
678 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 30, NO. 5, MAY 2011

A Robust FSM Watermarking Scheme for IP
Protection of Sequential Circuit Design

Aijiao Cui, Member, IEEE, Chip-Hong Chang, Senior Member, IEEE, Sofiène Tahar, Senior Member, IEEE,
and Amr T. Abdel-Hamid, Member, IEEE

Abstract—Finite state machines (FSMs) are the backbone of
sequential circuit design. In this paper, a new FSM watermarking
scheme is proposed by making the authorship information a non-
redundant property of the FSM. To overcome the vulnerability
to state removal attack and minimize the design overhead, the
watermark bits are seamlessly interwoven into the outputs of
the existing and free transitions of state transition graph (STG).
Unlike other transition-based STG watermarking, pseudo input
variables have been reduced and made functionally indiscernible
by the notion of reserved free literal. The assignment of reserved
literals is exploited to minimize the overhead of watermarking
and make the watermarked FSM fallible upon removal of any
pseudo input variable. A direct and convenient detection scheme
is also proposed to allow the watermark on the FSM to be
publicly detectable. Experimental results on the watermarked
circuits from the ISCAS’89 and IWLS’93 benchmark sets show
lower or acceptably low overheads with higher tamper resilience
and stronger authorship proof in comparison with related water-
marking schemes for sequential functions.

Index Terms—Finite state machine (FSM), intellectual prop-
erty (IP) protection, IP watermarking, sequential design, state
transition graph (STG).

I. Introduction

AS REUSE-BASED design methodology has taken hold,
the very large scale integration (VLSI) design industry is

confronted with the increasing threat of intellectual property
(IP) infringement. IP providers are in pressing need of a
convenient means to track the illegal redistribution of the sold
IPs. An active approach to protect a VLSI design against IP
infringement is by embedding a signature that can only be
uniquely generated by the IP author into the design during

Manuscript received December 28, 2009; revised July 12, 2010; accepted
November 10, 2010. Date of current version April 20, 2011. This work was
supported in part by the Project 61006019 from the National Natural Science
Foundation of China. This paper was recommended by Associate Editor V.
Bertacco.

A. Cui is with the Department of Electronic and Information Engineering,
Shenzhen Graduate School, Harbin Institute of Technology, Shenzhen 518055,
China (e-mail: cuiaj@hitsz.edu.cn).

C.-H. Chang is with the School of Electrical and Electronic Engi-
neering, Nanyang Technological University, 639798, Singapore (e-mail:
echchang@ntu.edu.sg).

S. Tahar is with the Department of Electrical and Computer Engi-
neering, Concordia University, Montreal, QC, H3G 1M8, Canada (e-mail:
tahar@ece.concordia.ca).

A. T. Abdel-Hamid is with the Faculty of Information Engineering and
Technology, German University in Cairo, Cairo 13411, Egypt (e-mail:
amr.talaat@guc.edu.eg).

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TCAD.2010.2098131

the process of its creation. When a forgery is suspected,
the signature can be recovered from the misappropriated IP
to serve as undeniable authorship proof in front of a court.
Such a copyright protection method is widely known as
watermarking. It is cheaper and more effective than patenting
or copyrighting by law to deter IP piracy [1].

Unlike the digital content in the media industry, a VLSI
IP is developed in several levels of design abstraction with
the help of many sophisticated electronic design automa-
tion tools. Each level of design abstraction involves solv-
ing some NP-complete optimization problems to satisfy a
set of design constraints. In the regime of constraint-based
watermarking, the signature to be imprinted is converted
into a set of extra constraints to be extraneously satisfied
by the watermarked design [2]. The watermark embedded
at a higher level of design abstraction must survive the
posterior optimizations so that the same IP distributed at all
lower abstraction levels are protected. From the authorship
verification perspective, IP watermarking can be classified
into static watermarking and dynamic watermarking [3]. In
the watermark detection phase, static watermarking [4]–[8]
requires the downstream design to be reverse engineered to
the level where the watermark is embedded to show the
additional constraints generated by the author’s signature are
satisfied. Reverse engineering is expensive and intrusive as
some critical design data used to produce the watermarked IP
may be exposed in this process. On the other hand, dynamic
watermarking [9]–[17] enables the embedded information to
be detected from the output without reverse engineering by
running the protected design with a specific code sequence.
Dynamic watermarking is typically performed in the state tran-
sition graph (STG) of finite state machine (FSM) [11]–[14],
in the architectural level of digital signal processors [9], [10] or
at the design-for-testability stage [15]–[17]. FSM watermark-
ing embeds the signature at a higher (behavioral/RT) level
of design abstraction whereas the latter normally embeds the
signature after logic synthesis. Embedding the watermark at
the behavioral level has the advantage that it is harder for the
attacker to erase the watermark in the downstream design by
simple redundancy removal or logic manipulation, but it is also
challenging to keep the overhead of watermarked design low.

In this paper, a new dynamic watermarking scheme is
proposed. The watermark is embedded in the state transitions
of FSM at the behavioral level. As a FSM design is usually
specified by a STG or other behavioral descriptions that can

0278-0070/$26.00 c© 2011 IEEE

CUI et al.: A ROBUST FSM WATERMARKING SCHEME FOR IP PROTECTION OF SEQUENTIAL CIRCUIT DESIGN 679

be easily translated into STG, the watermark is embedded into
the STG of any size and remains a property of FSM after the
watermarked design is synthesized and optimized into circuit
netlist. The authorship can be directly verified even after the
downstream integrated circuit design processes by running the
watermarked FSM with a specific code sequence. Unlike [12],
our watermark verification is simple and efficient even for
large designs. On the other hand, as extracting the STG from
a gate level netlist is computationally impractical for large
circuits [11], there are limited options for an attacker to remove
or hide the watermark from the watermarked design netlist or
netlist obtained by reverse engineering its downstream design
[13]. The proposed watermarking scheme is robust against
state reduction attacks. It is different from other transition-
based embedding methods [13], [14] in that it has lower
embedding overhead and has overcome the vulnerability of
auxiliary inputs which are inevitably introduced if the embed-
ding capacity is limited, especially for completely specified
FSM. The weaknesses of the existing FSM watermarking
scheme to be overcome in this paper are discussed in the next
section. Currently, there is no easy way to publicly detect the
existence of watermark, once the FSM is integrated into a chip
and packaged [11]–[14]. Since the test signals can be traced
after the chip is packaged and the scan path provides controlled
accesses to all internal states and combinational circuits of
the watermarked IP, this paper also proposes an alternative
approach to allow the authorship proof of watermarked FSM
to be verified off chip by making it a part of the test kernel.
The proposed watermarking scheme thus makes the authorship
proof harder to erase and the IP authorship easier to verify.

The rest of this paper is organized as follows. In Section II,
we discuss related works. Our new FSM watermarking scheme
is presented in Section III. In Section IV, we analyze the
resilience of the proposed watermarking method. Section V
presents experimental results on benchmark designs. Finally,
Section VI concludes this paper.

II. Related Work

The notion of constraint-based watermarking, first proposed
by Hong and Potkonjak [2], has now been widely applied
to embed authorship signatures into VLSI designs developed
at different design abstraction levels, such as architectural
level [9], [10], combinational logic synthesis level [4]–[7],
and physical placement and routing [8]. At behavior level,
STG representation makes watermarking FSMs in industrial
designs promising as efficient sequential logic synthesis tools
and optimization methods are available to lower the cost of
embedding and detection of watermark. FSM watermarking
has the advantage that the IP author signature can be lucidly
recovered by applying a verification code sequence. As the
STG is in general exponentially larger than the circuit descrip-
tion itself [12], it is computationally impractical to analyze the
circuit to extract the STG. Such a scheme therefore has high
resilience against tampering at lower abstraction levels.

A FSM is characterized by a set of internal states and
transitions between them. Approaches to FSM watermarking
can be classified based on whether the authorship information

is embedded in the states [11], [12] or on the transitions [13],
[14]. In [12], the FSM is watermarked by introducing redun-
dancy in the STG so that some exclusively generated circuit
properties are exhibited to uniquely identify the IP author.
According to the watermark, a specific sequence of states
is generated and will only be traversed with the excitation
of a specific sequence of inputs. The watermark verification
relies on the presence of such extraneous states in the STG.
However, the watermark will not survive upon removal of all
redundant states by the application of a state minimization
program [18]–[20]. Watermarking on the states of FSM is thus
vulnerable to state optimization attacks. Two possible ways to
verify the presence of a watermark are provided in [12]. The
implicit binary decision diagram-based enumeration method is
too slow for large circuits. The ATPG-based method requires
the solution of an NP-complete problem and is not evident that
the verification can be carried out efficiently on large circuits.

The properties of the transitions in FSM can also be
explored for watermark embedding. A FSM watermarking
scheme was proposed in [13] by inserting redundant transitions
into the original STG after the unspecified transitions in
the STG are searched and associated with the user-defined
input/output sequence. The weakness of this scheme is the
monotonous use of only the unspecified transitions with the
specified outputs of STG for watermark insertion. The embed-
ding capacity is limited by the number of free input combina-
tions. For FSMs with limited unspecified transitions, the prob-
ability of coincidence is high. If the watermark length is in-
creased beyond the available number of unspecified transitions
to boost the authorship proof, the overhead aggravates rapidly.

To increase the robustness of FSM watermarking, besides
the unspecified transitions, existing transitions are also utilized
in an output mapping algorithm to watermark the FSM [14].
This method takes advantage of the original transitions in the
STG to lower the overhead of watermarking. The embedding
process is fast as no special effort is made to search the
states of STG. The watermark bits are embedded at large
by a random walk of the STG. When all output bits of an
existing transition of a visited node coincide with a substring
of the watermark, that transition is automatically watermarked.
Otherwise, extra watermarked transition will be added to the
STG. When the number of outputs of FSM increases or
when the FSM is completely specified, output coincidence
of existing transition with the watermark bits becomes rare.
The watermarked FSM is susceptible to removal attack if
the ratio of augmented transitions to coinciding transitions
is high. When only unspecified transitions are watermarked,
the scheme becomes as vulnerable as [13]. If no unspecified
transitions are available for watermarking, a pseudo input
variable is added. This input variable is assigned a fixed logic
value of “0” for all existing transitions, and a fixed “1” for
the added transitions. This discrimination between the existing
transitions and added transitions is conspicuous. Moreover,
the addition of new input variables with fixed assignments
on all transitions increases the decoder logics and hence the
overhead of watermarked FSM significantly. Removal of the
pseudo inputs can easily eliminate or corrupt the watermark
without affecting the FSM functionality.

680 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 30, NO. 5, MAY 2011

In what follows, a more robust technique of transition-based
FSM watermarking is proposed to overcome the shortcomings
of the above methods. Provisions are also made to facilitate
the FSM watermark to be readily verified off-chip through the
scan chain.

III. Finite State Machine Watermarking

A. Preliminaries

A formal definition of a FSM is given in [19] as follows.
Definition 1: A FSM is a tuple M = (�, �, Q, s0, δ, λ),

where � and � are finite, non-empty sets of the input and
output alphabets, respectively. Q is a finite, non-empty set of
states and s0 ∈ Q represents a unique reset state. δ(s, X):
Q×� → Q∪{Ø} is the state transition function and λ(s, X):
Q × � = � ∪ {τ} is the output function, where Ø denotes an
unspecified state and τ denotes an unspecified output.

For si, sj ∈ Q, sj is said to be the next state of si if ∃X ∈ �

s.t. sj = δ(si,X). The application of X on si also produces an
output, Y = λ(si, X) ∈ �. For a FSM with n input and k output
variables, each input alphabet, X = x1 x2 . . . xn, is a string of
n bits and each output alphabet, Y = y1 y2 . . . yk, is a string
of k bits. Each bit of X and Y, xi, yi∈ {0, 1, −}, where “0”
and “1” are the binary constants, and “−” denotes a “don’t
care” value. To avoid unnecessary notational complexity, we
use an upper case letter to denote an input or output alphabet
in � and �, a lower case letter to denote an input or output
variable in {0, 1, −}, and yi,j to address the jth bit of the ith
alphabet, Yi.

FSMs are usually designed with their STG. A STG, STG(M)
= G(V, E), is a labeled directed graph of a machine M of V
nodes and E edges. Each symbolic state, s ∈ Q, is represented
by a node in V. A state transition t from a source node S(t)
to a destination node D(t) is represented by a directed edge,
eij ∈ E, connecting S(t) to D(t). Each edge is tagged with an
input/output label, I(t)/O(t), to encapsulate the relations, D(t)
= δ[S(t), I(t)] and O(t) = λ[S(t), I(t)]. Thus, a state transition t
can be represented by a quadruple [S(t), D(t), I(t), O(t)]. The
input combinations that are absent from all transitions of a
source state in a STG are called the free (or unspecified) input
combinations of that state, and a transition that can be created
from the free input combinations is called an unspecified
transition. Unlike [12], as the number of states in a FSM
is a dominant factor of the implementation complexity, we
modify only the properties of the edge set to synthesize the
watermarked design in order to preserve the nodes in STG(M).

In light of dynamic watermarking, the watermark de-
tection process involves the abstraction of an output se-
quence, Ŷ = {Ŷ1, Ŷ2, · · · , ŶN}, Ŷi ∈ �, from the water-
marked design M̂ by applying a specific input sequence, X̂
= {X̂1, X̂2, · · · , X̂N}, X̂i∈ �, on a state, Ŝ ∈ Q, such that
Ŷ = λ

(
ŝ, X̂

)
= λ

(
δ
(
δ
(· · · δ

(
ŝ, X̂1

) · · ·) , X̂N−1
)
, X̂N

)
. The

watermark synthesis process requires that the outputs of M̂

be compatible with the outputs of M for every input symbol,
X ∈ �, and output mappings of M̂ for every input symbol,
X̂i ∈ � ∀i = [1, N], be dictated by a signature that identifies
the ownership of a design. The signature is cryptographically

Fig. 1. Watermark embedding on transitions of STG. (a) Original STG. (b)
Watermarked STG by the scheme in [14]. (c) Excitation of watermarked
transitions of STG in (b). (d) Watermarked STG by proposed scheme. (e)
Excitation of watermarked transitions of STG in (d).

generated with a secret key so that Ŷ = λ
(
ŝ, X̂

)
becomes a

unique property of M̂.
In [13] and [14], the length N of X̂ and Ŷ is equal to m/k,

where m is the watermark length and k is the number of
output variables of a FSM. Fig. 1(a) shows an example of a
STG with three states, S1, S2, and S3. The state transitions are
determined by a 1 bit input variable and a 3 bit output variable,
i.e., n = 1 and k = 3. When the scheme in [14] is applied to
embed an 8 bit watermark sequence “10101000,” three (m/k
= 3) consecutive transitions will be searched to match the
watermark bits with the output bits. If the search starts from
S1, as all transitions from S1 have no output coinciding with
the first three watermark bits of “101,” a new transition will be
inserted. Since S1 has no free input combination, a new input
variable is introduced. This input variable is assigned to “0”
for all existing transitions and “1” for all added transitions,
and the bits are underlined in Fig. 1(b). A new transition (S1,
S2, 11, 101) from S1 is added with an arbitrarily chosen next
state S2 as indicated by the bold dashed arc in Fig. 1(b). As S2

has no edge with output bits coinciding with “010,” another
new transition (S2, S3, 01, 010) is added with the randomly
selected next state S3. The existing transition (S3, S1, 10, 001),
printed bold in Fig. 1(b), has an output matching with the
watermark bits “00.” So it is reused for watermarking. The
watermarked design synthesized by SIS [23] has 640 units of
area, 7.2 units of delay, and 201.8 units of power. Comparing
with the original design with 448, 6, and 178 units of area,
delay, and power, respectively, the FSM watermarked by [14]
incurs 42.9%, 20%, and 13.4% overheads in area, delay, and
power, respectively.

In this example, the output is a 3 bit (k = 3) alphabet. The
probability of the output of a transition coinciding with the
watermark bits is as low as 1/8, which results in only one

CUI et al.: A ROBUST FSM WATERMARKING SCHEME FOR IP PROTECTION OF SEQUENTIAL CIRCUIT DESIGN 681

out of three existing transitions being used for watermarking.
When k is larger, it becomes more difficult to make use of
existing transitions to reduce the overhead of watermarking
due to the low probability of output coincidence. The fixed
assignment of the added input variable also increases the de-
sign complexity. Moreover, as all output bits are watermarked
in consecutive transitions after the starting state on which X̂
is applied, as shown in Fig. 1(c), the watermarked transitions
are not well obfuscated, causing the watermarked FSM to be
vulnerable.

To overcome these problems, we make N > m/k so that not
all bits in Ŷ are watermarked. The locality of the watermark
is randomized by a cryptographic one-way function such that
any number (from 1 to k) of bits at any output bit from
any transition of STG is probable to be watermarked. The
general idea can be illustrated using the same STG example
in Fig. 1(a). Since N > 8/3, it is set to 8. The localities
of these 8 watermark bits are randomly generated between
[1, k×N = 24] without replication. Suppose these numbers are
{9, 13, 2, 10, 20, 23, 17, 4}. So, eight transitions will be sought
to produce an output sequence that contains the watermark
sequence “10101000” at these bit positions in the output. As
the 8 watermark bits are dispersed into eight transitions, the
probability of the output of an existing transition coinciding
with the watermark bit is as high as 1/2, which results in
five existing transitions being reused for watermarking and
only one new transition is added, as shown in Fig. 1(d). As
the newly added transition is well blent with the existing
transitions, when X̂ is applied on the FSM to detect the
watermark, it is hard for an attacker to differentiate it from
others, as indicated by the bold arrow in Fig. 1(e). To increase
the watermark strength and minimize the next state decoder
logic of watermarked design, we also capitalize on the extra
headroom created by the pseudo input variables and free input
combinations of the FSM. In Fig. 1(d), when a new input
variable is introduced, it does not need to be fixed and it
can remain as don’t care in the final watermarked design if
it is not used for the generation of any new transitions. The
synthesized design from Fig. 1(d) has 520, 6.4, and 190.2 units
of area, delay, and power, respectively. The overheads due to
watermarking are only 16.1% on area, 6.7% on timing, and
6.9% on power. The advantage over [14] is discernible.

With these preliminaries, our proposed FSM watermarking
algorithm will be elaborated next.

B. Generation of Watermark and Random Sequence

A meaningful text string, MSG, is first encoded into a
binary string and then encrypted by a provable cryptographic
algorithm with the secret key Ke of the IP owner. If the length
of the encrypted message is too long, a message digest (MD)
algorithm can be used to reduce its length. The resultant binary
bit vector of length m is the watermark, W = {wi}mi=1 and
wi∈ {0, 1}.

A keyed one-way pseudorandom number generator (PNG)
is used to generate a sequence, B = {bi}mi=1, of m unique
integers between 1 and N × k, i.e., bi ∈[1, N × k] ∀i = 1,
2, . . . , m and bi �= bj ∀i�= j. The length N of sequence X̂
is determined empirically. The purpose of B is to randomly

Fig. 2. Generation of watermarked output sequence.

TABLE I

Intersection of Two Ternary Variables

∩ 0 1 −
0 0 Ø 0
1 Ø 1 1
− 0 1 −

disperse the m watermark bits into Ŷ. If ∃(i, j) ∀i ∈ [1, N]
and j ∈ [1, k] such that (i−1)k + j = bl, then ŷi,j = wl, where
ŷi,j is the jth bit of Ŷi ∈ Ŷ. The secure hash algorithm SHA-1
[21] can be used as an MD as well as in a keyed one-way
PNG for the generation of these two random sequences, W
and B. As it is computationally infeasible to find a collision
of this hash function, the possibility that the same group of
numbers is generated by coincidence is extremely low without
the knowledge of the secret key.

C. Watermarking Insertion

The watermark W is inserted into STG(M) by modifying
some of its edges without changing the operational behavior
of M to find a sequence of N consecutive transitions,
t̂i =

(
ŝi, ŝi+1, X̂i, Ŷi

)
, i = 1, 2, . . . , N, such that each

watermark bit, wl ∈ W, l ∈ [1, m], will be randomly
mapped to one bit in the sequence, Ŷ = Ŷ1Ŷ2 · · · ŶN =
ŷ1,1 · · · ŷ1,kŷ2,1 · · · ŷ2,k · · · ŷN,1 · · · ŷN,k. The mapping from W
to Ŷ is injective but not surjective. The value of each bit ŷi,j

in Ŷ can be determined as follows: if (i–1)k + j = bl, then
ŷi,j = wl, else ŷi,j = “–,” as shown in Fig. 2.

Given an output Ŷi and a source state ŝi, the destination
state ŝi+1 of watermarked transition t̂i will be determined by
an output compatibility check. Two bits, x, y ∈ {0, 1, −}, are
compatible if they are of equal value or one of them has a don’t
care value, i.e., x ∩ y �= Ø. This intersection of two ternary
variables is defined in Table I. Likewise, two alphabets, X and
Y are compatible, denoted by X ≡ Y , if none of the elements
in X ∩ Y = {xi ∩ yi} has a null value.

Starting with i = 1, an arbitrary state, ŝ1∈ Q, is selected.
Let T (ŝi) be the set of transitions emanating from a state, ŝi.
A set of transitions C(ŝi) that is output compatible with Ŷi is
sought, i.e., C(ŝi) = {ti ∈ T (ŝi)|O(ti) ≡ Ŷ1}. To avoid entering
into a deadlock, transitions terminated at a deadlock state (i.e.,
state with no fanout) are excluded from C(ŝi). Four distinct
scenarios are considered for the determination of t̂i.

682 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 30, NO. 5, MAY 2011

1) Case 1: there is only one output compatible transition,
|C(ŝi)| = 1, then t̂i = C(ŝi) and ŝi+1 = D(t̂i).

2) Case 2: if more than one output compatible transition
are found, i.e., |C(ŝi)|> 1, then a transition from C(ŝi),
with the next state having the highest number of free
input combinations, will be selected as t̂i. Its output will
be modified to O(t̂i) = O(t̂i) ∪ Ŷi and ŝi+1 = D(t̂i).

3) Case 3: if |C(ŝi)| = 0, then the free input combinations of
ŝi will be considered. Let F (ŝi) = {X ∈ �|δ(ŝi, X) = Ø}
be the set of free input combinations of ŝi. For F (ŝi) �= Ø,
let D(ŝi) = {ŝj ∈ Q|ŝj = D(t̂i) ∀t̂i ∈ T (ŝi)} be the set of
all destination states of ŝi. ŝi+1 is set to the state with
the highest number of free input combinations in D(ŝi)
(excluding the deadlock states) unless D(ŝi) = Ø. When
D(ŝi) = Ø, ŝi+1 is set to the state with the highest number
of free input combinations in STG(M). If there exists an
edge connecting ŝi to ŝi+1 in STG(M), a new input/output
pair, I(t̂i)/O(t̂i), is added for the transition t̂i. Otherwise, a
new edge directed from ŝi to ŝi+1 labeled with I(t̂i)/O(t̂i)
will be created in STG(M) for t̂i, and O(t̂i) = Ŷi. The
determination of I(t̂i) will be explained later.

4) Case 4: if |C(ŝi)| = 0 and F (ŝi) = Ø, then a pseudo
input variable xn+1 needs to be introduced in M and the
number of input variables n is incremented by 1. xn+1

is set to an unspecified logic value “*” for all existing
transitions. A new edge directed from ŝi to ŝi+1 labeled
with I(t̂i)/O(t̂i) will be created for t̂i. ŝi+1 is set to the
state with the highest number of free inputs in D(ŝi) or
in STG(M) if D(ŝi) = Ø, and O(t̂i) = Ŷi. Both symbols
“*” and “–” can assume either a logic “0” or a logic
“1” value but there is a subtle difference. “–” is meant
for the currently used input combinations whereas “*”
can be associated with either the used or free input
combinations. A “*” can be construed as a reserved
free input literal as its logic state (“0” or “1”) will only
be defined at the time when some input combinations
subsumed by it are freed to become I(t̂i).

The pseudo codes for the determination of watermarked
transitions are shown in Fig. 3. The input alphabets for the
watermarked transitions found in Cases 3 and 4 are determined
by the subroutine Find shown in Fig. 4.

When there is no existing transition with compatible output,
as in Cases 3 and 4, the input alphabet I(t̂i) for O(t̂i) = l[ŝi,
I(t̂i)] = Ŷi needs to be determined. I(t̂i) is set to one of the
free input combinations of ŝi if no “*” appears in all the used
input combinations of ŝi. Otherwise, an alphabet, X ∈ I(tu),
tu ∈ T (ŝi), that contains at least one “*” from the set of used
input combinations of ŝi will be split into two. Initially, I(t̂i) =
X. A “*” bit in X is selected and assigned a fixed but randomly
generated binary constant, a ∈ {0, 1}, while the corresponding
“*” bit in I(t̂i) is assigned its complement ā. Meantime, all the
“–” bits in I(t̂i) are replaced by the “*” bits. For example, if
X = “1–*” and a = 0, then it will be split into X = “1–0”
and I(t̂i) = “1*1.” As the number of transitions with “*” bits
in the pseudo input variable space enormously outnumbers
those in the original input variable space, to simplify the next
state and output decoder design, it is lucrative to preserve
“*” in the pseudo input variable space whenever free input

Fig. 3. Determination of watermarked transition.

Fig. 4. Finding input alphabet for the watermarked transition.

combinations from the original variable space can be used to
produce I(t̂i). In the search for the next state ŝi+1 an input
alphabet with j exclusive “*” bits is considered as a cover
of 2j−1 free input combinations. When two states possess the
same highest number of free input combinations, preference
will be given to the state that covers the highest number of
output combinations in its fanout transitions.

The above watermarking process is repeated for i = 2 to N
until t̂N is determined. The residual “*” in the input alphabets
of all edges will be replaced with “–” and the resultant STG(M)
is the watermarked STG(M̂) and X̂ = I

(
t̂1

)
I
(
t̂2

) · · · I (
t̂N

)
.

If the overhead of watermarked design is not satisfactory, the
entire process can be repeated with an adjusted value of N.
The overall watermark insertion process is shown in Fig. 5.

For each pseudo input variable added, at least 2n−1 potential
free input combinations are created in every state transition,

CUI et al.: A ROBUST FSM WATERMARKING SCHEME FOR IP PROTECTION OF SEQUENTIAL CIRCUIT DESIGN 683

Fig. 5. Algorithm for FSM watermarking.

where n refers to the total number of input variables in-
cluding the pseudo variables. These free input combinations
have been consumed in [14] by fixing the value of each
pseudo input variable to be “0” consistently for all existing
transitions and “1” consistently for the watermarked transition
immediately upon its creation. This has not only increased the
complexity of the decoders, but also made the watermarked
transition discernible from the pseudo inputs. The introduction
of reserved free literal allows the assignments of “*” in the
input alphabets of all transitions to be deferred until some
input combinations subsumed by it are needed to watermark
a transition. The transformation of “–” to “*” in I(t̂i) when
a random assignment is made on “*” serves two important
purposes. First, it judiciously preserves the don’t care inputs
in the transitions to optimize the design of next state and
output decoders. Second, it allows the same edge to be
revisited for watermarking to maximally exploit the free input
combinations. This will minimize the required number of
pseudo input variables, especially when a long watermark is
to be embedded for a strong authorship proof.

The number of transitions N has no bearing on the probabil-
ity of coincidence but it has impact on the cost of watermark-
ing. If N is small, the probability of finding compatible outputs
from existing transitions is low and more design overhead will
be incurred. On the other hand, if N is large, fewer new tran-
sitions and pseudo inputs need to be added which will lower
the cost of watermarking, but the code sequences required
to detect the watermark are long. To avoid introducing an
excessive number of unspecified transitions due to the addition
of pseudo input variables, N needs to be sufficiently larger
than m/k. When N ≈ m, each output alphabet in Ŷ contains
one watermark bit on average and the resultant watermarked
design generally possesses acceptably low overhead. As our
embedding algorithm can run very quickly even for large FSM,
the watermarking process can be repeated for different N to
select the least overhead watermarked design with reasonable
verification code length. The procedure shown in Fig. 6 is
suggested to legitimately limit the number of trials. Let Awmi

denote the area of watermarked FSM with N = Ni at the ith
trial. Ni = Ni−1 ± δi and N1 ≈ m. Ni that is incremented (or
decremented) by δi depends on the extent to which Awmi−1 is

Fig. 6. Minimization of FSM watermarking overhead by adaptation of N.

increased (or reduced) over the previous trial. The standard
deviation, σi, of Awm is defined as

σi =

√√
√
√1

i

i∑

j=1

(Awmj
− Awm)2 (1)

where Awm = 1
i

∑i
j=1 Awmj

is the mean area of trial water-
marked FSMs. The trial terminates when σi/A ≤ ε or when
N ≥ Nmax, where ε is a small preset value, A is the area of
FSM before watermarking, and Nmax is some preset limit on
the verification code length. The least overhead watermarked
design from among the trials is selected.

D. Watermark Detection

To verify the authorship, one needs to run the watermarked
FSM with the input sequence, X̂ = {X̂1, X̂2, · · · , X̂N}, applied
on state ŝ1. If the operation halts before N transitions, the
watermark cannot be detected. Otherwise, an output sequence
Ỹ of N × k bits is obtained. The bits indexed by the set B of
m random numbers are selected from Ỹ to form an ordered
sequence W̃ . The authorship is proved if W̃ perfectly matches
or is highly correlated with the watermark W of the IP owner.

Although the ownership can be authenticated directly by
running the watermarked FSM with X̂, it does not permit the
IP authorship to be field authenticated by the IP buyers after
the watermarked FSM has been implemented into an integrated
circuit and packaged. Since only the test signals can be traced
after the chip is packaged, the authorship of the watermarked
FSM can be verified off chip by making it a part of the test
kernel. A sequence of test vectors can be applied serially
through the scan-in, Sin pin to bring M̂ to the designated
state ŝ1 in the test mode, followed by N designated test
vectors that incorporate X̂. The output responses Ỹ can then be
collected serially from a scan-out Sout pin externally to verify
the authenticity of M̂. This convenient way of watermark
verification can be performed by the end users provided that
scan design is also incorporated in the watermarked IP chip.

Since the scan chain is used as a medium to aid author-
ship verification of the IP encapsulated in the test kernel,

684 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 30, NO. 5, MAY 2011

Fig. 7. Example of watermarking on FSM. (a) Original FSM. (b) Use
of existing transition. (c) Introduction of pseudo input variable and new
transition. (d) Watermarked FSM. (e) Excitation of watermarked transitions.

it can also be independently protected by [16] and [17] to
boost the confidence in positive watermark identification. By
watermarking the scan chain of watermarked FSM using the
techniques proposed in [16] and [17], the aggressor needs
additional effort to also successfully tamper or redesign the test
structure to provide the fault coverage of the pirated IP. Failure
to detect the scan chain signature alerts malicious tampering or
removal of the test structure in attempt to misappropriate the
protected IP.

E. An Illustrative Example

The STG of a simple FSM to be watermarked is shown
in Fig. 7(a). It has five states, represented mnemonically as
Q = {s1, s2, s3, s4, s5}. Assume that the encrypted watermark
W = “110110.” The number of output labels to be mapped,
N should be greater than 6/2 = 3 as m = 6 and k = 2. Let
N = 7. Suppose the set of six random numbers between 1 and
14 (k × N) generated by the PNG with the IP owner’s secret
key is B = {9, 4, 2, 7, 12, 3}.

Following the algorithm in Fig. 2, since 2(1 − 1) + 1 = 1 /∈
B, ŷ1,1 = “–;” since 2(1 − 1) + 2 = 2 = b3, ŷ1,2 = w3 = “0;”
3 = b6⇒ŷ2,1 = w6 = “0;” 4 = b2 ⇒ŷ2,2 = w2 = “1;” 5 /∈ B
⇒ŷ3,1 = “–;” 6 /∈ B ⇒ŷ3,2 = “–;” 7 = b4 ⇒ŷ4,1 = w4 = “1;”
8 /∈ B ⇒ŷ4,2 = “–;” 9 = b1 ⇒ŷ5,1 = w1 = “1;” 10 /∈ B ⇒ŷ5,2

= “–;” 11 /∈ B ⇒ŷ6,1 = “–;” 12 = b5 ⇒ŷ6,2 = w5 = “1;” 13
/∈ B ⇒ŷ7,1 = “–” and 14 /∈ B ⇒ŷ7,2 = “–.” Hence, Ŷ = “–0
01– –1–1– –1– –.”

An arbitrary starting state, ŝ1 = s1, is selected to commence
the watermarking process. For Ŷ1 = “ −0,” C(ŝ1) = {s1, s2, s4}
and none of them has any free input combination. ŝ2 can be set
to any state of C(ŝ1), say s1, and Ŷ1 = “00.” t̂1 is marked by a

heavy edge in Fig. 7(b). For Ŷ2 = “01,” there is no compatible
output from T (ŝi) and C(ŝ1) = Ø. Since s3 has the most free
input combinations among D(ŝ2), a new transition from s1 to
s3 is added. As F (ŝ2) = Ø, a pseudo input variable, x3, is
introduced. It assumes a value of “*” on the inputs of all
existing transitions. Suppose the input of transition, t = (s1, s3,
“10*,” “11”), is split into I(t) = “101” and I(t̂2) = “100.”
The new transition, t̂2 = (s1, s3, 100, 01), is added into the
STG(M) as indicated by a dotted edge in Fig. 7(c). For Ŷ3 =
“–,” C(ŝ3) = {s2, s4}. Both states have equal number of free
input combinations but s4 is preferred over s2 as s4 covers more
output combinations (“01” and “11”) in its fanout transitions
than that (“01”) of s2. Therefore, t̂3 = (s3, s4, “11*,” “10”).
The process continues until all seven transitions are identified.
Then all residual “*” in the final STG are changed to “–.”
The watermarked STG is shown in Fig. 7(d), where the
transitions of Cases 1 and 2 are marked by heavy edges and
the added transitions of Cases 3 and 4 are marked by dotted
edges. Fig. 7(e) shows the complete watermarked sequence of
inputs and outputs and the transitional states. The overhead
of the synthesized watermarked FSM can be checked at this
point. N is modified and the watermarking process is repeated
according to Fig. 6 until the terminal criterion is met.

To verify the existence of watermark W, an input sequence,
X̂ = (“01–,” “100,” “11–,” “0–0,” “1– –,” “00–,” “00–”), “–
” ∈ {0, 1}, is applied on the state s1. A binary stream W̃ is
retrieved from the bit positions, 9, 4, 2, 7, 12, 3 of the output
sequence Ŷ. If W̃ = W = “110110,” the authorship is proved.

IV. Watermark Resilience Analysis

A. Authorship Credibility

The credibility of the authorship proof can be evaluated
by the probability that an unintended watermark is detected
in a design [13]. Suppose that an arbitrary input sequence
exits to excite N ′ (N ′ = N) consecutive transitions through the
reachable states of a FSM with k output variables. The output
sequence of length N ′ (each output alphabet has k binary bits)
will be one of 2k×N ′

possible solutions. The odds that the
output sequence contains the identical watermark bits at the
positions specified by the author’s signature are

Pc =
2k×N ′−m

2k×N ′ =
1

2m
. (2)

A longer watermark has a lower probability of coincidence.
As m increases, more new transitions may have to be added.
The beauty of our method is the input sequence length,
N can increase to mitigate the overhead increment without
compromising the authorship credibility.

The false positive rate, which is the probability that the
watermark is detected in the output sequence under a different
random input sequence, can be estimated statistically. If there
are NC(τ) output sequences detected with at least τ fraction
of matched watermark bits when NT random input sequences
are applied, then the false positive rate is determined as

Pλ (τ) =
NC (τ)

NT

(3)

CUI et al.: A ROBUST FSM WATERMARKING SCHEME FOR IP PROTECTION OF SEQUENTIAL CIRCUIT DESIGN 685

Fig. 8. FSM retiming.

where 0 ≤ τ ≤ 1. To constitute a false positive, τ = 1 since
all bits extracted from the specific positions by the detector
need to be matched exactly with the watermark bits. As τ

reduces, Pλ increases and a threshold of discrimination can be
determined empirically that with certain degree of confidence,
the authenticity of the design can be assured by detecting only
a fraction of the watermark bits. A suitable error correction
scheme can also be considered based on Pλ to correct the
partially corrupted output subsequence due to tampering.

Pc and Pλ are important to repudiate the denial of au-
thorship. To show that the output sequences excited by the
verification input cannot be obtained by trial-and-error to
match the watermark, the claimant needs only to demonstrate
that the watermark and the watermarked positions in the output
sequence are uniquely generated with a cryptographic one-way
function using a secret key in his/her possession, provided that
Pc is very low and Pλ is low enough for a sufficiently large
number of random tests.

B. Resilience Analysis

The following conceivable attacks on watermarking of se-
quential circuit designs are analyzed with Alice as the IP
owner and Bob as the attacker, who attempts to tamper an
illegally acquired copy of Alice’s watermarked IP.

1) Combinational Logic Re-Synthesis: Bob may use var-
ious logic optimization tools [22], [23] to re-synthesize the
combinational logic of watermarked FSM. Such combinational
logic re-synthesis operation maintains the inputs/outputs be-
haviors of flip-flops in the design and has no effect on the STG
structure. Therefore, the watermark embedded on the STG is
robust against attack by combinational logic re-synthesis.

2) Circuit Retiming: Bob may apply retiming transfor-
mation [22], [24] to move the latches across the combi-
national logic blocks of Alice’s watermarked FSM without
changing the design functionality. Retiming can change the
STG structure. Such transformation can be divided into three
cases for analysis: 1) splitting one state into two one-step
equivalent states; 2) merging two one-step equivalent states
into one state; and 3) switching between two states that are
one-step equivalent. Two states si and sj are said to be one-step
equivalent if and only if the two states have the same outputs
and the same next state under the same input excitation.

The consequence of splitting, merging or switching trans-
formation on the outputs retrieved in the watermark detection
process can be analyzed by the STG before and after retiming.
As an example, let states s31 and s32 be two generic one-
step equivalent states and the transitions (s1, s31, xt , yt) and
(s31, s5, xt+1, yt+1) are traversed in the watermarking process
as shown in Fig. 8. Upon retiming, states s31 and s32 are

merged into state s3. When the sequence X̂ is applied onto
the retimed FSM, transitions (s1, s3, xt , yt) and (s3, s5, xt+1,
yt+1) are traversed, the same outputs as Alice’s watermarked
FSM are generated from these two steps. Similarly, splitting or
switching operations on the watermarked FSM will not prevent
the detection of Alice’s watermark. Alice’s watermark will not
be removed as a state can only be substituted by the state with
the same behaviors in retiming transformation.

3) State Recoding (or Assignment): Bob may recode the
states of Alice’s watermarked FSM to remove her watermark.
State assignment changes the mnemonic representations of
states in Q. It has no effect on the functional specification
of FSM [25]. As the watermark is embedded in the state tran-
sitions rather than the states, Alice’s watermark will survive
the state recoding attack.

4) Combinational and Sequential Redundancy Removal:
When a redundant fault is identified in a sequential circuit, the
part of logic can be deleted to simulate the effect of fault. Bob
can remove the combinational logic that is not necessary for
the correct circuit behavior. This attack has a similar effect as
the combinational resynthesis attack as far as the sequential
behavior is concerned. So it will not affect the embedded
watermark.

Elimination of sequential redundancy may change δ and λ

while maintaining the I/O behaviors. The sequential redundan-
cies can be categorized into sequentially non-excitable (SNE)
and non-distinguishable (ND) faults [26]. An SNE fault is a
fault that cannot be excited from any reachable state [26].
As an SNE fault does not affect the reachable part of STG,
removal of SNE faults maintains the integrity of reachability
information. In our watermarking scheme, all states traversed
by X̂ are reachable as long as the starting state, ŝ1 is selected
as a reachable state after the reset state, s0. This can be easily
guaranteed. As all IOs on the edges of these reachable states
are not changed, Alice’s watermark can still be detected upon
the removal of SNE faults.

Although an ND fault does not affect the I/O behavior,
it may change the reachable part of STG. An ND fault can
be identified by verifying the equivalence between the water-
marked circuit and the circuit obtained by forcing one node
in the circuit to a constant value [26]. If they are equivalent,
then a stuck-at fault at that node is non-detectable and some
redundancy can be removed. The FSM watermark may be
partially erased if the ND faults are detected around the circuit
corresponding to the added transitions in the watermarking
process. However, this attack is expensive since it requires
for each node a computation of equivalence between two
possibly large sequential circuits. This equivalence is obtained
by computing the product machine and its set of reachable
states. Even with the use of implicit STG traversal techniques,
the applicability of this type of sequential redundancy removal
is restricted to small circuits. An ND fault can be excited, but
none of the excitation vectors can be extended to a test as its
effect can never be observed from any primary output.

5) State Reduction: Bob may perform a state reduction on
Alice’s watermarked FSM based on the identification of sets
of compatible states (compatibles) [26], [27]. A set of states

686 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 30, NO. 5, MAY 2011

is a compatible if and only if for each input sequence, there
is a corresponding output sequence which can be produced by
each state in the compatible. All outputs in the transitions
are preserved in the reduced FSM even if the states have
been substituted by their compatibles. As the watermark is
embedded in the transitions instead of the states, our FSM
watermarking will survive the state reduction operation. How-
ever, a watermark embedded on the states of STG, as in the
scheme of [12], is vulnerable to the state reduction operation.

6) Transition Elimination: Bob may try to eliminate some
transitions in t̂. In our watermarking scheme, the existing tran-
sitions and the added transitions are indistinguishably utilized
for watermarking. There are few added transitions and they are
randomly interleaved in the watermarked transition sequence,
t̂. There is no easy means to eliminate these transitions from
the circuit netlist without modifying the correct behaviors of
FSM. The time and effort required for a successful attack is
almost as good as redesigning the IP function from scratch.

7) Removal of Circuitries with Pseudo Inputs: The pseudo
inputs, if any, are documented as part of the test or primary
inputs in the distributed watermarked IP. Due to their random
logic assignments, and the high number of don’t cares they
introduced, they are well camouflaged after the logic opti-
mization process. Even if Bob knows about the addition of
some pseudo inputs, removal of the circuitries connected to
these pseudo inputs will cause malfunction to the watermarked
FSM. The conflicts arise because the unspecified transitions
created by the pseudo inputs can have different outputs or
destination states under the same input combinations as the
existing transitions upon the removal of the pseudo inputs.
For example, in Fig. 7(c), when the pseudo input variable
is eliminated by the removal of some subcircuits, there will
be two transitions from state s1 with I/O = 10/11 and 10/01,
respectively, to state s3. This is obviously an output conflict,
hence such attack is not sustainable.

8) Ghost Search: Without tampering Alice’s design, Bob
may claim his ownership of Alice’s FSM by specifying some
bits in the output sequence generated by his own selected
input sequence to make up his watermark. However, it is
computationally infeasible for Bob to reverse the PNG to prove
that the positions of these extracted bits are cryptographically
related to his signature. Alternatively, he can generate a group
of integers with his key using a one-way function and then
select the bits from these positions to extract his watermark.
Again, it will be computationally infeasible for him to show
that the watermark is cryptographically associated with a
meaningful ownership message. It is also computationally
impractical for Bob to enumerate different sequences of input
combinations to match his own watermark to the extracted
output sequence of Alice’s FSM in his chosen bit positions.
The number of trials grows exponentially with the size of
FSM. Depending on Bob’s selected bit positions, there is no
guarantee that such an input sequence can be found even after
trying all possible input sequences.

9) Addition of Watermark: Bob may embed his own
watermark into Alice’s watermarked design to claim his
ownership, if he has the necessary tools and knowledge of
the watermarking process. Owing to the resilience of the

Fig. 9. Watermarking with third party keeping a time-stamped signature.

proposed watermarking scheme against watermark erasure
without changing the properties of FSM, even if Bob can
succeed in adding his own watermark into Alice’s water-
marked FSM, Bob’s watermarked design will contain Alice’s
watermark. Therefore, Alice can still correctly retrieve her
watermark bits from Bob’s watermarked design but the reverse
is not possible for Bob.

If the protected IP is distributed at the gate-level, Bob
would have to first recover the STG from the netlist, which
is computationally impractical for large designs [11]. Addi-
tionally, Bob needs to repeat the entire watermarking and
optimization process to ensure that the overhead is acceptable.
Yet, this problem can be solved by using a secure third party
(entity), e.g., a legal firm or a watermarking governing body.
In this case, Alice will generate a time-stamped authenticated
signature, and keep it at an authorized legal firm. This firm will
keep a record of such signatures and the date it was generated,
which can be used in front of a court to show the exact time the
watermark was generated and embedded in any future dispute.
The overall IP watermarking framework is depicted in Fig. 9.

V. Experimental Results

The experimentation is performed on the circuits, which are
described in KISS2 format [23], from the IWLS’93 benchmark
set and some FSM designs from the ISCAS’89 benchmark
set. The FSM watermarking scheme is implemented using
the C++ language. 64 bit and 128 bit watermarks were
embedded into each FSM design. Using the SIS [23] tool,
state minimization and state assignment are carried out on
the original and watermarked designs. The optimized FSM
designs are synthesized using the algebraic script from SIS
and technology mapped to the Mississippi State University
(MSU) standard cell library. All experiments were run on a
750 MHz Sun UltraSPARC-III with Solaris operating system
and 2 GB of memory.

Table II summarizes experimental results conducted on
ISCAS’89 and IWLS’93 benchmark designs. The columns
“|Q|,” “n,” and “k” are the numbers of states, input variables,
and output variables of each FSM design, respectively. “A”
and “D” are the area and delay, respectively, of the optimized
design as reported by SIS [23] before watermarking. “P” is
the estimated power in µW obtained by using GENERAL
delay model [23] with 20 MHz clock and 5 V supply. Each
design is watermarked with the first 64 and 128 bits of SHA-1
hash values of the ownership information. Different lengths
of verification code sequence, N have been experimented with

CUI et al.: A ROBUST FSM WATERMARKING SCHEME FOR IP PROTECTION OF SEQUENTIAL CIRCUIT DESIGN 687

TABLE II

Statistics for ISCAS’89 and IWLS’93 Benchmarks

Circuit |Q| n k A D P m N na �A �D �P

s27 6 4 1 824 7 307
64 600 2 3.9 5.7 −6.2

128 300 2 3.9 5.7 −6.2

s208 18 11 2 1912 13 672
64 100 4 3.8 −9.2 6.0

128 100 4 4.2 −9.2 10.3

s386 13 7 7 2512 13 842
64 100 5 20.7 7.7 9.7

128 600 5 22.6 10.8 15.2

s832 25 18 19 5144 19.8 1714
64 40 4 10.0 2.0 6.5

128 200 6 18.2 −4.0 16.2

s510 47 19 7 5528 18.4 2021
64 100 4 6.5 −3.3 2.8

128 200 7 13.5 −3.3 10.1

s820 25 18 19 6112 20.6 2089
64 200 3 −10.0 −4.9 −17.3

128 300 4 3.8 −2.9 −3.0

s1488 48 8 19 105 23 3391
64 200 2 3.0 5.2 10.8

128 300 4 5.9 1.7 12.8

s1494 48 8 19 109 24.8 3746
64 300 4 −0.4 −2.4 −6.5

128 300 5 8.3 −1.6 4.4

bbara 10 4 2 1112 10.4 433
64 600 3 8.6 −11.5 −4.7

128 600 5 17.3 −1.9 1.4

dk15 8 3 5 1440 10 556
64 500 1 0.6 4.0 4.3

128 500 1 8.9 12.0 2.7

ex4 14 6 9 1584 10.8 553
64 300 11 30.8 3.7 36.7

128 600 9 22.7 1.9 26.9

opus 10 5 6 1768 10.8 612
64 400 4 10.0 11.0 4.9

128 400 9 21.7 18.5 16.5

sse 16 7 7 2560 12.2 905
64 400 3 16.3 11.5 15.1

128 500 6 13.1 16.4 −2.5

ex1 20 9 19 4360 16 1439
64 300 5 18.7 16.3 15.0

128 200 10 32.5 20.0 22.2

s1 20 8 6 5112 16.6 1844
64 200 4 −7.5 1.2 −8.0

128 500 7 9.4 21.7 4.7

tbk 32 6 3 5352 19.6 1870
64 400 2 −2.4 3.1 −13.9

128 200 6 0.0 −0.01 −14.7

styr 30 9 10 8408 22.2 3028
64 60 5 7.4 0.0 −4.2

128 200 5 3.0 −11.7 −1.2

sand 32 11 9 9096 24.8 3128
64 400 4 1.0 −13.7 −1.4

128 400 5 3.3 0.0 −6.5

planet 48 7 19 9784 21 3454
64 100 5 1.4 0.95 −3.5

128 100 6 12.1 −2.9 7.9

ram test 72 16 24 9840 23.8 3563
64 600 3 −7.0 −16.7 −16.0

128 600 4 −7.0 −10.1 −13.2

scf 121 27 56 12 640 23.8 3705
64 400 13 11.8 9.2 0.8

128 400 15 17.3 10.1 6.5

N1 = 80 and Nmax = 600. δi = 20 when Ni < 100 and di =
100 when Ni ≥ 100. Typically, σi/A converges to ε = 0.05
in less than five trials. The value of “N” indicated is the
one that produces the least area overhead watermarked FSM
design. For most designs tested, only one pseudo input variable
is introduced in the watermarking process while no pseudo
input variable is needed for the designs, “ex4,” “ex1,” and
“sand.” “na” denotes the number of new transitions added onto
the watermarked STG. �A, �D, and �P are the percentage
area, delay, and power overheads, respectively. A negative
percentage implies that watermarking has actually improved
the performance. In general, more new transitions have been
added onto the designs with 128 bit watermark than with 64
bit watermark. The performance overheads decrease as the size
of FSM increases. For the six larger designs (12 watermarked
designs), the average area has increased by 4.23% but the av-

TABLE III

Comparison with FSM Watermarking Method in [14]

Circuit m Area Delay Power
[14] Prop. �A [14] Prop. �D [14] Prop. �P

s27
64 1064 856 19.6 7.8 7.4 5.1 411 288 30
128 1064 856 19.6 7.8 7.4 5.1 411 288 30

s208
64 3680 1984 46.1 15.8 11.8 25.3 1314 712 45.8
128 5248 1992 62.0 19.8 11.8 40.4 1968 741 62.3

s386
64 3976 3032 23.7 17.8 14.0 12.5 1257 923 26.6
128 4592 3080 32.9 16.2 14.4 11.1 1479 970 34.4

s832
64 6256 5656 9.6 21.0 20.2 3.8 1939 1826 5.83
128 6904 6080 11.9 21.6 19.0 12.0 2026 1991 1.73

s510
64 7272 5888 19.0 21.2 17.8 16.0 2641 2077 21.4
128 7816 6272 19.8 19.4 17.8 8.2 2805 2226 20.6

s820
64 6208 5504 11.3 20.6 19.6 4.9 1944 1727 11.2
128 7352 6344 47.0 21.4 20.0 6.5 2183 2025 7.24

s1488
64 12 032 10 864 9.7 23.2 24.2 −4.3 3877 3758 3.07
128 14 120 11 168 20.9 25.6 23.4 8.6 4399 3825 13.0

s1494
64 12 488 10 856 13.1 29.0 24.2 16.6 4166 3503 15.9
128 12 816 11 808 7.9 25.2 24.4 3.2 4143 3912 5.58

bbara
64 2512 1208 51.9 13.2 9.2 30.3 888 412 53.6
128 2512 1304 48.1 13.2 10.2 22.7 888 439 50.6

dk15
64 2104 1448 31.2 11.6 10.4 10.3 738 581 21.3
128 2504 1568 37.4 13.6 11.2 17.6 946 571 39.6

ex4
64 2104 2072 1.5 11.4 11.2 1.8 756 756 0.0
128 3008 1944 35.4 13.0 11.0 15.4 1077 702 34.8

sse
64 4216 2976 29.4 15.4 13.6 11.7 1474 1041 29.4
128 4496 2896 35.6 15.2 14.2 6.6 1460 882 39.6

ex1
64 5632 5176 8.1 16.0 18.6 −16.3 1764 1654 6.24
128 6056 5776 4.6 18.4 19.2 −4.3 1880 1758 6.49

s1
64 5760 4728 17.9 16.8 16.8 0.0 2109 1695 19.6
128 7376 5592 24.2 19.6 20.2 −3.1 2675 1935 27.7

Sand
64 8944 9184 −2.68 20.4 21.4 4.9 3013 3086 2.37
128 10 952 9392 14.2 21.6 24.8 −14.8 3674 2925 20.4

Planet
64 11 552 9920 16.5 22.6 21.2 6.2 3787 3332 12.0
128 11 712 10 968 6.35 25.2 20.4 19.0 4064 3725 8.34

styr
64 9240 9032 2.25 25.0 22.2 11.2 3014 2900 3.78

128 10 216 8656 15.3 24.2 19.6 19.0 3407 2992 12.2

scf
64 13 568 14 128 −4.1 24.4 26 −6.6 3679 3733 −1.5
128 13 880 14 824 −6.8 22.8 26.2 −14.9 3625 3945 −8.8

erage timing and power have actually improved by 0.52% and
0.33%, respectively. It is conjectured that the watermarking
overheads will become negligible for FSMs with many more
states and input and output variables than those simulated.

According to (2), the probabilities of coincidence, Pc =
5.42 × 10−20 and 2.49 × 10−39 for m = 64 and 128, respec-
tively. The false positive rate Pλ is determined empirically by
applying 1000 randomly generated input code sequences of
length N onto each watermarked FSM at the watermarked
starting state. None of the output sequence was detected
with a perfectly matched watermark for each watermarked
FSM, i.e., Pλ(τ = 1) = 0 for all watermarked designs. It is
thought to be reasonable that a sufficiently low probability is
adequate to prove the authorship and make the denial attacks
unsustainable. Hence, we reduce the watermark correlation
from 100% to 75% match. It was found that for τ = 0.75,
Pλ = 0 for all the watermarked designs. When τ is reduced to
0.7, only a small number of watermarked designs has Pλ> 0.
Based on these results, it is reasonable to assume that when
more than three quarters of watermark bits are matched, the
authorship proof is still veracious.

688 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 30, NO. 5, MAY 2011

TABLE IV

Comparison with FSM Watermarking Method in [12]

Circuit M Area Delay
[12] Proposed �A (%) [12] Proposed �D (%)

s27
64 297 51 82.8 21.8 7.4 66.1
128 541 51 90.6 25.4 7.4 70.9

s208
64 308 164 46.8 15.6 11.8 24.4
128 441 170 61.5 19.8 11.8 40.4

s386
64 444 248 44.1 17.8 14.0 21.3
128 644 258 59.9 23.0 14.4 37.4

s499
64 879 247 71.9 34.6 13.4 61.3
128 1230 308 75.0 39.6 16.4 58.6

s832
64 680 486 28.5 22.2 20.2 9.0
128 804 518 35.6 24.4 19.0 22.1

s510
64 581 512 11.9 20.6 17.8 13.6
128 688 545 20.8 21.0 17.8 15.2

s820
64 669 463 30.8 26.4 19.6 25.8
128 814 539 33.8 24.0 20.0 16.7

s1488
64 1318 968 26.6 33.4 24.2 27.5
128 1495 981 34.4 31.0 23.4 24.5

s1494
64 1329 945 28.9 32.8 24.2 26.2
128 1547 1050 32.1 31.4 24.4 22.3

We used the SIS tool and the same technology library to
synthesize the designs watermarked by the method in [14] and
compared their areas and delays with those of our proposed
(abbreviated as Prop.) FSM watermarking method in Table III.
�A, �D, and �P are the percentage reductions of area, delay
and power, respectively, of our proposed scheme over those
of [14]. It is evident that most designs watermarked by our
method have lower area, timing, and power overheads.

We also compared our watermarking method with Oliveira’s
[12] FSM watermarking scheme in Table IV. As the same
synthesis tool and technology library were used, the area
and delay results are excerpted from [12] for those circuits
provided with both BLIF and KISS2 formats in the benchmark
suite and have comparable literal counts in their original
designs before watermarking. In Table IV, the area is measured
in terms of the number of literals to be consistent with [12]. All
designs watermarked by our method have consistently lower
area and timing overheads than [12]. It should also be noted
that the watermarking method of [12] does not survive the
state reduction operation (compare with Section IV-B.5).

In Table V, we also compare our FSM watermarking method
with the FSM watermarking method [13]. For consistency, the
designs are watermarked with the same length of watermark
as [13] and synthesized using the same MSU script [23]
from SIS. The watermark length “m” used by [13] is design
dependent and can be determined by the product of the number
of output variables |�| of the watermarked design and the
minimum number of watermarked transitions nmin needed to
satisfy the required probability of coincidence (Pu in [13]). It is
evident that our method incurs lower area overhead than [13]
for the same constraint on the watermark robustness. Note here
that no delay statistics are provided in [13] to compare with.

As SIS tool can only read STG in KISS2 format, to show the
applicability of our method on large designs, we use GenFSM
[28] to generate ten arbitrary STGs of hundreds to thousands
of transitions for experimentation by specifying the number of

TABLE V

Comparison with FSM Watermarking Method in [13]

Circuit m Area
[13] Proposed �A (%)

s27 36 1.53k 0.62k 59.5
bbara 30 2.01k 1.05k 47.8
dk14 35 1.84k 1.74k 5.4
styr 40 10.69k 7.54k 29.5
bbsse 70 2.62k 2.46k 6.1
cse 35 4.08k 3.62k 11.3
sse 21 2.43k 2.34k 3.7
ex1 76 5.55k 4.38k 21.1
ex1 38 5.40k 4.06k 24.8
scf 112 21.02k 14.4k 31.5

TABLE VI

Statistics of Watermarking on FSMs Generated by GenFSM

FSM n k |Q| T A D P m �A �D �P

F1 5 10 10 320 2415 35.2 4456
64 −0.0 17.0 −3.8

128 −0.6 5.1 −5.6

F2 5 10 14 448 3063 37 6022
64 2.3 3.2 0.18

128 0.8 2.16 −0.25

F3 3 8 80 640 3990 68.2 5217
64 1.25 −5.57 −1.30

128 0.10 −17.6 −3.05

F4 3 7 100 800 4552 69.6 5983
64 −0.62 −8.05 8.14

128 1.10 −8.3 7.24

F5 3 7 200 1600 8875 43 11 054
64 −1.18 −2.79 −1.38

128 0.7 −5.12 −0.62

F6 3 6 300 2400 11 625 40.2 13 826
64 0.03 −0.5 −2.05

128 −0.66 0.5 −1.5

F7 3 6 350 2800 13 249 45.4 15 516
64 0.79 −0.44 −1.51

128 0.34 1.32 −1.64

F8 3 5 400 3200 14 275 44 16 290
64 −0.32 −2.3 0.14

128 −0.29 −2.3 0.84

F9 4 5 500 8000 38 388 100.8 39 845
64 0.12 1.98 −0.31

128 −0.02 2.18 0.11

F10 4 5 600 9600 47 721 102 46 751
64 0.31 −4.31 1.07

128 0.24 1.18 0.11

inputs/outputs and states. These FSMs can all be watermarked
by the proposed method within 1 s. The synthesis results are
shown in Table VI, where the column “T” is the number of
transitions of the generated FSM. The largest design has an
area of 47 721 literals which is much larger than the largest
design in [12], which has only 19 258 literals. On average, for
the 12 bit watermark, the area increases by 0.16%, and the
delay and power decreases by 2.1% and 0.4%, respectively.

VI. Conclusion

This paper presented a new robust dynamic watermarking
scheme by embedding the authorship information on the tran-
sitions of STG at the behavioral synthesis level. The proposed
method offers a high degree of tamper resistance and provides
an easy and noninvasive copy detection. The FSM watermark
is highly resilient to all conceivable watermark removal at-
tacks. The redundancy in the FSM has been effectively utilized
to minimize the embedding overhead. By increasing the length
of input code sequence for watermark retrieval and allowing
the output compatible transitions to be revisited to embed

CUI et al.: A ROBUST FSM WATERMARKING SCHEME FOR IP PROTECTION OF SEQUENTIAL CIRCUIT DESIGN 689

different watermark bits, the watermarks are more randomly
dispersed and better concealed in the existing transitions of
FSM. The new approach to the logic state assignments of
pseudo input variables also makes it infeasible to attack the
watermarked FSM by removing the pseudo inputs. Without
compromising the watermark strength, the length of verifica-
tion code sequence can be adapted to reduce the area overhead
of watermarked design to a reasonable bound within a preset
number of iterations. Our experimental results show that the
watermarking incurs acceptably low performance overheads
and possesses very low possibility of coincidence and false
positive rate.

Similar to other FSM watermarking schemes [12]–[14], this
method is not applicable to some ultrahigh speed designs that
do not have a FSM. Fortunately, regular sequential functions
are omnipresent in industrial designs [13], making FSM water-
marking a key research focus for dynamic watermarking. One
recommendation to overcome such limitation is to augment it
with combinational watermarking scheme [5] applied simul-
taneously or on different levels of design abstraction to realize
hierarchical watermarking [9], [10]. The watermarked FSM
can be fortified by a scan chain watermarking [16], [17]
to enable the authorship to be easily verified even after the
protected IP has been packaged. While the robustness of
the authorship proof lies mainly on the watermarked FSM,
the auxiliary post-synthesis scan-chain reordering serves as
an intruder-alert for the misappropriation of sequential design
under test and increases the effort level required to successfully
forge a testable IP without being detected. Even if the scan
chain is removed or deranged by the aggressor, the more robust
FSM watermark remains intact and detectable on chip.

References

[1] Intellectual Property Protection Development Working Group, Intellec-
tual Property Protection: Schemes, Alternatives and Discussion. VSI
Alliance, Aug. 2001, white paper, version 1.1.

[2] I. Hong and M. Potkonjak, “Techniques for intellectual property protec-
tion of DSP designs,” in Proc. IEEE Int. Conf. Acoust. Speech Signal
Process., vol. 5. May 1998, pp. 3133–3136.

[3] A. T. Abdel-Hamid, S. Tahar, and E. M. Aboulhamid, “A survey on IP
watermarking techniques,” in Design Automation for Embedded Systems,
vol. 10. Berlin, Germany: Springer-Verlag, Jul. 2005, pp. 1–17.

[4] D. Kirovski, Y. Y. Hwang, M. Potkonjak, and J. Cong, “Protecting
combinational logic synthesis solutions,” IEEE Trans. Comput.-Aided
Design Integr. Circuits Syst., vol. 25, no. 12, pp. 2687–2696, Dec.
2006.

[5] A. Cui, C. H. Chang, and S. Tahar, “IP watermarking using incremental
technology mapping at logic synthesis level,” IEEE Trans. Comput.-
Aided Design Integr. Circuits Syst., vol. 27, no. 9, pp. 1565–1570, Sep.
2008.

[6] A. Cui and C. H. Chang, “Stego-signature at logic synthesis level for
digital design IP protection,” in Proc. IEEE Int. Symp. Circuits Syst.,
May 2006, pp. 4611–4614.

[7] A. Cui and C. H. Chang, “Watermarking for IP protection through
template substitution at logic synthesis level,” in Proc. IEEE Int. Symp.
Circuits Syst., May 2007, pp. 3687–3690.

[8] A. B. Kahng, J. Lach, W. H. Mangione-Smith, S. Mantik, I. L.
Markov, M. Potkonjak, P. Tucker, H. Wang, and G. Wolfe, “Constraint-
based watermarking techniques for design IP protection,” IEEE Trans.
Comput.-Aided Design Integr. Circuits Syst., vol. 20, no. 10, pp. 1236–
1252, Oct. 2001.

[9] H. J. Kim, W. H. Mangione-Smith, and M. Potkonjak, “Protecting
ownership rights of a lossless image coder through hierarchical wa-
termarking,” in Proc. Workshop Signal Process. Syst., Oct. 1998, pp.
73–82.

[10] A. Rashid, J. Asher, W. H. Mangione-Smith, and M. Potkonjak, “Hier-
archical watermarking for protection of DSP filter cores,” in Proc. IEEE
Custom Integr. Circuits Conf., May 1999, pp. 39–42.

[11] A. L. Oliveira, “Robust techniques for watermarking sequential circuit
designs,” in Proc. IEEE/ACM Des. Autom. Conf., Jun. 1999, pp. 837–
842.

[12] A. L. Oliveira, “Techniques for the creation of digital watermarks in
sequential circuit designs,” IEEE Trans. Comput.-Aided Design Integr.
Circuits Syst., vol. 20, no. 9, pp. 1101–1117, Sep. 2001.

[13] I. Torunoglu and E. Charbon, “Watermarking-based copyright protection
of sequential functions,” IEEE J. Solid-State Circuits, vol. 35, no. 3, pp.
434–440, Feb. 2000.

[14] A. T. Abdel-Hamid, S. Tahar, and E. M. Aboulhamid, “A public-key
watermarking technique for IP designs,” in Proc. Des. Autom. Test Eur.,
vol. 1. Mar. 2005, pp. 330–335.

[15] A. Cui and C. H. Chang, “Intellectual property authentication by
watermarking scan chain in design-for-testability flow,” in Proc. IEEE
Int. Symp. Circuits Syst., May 2008, pp. 2645–2648.

[16] A. Cui and C. H. Chang, “An improved publicly detectable watermarking
scheme based on scan chain ordering,” in Proc. IEEE Int. Symp. Circuits
Syst., May 2009, pp. 29–32.

[17] C. H. Chang and A. Cui, “Synthesis-for-testability watermarking for
field authentication of VLSI intellectual property,” IEEE Trans. Circuits
Syst.-I, vol. 57, no. 7, pp. 1618–1630, Jul. 2010.

[18] J.-K. Rho, G. D. Hachtel, F. Somenzi, and R. M. Jacoby, “Exact and
heuristic algorithms for the minimization of incompletely specified state
machines,” IEEE Trans. Comput.-Aided Design Integr. Circuits Syst.,
vol. 13, no. 2, pp. 167–177, Feb. 1994.

[19] J. M. Pena and A. L. Oliveira, “A new algorithm for exact reduction
of incompletely specified finite state machines,” IEEE Trans. Comput.-
Aided Design Integr. Circuits Syst., vol. 18, no. 11, pp. 1619–1632, Nov.
1999.

[20] T. Kam, T. Villa, R. Brayton, and A. Sangiovanni-Vincentelli, “A fully
implicit algorithm for exact state minimization,” in Proc. ACM/IEEE
Design Autom. Conf., Jun. 1994, pp. 684–690.

[21] A. Menezes, P. van Oorschot, and S. Vanstone, Handbook of Applied
Cryptography. Boca Raton, FL: CRC Press, 1996.

[22] G. De Micheli, Synthesis and Optimization of Digital Circuits. New
York: McGraw-Hill, 1994.

[23] E. M. Sentovich, K. J. Singh, C. Moon, H. Savoj, R. K. Brayton, and A.
Sangiovanni-Vincentelli, “Sequential circuit design using synthesis and
optimization,” in Proc. IEEE Int. Conf. Comput. Design VLSI Comput.
Processors, Oct. 1992, pp. 328–333.

[24] R. K. Ranjan, V. Singhal, F. Somenzi, and R. K. Brayton, “On the
optimization power of retiming and resynthesis transformations,” in
Proc. IEEE/ACM Int. Conf. Comput.-Aided Design, Nov. 1998, pp. 402–
407.

[25] D. Chen, M. Sarrafzadeh, and G. K. H. Yeap, “State encoding of finite
state machines for low power design,” in Proc. IEEE Int. Symp. Circuits
Syst., Apr. 1995, pp. 2309–2312.

[26] T. Kam, T. Villa, R. Brayton, and A. Sangiovanni-Vincentelli, Synthe-
sis of FSMs: Functional Optimization. Amsterdam, The Netherlands:
Kluwer, 1997.

[27] R. J. Kyung, G. D. Hachtel, F. Somenzi, and R. M. Jacoby, “Exact and
heuristic algorithms for the minimization of incompletely specified state
machines,” IEEE Trans. Comput.-Aided Design Integr. Circuits Syst.,
vol. 13, no. 2, pp. 167–177, Feb. 1994.

[28] C. Pruteanu and C. Haba, “GenFSM: A finite state machine generation
tool,” in Proc. 9th Int. Conf. Dev. Applicat. Syst., May 2008, pp. 165–
168.

Aijiao Cui (S’06–M’10) received the B.Eng. and
M.Eng. degrees in electronics from Beijing Normal
University, Beijing, China, in 2000 and 2003, re-
spectively, and the Ph.D. degree in electrical and
electronic engineering from Nanyang Technological
University, Singapore, in 2009.

From July 2003 to December 2004, she was a
Lecturer with Beijing Jiaotong University, Beijing.
She was a Research Fellow with Peking University
ShenZhen SoC Laboratory, Beijing, from 2009 to
2010 before her current appointment as an Assistant

Professor with the Department of Electronic and Information Engineering,

690 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 30, NO. 5, MAY 2011

Shenzhen Graduate School, Harbin Institute of Technology, Shenzhen, China,
since August 2010. Her current research interests include digital watermark-
ing techniques for intellectual property protection and design-for-testability
techniques.

Chip-Hong Chang (S’92–M’98–SM’03) received
the B.Eng. (Hons.) degree from the National Uni-
versity of Singapore, Singapore, in 1989, and the
M.Eng. and Ph.D. degrees from Nanyang Techno-
logical University (NTU), Singapore, in 1993 and
1998, respectively.

He served as a Technical Consultant in industry
prior to joining the School of Electrical and Elec-
tronic Engineering (EEE), NTU, in 1999, where he
is currently an Associate Professor. He holds joint
appointments with the university as an Assistant

Chair of Alumni of the School of EEE since June 2008, the Deputy Director
of the Center for High Performance Embedded Systems since 2000, and the
Program Director of the Center for Integrated Circuits and Systems from
2003 to 2009. He has published three book chapters and more than 150
research papers in refereed international journals and conferences. His current
research interests include low power arithmetic circuits, digital filter design,
application-specific digital signal processing, and digital watermarking for
intellectual property protection.

Dr. Chang has served as an Associate Editor of the IEEE Transactions

on Circuits and Systems-I since 2010 and the IEEE Transactions on

Very Large Scale Integration (VLSI) Systems since 2011, an Editorial
Advisory Board Member of the Open Electrical and Electronic Engineering
Journal since 2007, an Editorial Board Member of the Journal of Electrical
and Computer Engineering since 2008, and as a Guest Editor for the special
issue of the Journal of Circuits, Systems and Computers in 2010. He served in
several international conference advisory and technical program committees.
He is a Fellow of the IET.

Sofiène Tahar (M’96–SM’07) received the Diploma
degree in computer engineering from the University
of Darmstadt, Darmstadt, Germany, in 1990, and
the Ph.D. degree with distinction in computer sci-
ence from the University of Karlsruhe, Karlsruhe,
Germany, in 1994.

Currently, he is a Professor and Research Chair
in formal verification of systems-on-chip with the
Department of Electrical and Computer Engineering,
Concordia University, Montreal, QC, Canada. He
has made contributions and published papers in the

areas of formal hardware verification, system-on-chip verification, analog and
mixed signal circuits verification, and probabilistic, statistical and reliability
analysis of systems.

Dr. Tahar is the Founder and Director of the Hardware Verification Group,
Concordia University. In 2007, he was named University Research Fellow
upon receiving the Concordia University’s Senior Research Award. He is a
Professional Engineer in the Province of Quebec. He has been organizing and
has been involved in program committees of various international conferences
in the areas of formal methods and design automation.

Amr T. Abdel-Hamid (S’95–M’05) received the
Bachelor of Communications and Electronics En-
gineering degree from the Faculty of Engineering,
Cairo University, Cairo, Egypt, in 1997, and the
M.Sc. and Ph.D. degrees from the Faculty of Elec-
trical and Computer Engineering, Concordia Uni-
versity, Montreal, QC, Canada, in 2001 and 2006,
respectively.

Since 2006, he has been an Assistant Professor
with is with the Faculty of Information Engineering
and Technology, German University in Cairo, Cairo,

Egypt. He has made contributions and published papers in the areas of formal
hardware verification, system-on-chip verification, intellectual property water-
marking, protocol verification, and mobile and social network applications.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.5
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF00540068006500730065002000730065007400740069006e00670073002000610072006500200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e003000200061006e00640020006d00610074006300680020007400680065002000220053007500670067006500730074006500640022002000730065007400740069006e0067002000660069006c0065007300200066006f00720020005000440046002000730070006500630069006600690063006100740069006f006e002000760065007200730069006f006e00200034002e0030002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

