions obtained for the repair-
ability problem, in this paper, not only indicate the
practical usefulness of our approach but also address the
above-mentioned safety problem.

The work described in this paper is done using the HOL
theorem prover [12], which is an interactive higher order
logic theorem prover. The HOL core consists of only five
basic axioms and eight primitive inference rules, which are
implemented as ML functions. Soundness is assured as
every new theorem must be verified by applying these basic
axioms and primitive inference rules or any other pre-
viously verified theorems/inference rules. The main moti-
vation behind choosing HOL for our work is the availability
of most of the mathematical theories like Booleans, natural
and real numbers, sets, measure, and probability.

The rest of the paper is organized as follows: Section 2
provides some related work. Section 3 describes the
proposed theorem-proving-based reliability analysis ap-
proach. The formalization of reliability theory fundamentals
is given in Section 4. This is followed by the reliability
analysis of reconfigurable memory arrays in Section 5.
Finally, Section 6 concludes the paper.

2 RELATED WORK

The recently emerged CMOS or non-CMOS nanotechnolo-
gies, which are used to develop most of the state-of-the-art
electronics and computer-related equipment, are more
prone to defects than their predecessors. Therefore, relia-
bility analysis of nanoscale devices has become not only
essential but, due to their large gate counts, very challenging
as well. Many researchers around the world are trying to
improve the quality of computer-based reliability methods.
The ultimate goal is to come up with a reliability analysis
framework that includes robust and accurate analysis
methods, has the ability to perform analysis for large-scale
designs, and is easy to use. Some of the existing approaches
that allow us to tackle such reliability problems are
presented in the following: For instance, the probabilistic
transfer matrices (PTM) approach [13] fundamentally relies
on matrix arithmetic operations for each gate entity to assess

580 IEEE TRANSACTIONS ON COMPUTERS, VOL. 59, NO. 5, MAY 2010

the reliability of the whole circuit. It involves the complete
enumeration of all possible input and output combinations,
which can be very expensive in terms of computation when
dealing with large designs. A similar but independently
proposed technique is based on developing probabilistic
models for unreliable logic gates [14], called probabilistic
gate models (PGMs), and utilizing these individual models
to analyze the reliability of the circuit. In order to somewhat
overcome the runtime and scalability issues of the above-
mentioned approaches, recently three algorithms, based on
independent gate failure assumption, have been proposed
in [15], and their effectiveness is illustrated by successfully
analyzing the reliability of a few benchmark circuits. All of
the above techniques are based on simulation and thus
cannot provide 100 percent precise results due to the
inherent nature of simulation as has been described in the
previous section.

Formal methods are capable of addressing the inaccu-
racy issues of simulation and thus have also been explored
to conduct reliability analysis. Probabilistic model checking
has been applied to analyze the circuit reliability at the logic
gate and block levels [16], [17]. Like traditional model
checking, probabilistic model checking involves the con-
struction of a precise state-based mathematical model of the
given random system, which is then subjected to exhaustive
analysis to verify if it satisfies a set of reliability properties
formally expressed in temporal logic. Besides the accuracy
of the results, other promising features of probabilistic
model checking include the ability to perform the analysis
automatically. On the other hand, probabilistic model
checking is limited to systems that can only be expressed
as probabilistic finite-state machines or Markov chains.
Another major limitation of probabilistic model checking is
state space explosion [18] due to which it is not scalable to
large designs. Similarly, to the best of our knowledge, it has
not been possible to precisely reason about most of the
statistical quantities, such as variance and tail distribution
bounds, using probabilistic model checking so far.

The higher order logic theorem-proving-based reliability
analysis approach, utilized in this paper, tends to overcome
the limitations of both the simulation and model checking.
Due to the formal nature of the models and properties and
the inherent soundness of the theorem-proving approach,
reliability analysis carried out in this way is free from any
approximation and precision issues. Similarly, the high
expressibility of higher order logic allows us to analyze a
wider range of systems without any modeling limitations,
such as infinite state-space or the limitedness to Markovian
chain models.

Hurd [7] developed a framework for the verification of
probabilistic algorithms in the HOL theorem prover. Ran-
dom variables are basically probabilistic algorithms and thus
can be formalized and verified, based on their probability
distribution properties, using the methodology proposed in
[7]. In fact, building upon Hurd’s formalization, most of the
commonly used discrete [7] and continuous [8] random
variables have been formalized in higher order logic and
their corresponding probabilistic and statistical [8] proper-
ties have been verified using interactive theorem-proving
techniques. In this paper, we utilize the above-mentioned

formalization, available in the HOL theorem prover, to

develop a generic theorem-proving-based reliability analysis

approach, a novelty that to the best of our knowledge has not

been presented in the open literature so far.
We utilize the proposed approach for the reliability

analysis of memory arrays. Simulation techniques are very

commonly used for such analysis [19], [20]. When memory

sizes become large, analysis through simulation very quickly

becomes computationally difficult to handle. Paper-and-

pencil-based analytical analysis has been traditionally used

for such cases. A memory array probability model represents

either the occurrence of individual faults or the total number

of faults as a random variable and thus allows reasoning

about statistical properties of memory arrays. Questions,

such as “given a certain fault distribution and number of

faults can almost every reconfigurable memory array be

repaired,” or “with how many faults a memory array can

almost never be repaired,” are then answered [21], [22], [23]

based on analytical reasonings. To the best of our knowl-

edge, we were the first ones to utilize higher order logic

theorem proving for tackling the repairability problem of

stuck-at faults for reconfigurable memory arrays in [24]. That

analysis has been extended in the current paper with the

inclusion of coupling fault models and several new prob-

abilistic and statistical properties and reliability conditions.

3 PROPOSED METHODOLOGY

A hypothetical model of the proposed reliability analysis

approach is given in Fig. 1, with some of its most fundamental

components depicted with shaded boxes. Like all traditional

analysis problems, the starting point of reliability analysis is

also a system description and some intended system proper-

ties and the goal is to check if the given system satisfies these

given properties. For simplicity, we have divided system

reliability properties into two categories, i.e., reliability

properties related to discrete random variables and reliability

properties related to continuous random variables.

HASAN ET AL.: FORMAL RELIABILITY ANALYSIS USING THEOREM PROVING 581

Fig. 1. Theorem-proving-based reliability analysis.

The first step in the proposed approach is to construct a

model of the given system in higher order logic. For this

purpose, the foremost requirement is the availability of

infrastructures that allow us to formalize all kinds of discrete

and continuous random variables as higher order logic

functions, which in turn can be used to represent the random

components of the given system in its higher order logic

model. The second step is to utilize the formal model of the

system to express system reliability characteristics as higher

order logic theorems. The prerequisite for this step is the

ability to express probabilistic and statistical properties

related to both discrete and continuous random variables in

higher order logic. All probabilistic properties of discrete

and continuous random variables can be expressed in terms

of their Probability Mass Functions (PMFs) and Cumulative

Distribution Functions (CDFs), respectively. Similarly, most

of the commonly used statistical properties can be expressed

in terms of the expectation and variance characteristics of the

corresponding random variable. Thus, we require the

formalization of mathematical definitions of PMF, CDF,

expectation, and variance for both discrete and continuous

random variables in order to be able to express the given

system’s reliability characteristics as higher order logic

theorems. The third and the final step for conducting

reliability analysis in a theorem prover is to formally verify

the higher order logic theorems developed in the previous

step using a theorem prover. For this verification, it would

be quite handy to have access to a library of some preverified

theorems corresponding to some commonly used properties

regarding probability distribution functions, expectation,

and variance. Hence, we can build upon such a library of

theorems and thus speed up the verification process. The

formalization details regarding the above-mentioned steps

are briefly described now.

3.1 Discrete Random Variables

A random variable is called discrete if its range, i.e., the set

of values that it can attain, is finite or at most countably

infinite [25]. Discrete random variables can be completely

characterized by their PMFs that return the probability that

a random variable X is equal to some value x, i.e.,

PrðX ¼ xÞ. Discrete random variables are quite frequently

used to model randomness in reliability analysis. For

example, the Bernoulli random variable is widely used to

model the fault occurrence in a component and the Binomial

random variable may be used to represent the number of

faulty components in a lot.

Discrete random variables can be formalized in higher

order logic as deterministic functions with access to an

infinite Boolean sequence IB1; an infinite source of random

bits with data type (natural! bool) [7]. These deterministic

functions make random choices based on the result of

popping the top most bit in the infinite Boolean sequence

and may pop as many random bits as they need for their

computation. When the functions terminate, they return the

result along with the remaining portion of the infinite Boolean

sequence to be used by other functions. Thus, a random

variable that takes a parameter of type � and ranges over

values of type � can be represented in HOL by the function

F : �! B1 ! � �B1:

For example, a Bernoullið12Þ random variable that

returns 1 or 0 with probability 1
2 can be modeled as

‘ bit ¼ �s: ðif shd s then 1 else 0; stl sÞ;

where the variable s, in the above definition, represents the
infinite Boolean sequence and the functions shd and stl

are the sequence equivalents of the list operations “head”
and “tail”. A function of the form �x:t represent a lambda
abstraction function in HOL that maps x to tðxÞ. The
function bit accepts the infinite Boolean sequence and
returns a pair with the first element equal to either 0 or 1
and the second element equal to the unused portion of the
infinite Boolean sequence.

The random variables can also be expressed in the more
general state-transforming monad where the states are the
infinite Boolean sequences.

‘ 8 a s:unit a s ¼ ða; sÞ
‘ 8 f g s:bind f g s ¼ g fstðf sÞsndðf sÞ;

where the HOL functions fst and snd return the first and
second component of a pair, respectively. The unit operator
is used to lift values to the monad, and the bind is the
monadic analogue of function application. All monad laws
hold for this definition, and the notation allows us to write
functions without explicitly mentioning the sequence that is
passed around, e.g., function bit can be defined as

‘ bit monad ¼ bind sdest

ð�b: if b then unit 1 else unit 0Þ;

where sdest s returns the pair (shd s, stl s).
The work in [7] also presents the formalization of some

mathematical measure theory in HOL, which can be used to
define a probability function IP from sets of infinite Boolean
sequences to real numbers between 0 and 1. The domain of
IP is the set E of events of the probability. Both IP and E are
defined using the Carathéodory’s Extension theorem,
which ensures that E is a �-algebra: closed under comple-
ments and countable unions. The formalized IP and E can
be used to derive all the basic axioms of probability in the
HOL theorem prover. Similarly, they can also be used to
prove probabilistic properties for random variables. For
example, we can formally verify the following probabilistic
property for the function bit, defined above:

‘ IPfs j fst ðbit sÞ ¼ 1g ¼ 1

2
;

where fxjCðxÞg represents a set of all elements x that satisfy
the condition C in HOL.

The above-mentioned infrastructure can be utilized to
formalize most of the commonly used discrete random
variables and verify their corresponding PMF relations [7].
For example, the Binomial random variable, which models
an experiment that counts the number of successes in
m independent Bernoulli(p) trials with a success probability

582 IEEE TRANSACTIONS ON COMPUTERS, VOL. 59, NO. 5, MAY 2010

equal to p, can be formalized in higher order logic as the
following recursive function:

Definition 1. Binomial(m,p) Random Variable

‘ 8 p: ðprob bino 0 p ¼ unit 0Þ ^
8 p n: prob binoðnþ 1Þ p ¼
bind ðprob bino n pÞ
ð�m: bindðprob bern pÞ
ð�b: unit ðif b then ðmþ 1Þ else mÞÞÞÞ;

where prob_bern is the higher order logic function for the
Bernoulli(p) random variable [7] and the bind and unit

functions have already been defined above.

We were also able to verify the correctness of the above
definition by proving its PMF relation in HOL as follows:

Theorem 1. PMF of Binomial(m,p) Random Variable

‘ 8 m p n: 0 � p ^ p � 1

) IPfs j fst ðprob bino m p sÞ ¼ ng

¼ m

n

� �
pnð1� pÞm�n:

3.2 Continuous Random Variables

A random variable is called continuous if it ranges over a
continuous set of numbers [25]. A continuous set of
numbers, sometimes referred to as an interval, contains all
real numbers between two limits. Continuous random
variables can be completely characterized by their CDFs
that return the probability that a random variable X is
exactly less than or equal to some value x, i.e., PrðX � xÞ.
Continuous random variables are required to model various
phenomenon in reliability analysis. For example, the
exponential random variable is quite frequently used to
model the time to failure of a component.

The sampling algorithms for continuous random variables
are nonterminating and hence require a different formaliza-
tion approach than discrete random variables, for which the
sampling algorithms are either guaranteed to terminate or
satisfy probabilistic termination, meaning that the probability
that the algorithm terminates is 1. One approach to address
this issue is to utilize the concept of the nonuniform random
number generation [1], which is the process of obtaining
arbitrary continuous random numbers using a Standard
Uniform random number generator. The main advantage
of this approach is that we only need to formalize one
continuous random variable from scratch, i.e., the Standard
Uniform random variable, which can be used to model other
continuous random variables by formalizing the correspond-
ing nonuniform random number generation method.

Based on the above approach, a methodology for the
formalization of all continuous random variables for which
the inverse of the CDF can be represented in a closed
mathematical form is presented in [8]. The first step in this
methodology is the formalization of the Standard Uniform
random variable. The Standard Uniform random variable can
be formalized using Hurd’s approach for the formalization of
discrete random variables, described in the last section, and
the formalization of the mathematical concept of limit of a real
sequence [27] as the following sampling algorithm:

lim
n!1

�n:
Xn�1

k¼0

1

2

� �kþ1

Xk

 !
; ð1Þ

where Xk denotes the outcome of the kth random bit; True
or False represented as 1 or 0, respectively. The formaliza-
tion details are outlined in [8].

The second step in the methodology for the formalization
of continuous probability distributions is the formalization
of the CDF and the verification of its classical properties.
This is followed by the formal specification of the
mathematical concept of the inverse function of a CDF. This
formal specification, along with the formalization of the
Standard Uniform random variable and the CDF properties,
can be used to formally verify the correctness of the Inverse
Transform Method (ITM) [1]. The ITM is a well-known
nonuniform random generation technique for generating
nonuniform random variables for continuous probability
distributions for which the inverse of the CDF can be
represented in a closed mathematical form. Mathematically,
it can be expressed for a random variable X with CDF F
using the Standard Uniform random variable U as follows:

PrðF�1ðUÞ � xÞ ¼ F ðxÞ; ð2Þ

and its formal proof can be found in [8].
The formalized Standard Uniform random variable can

now be used to formally specify any continuous random
variable for which the inverse of the CDF can be expressed
in a closed mathematical form as X ¼ F�1ðUÞ. Whereas, the
CDF of this formally specified continuous random variable,
X, can be verified, based on simple arithmetic reasoning,
using the formal proof of the ITM. For illustration purposes,
consider the example of the exponential random variable,
with the following CDF:

PrðX � xÞ ¼ 0; for x � 0; ð3aÞ
1� e�mx; for 0 < x: ð3bÞ

�

It can be expressed, using the above methodology, as the
following higher order logic function.

Definition 2. Exponential(m) Random Variable

‘ 8 m s: exp rv m s ¼

�x:� 1

m
ln ð1� xÞ

� �
ðstd unif cont sÞ;

where the HOL functions (�x:� 1
m ln ð1� xÞ) and std_u-

nif_cont represent the inverse CDF of the exponential
random variable and the Standard Uniform random variable,
respectively.

Now, the CDF of the exponential random variable, given
in (3), can be expressed as the following theorem:

Theorem 2. CDF for the Exponential Random Variable

‘ 8 m x: ð0 < mÞ)
cdf ð�s: exp rv m sÞ x ¼
if x � 0 then 0 else ð1� e�mxÞ:

The verification of Theorem 2 is based on the above
methodology and requires very little user interaction, since
it is based on the formally verified ITM and thus requires
arithmetic reasoning only instead of the relatively complex
reasoning based on probability theory principles.

HASAN ET AL.: FORMAL RELIABILITY ANALYSIS USING THEOREM PROVING 583

3.3 Statistical Properties

In reliability analysis, statistical characteristics play a major
role in decision making as they tend to summarize the
probability distribution characteristics of a random variable
in a single number. Due to their widespread interest, the
computation of statistical characteristics has now become
one of the core components of every modern reliability
analysis framework.

Expectation provides the average of a random variable,
where each of the possible outcomes of this random variable
is weighted according to its probability [9]. The expectation
for a function of a discrete random variable, which attains
values in the positive integers only, is defined as follows [26]:

Ex fn½fðXÞ� ¼
X1
n¼0

fðnÞPrðX ¼ nÞ; ð4Þ

where X is the discrete random variable and f represents a
function of the random variable X. The above definition
only holds if the associated summation is convergent, i.e.,P1

n¼0 fðnÞPrðX ¼ nÞ <1. The expression of expectation,
given in (4), has been formalized in [8] as a higher order
logic function using the formalization of the probability
function IP, explained in Section 3.1 of this paper, as follows:

Definition 3. Expectation of Function of a Discrete RV

‘ 8 f R: expec fn f X ¼
suminfð�n: ðf nÞIPfs j fstðX sÞ ¼ ngÞ;

where the HOL function suminf [27] represents the infinite
summation of a real sequence limk!1

Pk
n¼0 fðnÞ.

The expected value of a discrete random variable can
now be defined as a special case of Definition 3 when f is an
identity function.

Definition 4. Expectation of a Discrete RV

‘ 8 R: expec R ¼ expec fn ð�n: nÞ X:

In order to verify the correctness of the above definitions
of expectation, they are utilized in [8] to formally verify the
following classical expectation properties:

Ex
Xn
i¼1

Xi

" #
¼
Xn
i¼1

Ex½Xi�; ð5Þ

Ex½aþ bX� ¼ aþ bEx½X�: ð6Þ

These properties not only verify the correctness of the
above definitions but also play a vital role in verifying
the expectation characteristics of discrete random compo-
nents of probabilistic systems, as will be seen in Section 5
of this paper.

Variance of a random variable X describes the difference
between X and its expected value and thus is a measure of
its dispersion. It is defined for a discrete random variable,
X, as follows:

V ar½X� ¼ Ex½ðX � Ex½X�Þ2�: ð7Þ

The above definition of variance can be formalized in higher
order logic by utilizing the formal definitions of expecta-
tion, given in Definitions 3 and 4 as follows:

Definition 5. Variance of a Discrete Random Variable

‘ 8 X: variance X ¼
expec fn ð�n: ðn � expec XÞ2Þ X:

Like the expectation definition, this definition was also

formally verified to be correct by proving the following

classical variance properties for it:

V ar½X� ¼ Ex½X2� � ðEx½X�Þ2; ð8Þ

V ar
Xn
i¼1

Xi

" #
¼
Xn
i¼1

V ar½Xi�: ð9Þ

The above-mentioned formalization allows us to reason
about expectation and variance properties of any forma-
lized discrete random variable that attains values in positive
integers. For example, again consider the example of the
Binomial(m; p) random variable, given in Definition 1. Its
expectation (mp) and variance (mpð1� pÞ) expressions can
be expressed as the following higher order logic theorems
and verified using the above-mentioned infrastructure:

Theorem 3. Expectation of Binomial(m,p) Random Variable

‘ 8 m p: 0 � p ^ p � 1)
expec ð�s: prob bino m p sÞ ¼ m p:

Theorem 4. Variance of Binomial(m,p) Random Variable

‘ 8 m p: 0 � p ^ p � 1)
variance ð�s: prob bino m p sÞ ¼ m p ð1� pÞ:

The formalization and verification, presented in this

section, can be utilized to formally reason about expectation

and variance for positive integer valued discrete random

variables. On the other hand, to the best of our knowledge, the

formalization and verification of statistical properties, like

expectation and variance, for continuous random variables is

an open research issue as of now. This step requires a higher

order logic formalization of an integration function that can

also handle functions with domains other than real numbers.

Lebesgue integration provides this feature and thus the

higher order logic formalization of some portions of the

Lebesgue integration theory [28] can be built upon for

formalizing the mathematical concepts of expectation and

variance for continuous random variables.

4 RELIABILITY THEORY FORMALIZATION

In this section, we present the higher order logic formaliza-

tion of some fundamental and widely used reliability theory

definitions and theorems. The main motivation behind this

is to provide the users of the higher order logic theorem-

proving-based reliability analysis approach with a generic

infrastructure that can be built upon and thus minimize

their interactive proof efforts associated with the third step

of the proposed reliability analysis approach, described in

the previous section.

584 IEEE TRANSACTIONS ON COMPUTERS, VOL. 59, NO. 5, MAY 2010

In engineering reliability theory, reliability RðtÞ of a

system or component is defined as the probability that it

performs its intended function until some time t [29].

RðtÞ ¼ PrðX > tÞ: ð10Þ

The random variable X, in the above definition, models the

time to failure of the system. Usually, this time to failure is

modeled by the exponential random variable with para-

meter m that represents the failure rate of the system. The

value of m depends on the drift of system’s characteristics

with time. This drift may occur because of several internal or

external factors. For example, in the case of analyzing an SoC

or some other hardware component the value ofmwould be

effected due to electromigration, environmental effects, like

corrosion, vibration, and temperature, and transient stresses

such as electrostatic discharge and lightning.
Now, based on (10), we can formally define the reliability

of a system or component in HOL using the formal definition

of the exponential random variable, given in Definition 2,

as follows:

Definition 6. System Reliability

‘ 8 m t:rel sys m t ¼ IPf sj exp rv m s > tg:

The function rel_sys accepts two parameters of type real,

m, and t, which represent the failure rate and time,

respectively. It returns the reliability of the given system

at any time t based on the mathematical expression of (10).
We now formally verify the following useful alternate

reliability expression [29]:

RðtÞ ¼ e�mt: ð11Þ

It can be formally expressed as follows:

Theorem 5. Alternate System Reliability Expression

‘ 8 m t: ð0 � tÞ) rel sys m t ¼ e�mt;

where the assumption ð0 � tÞ ensures that time t can never be

negative.

Theorem 5 was verified using the complement law of

probability (8A: IPð�AÞ ¼ 1� IPðAÞ) and the CDF theorem for

the exponential random variable.
Equation (11) provides a very simple but useful means to

determine the reliability of a component or system and is

thus widely used in reliability analysis. For example, it has

been used to assess the reliability of reconfigurable memory

arrays in [30] and the reliability and fault tolerance of

robotics in [31]. Thus, its verification in Theorem 5 allows us

to tackle these kinds of reliability analysis within the sound

core of a theorem prover.
In reliability analysis, while looking at the failure rates of a

system, it is often the case that we are interested in the

probability that a random variable assumes values that are

far from its expectation. Instead of characterizing this

probability by a distribution function, it is a common practice

to rely upon bounds on this distribution, termed as tail

distribution bounds, which are usually calculated using

Markov and Chebyshev’s inequalities [9].

The Markov’s inequality gives an upper bound for the

probability that a non-negative random variable X is

greater than or equal to some positive constant

PrðX � aÞ � Ex½X�
a

: ð12Þ

Markov’s inequality can be expressed in HOL, using the

statistical-properties-related formalization presented in

Section 3.3, for a measurable discrete random variable that

attains values in positive integers only as follows:

Theorem 6. Markov’s Inequality

‘ 8 X a: ð0 < aÞ ^
ðsummableð�n: n IPfs j fst ðX sÞ ¼ ngÞÞ

) IP fs j fst ðX sÞ � ag � ðexpec XÞ
a

;

where a represents a real number and the predicate summable

[27] returns True if the infinite summation of its real sequence

argument exists, i.e., 9x: limk!1
Pk

n¼0 fðnÞ ¼ x.

Thus, the summable assumption in the above theorem

states that the theorem is only valid for a random variable X

with well-defined expectation. The HOL proof of Theorem 6

is based on some probability theory axioms and arithmetic

reasoning and more details can be found in [8].
Markov’s inequality gives the best tail bound possible, for

a nonnegative random variable, using the expectation for the

random variable only. This bound can be improved upon if

more information about the distribution of the random

variable is taken into account. Chebyshev’s inequality is

based on this principle and it presents a significantly stronger

tail bound in terms of variance of the random variable

PrðjX � Ex½X�j � aÞ � V ar½X�
a2

: ð13Þ

The corresponding HOL theorem is as follows:

Theorem 7. Chebyshev’s Inequality

‘ 8 R a: ð0 < aÞ ^ ð0 < variance XÞ ^
ðsummable ð�n: n IPfs j fst ðX sÞ ¼ ngÞÞ ^
ðsummable ð�n: n2 IPfs j fst ðX sÞ ¼ ngÞÞ
) IP fs j abs ðfst ðX sÞ � expec XÞ � ag

� variance R

a2
:

The summable assumptions ensure that the theorem is only

valid for a random variable X with well-defined expectation

and second moment values. The HOL proof of Theorem 7 is

also based on some probability theory axioms and the proof

details can be found in [8].
Due to the widespread interest in failure probabilities in

reliability analysis, Markov and Chebyshev’s inequalities are

widely used in this domain. Thus, their formal verification is

a significant step toward the development of a successful

theorem-proving-based reliability analysis framework. In

fact, we will utilize them for the repairability analysis

presented in the next section.

HASAN ET AL.: FORMAL RELIABILITY ANALYSIS USING THEOREM PROVING 585

5 RECONFIGURABLE MEMORY ARRAYS

Embedded memory is the most dominant component in
terms of silicon area of any SoC these days. Applications such
as mobile communication devices, signal processing, and
computer networks all require large amounts of memory.
Extremely small memory cells and the fact that a significant
amount of the chip area is taken by compact memories,
makes them more prone to defects than standard logic. The
defects in a memory can render the whole SoC useless. Even
in mature fabrication processes where the defect densities
tend to be small, throwing away of any chip is considered
unacceptable because of its adverse effect on yield. More-
over, the fabrication defects that are not caught in the testing
phase may also lead to devastating situations when the
corresponding memories are used in safety-critical SoCs for
domains, such as medicine, military, and transportation.

Reconfigurable memory arrays tend to increase the
reliability of memory arrays in the presence of fabrication
faults. The main idea is to add some redundancy to memory
arrays during the design phase. This way even after
fabrication, we can repair some of the memory faults by
replacing the rows or columns containing faulty memory
cells with the available spare rows or columns. Though, this
solution comes with a bigger design challenge of solving the
repairability problem, i.e., estimating the right number of
spare rows and columns for meeting reliability specifica-
tions for a given memory array.

In this section, we analyze this repairability problem of
reconfigurable memory arrays in the presence of stuck-at and
coupling faults, which are two of the most commonly
occurring fabrication faults, using the proposed reliability
analysis approach. Our analysis is mainly inspired by the
analytical model developed in [22] for the paper-and-pencil-
based reliability analysis of reconfigurable memory arrays.
We proceed by formally expressing a fault model for
reconfigurable memory arrays in higher order logic. Our
formalization utilizes precise random variable functions to
express the random components in the model. This for-
malization is then utilized to formally verify two significant
results regarding the repairability problem of reconfigurable
memory arrays. First, we verify a relation that ascertains that
a large square memory array is almost always repairable
(with probability 1) if stuck-at and coupling faults are
independent and identically distributed with specific prob-
abilities. This condition is usually termed as the repairability
condition. Second, we verify a bound on the stuck-at and
coupling fault occurrence probabilities that will make
reconfiguration of a large square memory array almost
impossible (with probability 0). This condition, which is
usually termed as the irrepairability condition, allows us to
determine how large the probability of defects must be in
order to make reconfiguration nearly impossible. Using the
proposed approach, we are able to accurately analyze both of
the above-mentioned repairability and irrepairability prop-
erties without any CPU time constraints, which clearly
demonstrates its effectiveness for real-world reliability
analysis problems.

5.1 Formal Stuck-at and Coupling Fault Model

In order to illustrate the formal stuck-at and coupling fault
model, we first present a 6� 6 memory array with one stuck-
at and two coupling faults example, shown in Fig. 2a. The
stuck-at fault is represented with a circle and the coupling

faults are represented using a pair of squares. The two
squares in the pair are connected by an arrow. The direction
of the arrow is from the coupling cell (lightly shaded) to the
coupled cell.

A coupling fault in the memory array can be repaired by
replacing either the coupling cell or the coupled cell.
Disabling the coupling or the aggressor cell must be done
by replacing the row containing the coupling cell, whereas
the coupled cell can be repaired by replacing either its row
or column with a spare row or a spare column [22]. For
example, the coupling fault ð6; 6Þ ! ð5; 5Þ can be repaired
by either replacing the sixth row with a spare row, or by
replacing the fifth row or the fifth column with a spare row
or a spare column, respectively (Fig. 2b). The degree of this
fault node in the graph is three, since this fault node is
connected to one column node ð5Þ and two row nodes ð5; 6Þ.
The second coupling fault, ð3; 3Þ ! ð3; 4Þ, on the other hand,
has a degree of two since it is only connected to one row ð3Þ
and one column ð4Þ. A stuck-at fault, on the other hand, can
be repaired by replacing either the row or column contain-
ing the fault by a spare row or a spare column, respectively
[32]. Thus, the stuck-at fault at location ð5; 2Þ can be
repaired by either replacing the fifth row or second column
of the array with a spare row or a spare column. In the
graph model for the repairability problem, each fault node
can have a degree of two or three for the coupling faults and
a degree of two for the stuck-at faults.

We now generalize the above example. The reconfigurable
memory array can be modeled as a bipartite graph ðF;X;EÞ.
In this bipartite graph, F represents the set of nodes
corresponding to faults in the memory array, X ¼ R [C is
a set of nodes corresponding to rows (R) and columns (C) in
the memory array, and E is the set of edges connecting
various nodes of the sets F and X based on how these faults
can possibly be repaired. It is important to note here that the
number of elements in the set F and their identities is a
random quantity as fault occurrence is an unpredictable
event. Therefore, the probability that a node will be included
in the set F depends on the probabilities ps and pc,
corresponding to the occurrence of stuck-at and coupling
faults, respectively. Also, the occurrence of stuck-at or
coupling fault, and thus the inclusion of a node in the set F ,
is assumed to be independent and identically distributed in
this model. Thus, the upper bound on the cardinality of the
set F is n3 þ n2 [22], where n represents the number of total

586 IEEE TRANSACTIONS ON COMPUTERS, VOL. 59, NO. 5, MAY 2010

Fig. 2. Memory array model.

rows or columns of an n� nmemory array. A repair solution
exists if one can find a set of nodes say S in set X, which are
less than or equal to in number of the available spare rows (sr)
or columns (sc). The probability of repairability can now be
defined as

PrðjF j � srþ scÞ; ð14Þ

where jF j represents the cardinality of the setF . Equation (14)
represents the probability of the event when the number of
stuck-at and coupling faults jF j, a random quantity, is less
than the total number of spare rows and columns srþ sc. We
can express (14) in terms of the number of rows or columns of
a square n� n reconfigurable memory array as

PrðjF j � ðaþ bÞnÞ; ð15Þ

where a ¼ sr
n and b ¼ sc

n . The values of a and b are bounded
in the real interval ½0; 1�, since the number of spare rows
and spare columns is usually a small fraction of the total
number of rows and columns in the array and can never
exceed it.

In this paper, our first goal is to formally verify that if the
probabilities of stuck-at and coupling fault occurrence are
given by the following expressions:

ps ¼
c1

n
� wðnÞ
n
ffiffiffi
n
p ; ð16Þ

pc ¼
c2

n2
� wðnÞ
n2

ffiffiffi
n
p ; ð17Þ

where c1 þ c2 ¼ aþ b and wðnÞ ! 1 as n!1, then the
memory array is almost always repairable. The term almost
always repairable in the above context means that the
probability of repairability (PrðjF j � srþ scÞ) tends to 1 as
n becomes extremely large. The above expressions for the
stuck-at and coupling fault occurrence probabilities have
been initially proposed and analyzed using informal techni-
ques in [22]. Our contribution in this paper is to formally
verify the above argument using the HOL theorem prover.

The first step in the proposed probabilistic analysis
approach is to construct a formal model of the system in
higher order logic while representing its random component
as formalized random variables. In the above-mentioned
memory array model, our parameter of interest is the
number of faults. The behavior of a stuck-at or coupling fault
occurrence in the above model can be formally represented
as a Bernoulli(p) random variable with p ¼ ps and p ¼ pc,
respectively. Now, under the assumption that the occur-
rence of stuck-at and coupling faults are independent and
identically distributed, we can model the total number of
these faults as Binomial(m; p) random variables, which
model an experiment that counts the number of successes
in m independent Bernoulli(p) trials, with their respective
probabilities as follows:

Definition 7. Number of Stuck-at Faults

‘ 8 n c1 w: num of faults stuck n c1 w

¼ prob bino n2 c1

n
� wðnÞ
n
ffiffiffi
n
p

� �
:

Definition 8. Number of Coupling Faults

‘ 8 n c2 w: num of faults coupling n c2 w

¼ prob bino n3 c2

n2
� wðnÞ
n2

ffiffiffi
n
p

� �
:

The functions above accept three parameters each: the
number of rows or columns of a square reconfigurable
memory array as a natural number n, the real numbers c1 or
c2, respectively, that are related to the fractions of spare rows
and columns as c1þ c2 ¼ aþ b, and the real sequencewwith
data type (natural! real). They utilize the Binomial random
variable function prob_bino, given in Definition 1, to
return the number of stuck-at and coupling faults, respec-
tively, for the specific case of a square n� n memory array
with the fault occurrence probabilities equal to the expres-
sions, given in (16) and (17), respectively.

Now, the total number of the faults in the memory array
can be formalized as the sum of the number of stuck-at and
coupling faults as follows:

Definition 9. Total Number of Faults

‘ 8 n c1 c2 w: num of faults n c1 c2 w

¼ bind ðnum of faults stuck n c1 wÞ
ð�x: bind ðnum of faults coupling n c2 wÞ
ð�y: unit ðxþ yÞÞÞ:

The above function accepts four parameters, n, c1, c2, and
w and returns the sum of stuck-at and coupling faults,
generated by functions num_of_faults_stuck and
num_of_faults_coupling, respectively, using the
monadic functions bind and unit.

In the probabilistic analysis of very large memory arrays,
it is often required to find when repairing a fault in a
memory array becomes nearly impossible. In order to be
able to answer such questions, we verify an irrepairability
condition, according to which the memory array is almost
never repairable if the probabilities of stuck-at and coupling
fault occurrence are as follows:

ps ¼
c1

n
; ð18Þ

pc ¼
c2

n2
; ð19Þ

where c1 þ c2 >
�½a ln aþð1�aÞ lnð1�aÞ�

ð1�aÞ2ð1�bÞ [22]. The term almost

never repairable means that the probability of having 1 or

more repair solutions using an rows tends to 0 as n becomes

extremely large.

Our formal model of the memory array is also capable of

capturing the number of repair solutions and thus the

irrepairability condition. A repair solution ceases to exist if

no combination of an spare rows can be used to repair all the

stuck-at and coupling faults present in the memory array.

Under the assumption that the occurrence of stuck-at and

coupling faults are independent and identically distributed,

we can model the number of repair solutions as a

Binomial(m; p) random variable with m being equal to the

total number of possible repair solutions for ann� nmemory

HASAN ET AL.: FORMAL RELIABILITY ANALYSIS USING THEOREM PROVING 587

array with an spare rows, i.e., ð nanÞ, and p being equal to the

probability that a specific choice of an rows constitutes a

repair solution. This probability can be expressed in terms of

the stuck-at and coupling fault probabilities, ps and pc, as

ð1� psÞðn�anÞðn�jnÞð1� pcÞðn�anÞ
2ðn�jnÞ, where j � b [22]. Thus,

the number of repair solutions can be formalized in higher

order logic as follows:

Definition 10. Number of Repair Solutions

‘ 8 n a j c1 c2:num of repsoln n a j c1 c2

¼ prob bino
n

banc

� �

1� c1

n

� �ðn�bancÞðn�bjncÞ
1� c2

n2

� �ðn�bancÞðn�bancÞðn�bjncÞ
" #

;

where bxc denotes the floor of x and it returns the nearest
integer that is less than x.

The floor function has been used since the binomial
function m

n

� 	
requires the data type of both of its arguments

m and n to be positive integers. It is important to note that
in the paper-and-pencil analysis of the same problem [22],
the floor function was missing in the binomial expression.

5.2 Repairability Condition

In this section, we utilize the function num_of_faults to
formally verify a couple of statistical properties regarding the
number of faults and the almost always repairability
condition for an n x n reconfigurable memory array with
stuck-at and coupling fault occurrence probabilities given by
(16) and (17), respectively. These verification results play a
vital role in designing reliable reconfigurable memory arrays.

For a memory array containing independent and
identically distributed stuck-at and coupling faults with
probabilities ps and pc, given by (16) and (17), respectively,
the average number of faults is given by

Ex½jF j� ¼ n2 c1

n
� wðnÞ
n
ffiffiffi
n
p

� �
þ n3 c2

n2
� wðnÞ
n2

ffiffiffi
n
p

� �
: ð20Þ

This property can be formally expressed using the formal
definition of expectation and our formal definition of the
number of faults as follows:

Theorem 8. Average Number of Faults

‘ 8 n a b c1 c2 w:

ð0 � aÞ ^ ða � 1Þ ^ ð0 � bÞ ^ ðb � 1Þ
^ ðc1þ c2 ¼ aþ bÞ ^ ð1 < nÞ
^ ð8 n: ð0 < wðnÞÞ
^ ðwðnÞ < ðmin c1

ffiffiffi
n
p

c2
ffiffiffi
n
p
ÞÞÞ

) expec ð�s: num of faults n c1 c2 w sÞ

¼ n2 c1

n
� wðnÞ
n
ffiffiffi
n
p

� �
þ n3 c2

n2
� wðnÞ
n2

ffiffiffi
n
p

� �

where the HOL function min returns the minimum value of
its two real arguments.

The first four assumptions in the above theorem ensure
that the fractions a and b are bounded by the interval ½0; 1�

as has been described in the previous section. The relation-
ship between c1; c2 and a; b is given in the fifth assumption.
Whereas, the precondition 1 < n has been used in order to
ensure that the given memory array has more than one cell.
The last assumption is about the real sequence w and
basically provides its upper and lower bounds. These
bounds have been used in order to prevent the stuck-at and
coupling fault occurrence probabilities ps and pc, given in
(16) and (17), from falling outside their allowed interval
½0; 1�. It is interesting to note that no such restriction on the
sequence w was imposed in the paper-and-pencil-based
analysis of the repairability problem given in [22]. This fact
clearly demonstrates the strength of the proposed approach
as it allowed us to highlight this corner case, which if
ignored could lead to the invalidation of the whole analysis.
The conclusion of Theorem 8 presents the mathematical
relation given in (20).

We proceed with the verification of Theorem 8 by

simplifying the left-hand side (LHS) of its proof goal using

the linearity of expectation property, given in Definition 4,

as follows:

expec ð�s:num of faults stuck n c1 w sÞ
þ expec ð�s:num of faults couplin g n c2 w sÞ

¼ n2 ðaþ bÞ
n
� wðnÞ
n
ffiffiffi
n
p

� �
þ n3 c2

n2
� wðnÞ
n2

ffiffiffi
n
p

� �
:

Next, we verify the following two theorems for the expecta-

tion of the number of stuck-at and coupling faults based on

their definitions, given in Definitions 7 and 8, respectively,

and the expectation of Binomial random variable, given in

Theorem 3.

Theorem 9. Average Number of Stuck-at Faults

‘ 8 n c1 w: ð1 < nÞ
^ ð8 n: ð0 < wðnÞÞ ^ ðwðnÞ < c1

ffiffiffi
n
p
ÞÞ

) expec ð�s: num of faults stuck n c1 w sÞ

¼ n2 ðaþ bÞ
n
� wðnÞ
n
ffiffiffi
n
p

� �
:

Theorem 10. Average Number of Coupling Faults

‘ 8 n c2 w: ð1 < nÞ
^ ð8 n:ð0 < wðnÞÞ ^ ðwðnÞ < c2

ffiffiffi
n
p
ÞÞ

) expec ð�s: num of faults coupling n c2 w sÞ

¼ n3 ðaþ bÞ
n2

� wðnÞ
n2

ffiffiffi
n
p

� �
:

The above two theorems can now be used to conclude the
HOL proof of Theorem 8.

The variance of the total number of faults for an
n� n memory array, with the probabilities of stuck-at and
coupling fault occurrence, given by (16) and (17), is given by

V ar½jF j� ¼ n2ðpsÞð1� psÞ þ n3ðpcÞð1� pcÞ: ð21Þ

This property can be formally expressed using the formal

definition of variance and the formal definition of the

number of faults as follows:

588 IEEE TRANSACTIONS ON COMPUTERS, VOL. 59, NO. 5, MAY 2010

Theorem 11. Variance of the total Number of Faults

‘ 8 n a b c1 c2 w s:

ð0 � aÞ ^ ða � 1Þ ^ ð0 � bÞ ^ ðb � 1Þ
^ ðc1þ c2 ¼ aþ bÞ ^ ð1 < nÞ
^ ð8 n:ð0 < wðnÞÞ
^ ðwðnÞ < ðmin c1

ffiffiffi
n
p

c2
ffiffiffi
n
p
ÞÞÞ

) variance ð�s:num of faults n c1 c2 w sÞ

¼ n2 c1

n
� wðnÞ
n
ffiffiffi
n
p

� �
1� c1

n
� wðnÞ
n
ffiffiffi
n
p

� �� �

þ n3 c2

n2
� wðnÞ
n2

ffiffiffi
n
p

� �
1� c2

n2
� wðnÞ
n2

ffiffiffi
n
p

� �� �
:

The HOL verification of Theorem 11 is based on the

linearity of variance property, given in (8), and the variance

characteristics of the Binomial random variable. The proof

steps are very similar to the ones for Theorem 8.
A tail distribution bound of the number of faults for an

n� n memory array, with the probabilities of stuck-at and

coupling fault occurrence, given by (16) and (17), can be

expressed as follows:

PrðjF j � ðaþ bÞnÞ � 1� n
2ðpsÞð1� psÞ þ n3ðpcÞð1� pcÞ

4nðwðnÞÞ2
:

ð22Þ

Whereas, the corresponding HOL theorem is as follows:

Theorem 12. Tail Distribution Bound for the number of Faults

‘ 8 n a b c1 c2 w s:

ð0 � aÞ ^ ða � 1Þ ^ ð0 � bÞ ^ ðb � 1Þ
^ ðc1þ c2 ¼ aþ bÞ ^ ð1 < nÞ
^ ð8 n: ð0 < wðnÞÞ
^ ðwðnÞ < ðmin c1

ffiffiffi
n
p

c2
ffiffiffi
n
p
ÞÞÞ

) ðIPfs j ðfstðnum of faults n c1 c2 w sÞÞ � ðaþ bÞ ng

� 1� varianceð�s: num of faults n c1 c2 w sÞ
4nðwðnÞÞ2

 !
:

The proof of Theorem 12 involves the less-than-or-equal-

to (8x y z: ðx � yÞ ^ ðy � zÞ) ðx � zÞ) transitive property

of reals, the basic probability increasing axiom

(8A B: A � B) IPðAÞ � IPðBÞ), the complement probability

law (8A: IPð�AÞ ¼ 1� IPðAÞ), the absolute value theorem

(ðjy� xj < dÞ ¼ ðx� d < y < xþ dÞ), along with the expec-

tation and variance of total number of faults given in

Theorems 8 and 11, respectively, and the Chebyshev’s

inequality, given in Theorem 7.
Finally, we use the statistical properties verified so far to

analyze the repairability problem, i.e., an n� n reconfigur-

able memory array with the probabilities of stuck-at and

coupling fault occurrence, given by (16) and (17), is almost

always repairable.

lim
n!1

PrðjF j � ðaþ bÞnÞ ¼ 1: ð23Þ

The corresponding HOL theorem is as follows:

Theorem 13. Repairability Condition

‘ 8 a b w:

ð0 � aÞ ^ ða � 1Þ ^ ð0 � bÞ ^ ðb � 1Þ
^ ðc1þ c2 ¼ aþ bÞ ^ ð1 < nÞ
^ ð8 n: ð0 < wðnÞÞ
^ ðwðnÞ < ðmin c1

ffiffiffi
n
p

c2
ffiffiffi
n
p
ÞÞÞ

^ lim �n:
1

wðnÞ

� �
¼ 0

� �
) ðlim ð�n: IPfs j ðfst ðnum of faults n c1 c2 w sÞÞ
� ðaþ bÞ ngÞ ¼ 1ÞÞ;

where lim M represents the HOL formalization of the limit of

a real sequence M (i.e., lim M ¼ limn!1MðnÞ) [27].

A new assumption (limð� n: 1
wðnÞÞ ¼ 0) has been added

that formally represents the intrinsic characteristic of real
sequence w that it tends to infinity as its natural argument
becomes extremely large.

The verification of Theorem 13 is based on the basic
probability axiom (8A: PrðAÞ � 1), the transitivity property
of less-than-or-equal-to for real numbers, and the fact that
the term involving variance on the right-hand side of the
inequality in Theorem 12 approaches zero as n becomes
very large.

5.3 Irrepairability Condition

In this section, we utilize the function num_of_repsoln to
formally verify the irrepairability condition for an n� n
reconfigurable memory array. For a memory array contain-
ing independent and identically distributed stuck-at and
coupling faults with probabilities ps and pc, given by (18)
and (19), respectively, the average number of repair
solutions is

Ex½U� ¼ n

an

� �
1� c1

n

� �ðn�anÞðn�jnÞ
1� c2

n2

� �ðn�anÞ2ðn�jnÞ
;

ð24Þ

where U represents the Bernoulli random variable that
models the number of repair solutions. We formalized this
property using the definitions of Bernoulli random variable,
expectation, and the number of repair solutions.

Theorem 14. Average Number of Repair Solutions

‘ 8 n a a1 a2 j c1 c2: a ¼ a1

a2

� �
^ ð0 � a1Þ ^ ða1 � a2Þ ^ ð0 � bÞ ^ ðb � 1Þ
^ ð0 � jÞ ^ ðj � bÞ ^ ð0 < c1Þ ^ ðc1
< ðna2ÞÞ ^ ð0 < c2Þ ^ ðc2 < ðna2Þ2Þ
) expecð�s:num of repsoln ðna2Þ a j c1 c2 sÞ

¼ ðna2Þ
baðna2Þc

� � "
1� c1

na2

� �ðna2�baðna2ÞcÞððna2Þ�bjðna2ÞcÞ

1� c2

ðna2Þ2

 !ððna2Þ�baðna2ÞcÞððna2Þ�baðna2ÞcÞððna2Þ�bjðna2ÞcÞ#
:

HASAN ET AL.: FORMAL RELIABILITY ANALYSIS USING THEOREM PROVING 589

The variable a, which is a constant and represents the ratio
of the spare rows or columns to the total number of rows
or columns in a square memory array, has been declared
as a ratio of two positive integers a1 and a2. Similarly, we
restrict the size of the square memory array, i.e., the
number of rows or columns, to be only equal to a multiple
of a2 and thus na2 has been used instead of n in the above
theorem. These preconditions are used to ensure that the
product of a and the total number of rows or columns
should always be equal to an integer value that represents
the number of spare rows. Besides the bounds on a, b, and
j, bounds on the values of c1 and c2 have also been
assumed in the above theorem. These bounds have been
used in order to prevent the stuck-at and coupling fault
occurrence probabilities ps and pc, given in (18) and (19),
from falling outside their allowed interval ½0; 1�. The
conclusion of Theorem 14 formally presents the expecta-
tion relation of the number of repair solutions, given in
(24). This theorem can be verified using the definition of
the function num_of_repsoln and the expectation
property for the Binomial random variable, given in
Theorem 3, along with the fact that the probability of
success for the Binomial random variable of the function
num_of_repsoln lies in the interval ½0; 1�.

In order to analyze the irrepairability condition, we are
interested in the probability that 1 or more repair solutions
exist. This probability has the following tail distribution
bound for the case of an n� n memory array:

PrðU > 0Þ <
�
2HðaÞe�c1ð1�aÞ

2ð1�bÞe�c2ð1�aÞ
2ð1�bÞ	n; ð25Þ

where H is the binary entropy function [22].

HðxÞ ¼ ��xlnðxÞ � ð1� aÞlnð1� aÞ
ln2

The corresponding HOL theorem for the above tail
distribution bound is as follows:

Theorem 15. Tail Distribution Bound for Repair Solutions

‘ 8 n a a1 a2 j c1 c2: a ¼ a1

a2

� �
^ ð0 � a1Þ ^ ða1 � a2Þ ^ ð0 � bÞ ^ ðb � 1Þ
^ ð0 � jÞ ^ ðj � bÞ ^ ð0 < c1Þ ^ ðc1 < nÞ
^ ð0 < c2Þ ^ ðc2 < ðna2Þ2Þ

^ c1þ c2 >
�½a ln aþ ð1� aÞ lnð1� aÞ�

ð1� aÞ2ð1� bÞ
) ðIPfs j fstðnum of repsoln na2 a j c1 c2 sÞ > 0g

<
�
e�xlnðxÞ�ð1�aÞlnð1�aÞe�c1ð1�aÞ2ð1�bÞe�c2ð1�aÞ2ð1�bÞ	ðna2Þ	

:

We proceed with the verification of this theorem by
splitting its proof goal into two subgoals as follows:

IPfs j fstðnum of repsoln na2 a j c1 c2 sÞ > 0g
� expecð�s:num of repsoln na2 a j c1 c2 sÞ

expecð�s:num of repsoln na2 a j c1 c2 sÞ

<
�
e�xlnðxÞ�ð1�aÞlnð1�aÞe�c1ð1�aÞ2ð1�bÞe�c2ð1�aÞ2ð1�bÞ	ðna2Þ

:

The first subgoal can be verified using the Markov’s
inequality, verified in Theorem 6, as the set {s|fst(num_
of_repsoln na2 a j c1 c2 s) > 0} is equivalent to the
set {s|fst(num_of_repsoln na2 a j c1 c2 s)� 1}.
Whereas, the second subgoal can be simplified using
Theorem 14 as follows:

ðna2Þ
banc

� �
1� c1

ðna2Þ

� �ððna2Þ�baðna2ÞcÞððna2Þ�bjðna2ÞcÞ

1� c2

ðna2Þ2

 !ððna2Þ�baðna2ÞcÞððna2Þ�baðna2ÞcÞððna2Þ�bjðna2ÞcÞ

<
�
e�xlnðxÞ�ð1�aÞlnð1�aÞe�c1ð1�aÞ2ð1�bÞe�c2ð1�aÞ2ð1�bÞ	ðna2Þ

:

In order to verify the above inequality, we verified the
following alternate definition of the exponential function:

Lemma 1. Exponential Function

‘ 8 x: lim �n: 1þ x

n

� �n� �
¼ ex;

using the formalized power-series-based definition of the
exponential function, i.e., ex ¼

P1
n¼0

xn

n! , in HOL [27].

The formal proof of Lemma 1 involves the verification of
L’Hopital’s rule and the formal definitions of limit of a real
sequence and limit of a function at a point along with some
rigorous arithmetic reasoning. Once verified, Lemma 1 can
be used along with the monotonically increasing property
of the real sequence (� n: ð1þ x

nÞ
n), when jxj < n, to prove

the following useful result:

‘ 8 n x: jxj < n) 1þ x

n

� �n
� ex:

The above relationship, along with some arithmetic reason-
ing, can now be used to discharge the remaining subgoal of
Theorem 15. This also concludes the verification of our
desired tail distribution bound.

Finally, we use the statistical properties verified so far
to analyze the irrepairability property, i.e., a reconfigurable
memory array with the probabilities of stuck-at and
coupling fault occurrence, given by (18) and (19), is almost
never repairable.

lim
n!1

PrðU > 0Þ ¼ 0: ð26Þ

The corresponding HOL theorem is as follows:

Theorem 16. Irrepairability Condition

‘ 8 a a1 a2 j c1 c2: a ¼ a1

a2

� �
^ ð0 � a1Þ ^ ða1 � a2Þ ^ ð0 � bÞ ^ ðb � 1Þ
^ ð0 � jÞ ^ ðj � bÞ ^ ð0 < c1Þ ^ ð0 < c2Þ

^ c1þ c2 >
�½a ln aþ ð1� aÞ lnð1� aÞ�

ð1� aÞ2ð1� bÞ
) ðlim ð�n: IP fs j fst
ðnum of repsoln na2 a j c1 c2 sÞ > 0gÞ ¼ 0Þ:

The proof of Theorem 16 is very similar to Theorem 13.
Though, in this case, we use the basic probability axiom
(8A:0 � PrðAÞ) and the fact that the limit value of the tail

590 IEEE TRANSACTIONS ON COMPUTERS, VOL. 59, NO. 5, MAY 2010

distribution bound of PrðU > 0Þ, given in Theorem 15, is 0
since the expression is less than 1.

The above results clearly demonstrate the effectiveness of
theorem-proving-based reliability analysis. Due to the formal
nature of the models, the high expressiveness of higher order
logic, and the inherent soundness of theorem proving, we
have been able to verify generic properties of interest that are
valid for any given memory array with 100 percent precision;
a novelty which is not available in simulation. Similarly, we
have been able to formally analyze properties that cannot be
handled by model checking. The proposed approach is also
superior to the paper-and-pencil-proof methods in a way
as the chances of making human errors, missing critical
assumptions, and proving wrongful statements are almost
nil, since all proof steps are applied within the sound core of
the HOL theorem prover. These additional benefits come at
the cost of the time and effort spent, while formalizing the
memory array and formally reasoning about its properties.
But, the fact that we were building on top of already verified
probability and reliability theory foundations, described in
Sections 3 and 4, helped significantly in this regard as the
memory analysis only consumed approximately 250 man-
hours and 3,500 lines of HOL code.

6 CONCLUSIONS

In this paper, we utilized the probability theory formalized
in higher order logic to construct a formal reliability analysis
approach. The main idea behind this approach is to use
formalized random variables to model systems and to verify
the corresponding reliability characteristics in a theorem
prover. We also formalized the definition of reliability and
formally verified the Markov and Chebyshev’s inequalities,
which play a vital role in reliability analysis. Because of
the formal nature of the models, the proposed reliability
analysis is free of approximation and precision errors and
due to the high expressive nature of higher order logic a
wider range of systems can be analyzed. This makes the
proposed approach very promising for the reliability
analysis of safety critical and highly sensitive engineering
and scientific applications.

The proposed approach was used to analyze the
repairability problem of reconfigurable memory arrays in
the presence of stuck-at and coupling faults. We first
developed a higher order logic based formal stuck-at and
coupling fault model for reconfigurable memory arrays, and
based on this model we formally verified some key
statistical properties and the repairability and irrepairability
conditions. The formally verified expectation and variance
properties and the Markov and Chebyshev’s inequalities
greatly helped us to speed up the analysis process. The
results obtained are 100 percent precise and confirmed the
results obtained via analytical approaches. Another distin-
guishing feature of these properties is their generic nature,
i.e., they can be utilized to assess the reliability of any
reconfigurable memory array. The successful handling of
this real-world reliability analysis problem by the proposed
approach clearly demonstrates its feasibility for other
reliability analysis issues. To the best of our knowledge,
this is the first study on using formal methods for the

reliability analysis of reconfigurable memory arrays with
both stuck-at and coupling faults.

The fundamentals associated with theorem-proving-
based reliability analysis, presented in this paper, can
certainly be applied to many other domains besides the
illustrative example of memory arrays. An ongoing project
in our research group is to utilize the formalized probability
theory to analyze the reliability of Boolean logic circuits. The
approach, mainly inspired from the probabilistic gate
models (PGM) based reliability analysis [14], utilizes the
formalized Bernoulli random variables to model the gate
failure phenomena and the input arrival patterns at the logic
gates. The reliability of a component can be formally defined
in this case as the probability of having a correct output. The
goal of this work is to formally verify probabilistic proper-
ties, by building on top of the infrastructure presented in
Sections 3 and 4, associated with the reliability of commonly
used logic circuits like decoders, multiplexors, and adders.
The main benefits of conducting such analysis using theorem
proving include the accuracy of the results and the generic
nature of the properties.

The proposed approach is certainly not mature enough to
handle all kinds of reliability problems. We do not have the
formalization infrastructure to express and reason about
statistical properties related to continuous random variables
yet. Similarly, we also lack the formalization of other
integration-theory-related reliability characteristics, such as
mean time to failure (MTTF) and hazard rates [29]. Though,
the higher order logic formalization of a domain independent
integration theory, like the Lesbesgue’s integration, can pave
the path to resolve these bottlenecks. A major limitation of
our approach is the associated user interaction, i.e., the user
needs to guide the proof tools manually since we are dealing
with higher order logic, which is known to be nondecidable.
On the other hand, simulation is capable of handling all sorts
of reliability analysis problems in an automated way but the
solutions provided are not exact. Whereas, probabilistic
model checking is capable of providing exact answers for a
subset of reliability analysis problems. We believe that all
these three techniques have to play together in order to form
a successful reliability analysis approach. For example, an
efficient approach would be to use simulation for the less
critical parts of the analysis, model checking for the critical
parts that it can handle, and theorem proving for the
remaining critical parts.

REFERENCES

[1] L. Devroye, Non-Uniform Random Variate Generation. Springer-
Verlag, 1986.

[2] D. MacKay, “Introduction to Monte Carlo Methods,” Learning in
Graphical Models, pp. 175-204, Kluwer Academic Press, 1998.

[3] Mars Polar Lander, http://mpfwww.jpl.nasa.gov/msp98/, 2008.
[4] A. Gupta, “Formal Hardware Verification Methods: A Survey,”

Formal Methods in System Design, vol. 1, nos. 2/3, pp. 151-238, 1992.
[5] E. Clarke, O. Grumberg, and D. Long, “Verification Tools for

Finite State Concurrent Systems,” A Decade of Concurrency-
Reflections and Perspectives, pp. 124-175, Springer, 1993.

[6] M. Gordon, “Mechanizing Programming Logics in Higher-Order
Logic,” Current Trends in Hardware Verification and Automated
Theorem Proving, pp. 387-439, Springer, 1989.

[7] J. Hurd, “Formal Verification of Probabilistic Algorithms,” PhD
thesis, Univ. of Cambridge, 2002.

HASAN ET AL.: FORMAL RELIABILITY ANALYSIS USING THEOREM PROVING 591

[8] O. Hasan, “Formal Probabilistic Analysis Using Theorem Prov-
ing,” PhD thesis, Concordia Univ., 2008.

[9] P. Billingsley, Probability and Measure. John Wiley, 1995.
[10] A. Miczo, Digital Logic Testing and Simulation. Wiley Interscience,

2003.
[11] S. Kuo and W. Fuchs, “Efficient Spare Allocation for Reconfigur-

able Arrays,” IEEE Design and Test of Computers, vol. 4, no. 1,
pp. 24-31, Feb. 1987.

[12] M. Gordon and T. Melham, Introduction to HOL: A Theorem Proving
Environment for Higher-Order Logic. Cambridge Univ. Press, 1993.

[13] S. Krishnaswamy, G.F. Viamonte, I.L. Markov, and J.P. Hayes,
“Accurate Reliability Evaluation and Enhancement via Probabil-
istic Transfer Matrices,” Proc. Design, Automation and Test in
Europe, pp. 282-287, 2005.

[14] J. Han, E. Taylor, J. Gao, and J. Fortes, “Faults, Error Bounds and
Reliability of Nanoelectronic Circuits,” Proc. Application Specific
System Architectures and Processors, pp. 247-253, 2005.

[15] M.R. Choudhury and K. Mohanram, “Reliability Analysis of Logic
Circuits,” IEEE Trans. Computer-Aided Design of Integrated Circuits
and Systems, vol. 28, no. 3, pp. 392-405, Mar. 2009.

[16] D. Bhaduri and S. Shukla, “NANOPRISM: A Tool for Evaluating
Granularity versus Reliability Trade Offs in Nano Architectures,”
Proc. Great Lakes Symp. Very Large Scale Integration (VLSI), pp. 109-
112, 2004.

[17] G. Norman, D. Parker, M. Kwiatkowska, and S. Shukla,
“Evaluating the Reliability of NAND Multiplexing with PRISM,”
IEEE Trans. Computer-Aided Design of Integrated Circuits and
Systems, vol. 24, no. 10, pp. 1629-1637, Oct. 2005.

[18] E. Clarke, O. Grumberg, and D. Peled, Model Checking. The MIT
Press, 2000.

[19] M. Nicolaidis, N. Achouri, and L. Anghel, “A Diversified Memory
Built-in Self-Repair Approach for Nanotechnologies,” Proc. 22nd
IEEE Very Large Scale Integration (VLSI) Test Symp., pp. 313-318,
2004.

[20] A. Sehgal, A. Dubey, E. Marinissen, C. Wouters, H. Vranken, and
K. Chakrabarty, “Redundancy Modelling and Array Yield
Analysis for Repairable Embedded Memories,” IEE Proc. Compu-
ters and Digital Techniques, vol. 152, no. 1, pp. 97-106, 2005.

[21] W. Shi and W.K. Fuchs, “Probabilistic Analysis and Algorithms
for Reconfiguration of Memory Arrays,” IEEE Trans. Computer-
Aided Design of Integrated Circuits and Systems, vol. 11, no. 9,
pp. 1153-1160, Sept. 1992.

[22] C.P. Low and H.W. Leong, “Probabilistic Analysis of Memory
Reconfiguration in the Presence of Coupling Faults,” Proc. IEEE
Int’l Workshop Defect and Fault Tolerance in Very Large Scale
Integration (VLSI) Systems, pp. 157-166, 1992.

[23] D. Blough, “Performance Evaluation of a Reconfiguration-
Algorithm for Memory Arrays Containing Clustered Faults,”
IEEE Trans. Reliability, vol. 45, no. 2, pp. 274-284, June 1996.

[24] O. Hasan, N. Abbasi, and S. Tahar, “Formal Probabilistic Analysis
of Stuck-at Faults in Reconfigurable Memory Arrays,” Integrated
Formal Methods, pp. 277-291, Springer, 2009.

[25] R. Yates and D. Goodman, Probability and Stochastic Processes: A
Friendly Introduction for Electrical and Computer Engineers. Wiley,
2005.

[26] A. Levine, Theory of Probability. Addison-Wesley, 1971.
[27] J. Harrison, Theorem Proving with the Real Numbers. Springer, 1998.
[28] S. Richter, “Formalizing Integration Theory, with an Application

to Probabilistic Algorithms,” Diploma thesis, Dept. of Informatics,
Technische Universitat Munchen, 2003.

[29] K. Tridevi, Probability and Statistics with Reliability, Queuing and
Computer Science Applications. Wiley Interscience, 2002.

[30] M. Choi, N. Park, and F. Lombardi, “Hardware-Software Co-
Reliability in Field Reconfigurable Multi-Processor-Memory
Systems,” Proc. Int’l Parallel and Distributed Processing Symp.,
pp. 170-184, 2002.

[31] J.R. Cavallaro and I.D. Walker, “A Survey of NASA and Military
Standards on Fault Tolerance and Reliability Applied to
Robotics,” Proc. AIAA/NASA Conf. Intelligent Robots in Field,
Factory, Service, and Space, pp. 282-286, 1994.

[32] M. Chang, W.K. Fuchs, and J.H. Patel, “Diagnosis and Repair of
Memory with Coupling Faults,” IEEE Trans. Computers, vol. 38,
no. 4 pp. 493-500, Apr. 1989.

Osman Hasan received the BEng (Hons)
degree from the N-W.F.P University of Engi-
neering and Technology, Pakistan, in 1997, and
the MEng and PhD degrees from Concordia
University, Montreal, Quebec, Canada, in 2001
and 2008, respectively. He served as an ASIC
design engineer from 2001 to 2003 in the
industry prior to joining Concordia University in
2004 for his PhD. Currently, he is a postdoctoral
fellow with the Hardware Verification Group,

Concordia University, Montreal, Quebec, Canada. His current research
interests include formal methods, higher order logic theorem proving,
probabilistic analysis, and formal reliability analysis of systems. He is a
student member of the IEEE.

Sofiène Tahar (M’96-SM’07) received the
diploma degree in computer engineering from
the University of Darmstadt, Germany, in 1990,
and the PhD degree with distinction in compu-
ter science from the University of Karlsruhe,
Germany, in 1994. Currently, he is a professor
with the Department of Electrical and Computer
Engineering, Concordia University, Montreal,
Quebec, Canada. He is the founder and
director of the Hardware Verification Group at

Concordia University. From 2001 to 2006, he held a junior Concordia
University research chair in Formal Verification of Microelectronics
Systems. In 2007, he was appointed senior Concordia University
research chair in Formal Verification of System-on-Chip. He has made
contributions and published papers in the areas of formal hardware
verification, microprocessor and system-on-chip verification, analog
and mixed signal circuits verification, VLSI design automation, and
probabilistic, statistical, and reliability analysis of systems. He is a
professional engineer in the province of Quebec. He has been
organizing and involved in program committees of various international
conferences in the areas of formal methods and design automation. In
1998, he received the Canada Foundation for Innovation (CFI)
Researcher Award. In 2007, he was named university research fellow
upon receiving the University Research Award. He is a senior member
of the IEEE.

Naeem Abbasi received the BSc degree from
the University of Engineering and Technology,
Lahore, Pakistan, in 1991, and the MSEE degree
from Columbia University in New York in 1995.
He is currently pursuing the PhD degree from
Concordia University, Montreal, Quebec, Cana-
da. His research interests include VLSI design,
algorithms and architectures for DSP, formal
methods, higher order logic theorem proving,
and formal statistical analysis of circuits and

systems. He is a student member of the IEEE.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

592 IEEE TRANSACTIONS ON COMPUTERS, VOL. 59, NO. 5, MAY 2010

