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Abstract—Existing yield analysis methods are computationally
expensive and generally encounter challenges with high-
dimensional process parameters space. In this paper, we propose
a new method for accelerated and reliable computation of para-
metric yield that combines the advantages of sparse regression
and satisfiability modulo theory (SMT) solving techniques, and
avoids issues in both. The key idea is to characterize the fail-
ure regions as a collection of hyperrectangles in the parameters
space. Toward this goal, the method constructs sparse polynomial
models based on adaptive least absolute shrinkage and selection
operator to find low degree approximations of the circuit per-
formances. A procedure inspired by statistical model checking
is then introduced to assess the model accuracy. Given the con-
structed models, an SMT-based solving algorithm is employed to
locate the failure hyperrectangles in the parameters space. The
yield estimation is based on a geometric calculation of proba-
bilistic volumes subtended by the located hyperrectangles. We
demonstrate the effectiveness of our method using circuits that
require expensive run-time simulation during yield evaluation.
They include: an integrated ring oscillator, a 6T static RAM
cell and a multistage fully-differential amplifier. Experimental
results show that the proposed method is suitable for handling
problems with tens of process parameters. Meanwhile, it can
provide 5×–2000× speed-up over Monte Carlo methods, when a
high prediction accuracy is required.

Index Terms—Analog circuit, interval arithmetic, process
variations, satisfiability modulo theory (SMT), surrogate model,
yield.

I. INTRODUCTION

W ITH aggressive technology scaling, process variation
has become a major concern for today’s analog inte-

grated circuits (ICs), due to significantly increased circuit
failures and parametric yield loss [1]. Indeed, analog IC com-
ponents must be designed with sufficiently high yield in light
of large-scale process variations (e.g., local mismatches caused
by random doping fluctuations) [2]. For this reason, it becomes
important to estimate the parametric yield both efficiently and
accurately within the IC design flow [3].

The standard approach is the brute-force
Monte Carlo (MC) [4], which repeatedly draws samples
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from a predefined distribution of the process parameters
and evaluates circuit performances with transistor-level
SPICE simulation. MC has the advantages of simplicity and
extremely general applicability. However, it can require very
large numbers of expensive simulations for accurate yield
estimation.

MC is inefficient especially for circuits with rare fail-
ure events [e.g., static random access memories (SRAMs)],
because most of the samples fall into the feasible region, and
only an extremely small fraction of samples are in the failure
region [5]. It is then desirable that the simulation cost can be
reduced. This is especially important if the yield estimation
needs to be plugged into yield optimization flow since yield
estimation needs to be done for many times.

To mitigate the inefficiency issue of MC method, vari-
ous methodologies have been proposed in the past decade
including advanced sampling techniques [6], [7] and bound-
ary searching methods [8]. However, most of the existing
approaches are either not general enough [7] or can be suc-
cessfully applied to problems with a small number of process
parameters, but, perform poorly with high-dimensional prob-
lems [8]. Given such limitations, a yield analysis method that
tries to address the shortcoming of the above approaches is
highly demanded.

Response surface-based surrogate modeling is a common
approach to analyze the effects of process variations [9].
Accurate and not complex surrogate models can replace
transistor-level simulation and significantly fasten the perfor-
mances assessment and consequently the yield estimation.
Though, the high-dimensional variational space and the strong
nonlinearity of the performances models posed by advanced
IC technologies lead to a large-scale modeling problem that is
hard to solve [9]. Furthermore, since the outcome of existing
approaches is an approximation of the circuit response, weak
guarantees on its accuracy can be provided.

This paper is largely motivated by the powerful and new
solving techniques in modern satisfiability (SAT) modulo the-
ory (SMT) [10] solvers. These solvers check the SAT of
first-order formulas containing operations from various the-
ories such as real numbers and integers. They are built upon
a tight integration of modern conflict-driven clause learning-
style SAT solving techniques with interval-based arithmetic
constraint solving within an SMT framework. They are capa-
ble of handling constraints containing nonlinear functions over
a very large number of variables [11], one inherent character-
istics of analog circuits operation/performances models. Most
importantly, they can be leveraged to exhaustively explore the
search space of a constraint-satisfaction system, making them
a potentially appealing choice for parameters space exploration
strategies of analog circuits. Though, they should be properly
employed.
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In order to optimize the convergence of the yield estimation,
our proposed work is based on two main directions:

1) Focusing on the localization of only the failure regions
in the parameters space: subsequently, the yield rate can
be estimated by analytic computation of the probabilistic
hypervolume [12] of all failure regions. The challenge
here is how to efficiently ensure a reliable character-
ization of the failure regions in a high-dimensional
space.

2) Time-consuming MC simulations should be impera-
tively avoided so that the efficiency is further enhanced:
this goal can be achieved through performance mod-
eling. In this case, the fundamental challenge is
not only the large-scale modeling problem but also
verifying the model accuracy in any point of the
parameters space with a minimum number of circuit
simulations.

Toward these goals, we rethink the yield analysis from a
completely different perspective. Principally, the key innova-
tion of the proposed methodology is the formulation of the
failure regions localization problem as a set of nonlinear con-
straints, that we solve using modern SMT solving techniques.
To the best of our knowledge, this is the first work for yield
estimation that is able to provide a guarantee on an exhaus-
tive coverage of the circuit failure regions and hence tries to
achieve reliable yield results.

The rest of this paper is organized as follows. Section II
reviews existing techniques for analog circuit yield analy-
sis. Section III details our yield estimation methodology. In
Section IV, we provide experimental results for three analog
circuits: an integrated ring oscillator, a 6T static RAM cell
and a multi-stage fully-differential amplifier. In Section V, we
present our conclusions and future work.

II. RELATED WORK

State-of-the-art advanced MC methods for circuit yield
analysis methods can be roughly divided into two cate-
gories: 1) variance reduction techniques (e.g., latin hypercube
sampling (LHS) [13], importance sampling (IS) [7]) and
2) low-discrepancy sequence (LDS)-based methods (e.g., quasi
MC (QMC) [14]). LHS partitions the range of each variable
into nonoverlapping intervals of equal probability and selects
random values within each grid for every coordinate. By
randomly combining the coordinate values, a set of latin hyper-
cube are constructed. Because of this stratification technique,
the LHS method is capable of providing variance reduction
of the yield estimation. However, it does not work much bet-
ter than the conventional MC, especially for some problems
that are difficult to be decomposed into a sum of univariate
functions [14].

The key idea of IS-based methods is to shift the original
probability density function (PDF) of the process parameters
toward the most likely failure region. They have achieved
remarkable speed-up when applied for the yield analysis of
circuits characterized by rare failure event. However, IS lacks
generality as it is designed for circuits with very high/low
yield rate. Furthermore, generating the shifted/distorted PDF
is often challenging and circuit specific, since this depends
on the actual distribution of the circuit performance which is
unknown beforehand.

Another critical issue of IS is that the proposed (i.e.,
shifted) sampling distribution may not cover effectively all

failed samples when the circuit presents multiple disjoint
failure regions induced by conflicting or multiple specifi-
cation requirements [5]. Besides the multiple specification
requirements, high-dimensional process variables also induce
the multiple failure regions since the process parameters
may have opposite influence on the performance metrics [7].
Only few attempts have tackled the multiple failure regions
case [7], [15]. In spite of that, while the method in [15] is
applicable only to rare failure rate estimation in a very high-
dimensional variation space (i.e., few hundreds), Yao et al. [7]
cited that reduction techniques are required before apply-
ing their method for problems with more than 24 process
parameters.

QMC is a popular approach that generates quasi-random
numbers rather than purely-random samplings. It utilizes sam-
ple sets called LDSs, in which deterministically generated
samples are uniformly distributed on the parameter space [14].
QMC methods are able to provide improved integration error
compared to LHS [14]. Yet, its convergence rate is found to
be only asymptotically superior to MC only for circuit with a
moderate number of process parameters [13].

Other existing methods try to construct a surface bound-
ary which separates the success and failure regions [8]. Once
the boundary is constructed, the yield can be obtained by
computing the volume of the failure region without circuit
simulation. For low-dimensional problems, this method can
be efficient. However, such methods cannot handle high-
dimensional problems with no more than three process vari-
ables. Even when considering only three process parameters,
searching the whole failure boundaries in the parameters
space is extremely complicated. The high-dimensional analysis
(18–24 process variables) is common and necessary in practi-
cal applications. Though, it makes the discrimination between
failure and success regions by hypersurfaces very hard to
achieve.

While above cited approaches present a variety of tech-
niques to speed up and enhance the convergence of the
traditional MC method, they fall short in addressing critical
issues that can be summarized as follows:

1) Optimally exploring the variational space that guar-
antees an acceptable accuracy and minimum compu-
tational time (i.e., a small number of transistor-level
simulations).

2) Scalability with respect to the process parameters size.
3) Generality of application (i.e., handling different levels

of yield rate, multiple performances metrics and multiple
failure regions).

SMT solvers have been employed for formally verifying
properties of analog circuits [16]. Recently, SMT solvers have
been used for a primarily attempt to integrate formal tech-
niques in the circuit sizing process. The goal was to avoid
the instability of constrained optimization techniques in terms
of convergence and local minima [17]. Different from this
paper, our solving strategy operates in the process parameters
space for yield estimation purpose. Similar to our approach,
Lin and Li [18] subdivided their SMT-based reachability anal-
ysis problem into subproblems that are solved in parallel in
order to decrease the computational complexity. To do so, a
analog circuit is decomposed into a set of smaller subcircuits
which decreases the number of variables involved in the SMT
problems. Second, each SMT problem associated with a sub-
circuit is further decomposed into a set of subproblems with
less constraints to further improve the efficiency. However,
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Fig. 1. 2-D parameters space.

the splitting strategy in [18] gives rise to significant complica-
tions. Indeed, the authors attempt to deal with the correlations
between the partitioned subcircuits. In contrast, in the pro-
posed work, the partitioned subproblems are uncorrelated and
the output of the SMT-based parameters space exploration
is the union of all failure hyperrectangles located by all
subproblems.

Sparse regression (SR) based on least absolute shrinkage
and selection operator (LASSO) [19] explores the fact that
even though a large number of unknown model coefficients
must be used to capture the high-dimensional variation space,
many of these model coefficients are close to zero, thereby ren-
dering a unique sparse pattern. However, as discussed in [19],
the LASSO shrinkage may not select the true coefficients val-
ues, as it causes the estimates of the nonzero coefficients to
be biased toward zero, and in general they are not consis-
tent [19]. One approach that overcomes this issue is to run the
LASSO to identify the set of nonzero coefficients, and then fit
an unrestricted linear model using least square regression as
it has been proposed in [20]. Still, this solution is not always
feasible, if the selected set is large.

III. YIELD RATE ESTIMATION METHODOLOGY

Before presenting the proposed methodology, we briefly
explain our main objective and define terms that will be used
in the rest of this paper. Suppose that p = [p1, p2, . . . , pl]
is a l-dimensional continuous random variable modeling pro-
cess variations. Such random variables include the variations
of gate length �L, oxide thickness �tox and threshold voltage
�Vth, etc., associated with each circuit device. Without loss
of generality, we further assume that the random variables in
the vector p are mutually independent and follow a truncated
normal distribution with ±3σ and zero mean. We define the
parameters (i.e., variation) space P as the set of all possible
combinations of the random variables. In general, the yield
rate can be mathematically represented as

Y∗ = 1− Pf = 1−
∫

�

pdf( p)dp (1)

where pdf(p) is the joint PDF of p, � denotes the failure
region, i.e., the region of the parameters space where the
performances are not satisfied (can be a single region or mul-
tiple disjoint regions). We denote the integral in (1) to be the
probabilistic hypervolume of � [12]. Fig. 1 is a geometrical
illustration in 2-D.

In general, the multidimensional integral in (1) cannot
be directly computed since the failure region � usually
establishes a complex nonlinear integration boundary. In our
method, we propose to characterize � as a collection of
high-dimensional subregions (i.e., hyperrectangles). The prob-
abilistic hypervolume of each subregion is then evaluated and

Fig. 2. Yield estimation method overview.

employed to estimate the total yield. Obviously, the accu-
racy of the yield estimation depends strongly on how well
the subregions are approximated. In this paper, we will mainly
focus on this characterization problem and develop novel algo-
rithms to make it tractable and computationally efficient. The
methodology in Fig. 2 details our proposed approach.

First, an adaptive SR technique is applied to extract surro-
gate models of the circuit performances. In order to optimize
the modeling step, a dimension reduction technique keeps
the most significant process parameters. The proposed algo-
rithm sorts the process parameters by weight assignment and
prunes the unimportant parameters. Then, a low-degree and
sparse polynomial model of each circuit performance is con-
structed in a stepwise fashion. The LASSO method assigns
adaptive weights for penalizing the coefficients of the poly-
nomial terms and yields a consistent estimate of the model
coefficients. The model is iteratively built until the requirement
in terms of accuracy is met. A procedure inspired by statistical
model checking is then introduced to verify the model accu-
racy for a chosen confidence level. The resulting model can be
viewed as a statistically guaranteed approximation of the cir-
cuit behavior. The subset of the circuit response space where
each performance of interest does not meet the specification
is conservatively characterized as a set of intervals. Based
on the extracted models, SMT solving is not employed to
compute the exact failure subregions in the parameters space.
Instead, it is used to find only an over-approximation of them.
The integration of interval arithmetics to remove the unde-
sirable over-approximation, intelligently tradesoff between the
computational cost and the conservativeness of SMT. A par-
allel exploration of the failure performance space allows the
simultaneous finding of multiple satisfiable solutions and sig-
nificantly speeds up the search process. Finally, the yield
is estimated based on the probabilistic hypervolumes of the
failure subregions.

A. Adaptive Sparse Regression

In this section, we seek to produce an accurate surrogate
model using polynomials with structured sparsity. The model-
ing technique should be performed with a minimum number
of circuit simulations. Besides, the model must be computa-
tionally efficient (i.e., not complex) and hence tractable for the
subsequent SMT solving stage.

1) Presampling and Dimension Reduction: The goal of
presampling is to approximately sketch the circuit behavior.
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We use the LHS method in the parameters space to gener-
ate a set of training samples. Given n training samples, we
denote X = [x1, x2, . . . , xn] an l × n matrix, where each
sample xi = [pi1, pi2, . . . , pil] is an l-dimensional vector.
Next, transistor level SPICE simulation is performed to eval-
uate the performance metric using these samples. We denote
Y = [y1, y2, . . . , yn] the n observations of the property, i.e.,
the value of the circuit response we seek to fit.

The parameters reduction maps the high-dimensional pro-
cess parameters space to a lower-dimensional space. In this
paper, we leverage the regressional reliefF (RReliefF) [21]
algorithm to prune the process parameters and to select a
smaller number of features. The algorithm uses samples-based
learning to assign a relevance weight to each parameter. Each
feature weight reflects its ability to perturb the circuit response.
The quality estimate ranges in [−1, 1]. Equation (2) [21]
shows the weight updating formula for each feature of the
process parameter vector p

V(p) =W(p)+ NdCdp

NdC
−

(
Ndp − NdCdp

)
n− NdC

Ndp =
∣∣value(p, xi)− value

(
p, xj

)∣∣
max(p)−min(p)

d(i, j)

NdC =
∣∣yi − yj

∣∣d(i, j)

NdCdp =
∣∣yi − yj

∣∣∣∣value(p, xi)− value
(
p, xj

)∣∣d(i, j) (2)

RReliefF starts with a l-long weight vector, V , of zeros, and
iteratively updates V for all features in p. This process is
repeated for the total number of instances n. In each itera-
tion, the algorithm randomly selects a sample xi and finds all
k nearest samples xj around xi, in terms of Euclidean distance.
The relevance level of each feature is then assigned by approx-
imating the terms in (2), where Ndp is a normalized difference
between the values of parameters in the vector p for the two
instances xi and xj, the quantity d(i, j) [21] takes into account
the distance between samples by assigning greater weight to
closer samples, and NdC corresponds to the difference between
the performances of the two samples. The term NdCdp quan-
tifies the probability that two nearest samples have different
performances and different values of parameter. The weight
increases if the circuit responses of nearest samples differs
and decreases in the reverse case. In practice, a feature is rel-
evant when the weight is strictly positive and irrelevant in the
opposite case [22]. The algorithm only requires O(lnlog(n))
time, and is noise-tolerant and robust to feature interactions.

2) Adaptive Least-Squares Regression Using LASSO: Once
the most relevant process parameters are captured, we seek
to construct a surrogate model of each performance metric
involved in the circuit specification. The performance func-
tion is a local perturbation around its nominal value. We use
polynomial basis which are very often used to approximate
such a local variation [9]

f(p) �
M∑

m=1

cmgm(p) (3)

where f is a smooth circuit performance approximated as a
linear combination of M basis functions, cm are the model
coefficients, and gm(p) is a basis functions (linear, quadratic,
or cubic polynomials). The unknown model coefficients cm are
determined by solving a set of linear equations at a number
of sampling points (training data), which is usually solved as

a least squares problem

min
cm,m∈[1,M]

‖f(p)− q(p)‖22, q(p) =
M∑

m=1

cmgm(p) (4)

In fact, the number of process parameters is often large, while
the number of training samples is greatly limited by the com-
putational cost. Given the limited computational budget, the
underlying system is rank deficient. Therefore, the solution
cm (i.e., the vector containing unknown model coefficients)
is not unique and impossible to identify without additional
constraints. To solve this problem, we propose to employ
adaptive LASSO as a weighted regularization technique for
simultaneous consistent estimation and variable selection [19]

min
cm,m∈[1,M]

‖f(p)− q(p)‖22 + α

M∑
m=1

∥∥∥∥ cm

wm

∥∥∥∥
1

(5)

where α is a nonnegative regularization parameter. ‖‖1 stands
for the l1-norm of a vector which denotes the sum of the
absolute values of all elements in the vector. The weighted

penalty function α
M∑

m=1
‖(cm/wm)‖1 is an additional constraint

that forces the coefficients cm to behave regularly by shrink-
ing the coefficients toward 0 as α increases. Data-dependent
weights w are employed for penalizing different coefficients
in the l1 penalty. By allowing relatively higher penalty func-
tion (higher weight) for small coefficients and lower penalty
function (lower weight) for larger coefficients, the adaptive
LASSO neutralizes the influence of the coefficient magnitude
on the l1 penalty function. Thus, it reduces the coefficient esti-
mation bias compared with the standard LASSO. Furthermore,
the adaptive LASSO shrinkage retains the attractive convex-
ity property of the standard LASSO [19]. Most importantly,
it is proved to be near-minimax optimal [23]. The weight
w can be any consistent estimate of cm. Here, we select
w = (XTX)−1XTY to be the ordinary least square estimate
of cm [23], where XT denotes the vector transpose of X.

Algorithm 1 provides a simplified description of the adap-
tive SR algorithm. This algorithm is applied to construct a
surrogate model q(p̃) of each performance metric intervening
in the circuit specification. It requires as inputs a set of training
X and test samples Xt and their corresponding circuit responses
Y and Yt, respectively. Typically, the number of training sam-
ples can be selected from 200 to 500 while the test samples
from 100 to 300. In line 1, we use the RReliefF algorithm to
select a smaller number of features p̃ and filter out features
that hardly have contributions to the circuit response.

The parameter k is the number of nearest instance con-
sidered by RReliefF [24]. In all experiments conducted in
this paper (see Section IV), we find that k = 15 provides
stable and reliable reduction results. In line 2, the function
select extracts the observation Xp̃ and Xt

p̃ corresponding to
the reduced process parameters space p̃ from the original set
X and Xt, respectively. Then, the algorithm operates in an
iterative fashion. At each iteration, the polynomial degree is
incremented (line 4). The idea is that higher degree terms are
included only when necessary to avoid high order model. In
line 5, we construct a set of polynomial basis gm(p̃) of degree
d. The polynomial terms of gm(p̃) are obtained by expanding
all the terms in the d-degree polynomial (1+p1+· · · )d. Then,
X̃f maps the reduced data matrix Xp̃ to each expansion terms
of gm(p̃). In lines 6 and 7, the weights w are computed and the
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Algorithm 1 Response Surface-Based Surrogate Model
Training

Require: X, Xt: Data samples, Y , Yt : Circuit response,
D = 3: Maximum degree, d = 0, k = 15, Rth: Accuracy
threshold

1: p̃←RReliefF(X, Y, k),
2: Xp̃ ← select(X, p̃), Xt

p̃ ← select(Xt, p̃)

3: while d < D and ε > Rth do
4: d← d + 1
5: X̃f ← expand_polynomial_basis (Xp̃, p̃, d)
6: w← compute_weight(X̃f , Y)

7: q(p̃)← adaptive_lasso(w, X̃f , Y)
8: ε← verify(q, Xt

p̃, Yt)
9: end while

10: if ε ≤ Rth then
11: Return (Accuracy model metİ)
12: else
13: Generate fresh samples and go to 5
14: end if

adaptive LASSO problem in (6) is solved using the coordinate
descent algorithm [24]

min
cm,m∈[1,M]

∥∥Y− X̃fcm
∥∥2

2 + α

∥∥∥∥ cm

wm

∥∥∥∥
1

(6)

The coordinate descent iterations terminate when the relative
change in the size of the estimated coefficients drops below
1e−9. It is important to note that cm are computed each time
the degree d is incremented. This recalculation is required
because the new basis function constructed at the current iter-
ation step may change the model coefficient values calculated
at previous iteration steps. The regularization parameter α is
chosen during the training process. It is selected such that
it minimizes an estimate of expected prediction error based
on tenfold cross-validation applied to the training samples. In
line 8, the test samples Xt

p̃ are used to verify the accuracy
of the current trained model. The prediction ability of the
model is tested by calculating the normalized mean square
error (NMSE=(‖q(Xt

p̃)− Yt‖22/‖Yt‖22)). When the error of the
performance model ε is less than a given threshold, named
Rth, or the degree d reaches the limit D, the iteration stops.

If the desired accuracy is not met and d reached the max-
imum degree D, then fresh samples are generated and added
incrementally to the training sample set as long as the model
accuracy does not satisfy the convergence condition (line 13).
The generation of the fresh samples uses a triangulation
approach as explained in [7]. How to select the parameter
Rth will be discussed in Section IV-D.

In practice, the number of samples required to compute ε
cannot be fixed in advance. If a very large evaluation set is
employed to evaluate the error ε, then the resulting model
accuracy can be trusted. However, this would prohibitively
increase the computational cost. Next, we propose to employ
statistics to provide a certain confidence level on the model
accuracy with a probability of error which can be prespecified.

B. Accuracy Generalization and Verification

On one hand, the surrogate model error ε can never be
totally eliminated. On the other hand, its accuracy verification
is primordial to prove the reliability of the yield estimation

methodology. The surrogate model accuracy (1 − ε) can be
considered ϕ-guaranteed if

∀p, p̃ ∈ P, Pr
((

err
(
f(p), q

(
p̃
)) ≤ ε

)≥ ϕ (7)

where Pr and err stand for probability and model error, respec-
tively. In other words, the model error is at most ε for at
least ϕ portion of the parameter space. Clearly, at this stage
there is no guarantee on the model accuracy (1 − ε). The
purpose of this step is to determine a generalized accuracy
under the process parameter space, given a probability/level of
confidence ϕ.

To do so, we employ and extend the statistical procedure
proposed by Younes [25] that regards the model checking of
a system as a hypothesis testing problem and solves it using
Wald’s [26] sequential probability ratio test (SPRT). The idea
is to check the accuracy property in (7) on a samples set of
simulations and to decide whether the model q(p̃) satisfies the
property based on the number of executions for which the
property holds compared to the total number of executions.
With such an approach, we do not need to explore and test
all possible values of process parameters. We rather answer
the question of whether the model satisfies the property with
a probability greater than or equal to a value ϕ ∈ [0, 1].
Furthermore, we propose a simple, yet elegant modification
to the SPRT test which allows the computation of a general-
ized model accuracy ε. The problem is treated based on two
exclusive hypothesis testing given as follows:

H0 = Pr
(
err

(
f(p), q

(
p̃
)) ≤ ε

) ≥ ϕ + δ = ϕ2

H1 = Pr
(
err

(
f(p), q

(
p̃
)) ≤ ε

)
< ϕ − δ = ϕ1 (8)

where H0 and H1 are known as the null and the alternative
hypothesis and 2δ forms a small region called the indifference
region [25], on both sides of the cutting point ϕ. If the proba-
bility is between ϕ1 and ϕ1 (the indifference region), then we
say that the probability is sufficiently close to ϕ so that we
are indifferent with respect to which of the two hypotheses
is accepted. The method determines on the fly the number of
simulations needed to achieve a desired accuracy and provides
a convenient way to control the tradeoff between precision and
computational cost. To decide between the two hypothesis, the
test proceeds by computing at the nth stage of the test, i.e.,
after making n observations, a log likelihood ratio given as

	n = log

∏n
i=1 zϕ1(bi)∏n
i=1 zϕ2(bi)

= log

∫ ϕ1
0

∏n
i=1 zbi(1− z)1−bidz∫ 1

ϕ2

∏n
i=1 zbi(1− z)1−bidz

(9)

where n represents the total number of samples or the test
length, b1, b2, . . . , bn is a collection of Bernouilli random
variables denoting the outcome of the accuracy property (7)
with random samples x1, x2, . . . , xn drawn from the parame-
ters space. zϕ1(bi) and zϕ2(bi) are the probability mass function
of the Bernouilli distribution parameterized by ϕ1 and ϕ2,
respectively. The quantity 	n is finally given as

	n = log
Bϕ1(k + 1, n− k + 1)

A− Bϕ2(k + 1, n− k + 1)
(10)

where 0 ≤ k ≤ n is the number of successful inequality test,
A = (1/(n+ 1)Cn

k ) and Bϕ1 and Bϕ2 are the incomplete Beta
functions. H0 is accepted if 	n ≤ a and H1 is accepted if
	n ≥ b, where a and b are given in line 1 of Algorithm 2. α
and β are two decision error rates that determine the strength
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Algorithm 2 Verification and Generalization of the Model
Accuracy
Require: q: Surrogate model, ε: model error, p̃,p: Process

parameters, ϕ1, ϕ2: Probabilities, α, β: Error rates.
1: a = log( α

1−β
); b = log( 1−α

β
), Xt

p̃, Yt

2: n = 0; k = 0;
3: while a < 	n < b do
4: n← n+ 1
5: xn ← Sample the parameters space P
6: f ← Simulate the circuit at the parameters xn and

measure f
7: Xt

p̃, Yt ←Update(Xt
p̃, Yt, xn, f )

8: if err(q(Xt
p̃), Yt)> ε then

9: ε← err(q(Xt
p̃), Yt)

10: else
11: k← k + 1
12: end if
13: Evaluate 	n(n, k, ϕ1, ϕ2)
14: end while
15: if 	n ≤ a then
16: Accept H0
17: else
18: Accept H1
19: end if

of the test, where α is the type I error rate or false positive
and β is the type II error rate or false negative.

The procedure is summarized in Algorithm 2. It repeatedly
checks the accuracy property with fresh samples xn drawn
from the parameters space p (line 5). After measuring the sam-
ple response f (line 6), we add the fresh observation (xn, f )
to the testing samples (Xt

p̃, Yt) (line 7) and we compute the
NMSE (line 8). We say that the inequality test is a success
if the property holds, and a failure otherwise. Upon each suc-
cess, we increment the counter k (line 11) and continue with
fresh samples until a failure occurs. In this case, we update
and generalize the error ε (line 9). We can therefore character-
ize the required number of observations as inf{n,	n /∈ ]a, b[}.
Clearly, this number increases if α and β are smaller but also if
ϕ is very close to one. We provide in Section IV-D a discussion
concerning these parameters.

C. SMT-Based Parameters Space Exploration

The objective of this stage of the methodology is to
exhaustively probe the parameters space and to determine
failure hyperrectangles, i.e., regions where the circuit fails
to satisfy the design specification. Our approach is summa-
rized in Algorithm 3. In order to conservatively find the
reachable parameters values, we formulate the SMT prob-
lem constr as a conjunction of the space of the process
parameters, the constructed surrogate models and the speci-
fication violation constraints. In general, the problem can be
formulated as

pmin ≤ p ≤ pmax

fk
(
p̃k

) = qk
(
p̃k

)
fmin
K ≤ fK ≤ fmax

K , K = 1
K∨

k=1

fmin
k ≤ fk ≤ fmax

k , K > 1 (11)

Algorithm 3 SMT-Based Parameters Space Exploration

Require: S, K, constr, NS = SK

1: for all ind = 1→ NS do in parallel
2: fk ⊆ [f min

k , f max
k ]ind

3: repeat
4: Invoke iSAT3(constr)
5: if a candidate is found then
6: Invoke INTLAB(constr, candidate)
7: if Locate pbox then
8: Return(Perf box, pbox)
9: Update(Perf box, fk)

10: end if
11: end if
12: until Unsatisfiable
13: end for

where fk(p̃k), k = 1 . . . K, are the performance equations, K
is the total number of performance metrics involved in the
design specification, and p̃k is the reduced process parameters
set associated to the kth performance metric. [pmin, pmax] are
the ranges of the process parameters determined from their
probabilities distributions, where p = [p1, p2, . . . , pr] and r =
dim(∪k

1p̃k) is the dimension of the reduced parameters space.
As mentioned before, a truncated normal shape is used in this
paper to model the process parameters. If ±3σ variation is
considered then, the upper and lower bounds of the process
parameters pmin and pmax, respectively, are defined as

pmin = pnom − 3σ ;pmax = pnom + 3σ (12)

where pnom is a vector of nominal values. [f min
k , f max

k ] are the
bounds that approximate the failure region of the circuit opera-
tion in the performance space. For example, if we are given an
oscillator circuit designed at a nominal frequency fnom and the
maximum allowed frequency deviation is �f , then the failure
frequency region is defined as: [f l, fnom−�f [∪]fnom+�f , f u],
where f l and f u are the minimum and maximum performances
values reached by the circuit. It is important to set a conser-
vative approximation of f l and f u in order to let the solver
discover any possible failure of the circuit response under
the defined parameters variation. The over-conservativeness is
especially necessary for circuits with rare failure event where
the circuit simulation in the initial presampling cannot be
sufficient to sketch the performance bound. We provide in
Section IV-D a discussion concerning the setting of the failure
performance bound.

In case of multiple performance metrics, the specification
violation is mathematically formulated as a disjunction of fail-
ure performance bounds, as given in line 4 of (11), where

∨
denotes the logical OR operator. In fact, a high-dimensional
region in the parameters space is considered as a failure region
if any performance metric involved in the specification is not
satisfied.

The SMT solver iSAT3 [11] we are using in this paper
is known to attempt to solve NP-complete problems. Solving
these problems, in their worst case, would take time which is
exponential in the number of variables to solve. It would be
then infeasible to run the search over a large initial space
of failure performance bounds [f min

k , f max
k ]. For these rea-

sons, we propose first to split the SMT problem constr into
NS = SK subproblems that we solve simultaneously (line 1).
For example, if the circuit requires two performance metrics
(K = 2) with S = 5 uniform discretization steps, then the
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Fig. 3. Illustration of the coordinates of a failure subregion in 2-D parameters
space.

overall combinations of performance space to be explored
is NS = SK = 52. Each subproblem is limited to a possi-
ble combination of performance boundaries. More precisely,
for each subproblem, a possible combination of the failure
regions in the performance space is traversed and the spec-
ification violation constraint is formulated as:

∨K
k=1 fk ⊆

[f min
k , f max

k ]ind, k = 1 . . . K. Also, it is important to note that
all subproblems have the same SMT constraints and the same
process parameters variables. Based on this, solving all sub-
problems is completely equivalent to solving the original SMT
problem.

Obviously, we can observe that the complexity increases
with more performance metrics and greater precision in sam-
pling. For this reason, the SMT subproblems are solved in
parallel to reduce the timing complexity. The solver returns
a set of continuous ranges of each variable (i.e., a hyperrect-
angle) in the SMT constraints (line 5). However, the set of
interval solutions is only an over-approximation (candidate)
that can be devoid of any real solution to the constraints.
The uncertainty can be alleviated by setting a high resolu-
tion of the returned candidate. Still, this will dramatically
increase the computation time. Owing to this, the size of the
interval solution (resolution) is adjusted for a tradeoff between
computational cost and over-approximation.

In fact, we only use the SMT solver to refine the ini-
tial search space toward a candidate solution and to discard
the infeasible solution. Afterward, for each set of intervals
proposed by iSAT3, we exploit the MATLAB toolbox for
interval arithmetic INTLAB [27] to further refine the candidate
solution (line 6). Given the candidate solution as interval ini-
tial condition and the performance equations, INTLAB either
refutes the existence of any solution in the candidate solution
returned by the SMT solver or produces an hyperrectangle
pbox that is contained in the candidate region and guaranteed
to contain the solution (line 7). The widths of the interval solu-
tion pbox returned by INTLAB are smaller than the candidate
region proposed by the SMT solver.

The result of the refinement process is a set of interval
process parameters pbox and its corresponding reachable per-
formances Perfbox (line 8). The function Update in line 9
removes Perfbox from the search space by adding the con-
straint Perfbox � fk. This will force the solver to search for
new solutions. Finally, when all reachable hyperrectangles are
found, the solver will return Unsatisfiable, providing a guar-
antee on a complete coverage of the search space (i.e., the
failure region). In fact, Algorithm 3 exploits the strength of
the SMT solver (i.e., its search space coverage capabilities)
while avoiding its disadvantages.

Algorithm 4 Yield Rate Computation
Require: {pbox}1−→nf

Pf = [
∏r

i=1 CDF(pu
i )− CDF(pl

i)]1
1: for all j = 2→ nf do
2: pbox

j ← pbox
j −⋂

(pbox
j , pbox

1→j−1)

3: Pf ← Pf + [
∏r

i=1 CDF(pu
i )− CDF(pl

i)]j
4: end for
5: Y∗ ← 1− Pf

D. Yield Estimation

In the previous stage of the methodology, we have char-
acterized � as a set of high-dimensional subregions in the
parameters space: � � {pbox}1−→nf , where nf is the total
number of located subregions. A failure subregion is a hyper-
rectangle that is modeled as a cartesian product of orthogonal
intervals pbox = ([pl

1, pu
1]× . . .× [pl

r, pu
r ]]). We recall that the

parameters p are assumed independent and continuous random
variables. The probability that the process parameters fall into
a single subregion pbox is estimated in 2-D (for illustrative
purposes) as

P
(

p1, p2 ∈ pbox
)
=

∫
pbox

pdf(p)dp =
2∏

i=1

P
(

pl
i ≤ pi ≤ pu

i

)

=
2∏

i=1

CDF
(
pu

i

)− CDF
(

pl
i

)
(13)

where P stands for probability, pu
1, pl

1, pu
2, pl

2 are the coor-
dinates of the subregion in 2-D (as shown in Fig. 3), and
CDF(pi) [24] represents the cumulative distribution function of
pi. For the total nf failure subregions in r-dimensional param-
eters space, the probability that the design constraints are sat-
isfied in the presence of parameters variation is generalized as

Y∗ = 1− Pf = 1−
nf∑

j=1

∫
{pbox}j

pdf(p)dp

= 1−
nf∑

j=1

[
r∏

i=1

CDF
(
pu

i

)− CDF
(

pl
i

)]

j

(14)

The multidimensional integral in (14) is the probabilistic
hypervolume of a single subregion. Obviously, the contribution
of a located subregion to the failure probability Pf is higher
when the the coordinates of the hyperrectangles are closer to
the center of the process parameters space. The circuit yield
is computed according to Algorithm 4. In line 2, the hyper-
rectangle is refined for more precision and accuracy. The term⋂

(pbox
j , pbox

1→j−1) is the region resulting from the overlapping
between the located boxes. The overlay may occur if some
hyperrectangle share the same values of process parameters or
due to the conservativeness of interval arithmetic computation.

IV. APPLICATIONS

In this section, we present the application of the yield rate
estimation methodology on the examples of a three-stage ring
oscillator, a six transistor SRAM cell and a three-stage opera-
tional amplifier (op-amp). In the experiments, the circuits are
designed in a commercial TSMC 65-nm process and simulated
in HSPICE with BSIM4 transistor models. The local mismatch
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Fig. 4. Three-stage ring oscillator.

Fig. 5. Weight of all 24 process variations for the frequency oscillation
performance.

variables are considered as the process parameters including
the oxide thickness �tox, threshold voltage under zero bias
�Vth, channel width �w and channel length �L. We use the
TSMC 65-nm transistor mismatch model with Vdd = 1 V and
standard threshold voltage. The mismatch model uses princi-
pal component analysis [19] to model the process parameters
as a set of independent random variables.

The algorithms parameters are selected as follows. The
value of the convergence condition Rth in Algorithm 1 is
selected as 2. 10−2. We also choose a degree limit D of 3 for
all performances models. For the model verification step, we
used ϕ = 0.95, a symmetric test strength α = β = 0.01 and
an indifference region of size 10−3, indicating that the statisti-
cal test covers at least 95% of the parameter space with a high
statistical conĄdence. All simulations were performed using
an 8-core Intel CPU i7- 860 processor running at 2.8 GHz
with 32 GB memory and Linux operating system.

A. Three-Stage Ring Oscillator

We consider a three-stage ring oscillator as shown in Fig. 4.
The oscillation frequency is chosen to be the performance
metric of interest. The nominal frequency fnom is 3.207 GHz
calculated via periodical steady state simulation. The design
specification requires that the variation of the frequency should
be within 2.5% of fnom.

The oscillation frequency is affected by various process
parameters in the transistors. The local mismatch variables
of each transistor are considered as the process parameters,
which results in a 24-D problem.

First, we consider 400 LHS data samples with 300 of them
for training and 100 for testing. On this 24-dim problem,
RReliefF is performed to reduce the dimension before con-
structing the frequency model. For each process parameter,
the weight is evaluated and ranked as illustrated in Fig. 5.
The process parameters with negative weight are discarded
and 12 parameters are kept.

We measure the oscillation frequency under the effect of
the reduced set of process parameters, in order to check the
accuracy of the reduction process. Fig. 6 shows the frequency

Fig. 6. Ring oscillator frequency responses under the original and the reduced
process parameters variational space.

TABLE I
FREQUENCY MODELING RESULT

performance of 300 LHS data samples when considering the
total number of process parameters (original dim-24) and the
reduced one (reduced dim-12). The frequency responses are
evaluated using the circuit simulator HSPICE. As it can be
observed in Fig. 6, the frequency response with the reduced
set exhibits some deviation as expected. The reduction error
is checked by calculating the NMSE, which is given as:
((‖freq(12− dim)− freq(24− dim)‖22/‖freq(24− dim)‖22) =
0.0245%). The actual error is less than 0.1% which is
considered excellent in practice [28].

After applying the proposed adaptive LASSO scheme for
surrogate modeling, we extract a frequency model of degree 3.
The ability of the proposed modeling technique is compared
to the generic SR using the standard LASSO method, applied
without the parameters pruning stage. The frequency of the test
samples are calculated by both constructed frequency model
and HSPICE simulation. The modeling results are summarized
in Table I.

First, the proposed ASR algorithm appropriately selects a
small subset of important monomial polynomial basis when
compared to SR. Second, ASR achieves 33% better fitting
accuracy than the standard LASSO. This in turn demonstrates
the advantage of the weighted regression approach to consis-
tently approximate the frequency model coefficients so that
the results are not over-fitted due to the limited training set.
Third, the fitting time (i.e., the cost of solving all model coef-
ficients from the sampling points) is almost two time less than
the generic SR. The fitting time reduction has been achieved
thanks to the process parameters pruning.

Algorithm 2 computes 160 circuit simulations required to
generalize and verify the frequency model accuracy. Fig. 7
shows a graphical representation of the statistical test. The line
a is the acceptance line. Similarly, the line b is the rejection
line for the test. The curve intersects the line a at the observa-
tion number 160. The test is achieved at this point with a high
generalized accuracy of 98.1%. At the 80th and 82nd circuit
simulation, the accuracy test has failed and the model error
has been updated (i.e., generalized).

In Table II, we compare our results with different sam-
pling methods including the brute-force MC, QMC, and LHS
(MC+LHS), implemented in HSPICE. Column 2 of Table II
shows the number of harmonic balance (HB) circuit sim-
ulations and “time cost” is the time spent on simulations.
The brute-force MC with 10 000 is able to compute a highly
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TABLE II
YIELD RESULTS FOR THE RING OSCILLATOR WITH 24 PROCESS PARAMETERS

TABLE III
YIELD RESULTS FOR THE RING OSCILLATOR WITH THREE PROCESS PARAMETERS

Fig. 7. Generalization and verification of the frequency model accuracy.

accurate result of the yield rate with an estimated error < 1%
at a 99% level of confidence. It is used as the goldenİ result
to assess the accuracy and efficiency of all others methods in
this experiment.

For our method, the number of HB simulations includes
the number of simulations performed in the model fitting and
accuracy verification phases. The 560 HB simulation runs cor-
respond to 300 training samples, 100 testing samples and
160 samples for accuracy verification. The column time cost
includes the time for all stages in the proposed methodology
(i.e., the surrogate model fitting and verification, the param-
eter space exploration and the yield calculation). During the
SMT-based parameters exploration stage, we define the full fail
performance intervals as [2.5 GHz, fnom− fnom2.5%[∪] fnom+
fnom2.5%, 4 GHz]. In this experiment, SP = 52 = 25 com-
binations of performance boundaries have been explored in
parallel. The SMT solver [11] has reported 2820 candidate
regions. Two thousand six hundred forty-three regions were
confirmed by INTLAB during the solution refinement step.
The regions found by the SMT solver and not confirmed dur-
ing the refinement step are spurious. In this case, INTLAB
refuted the existence of any solutions within the candidate
regions.

On the basis of Table II, it can be observed that the
performance of the MC variants do not achieve significant
improvement when compared to the brute-force MC analy-
sis engine. QMC is able to reach the MC golden result with
around 2.16× speedup, while the MC+LHS method is 1.54×
times faster than MC with approximately the same yield rate.
Collecting extra random samples for MC+LHS does not help
to converge exactly to the MC golden estimation. This obser-
vation can be explained by a bad exploration of the parameters
space and a moderate uniformity properties of MC+LHS in
this 24-D problem.

Since the proposed method attempts to ensure an exhaus-
tive coverage of the failure regions in the parameters space, it

tends to under-estimate the yield. It explains why the predicted
yield from our procedure is slightly lower than the sampling
yield from MC simulations. However, the computed yield rate
is almost identical to that estimated by the brute-force MC
engine with 10 000 samples. Algorithm 3 completed the search
for the failure subregions in 0.16h, which is affordable and
clearly demonstrates the scalability of the proposed method.
In fact, the SMT problem subdivision allowed the reduction
of the search space (i.e., failure performance space), and when
coupled with the parallel implementation, it highly relieves the
computational cost of the SMT solver.

Our method can achieve 11× speedup over the MC method
while it adopts a more exhaustive approach for the yield esti-
mation. The achieved speedup can be explained by: (1) the
process parameters reduction step; (2) the employment of a
surrogate model of the frequency model to replace time con-
suming transistor-level HB simulation; and (3) the tracking
of a complete hyperrectangle in the parameters space rather
one sample point which allows a faster coverage of the failure
regions.

In order to illustrate the capability of our method in han-
dling multiple and distinct failure regions, we use a simplified
process variational space, which only considers the threshold
voltages of the nMOS transistors M1, M3, and M5 as the
sources of process variations. In this experiment, we applied
the proposed scheme without the parameters pruning stage and
we formulate the SMT constraints to locate the failure regions
in this 3-D problem. The results are summarized in Table III.
As less process variables are taken into account, the time cost
has significantly decreased comparing with the 24-D problem
and the yield rate has also increased. The failure subregions
located by our method and the fail samples of the brute-force
MC engine can be clearly visualized on a 3-D parame-
ters space as shown in Fig. 8(a) and (b), respectively. The
data is projected on the three directions (VthM1, VthM3, VthM5)
of the 3-D space, where VthMi = Vth0Mi + �VthMi,
i = 1, 3, 5.

Fig. 8(b) shows that, similarly to the MC method, the pro-
posed method locates two failure regions. The two regions
result from the interval specification of the frequency perfor-
mance metric which can be equivalently expressed as two
conflicting specifications. For both methods, the frequency
specification is violated for high and low threshold volt-
age variations of the nMOS transistors of M1, M3, and M5.
However, while the MC method randomly samples the pro-
cess parameters probability distribution pdf(p) toward locating
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(a)

(b)

Fig. 8. (a) Fail samples of the brute-force MC method. (b) 3-D failure
subregions probed by the proposed method.

Fig. 9. Schematic of a 6-T SRAM cell.

the failure operation, our method directly locates 3-D failure
subregions in the parameters space. Also, during the SMT-
based parameters space exploration, the process parameters
are modeled as a set of intervals in the SMT constraints. It
explains why the located failure-subregions covers the com-
plete parameters space in Fig. 8(b) and differs from the failure
characterization of the brute-force MC method in Fig. 8(a).
It is only at the yield calculation step that the pdf(p) of the
process parameters are taken into consideration to estimate the
probabilistic hypervolume of each single subregion as given
in (14).

Furthermore, although the proposed approach may miss
some failure subregions due to the modeling error, the prob-
abilistic hypervolume of the located subregions still can be
employed to estimate the yield with 0.077% relative error
when compared with the MC method. Based on this exam-
ple, the ability of the proposed method in solving problems
with multiple failure regions is verified.

B. 6-Transistor SRAM Cell

In this section, a standard 6-transistor (6-T) SRAM cell,
shown in Fig. 9, is used to validate the proposed method
on a circuit with extremely high yield probability [i.e., very
low failure rate (Pf )]. In this example, a larger number of
sigma variation (6σ ) is considered. We also suppose that the
brute-force MC methods converges when the relative stan-
dard deviation of the failure probability (std(Pf )/Pf ) is equal
to 0.1 (i.e., 90% accuracy with 90% confidence) [29]. The
SRAM cell is used to store one memory bit: the four transis-
tors M1–M4 have two stable states, i.e., either a logic 0 or 1,
and the two additional access transistors M5 and M6 serve to
control the access to the cell during read and write operations.

The circuit performance is chosen as the read static noise
margin (SNM) to evaluate the stability of the SRAM cell dur-
ing read operation. The SNM is defined as the maximum value

Fig. 10. Weight of all 24 process parameters for the SNM performance.

Fig. 11. SNM responses under the original and reduced process parameters
space.

Fig. 12. Generalization of the SNM model accuracy.

of DC noise voltage that can be tolerated by the SRAM cell
without changing the stored bit [30]. A positive value of SNM
represents a stable read operation while a zero or negative
value of SNM signifies that the read operation will cause the
cell to lose its state, resulting in the read stability failure. In
this paper, the SNM is measured by the length of the maxi-
mum embedded square in the butterfly curves (i.e., the voltage
transfer curves of the two inverters). When SNM is smaller
than zero, the butterfly curves collapse and a data retention
failure happens [30].

The local �tox, �Vth, �w, and �L mismatch of each tran-
sistor are considered as the process variables, which result
in 24 process parameters. On this 24-D problem, RReliefF is
applied to reduce the dimension before constructing the SNM
performance model. For each process variation parameter, the
weight is evaluated based on 300 training samples. The reduc-
tion process discarded eight process parameters as it can be
observed in Fig. 10. Fig. 11 plots the SNM responses sim-
ulated by HSPICE, under the effect of the full and reduced
process parameters set. We evaluate the NMSE to estimate
the responses deviation. The computed error is 0.5% which is
low and can be considered as negligible.

We apply the adaptive LASSO scheme for modeling the
SNM surrogate model. We extract a polynomial model of
degree 2 and we use 100 test samples to evaluate its accu-
racy. We verify and generalize the SNM model accuracy. The
accuracy verification result is shown in Fig. 12. Algorithm 2
computes a generalized model accuracy equal to 98.7% based
on 128 simulation runs.

The experimental results are summarized in Table IV.
For our method, we define the full SNM fail interval as:
[−0.3V, 0V]. We subdivide the SMT problem into SP =
51 = 5 that we solve in parallel according to Algorithm 1.
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TABLE IV
YIELD RESULTS FOR THE SRAM WITH 24 PROCESS PARAMETERS

Fig. 13. Evolution of the failure rate estimation as function of samples for
the brute-force MC and the QMC method.

Fig. 14. Evolution of failure rate estimation as function of tracked failure
subregions for the proposed method.

Column 2 of Table IV reports the number of simulations per-
formed in the SNM model fitting and accuracy verification
phases. The column time cost shows the time for the total
stages in the proposed methodology.

The MC method tries to randomly select samples to cover
the entire parameters space, so it needs a huge number of sam-
plings to achieve the target 90% level of accuracy as shown
in Fig. 13. QMC is able to reduce the number of samplings
by covering the entire space with deterministic sequences. It
can be observed that the QMC method achieves around 2×
speedup over the MC method with very close failure rate
estimation. The method we propose in this paper achieves
a speedup of approximately 2000× comparing with the MC
method.

As shown in Fig. 14, the proposed algorithm covers the
failure region in the parameters space within 2205 located
regions, which explains the relief in terms of computational
cost. The first 400 refined regions had more contribution to
the failure rate estimation in terms of probabilistic hypervol-
umes. The method also reaches a higher failure probability
(Pf ) compared to the MC method. This can be explained by
the approach adopted in the proposed methodology that con-
centrates on the localization of only the failure regions in the
parameters space. Meanwhile, the sampling methods waste a
large number of samples that are far from the failure region.

Fail samples of the MC simulation result are drawn in
Fig. 15(a) which clearly shows two regions with rare failure
samples. The failure occurs for asymmetrical local Vth vari-
ation affecting the adjacent pulling-down transistors M1 and
M2. A similar localization of the failure region is reached by
the proposed yield analysis scheme as it can be observed in

(a)

(b)

Fig. 15. (a) Fail samples drawn from the simulation of the brute-force MC.
(b) Failure subregions located by the proposed method.

Fig. 15(b). In both figures, the simulation data is projected
on the three directions (VthM1, VthM2, VthM5) for visualization
purpose. The proposed failure regions localization technique
neutralizes the rare failure event issue of the SRAM circuit.
Based on this example, the advantage of the proposed method
in locating very rare failure regions has been demonstrated.

C. Three-Stage Operational Amplifier

In this section, we will verify that the proposed method
is suitable for solving problems with multiple performances
specifications as well as high-dimensional parameters space.
We consider a three-stage amplifier (op-amp) as shown in
Fig. 16.

We select �tox, �Vth, �w, and �L as the process variables.
The local mismatch in each transistor pairs is considered. It
leads to a total of 56 process parameters. The performance of
the circuit is characterized by many properties, such as voltage
gain (Av) and phase margin (PM). The op-amp is designed to
satisfy the list of specifications shown in Table VI.

First, 300 initial LHS simulations are used to build a sur-
rogate model of for all properties. 200 of them are employed
for model training and 100 for subsequent model testing. Each
property is measured using a specific type of simulation. Note
that even though we analyze and model each performance met-
ric individually, these performance metrics are not necessarily
independent as they are sharing the transistor-level simulations
of the presampling stage. In fact, by evaluating all performance
metrics for each individual sample drawn from the process
parameters space, we substantially reduce the total number of
simulation runs and, hence, the computational cost.

On this 56-dim problem, RReliefF is performed to reduce
the dimension the process parameters. The experimental
results of the reduction process are summarized in Table VII.
It can be observed that in this example the dimension of the
original set of process parameters for each performance metric
did not largely decrease. This can be explained by the consid-
eration of multiple performance metrics that depend on most
of the process variables. Furthermore, the accuracy of the cir-
cuit response under the reduced set of process parameters is
maintained.
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TABLE V
YIELD RESULTS FOR THE OP-AMP WITH 56 PROCESS PARAMETERS

Fig. 16. Three-stage operational amplifier.

TABLE VI
SET OF SPECIFICATIONS FOR THE THREE-STAGE OP-AMP

TABLE VII
RESULT OF THE PROCESS PARAMETERS REDUCTION STAGE

We evaluate the accuracy of the models trained using the
adaptive LASSO scheme. We report the final degree of the
approximations and the models accuracies in Table VIII. In
the “degree” column, we see that for some properties, we are
able to construct polynomial models with a degree lower than
the limit D = 3. The accuracy generalization step statistically
verify the op-amp properties model with respect to the reduced
set of process parameters. In the column “gen-accuracy,” we
report the result of the accuracy generalization stage. We can
find that the accuracy is more than 97% for all models.

We apply the brute-force MC, QMC, and MC+LHS to esti-
mate the yield of the op-amp. The brute-force MC method is
run with a target accuracy of 99% and a confidence level of
95%. For the sampling methods, time cost is the circuit sim-
ulation time and “Sim(�)” refers to the number of samples.
The column Sim(�) in our method includes the number of cir-
cuit simulations performed in the surrogate model fitting and
accuracy verification phases. “Sim time” shows the total cir-
cuit simulation time and “fitting/verif time” indicates the time
spent in the model fitting and verification stages excluding the

TABLE VIII
SURROGATE MODELS DEGREE AND ACCURACY (1-NMSE)%

circuit simulation time. “Time” is the time spent in the param-
eter space exploration and the yield calculation. Finally, time
cost is the total computational time.

As in the previous experiments, we observe that the pre-
dicted yield from our approach closely matches the yield
estimation of the MC method. Our method requires fewer
simulations and finishes faster with a speedup of almost 5×.
This application shows again the benefits of a model build-
ing approach rather than direct yield estimation from a circuit
simulator. Also, the column fitting/verif time in our method
shows that even though the reduction result was not very sig-
nificant, the proposed adaptive SR algorithm still renders the
fitting time quite affordable. This result further demonstrates
the scalability of the proposed technique to handle larger prob-
lems. The regression time of the model performance with a
degree lower than the degree limit (i.e., GBW and DCOffset)
is significantly smaller. In fact, the major cost in regression
lies in the computation of the LASSO coefficients. The for-
mer can be easily parallelized, leading to further performance
improvements.

D. Parameters Discussion

In this section, the key parameters in the proposed method
will be discussed.

1) Parameter Rth in Algorithm 1: We construct the fre-
quency model of the ring oscillator example in Section IV-A
with different Rth from 9.10−2 to 1.10−2. Fig. 17 shows the
error of the yield rate with respect to the model accuracy
defined as (1 − Rth)%. The error of the yield is computed
relatively to the yield result of 10 000 MC simulations run.
We can find that when the accuracy is smaller than 97%, the
relative error resulting primarily from the fitting error of the
frequency model increases significantly. To ensure the viabil-
ity of the proposed method, we must ensure that the accuracy
is high enough at the modeling stage. So, in practice, the value
of Rth should be selected from 3.10−2 to 1.10−2.

2) Parameters (α, β, ϕ) in Algorithm 2: We applied
Algorithm 2 to verify and generalize the frequency
model accuracy freq(p̃) of the Ring Oscillator example in
Section IV-A. We checked the property

∀p, p̃ ∈ P Pr((err(f (p), freq(p̃)) ≤ ε) ≥ ϕ (15)



LAHIOUEL et al.: ACCELERATED AND RELIABLE ANALOG CIRCUITS YIELD ANALYSIS USING SMT SOLVING TECHNIQUES 529

Fig. 17. Relative error with respect to Rth.

TABLE IX
RUN LENGTH FOR COMMON VALUES OF ϕ AND (α, β)

where ε = 0.0135 (i.e., 98.65% accuracy). We applied the
algorithm for different values of ϕ and equal error rates (α, β).
We used an indifference region [ϕ − δ, ϕ + δ] where δ =
0.001. The results are summarized in Table IX. Increasing ϕ
and decreasing (α, β) requires a larger number of simulations,
leading to a model verification with better statistical guarantee.
The model accuracy has been verified and generalized to 0.019
(i.e., 98.1% accuracy). In practice, we find that ϕ = 0.95 and
α = β = 0.01 often provide a good tradeoff between statistical
guarantee and computational cost.

3) Tolerance Margin in Failure Performance Bounds: If
the circuit specification includes a performance metric f that
should be greater than a limit flimit (i.e., f > flimit), then
the failure performance region is defined as f ∈ [f l, flimit].
If the value f l is over-approximated (i.e., it is below the value
that can be reached in reality), it will not affect the result of
the yield estimation and it will slightly affect the computa-
tion time. In fact, the SMT solver rapidly discards parts from
the search space that contains no solutions. However, if it is
under-approximated (i.e., it is greater than the value that can be
reached in reality), it will prevent the SMT solver from locat-
ing failure regions in the parameters space and affect the final
yield estimation. In practice, we first set fl = fmin−�f , where
�f = |f min − fnom|, fnom is the nominal value of f and f min is
the minimum value of f discovered during the initial presam-
pling and circuit simulation step. If the SMT solver discovers
failure regions in the parameters space with performance val-
ues f in the neighborhood of fl, that is f ∈ [fl, fl + 3ε], where
ε is the model error, then fl should be further decreased by
�f . Otherwise, the user can be highly assured that the failure
performance bounds have been conservatively characterized.

V. CONCLUSION

This paper presented a methodology for analog circuits
yield analysis. Different techniques such as parameters prun-
ing, adaptive SR, and SPRT were used to build performances
models and verify their accuracy. We then employed an SMT
solving technique and interval arithmetic to exhaustively probe
the parameters space and locate the failure regions of the
circuit operation. The yield is calculated based on the proba-
bilistic volume of the located failure regions. Compared with
existing methods, the proposed method tried to handle yield
problems with: 1) many process parameters; 2) multiple and
distinct failure regions; 3) multiple performances specification;
and 4) extremely high yield rate. The experimental results on

several analog circuits show that the presented method is reli-
able while leading to a simulation speedup when compared to
the brute-force MC.

The proposed method enhanced the run-time and scalabil-
ity of SMT solving techniques by adopting multiple strate-
gies including: 1) reduction of the SMT problem variables;
2) building low complex performances models; 3) reduction of
the SMT problem search space; and 4) adjustment of the SMT
solver resolution and solution refinement. Furthermore, the
computational cost of the proposed surrogate modeling algo-
rithm has been enhanced by reducing the number of process
parameters and avoiding high polynomial degree.

Also, note that the computational cost of the modeling
algorithm may increase if the number of process parameters
and the number of performance metrics largely increases. For
example, in the case where the dimensionality is extremely
high, the adaptive regression must choose a set of important
polynomial terms from numerous (e.g., millions of) possible
candidates and, hence, the surrogate model training algorithm
described in this paper may become computationally unaf-
fordable. In our future research, we will further study more
efficient heuristics and parallelization techniques that may
address this issue. We also plan to integrate the yield estima-
tion method with the nominal sizing method proposed in [17]
to further prove its usefulness in analog design.
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