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Abstract—Hadoop has become a popular framework for processing data-intensive applications in cloud environments. A core

constituent of Hadoop is the scheduler, which is responsible for scheduling and monitoring the jobs and tasks, and rescheduling them

in case of failures. Although fault-tolerance mechanisms have been proposed for Hadoop, the performance of Hadoop can be

significantly impacted by unforeseen events in the cloud environment. In this paper, we introduce a dynamic and failure-aware

framework that can be integrated within Hadoop scheduler and adjust the scheduling decisions based on collected information about

the cloud environment. Our framework relies on predictions made by machine learning algorithms and scheduling policies generated by

a Markovian Decision Process (MDP), to adjust its scheduling decisions on the fly. Instead of the fixed heartbeat-based failure

detection commonly used in Hadoop to track active TaskTrackers (i.e., nodes that process the scheduled tasks), our proposed

framework implements an adaptive algorithm that can dynamically detect the failures of the TaskTracker. To deploy our proposed

framework, we have built, ATLAS+, an AdapTive Failure-Aware Scheduler for Hadoop. To assess the performance of ATLAS+, we

conduct a large empirical study on a 100-node Hadoop cluster deployed on Amazon Elastic MapReduce (EMR), comparing the

performance of ATLAS+ with those of three Hadoop schedulers (FIFO, Fair, and Capacity). Results show that ATLAS+ outperforms

FIFO, Fair, and Capacity schedulers. ATLAS+ can reduce the number of failed jobs by up to 43 percent and the number of failed tasks

by up to 59 percent. On average, ATLAS+ could reduce the total execution time of jobs by 10 minutes, which represents 40 percent of

the job execution times, and by up to 3 minutes for tasks, which represents 47 percent of the task execution time. ATLAS+ also reduced

CPU and memory usage by 22 and 20 percent, respectively.

Index Terms—Adaptive scheduling, failure-aware scheduling, hadoop, MapReduce, ATLAS+
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1 INTRODUCTION

MAPREDUCE [1] has become a major programming
model for processing large data sets in cloud comput-

ing environments. Hadoop [2], an open-source implementa-
tion of MapReduce has become the cornerstone technology
of many big data and cloud applications. It has been
deployed in many leading companies (e.g., Yahoo!, and
Facebook) to manage applications ranging from web ana-
lytic, web indexing, image and document processing, to
high-performance scientific computing and social network
analysis [3]. A key advantage of Hadoop over other big data
processing frameworks is that it allows for efficient data
processing across clusters of commodity servers. Despite
the different failure detection and recovery mechanisms
integrated within Hadoop cluster, many task failures still
occur because of unforeseen events in the cloud environ-
ment. In fact, in the cloud, failures are the norm rather than
exceptions. Liu et al. [4] discuss the impact of different types

of failures (correlated and non-correlated) for nodes when
processing tasks and jobs in cloud environments. For
instance, they claim that tasks may fail because of data loss,
which is likely caused by correlated and non-correlated
machine failures in storage systems. Studies [4], [5] report
that a cluster can experience more than one thousand indi-
vidual node failures and thousands of hard-drive failures
during its first year of service. In addition, several power
problems can also happen bringing down between 500 and
1,000 nodes for up to 6 hours. The recovery time of these
failed nodes has being as high as 2 days. These frequent fail-
ures in data centres negatively impact the performance of
applications running Hadoop [5], [6]. Furthermore, in the
current implementations of Hadoop, the nodes send heart-
beat messages to the scheduler at fixed time intervals, and
the scheduler checks the received heartbeats from the nodes
also at fixed interval times [5]. Consequently, when a node
failure occurs, the scheduler can detect this failure only
within the next interval time. The scheduler considers this
node as dead, and the running tasks on it as failed and will
restart them from scratch on other nodes. In the meantime,
the scheduler can assign tasks to the failed nodes, which
would likely increase the task failures rate. Therefore, the
early detection of tasks and nodes (e.g., TaskTracker:
the node that processes the scheduled tasks, DataNode: the
node that manages the data stored in Hadoop) failure in
Hadoop clusters is important to improve the performance
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of Hadoop applications. It is also important to build efficient
scheduling strategies that adjust to the unpredictable
changes of a cloud environment.

In a previous work, we have shown that it is possible to
predict task and jobs failures in a cloud environment [7].
Based on the findings of this work, we have proposed a
new scheduler for Hadoop called ATLAS (AdapTive
faiLure-Aware Scheduler), that adapts its scheduling deci-
sions to events occurring in the cloud environment. We
have also shown that ATLAS can help reduce tasks and jobs
failures in Hadoop clusters by up to 39 and 28 percent,
respectively [8]. But, we observe that some jobs and tasks
are still failing, because the approach proposed in [8] does
not generate efficient scheduling policies. Also, it does not
consider the machines’ constraints and the dynamic behav-
ior of the environment where the tasks are executed (e.g.,
availability of resources, reliability of the TaskTrackers,
number of running tasks on a machine, network conges-
tion). Moreover, it lacks mechanisms to decide whether it is
better to immediately process a task or to wait until its suc-
cess conditions are met. This can have a large impact on fail-
ures rate, since it does not ensure making efficient
scheduling decisions. For instance, when a task is waiting
for reduce slots and the TaskTracker cannot release these
slots, a better decision could be to kill the task and resched-
ule it on another TaskTracker. This is in order to avoid a
long waiting time in the queue on the JobTracker especially
when there are multiple jobs running concurrently. Further-
more, the approach proposed in ATLAS [8] does not pos-
sess a dynamic mechanism for detecting TaskTracker
failures. In this paper, we build on these early findings and
propose a dynamic and failure-aware scheduling frame-
work for Hadoop that adapts its scheduling decisions to
events occurring in the cloud environment. Using historical
information about events occurring in the cloud environ-
ment (e.g., resource depletion on a node of the cluster or
failure of a scheduled task), a machine learning algorithm
(Random-Forest algorithm), and a Markovian Decision Pro-
cess (MDP), our framework learns scheduling decisions
that reduce failures in the cluster. Specifically, we propose
to train different machine learning algorithms using past
task executions to predict the scheduling outcome of each
new task submitted for scheduling. The algorithm provid-
ing the best performance (in terms of accuracy, precision,
and time) will be used to predict whether a given task will
fail or not, based on its collected attributes. We implement
the MDP model of our proposed framework using rein-
forcement learning techniques to guide the decision making
process and evaluate the scheduling decisions in the context
of adaptive policy-driven scheduling. In addition, our pro-
posed framework uses an adaptive algorithm to control the
communication between the JobTracker and the TaskTrack-
ers in a Hadoop cluster and adjust the interval timeout to
consider a TaskTracker as dead based on the occurrence of
failures in the Hadoop environment. This is using four well
known algorithms from the network field in our framework
to predict the expected arrival time of the next heartbeat
from a TaskTracker node based on information about
recently received heartbeats messages.

To assess the benefits of our proposed solution, we inte-
grate our framework within Hadoop and build ATLAS+, an

AdapTive faiLure-Aware Scheduler for Hadoop. We imple-
ment ATLAS+ in a 100-nodes Hadoop cluster deployed on
Amazon Elastic MapReduce (EMR) and perform a case
study with both single Hadoop jobs (e.g., WordCount, Tera-
Gen, Sort, and TeraSort) and chained Hadoop jobs (these
jobs are composed of single Hadoop jobs), to compare the
performance of ATLAS+ with those of Hadoop main sched-
ulers (i.e., FIFO, Fair, and Capacity). Each analysis in our
case study is repeated 30 times, and we extend the execu-
tion of the jobs on a period of 3 days, to ensure that the
observations are robust. We also evaluate the impact of con-
tinuous learning on the scheduling decisions of ATLAS+.
To assess the performance of each scheduler, we compute
the total execution times of jobs, the amount of used resour-
ces (CPU, memory, disk), the numbers of finished and failed
tasks and jobs. Experimental results show that ATLAS+ out-
performs FIFO, Fair and Capacity. It can reduce the number
of failed jobs by up to 43 percent and the number of failed
tasks by up to 59 percent. Also, ATLAS+ could reduce the
total execution time of jobs by 10 minutes on average; which
represents 40 percent of the job execution times, and by up
to 3 minutes for the tasks, which represents 47 percent of
the task execution time. ATLAS+ also reduces CPU and
memory usage by 22 and 20 percent.

The remainder of this paper is organized as follows:
Section 2 describes the limitations of the existing Hadoop
schedulers. Sections 3 and 4 depict the architecture and
implementation of our proposed solution. Sections 5 and 6
describe the findings of our work along with a discussion of
our approach. Section 7 summarizes the related literature.
Section 8 presents our conclusions. Throughout the paper,
we will refer to “JobTracker” by JT, “TaskTracker” by TT, and
“DataNode” by DN.

2 LIMITATIONS OF CURRENT HADOOP’S

IMPLEMENTATION

2.1 Task Failure Detection

In Hadoop, when a component fails (e.g., TT, DN), all tasks
running on this node also fail and its recovery time can be
long, which can lead to unpredictable execution times and
resources wastage. For instance, the average execution time
of a job, which is 220 seconds, can reach 1,000 seconds under
a TT failure and 700 seconds under a DN failure [5]. Dinu
et al. [5] who analyse the performance of Hadoop clusters
report that Hadoop components do not share failure infor-
mation between JT, TTs, and DNs appropriately. For
instance, when a task experiences a failure, information
about this failure is not shared with other tasks that depend
on the failed task. In fact, when a map task fails, since map
and reduce tasks are scheduled separately and there is no
exchange of failure information between them, the failure is
likely to translate into the failure of the whole job as
explained in [8]. This is because reduce tasks may wait for
the results of the failed map task until they time out.

Moreover, when a DN fails, this can delay the starting
time of speculative execution of some tasks. This is because
of the statistical nature of the speculative execution algo-
rithm, which is based on collected data about task progress
(e.g., struggling tasks). If a task is making a good execution
progress and suddenly a DN experiences a failure, the
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speculative execution of this task will start with a delay,
since Hadoop expected the same progress from that task. So
that task will be speculatively executed later than the time
when struggling tasks are usually speculatively executed.
Furthermore, the speculative execution of a task could face
the same failure. Therefore, a possible solution could be to
equip schedulers with mechanisms that enable the early
identification of failed tasks and a quick rescheduling of
these tasks on available nodes, to reduce the impact of task
failures on job execution time.

2.2 TaskTrackers Failure Detection

In [5], [8], it is shown that the JT cannot quickly detect the
failures of Hadoop TTs due to the nature of communication
over time between the JT and the TTs. As a consequence, it
may assign tasks to dead nodes, which could significantly
increase the failures rate of tasks. Theoretically, the TTs
send heartbeats to the JT every 3 seconds. The JT checks
every 200 seconds (3.33 minutes) the timeout condition of
the received heartbeats from the TTs. When a TT does not
send heartbeats for at least 600 seconds (10 minutes), the JT
considers this TT node as dead, and the running tasks on it
as failed and will restart them from scratch on other TT
nodes, according to their availability [5]. In addition, some
heartbeats (may) arrive late to the JT because of network
delays or messages losses. In these cases, the JT will con-
sider their corresponding TTs as dead nodes, despite their
availability. Furthermore, it will not assign them any load
until it receives a new heartbeat from them, which can result
in resource wastage.

Fig. 1 shows examples of failures that can occur while
sending heartbeats between the TTs and the JT. For exam-
ple, a TT sends a heartbeat message m1 that arrives before
the next arrival time. So, the JT considers this TT as alive.
Next, it sends a new heartbeat message m2 that does not
arrive to its destination because of a network problem. The
JT considers this node as dead since it does not receive its
heartbeat although it is available. This causes resources
wastage as this node will not receive new tasks until the
next time interval. Another example could be that the TT
sends a heartbeat message mn that arrives before the next
time interval. However, this TT experiences a failure and
becomes inactive right after sending the message. The JT
will consider this node as alive and will keep assigning it
new tasks despite the fact that it has failed; which could
increase the failure rates of tasks and the execution times of
tasks and jobs [5]. Consequently, integrating an adaptive
approach to adjust the interval at which the JT considers

that a TT is dead can be a possible solution and can help
reduce the failure rates of the Hadoop’s scheduler.

3 FRAMEWORK DESIGN

3.1 General Overview

In this section, we present the architecture of our proposed
framework that can predict the scheduling outcomes of
tasks (the final output of its execution: either a finished task
or a failed task.) using information about the tasks and the
cluster environment, and adjust scheduling decisions
accordingly. In addition, our proposed framework can
adjust the communication between the JT and TTs in order
to quickly detect the failures of the TTs nodes. Fig. 2 gives a
general overview of the structure of our framework. It is
comprised of three main components: “Task Failure Pre-
diction”, “Dynamic TaskTracker Failure Detection”, and
“Scheduling Policies Modelling”. Specifically, each of the three
components is characterized by its own design with respect
to its function. Nevertheless, they can be integrated together
and built on top of the Hadoop scheduler. The remainder of
this section elaborates more on each of these components.

3.2 Task Failure Prediction

This component is responsible for collecting (logs) and proc-
essing data about previously executed tasks in a Hadoop
cluster. Next, it analyses the correlation between tasks
attributes and tasks scheduling outcomes. The results of the
correlation analysis are used to identify correlated task
attributes, and attributes that are likely to affect a task’s
scheduling outcome. A machine learning model is trained
using these past task executions data. This machine learning
model is used to predict the scheduling outcome of each
new task submitted for scheduling. The inputs of the
machine learning model are the values of the identified pre-
dictors (task attributes retained in the model) and the out-
put is the scheduling outcome of a task (either failed or
finished). This component of our proposed framework can
early identify the tasks that are likely to fail if scheduled on
certain nodes, using historical information collected on the
Hadoop cluster.

3.3 Dynamic TaskTracker Failure Detection

This component of our proposed framework collects and
analyses information about the received heartbeat messages
from TTs. Using these information, it can dynamically esti-
mate the arrival time of next heartbeats based on failure
occurrences on the TTs. More details about the estimation
of next heartbeat arrival time will be presented in Section 4.
After this estimation, it calculates the median of the
obtained arrival time values. This value will be used to

Fig. 1. Failure detection model in Hadoop framework.

Fig. 2. Architecture of the proposed framework.
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update and adjust the timeout interval at which a TT is con-
sidered as dead. Specifically, when there are many TT fail-
ures, it is expected that the JT will receive heartbeats with a
delay. In such case, this component of our framework will
notify the scheduler to shorten the interval time of commu-
nication between the JT and TTs, in order to quickly detect
TTs failures. Following this approach, the scheduler can
avoid assigning tasks to dead nodes and resources wastage,
and hence reduce task failure rates.

3.4 Scheduling Policies Modelling

To cope with the dynamic nature of cloud environments,
our proposed framework requires adaptive scheduling
strategies in order to reduce the cost associated with tasks
execution. To do so, we propose to consider the scheduling
decision process as an MDP [9]. So, the processing of a task
can be modelled in terms of a life cycle, where the task pro-
gresses through this life cycle and goes from one state to
another. The task states in the MDP model are: submitted,
scheduled, waiting, executed, finished, and failed. The schedul-
ing decision making can be considered as a mapping of
states over actions to select a policy according to a derived
reward. As shown in Equation (1) [9], the decision process
is characterized by two metrics: p� represents the policy to
be applied from one state SðtÞ to another Sðtþ1Þ, and R which
contains the earned reward by following the selected action
AðtÞ. This modelling allows the scheduler to estimate and
compare the reward associated with all possible actions to
select the scheduling strategy that minimises the risk of fail-
ure for each submitted task.

p� ¼ arg max
p

E
XA
t¼1

RðSðtÞ; AðtÞ; Sðtþ1ÞÞjp
" #

: (1)

More concretely, this component of our framework is
responsible for observing the current state of a scheduled
task, selecting the possible actions from the current state
and observing the derived reward/cost from each transi-
tion. The MDP allows to model decision making in environ-
ments where the outcomes depend on random factors and
are under the control of a decision maker, which corre-
sponds well to the situation of a Hadoop cluster. In fact,
MDPs are widely applied to solve decision problems in
cloud environment, e.g., resources allocation problems [10]
or virtual machines scheduling [11]. These past successes
with MDP models motivated our choice of MDP for
Hadoop scheduling.

4 FRAMEWORK IMPLEMENTATION

In this section, we describe the implementation details of
our proposed framework.

4.1 Task Failure Prediction

Using logs collected from previously executed tasks in a
Hadoop cluster, we extract job and task attributes to iden-
tify correlations between these attributes and the scheduling
outcome of a task. To do so, we first classify task attributes
into four main categories: Task attributes = {Identification,
Structure, Execution, Environment}. The proposed attributes’
classification can be applied to different processing

platforms to collect tasks attributes (to be used later in our
proposed framework). In addition, it can give a description
about the task since it gives an overview about its internal
description as well as the way it is executed on its environ-
ment. Specifically, we collect the following task attributes
according to our proposed classification for our proposed
framework. The identification attributes include ID, priority,
and type of a task. The structural attributes represent the
dependent running/finished/failed tasks belonging to the
same job. The execution attributes can include the execution
time, resources utilization (CPU, memory, bandwidth), exe-
cution type (local or non-local), and scheduling outcome
(either finished or failed) of the task. The environment attrib-
utes describe the status of the node where to execute the
tasks including the running load (number of running map
and reduce tasks), the status of the queue, etc. Here, we
apply the Spearman rank correlation [12] to test the correla-
tion between these attributes and task scheduling outcome.

Next, we train six machine learning models including
GLM (General Linear Model), Neural Network, Boost, Tree,
Random Forest, and CTree (Conditional Tree), using data
collected from past tasks’ executions in the cluster [13].
GLM is an extension of linear multiple regression for a sin-
gle dependent variable. It is extensively used in regression
analysis. Neural networks represent interconnected nodes
organized in layers. The inputs of the bottom layer repre-
sent the predictors, and the outputs of the top layer repre-
sent the forecasts of this model. Boost creates a collection of
interconnected models iteratively. These successive models
are weighted according to their success and their outputs
are combined using voting or averaging to create a final
model. Decision Tree is extensively used to predict binary
outcomes. Random Forest uses a majority voting of deci-
sions for classification and regression results. It offers good
out-of-the-box performance and has performed very well in
different prediction benchmarks. CTree is an extended
implementation of the Decision Tree. The machine learning
models aim to predict the scheduling outcome of tasks (i.e.,
successful completion or failure) based on information
about the tasks attributes and Hadoop cluster environment
(i.e., availability of resources, failure occurrences in TT, net-
work congestion). The predictors for each model are the
task attributes. The output of each model is the scheduling
outcome of a task (either failed or finished). For each model,
we use the implementation provided in the statistical frame-
work R [13]. Next, we compare the performance of the
selected models. The model providing the best results will
be used to predict whether a given task will fail or not,
based on its collected attributes. More details about the col-
lected attributes and the used predictive models can be
found in [8]. Algorithm 1 describes the steps followed by
the “Task Failure Prediction” component in our framework
to predict successes or failures of scheduled tasks.

4.2 Dynamic TaskTracker Failure Detection

To address the limitations of the current heartbeat-based com-
munication between JT andTTs,we use fourwell known algo-
rithms from the network field: Chen Failure Detector (Chen-
FD) [14], Bertier Failure Detector (Bertier-FD) [15], f Failure
Detector (f-FD) [16] and Self-tuning Failure Detector (SFD) [17].
We select these algorithms because they have been designed
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to address message synchronization issues, and have
achieved good results when used for detecting failures in net-
work systems. They can significantly reduce the number of
false failure detections [18]. We implement (and adapt) these
algorithms in our framework to predict the expected arrival
time of the next heartbeats from a TT node based on informa-
tion about recently received heartbeats messages. The four
algorithms can adjust the interval timeout at which the JT can
consider a TT as dead using collected information about the
received heartbeats and TT nodes failure occurrences. More
precisely, they use historical information about the arrival
time of received heartbeats to estimate the expected arrival
times of future heartbeat messages from each TT using the
equations described for each algorithm. The selection of these
algorithms in our framework is based on their performance in
terms of detection time of the TT failures over time. In other
terms, we select the algorithm that is able to quickly detect the
TT failures when compared to the other algorithms. A formal
description of the four algorithms and their equations is pre-
sented in Appendix A, which can be found on the Computer
Society Digital Library at http://doi.ieeecomputersociety.
org/10.1109/TCC.2018.2805812. The steps followed by our
“Dynamic TaskTracker Failure Detection” component to
dynamically adjust the sending of heartbeats between the TTs
and the JT are presented inAlgorithm 2.

Algorithm 1. Task Failure Prediction Algorithm

1: for (Each 10 minutes ) do
2: logs = Collect-logs(Cluster)
3: /* Analyse correlations between task attributes and scheduling

outcome */
4: Analyse-Correlation(logs)
5: /* Apply Machine Learning predictive models on collected

data */
6: Machine-Learning(logs, models)
7: 10-fold-Cross-Validation(logs, models)
8: /* Measure accuracy, precision, recall, error and time of

predictive models */
9: Performance = Measure-Performance(logs, models)

10: Model = Select-Model(models, Performance)
11: Update-logs(Cluster, logs)
12: /** Integrate the predictive model within the scheduler **/
13: while (There is a new task to be scheduled) do
14: Attributes = Collect-Attributes(Task, TT)
15: /* Selected predictive model will predict if task will be

finished/failed */
16: Predicted-Status = Predict(Model, Task, Attributes)
17: end while
18: end for

4.3 Scheduling Policies Modelling

To implement the MDP model of our proposed framework,
we opt for reinforcement learning techniques [19], to guide
the decision making process and evaluate the scheduling
decisions in the context of adaptive policy-driven schedul-
ing. We choose to follow a reinforcement learning approach
because it allows learning from past experiences (e.g.,
scheduling policies) to predict potential future actions that
guarantee the successful completion of scheduled tasks.
Indeed, the reinforcement learning techniques have been
applied to solve several problems in the cloud computing

system including resource allocation [20], selection of vir-
tual machines [21], job scheduling [22], and virtual
machines consolidation [23]. They show good performance
when applied to such problems similar to the scheduling
decisions modeling in the cloud. Furthermore, reinforce-
ment learning techniques allow to consider the dynamic
events occurring in the scheduler environment (availability,
resources, size of queue, etc.) and adjust the decisions mak-
ing procedures under uncertainty.

Algorithm 2. TaskTracker Failure Detection Algorithm

1: HB-data = Collect-data(TT, heartbeats)
2: /* Apply the algorithms to control the communication between

JT-TTs */
3: Adaptive-Algorithms(HB-data, algorithms)
4: Performance = Measure-Performance(algorithms)
5: /* Select Algorithm giving best results (detection time and

mistake rate) */
6: Algorithm = Select-Model(algorithms, Performance)
7: /** Integrate the adaptive algorithm within the scheduler **/
8: while (For each new interval time of communication) do
9: HB-next-arrival = Estimate-arrival(Algorithm, TTs, HB-data)

10: HB-median= Get-Median(TTs, HB-next-arrival)
11: /* Update the next interval timeout of the following

communication */
12: Update-Communication(JT, TTs, HB-median)
13: Notify-Scheduler(JT, TTs, HB-median)
14: end while

There exist a multitude of reinforcement learning appro-
aches in the open literature. Among them, the TD-learning
(Temporal-Difference learning) [9], Q-learning [24], and
SARSA (State-Action-Reward-State-Action) [25] are the most
used ones. In [26], the authors analyse these algorithms and
find that Q-learning and SARSA algorithms outperform the
TD-learning algorithm in terms of state exploration (the num-
ber of times the system changes its state after applying an
action). This is because the TD-learning uses only one state
network, and hence it cannot easily exploit particular action
sequences. Therefore, in our proposed framework, we use a
combination of the Q-learning and SARSA algorithms to
implement the action selection procedure for the MDPmodel
of the scheduler. For instance, Q-learning is an Off-Policy
algorithm that updates a Q-function according to a random
policy that maximizes the expected reward. SARSA is an On-
Policy algorithm that selects the next state and action accord-
ing to a random policy and updates the Q-function accord-
ingly. We integrate these two different approaches within the
scheduler to evaluate their impact and identify if the algo-
rithm can allow the scheduler to explore more possible poli-
cies and to find policies leading to task execution success. The
procedural form of SARSA and Q-Learning are presented
respectively in Algorithms 2 and 3 from the Appendix B,
available in the online supplemental material. We describe
the approach followed in our framework to obtain better
scheduling policies inAlgorithm 3.

4.4 ATLAS+

We integrate the three different components of the pro-
posed frameworks, described in the previous sections, into
the JT through ATLAS+ (an AdapTive faiLure-Aware
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Scheduler) algorithm described in Algorithm 4. ATLAS+
algorithm can be built on top of the Hadoop’s existing
schedulers to provide adaptive scheduling decisions
according to events occurring in the cluster.

Algorithm 3. Scheduling Policies Algorithm

1: while (There is a new task to be scheduled ) do
2: data = Collect-Env(Cluster)
3: /* Calculate the reward associated with action using

Q-Learning or SARSA */
4: Action = Select-Action(Task, State)
5: Reward = MDP-Solver(Task, State, Action)
6: Policy = Select-Policy(Task, State, Action, data)
7: /* Apply the scheduling policy and update the scheduling

policies rules */
8: Outcome = Apply-Policy(Task, State, Action)
9: Update-Policies-Rules(Task, State, Action, Policy, Outcome)

10: end while

This algorithm requires first to get the status of the
Hadoop cluster (including the number of TTs and their sta-
tus). Next, the Algorithm 2 dynamically updates the com-
munication interval timeout and notifies the JT based on the
algorithm giving the best performance results (as described
in Algorithm 2). This proactive approach allows ATLAS+ to
quickly detect TTs failures. This part of the algorithm runs
in parallel with the rest of ATLAS+ algorithm (i.e., as shown
by lines 1 to 5 in Algorithm 4).

For a new submitted task, ATLAS+ collects the attributes
of the tasks (map/reduce). Using the values of these attrib-
utes, the Algorithm 1 predicts whether the submitted task
will be finished or failed if executed (line 11 in Algorithm 4).
We implement two different prediction algorithms for the
mappers and the reducers (since the mappers/reducers
have different input parameters). Next, the Algorithm 3 will
be executed to get a candidate policy that can be either a pro-
cess, a reschedule or a kill policy. Specifically, a process policy
is a request to the scheduler to execute the submitted tasks
on a given TT. Whereas, a reschedule policy is a request to
resubmit the task to the queue and wait until its success
conditions are met. The success conditions of a task repre-
sent the environment circumstances/specifications that
eventually lead to a successful execution of that task (i.e.,
terms to a finish event at the scheduler level). A kill policy
is sent to the scheduler to kill an executed or a waiting task.

When the task is predicted to succeed (line 12 in Algo-
rithm 4), ATLAS+ determines a candidate scheduling policy
for this task using Algorithm 3 (line 13 in Algorithm 4).
When the candidate policy is a process policy (line 14 in
Algorithm 4), ATLAS+ checks the availability of the TT and
DN to verify if they are activated or not before applying the
policy (line 15 in Algorithm 4). Then, ATLAS+ runs the pol-
icy (line 18 in Algorithm 4) when the TT and the DN needed
to process the task are available (line 16 in Algorithm 4).
It saves the outcome result of the processed policy (e.g.,
finished/failed task, environment status, used resources) in
the scheduling policies database (as shown in our proposed
framework in Section 2). If the TT and DN are not available,
ATLAS+ resubmits the task to the queue and assigns it a
penalty (line 21 in Algorithm 4). When the policy is to
reschedule (line 24 in Algorithm 4) or to kill (line 26 in

Algorithm 4), ATLAS+ runs the policy, assigns a penalty to
the task and stores the scheduling policy in the database
rules. This penalty reduces their execution priority, causing
them to wait in the queue until enough resources are avail-
able to enable their speculative execution on multiple nodes.

Algorithm 4. ATLAS+ Scheduling Algorithm

1: while (Cluster is running) do
2: Cluster-Status = Get-Status-Cluster(Cluster)
3: /* Adjust the Communication between JT and TTs */
4: TaskTarcker-Failure-Detection(Cluster-Status, JT,TTs)
5: end while
6: /* Lines 1 to 5 run in parallel with the rest of the algorithm */
7: while (There are free slots on TTs) do
8: while (There is a new task to be scheduled) do
9: /* Select TT and DN where to execute the task by basic

scheduler functions */
10: TT-DN = Machine-Selection-Basic-Function-

Scheduler(Task)
11: Predicted-Status = Task-Failure-Detection(Task, TT)
12: if (Predicted-Status == “SUCCESS”) then
13: Policy = Scheduling-Policies-Modelling(Task)
14: if (Policy == “Process”) then
15: Check-Availability(TT,DN)
16: if (TT and DN are available) then
17: /* Execute Task in the TaskTracker TT */
18: Execute(Task, TT, Policy)
19: else
20: /* Resubmit Task since it will fail in such

conditions */
21: Send to Queue + Penalty
22: end if
23: end if
24: if (Policy == “Reschedule”) then Send to Queue +

Penalty
25: end if
26: if (Policy == “Kill”) then Kill(Task)
27: end if
28: end if
29: if (Predicted-Status == “FAILURE”) then
30: Policy = Scheduling-Policies-Modelling(Task)
31: if (Policy == “Process”) and (There are Enough Resources

on Nodes) then
32: /* Launch Many Speculative Instance of Task */
33: Execute-Speculatively(Task, N, Policy)
34: end if
35: if (Policy == “Reschedule”) then Send to Queue +

Penalty
36: end if
37: if (Policy == “Kill”) then Kill(Task)
38: end if
39: end if
40: end while
41: end while

If the task is predicted to fail (line 29 in Algorithm 4) and
the Algorithm 3 selects a process candidate policy (line 31
in Algorithm 4), ATLAS+ will launch the task speculatively
on many nodes that have enough resources (line 33 in Algo-
rithm 4), in order to speed up the execution of the task and
increase the chances of its success. When the policy is to
reschedule (line 35 in Algorithm 4) or to kill (line 37 in
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Algorithm 4) the task, ATLAS+ runs the policy and saves its
outcome in the database rules. All decisions made by the
ATLAS+ are controlled by a time-out metric from Hadoop’s
base scheduler. Hence, if a task reaches its time-out, its asso-
ciated attempt will be considered as failed and the task will
be rescheduled again but with a lower priority.

5 FRAMEWORK EVALUATION

In this section, we present the setup and results of the
experiments performed to assess the effectiveness of the
proposed framework.

5.1 Experiment Setup

Cluster: We create a 100-nodes Hadoop 1.2.0-cluster on
Amazon EMR; one node is the master, another node is the
secondary master to replace the master when it crashes, and
98 slave nodes. The nodes have different characteristics
since we select different types of nodes from Hadoop Ama-
zon EMR list. The selected types are m3.large (30 nodes), m4.
xlarge (30 nodes), and c4.xlarge (40 nodes) [27], details about
their characteristics are listed in Table 1. We select different
types of nodes to obtain a heterogeneous set of nodes as in a
real world cluster, and to support different workloads. In
addition, we vary the number of map and reduce slots (e.g.,
100, 150, 200, 1,500) for the nodes in order to obtain Hadoop
nodes having different capacities and characteristics.

Scheduler: We evaluate the performance of three different
types of task scheduling algorithms in Hadoop including
First-In-First-Out (FIFO), Fair, and Capacity [28] algorithms.
In the FIFO algorithm, the tasks are queued and processed in
the order in which they are received, regardless of their types
and their sizes [28]. The Fair algorithm ensures that the
resources in the cluster are fairly distributed across the
received tasks so that all users receive the required resources
over time [28]. Finally, the Capacity algorithm splits the
Hadoop cluster into different queues with different amounts
of resources (i.e., CPU, memory). Next, these queues process
the received tasks using FIFO scheduling principles [28].

Workload: We run different workloads on Amazon EMR
Hadoop [27] clusters. To determine the characteristics of the
workload to be executed, we collect data about the Hadoop
jobs executed on Google cluster [7] and identify their pro-
files to obtain a representative workload [7]. The running
workload include single jobs (e.g., WordCount, TeraGen,
Sort, and TeraSort [29]), and chained jobs (sequential, paral-
lel, and mix chains) composed of Hadoop single jobs. To
obtain different types of workload, we vary the configura-
tions of the running jobs (e.g., size of the job or the chain,
number of map and reduce, size of input file). The log data
were collected over a fixed period of time of 10 minutes.

Injected Failures: The AnarchyApe tool [30] is used to inject
failures to the created cluster at different rates. For instance,

we create different scenarios to inject failures to TTs, DNs,
network (drop or slowdown), input data (loss of data), tasks
and jobs. Specifically, we kill/suspend TTs, DNs; discon-
nect/slow/drop network; and randomly kill/suspend
threads within the TTs in the running executions. To deter-
mine the failure rates to be injected to the Hadoop cluster,
we use public Google traces [7] to perform a quantitative
analysis about the number of failed jobs and tasks, and iden-
tify the typical failure rates to be injected to a typical cluster.
TheGoogle traces provide information about previously exe-
cuted tasks and jobs, including Hadoop jobs, in real world
Google clusters. The obtained results reveal that the failure
of a real world cluster can be as high as 40 percent, hence, we
vary the failure rates in our experiments from 5 to 40 percent
while injecting different types of failures [7].

5.1.1 Task Failure Prediction

We collect logs from the cluster and extract data related to
120,000 jobs and 300,000 tasks. For each job, we extract: job
ID, priority, execution time, number of map/reduce, num-
ber of local map/reduce tasks, number of finished/failed
map/reduce tasks and the final status of the job. For each
task, we extract: job ID, task ID, priority, type, execution
time, locality, execution type, number of previous finished/
failed attempts of the task, number of reschedule events,
number of previous finished/failed tasks, number of run-
ning/finished/failed tasks running on the TT, the amount
of used resources (CPU, Memory and HDFS (Hadoop Dis-
tributed File System) Read/Write) and the final status of the
task. The predictors or the input of the predictive models
are the collected attributes of the tasks. The proposed failure
prediction models use the values of these input attributes to
determine whether a task will be finished or failed when
executed. More details about this step can be found in [8].
The obtained data from logs of the created Hadoop cluster
is used to train and test the predictive models to select the
model to implement in ATLAS+. So, we split the data into
training data and testing data and we evaluate the perfor-
mance of the selected machine learning models. We per-
form this step for the map and reduce tasks separately;
predicting the scheduling outcomes of these tasks for the
three studied schedulers (FIFO, Fair and Capacity). Next, a
10-fold random cross validation is applied on the models to
determine the model that can identify the scheduling out-
come of a task with the best accuracy, precision and execu-
tion time. In the cross validation, each data set is randomly
split into ten folds. Nine folds are used as the training set,
and the remaining fold is used as the testing set. Further-
more, we vary the training rates for each model to evaluate
the performance of the models at different training rates
and analyze the impact of the training rate on the perfor-
mance of the predictive models. This is to test how the per-
formance of the models relies on the training rate. The
training rates are respectively: 10, 30, 50, 70, and 90 percent.

5.1.2 Dynamic TaskTracker Failure Detection

Different types of failures are injected to the TTs (e.g., slow-
ing down/dropping the network, killing/suspending TTs)
in order to evaluate the performance of the four proposed
algorithms, presented in Section 4.2 and Appendix A,

TABLE 1
Amazon EC2 Instance Specifications [27]

Machine
Type

vCPU
Memory
(GiB)

Storage
(GB)

Network
Performance

m3.large 1 3.75 4 Moderate
m4.xlarge 2 8 EBS-Only High
c4.xlarge 4 7.5 EBS-Only High
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available in the online supplemental material, and the basic
algorithm used by Hadoop, in terms of detection time (TD)
over time. This is in order to select the appropriate algo-
rithm to implement in ATLAS+. The injected failure rates
are 10, 20, 30, 40, and 50 percent of TTs. The injection of fail-
ures is regular over the intervals of communications (e.g., 2
minutes after the beginning of a new interval). Next, in the
following interval, we implement a procedure to revive
dead nodes. Also, we vary the time of the recovery of TTs
(e.g., 1, 2 and 3 minutes after the beginning of a new inter-
val) to see the impact of different recovery times on the mis-
take rate (i.e., the number of times that the scheduler
considers an alive node as dead). For example, if the recov-
ery time is one minute, then the TT has more time to send
its heartbeat whereas, if the recovery time is within 3
minutes, then there is a shorter time to send the heartbeat.
Here, we specify a limit for adjusting the interval of sending
heartbeats to 4 minutes, to reduce the overhead of commu-
nication between the TTs and the JT.

5.1.3 Scheduling Policies Modelling

We train the SARSA and Q-learning algorithms proposed to
solve the MDP model while scheduling around 22,000 tasks
(map and reduce tasks). Specifically, we submit 1,500 differ-
ent tasks each 5 minutes to the Hadoop scheduler. So, we
integrate each algorithm separately to ATLAS+ and we
compute the number of explored policies and the outcome
associated with the used policies (either finished or failed
task) for each algorithm. Particularly, we measure the policy
success rate that can be defined as the ratio between the
number of policies leading to a successful event divided by
the total of the explored policies in each interval. These
experiments are repeated 30 times in order to measure the
variance of the two algorithms when integrated with
ATLAS+. Here, our aim is to evaluate the performance of
the two algorithms over time to compare them. We perform
this step in order to select the algorithm that allows our pro-
posed framework to explore more policies and to select the
policy that maximizes the number of finished tasks. Next,
we implement two procedures; one to collect and store data
about the used scheduling policies within the scheduler,
another to select the scheduling policies for the scheduler
when there is a new task to be scheduled.

For the scheduling policies, we characterize each policy
by the following metrics: policy ID, locality/execution Type
(local or non-local), time to find the policy (time to access
the database and find the policy), selected TT, policy reward
(reward collected from the proposed model), number of
speculative executions, number of tasks pending in a queue,
policy Q-Value (obtained according to the Q-learning or
SARSA algorithm), load (number of finished, failed, killed,
struggling and running tasks), available slots on selected
TT, requested slots on selected TT, used slots on selected
TT, frequency of policy usage, frequency of policy positive
usage (policy leading to task success), frequency of policy
negative usage (policy leading to task failure) and policy
outcome (task final status; finished or failed). These metrics
are selected because they capture the characteristics of the
environment where the scheduling policies are applied. In
addition, we perform a multi-collinearity analysis to iden-
tify correlated metrics. More specifically, we compute the
Variance Inflation Factor (VIF) of the metrics and use a
threshold value of 5 to decide whether the metrics are corre-
lated or not. Metrics having a VIF value greater than 5 are
considered to be correlated. To evaluate the importance of
the metrics of the scheduling policies, we apply theMeanDe-
creaseGini criteria, selecting metrics with higher values,
since they represent the most important ones. Next, the sec-
ond procedure selects the scheduling policy having the
highest probability of success (e.g., having the greatest
value of positive usage) based on the characteristics of the
workload running on the system.

5.2 Evaluation Results

5.2.1 Task Failure Prediction

When analysing the correlation between task attributes and
the scheduling outcomes of map and reduce tasks, we find
that there is a strong correlation between the number of run-
ning/finished/failed tasks on a TT, the locality of the tasks,
the number of previous finished/failed attempts of a task,
and the scheduling outcome of the task. In other terms,
tasks characterized by multiple failure events on its envi-
ronment (including multiple past failed previous attempts
and many concurrent tasks (running on the same TT) that
experienced multiple failed attempts) have a high probabil-
ity to fail in the future. Table 2 presents the performance of
our studied predictive models. In general, Random Forest
outperforms the other predictive models and achieves the
best results in terms of precision, recall, accuracy, error, and
execution time for the three studied schedulers. This is
because the Random-Forest algorithm uses the majority vot-
ing on decision trees to generate results which makes it
robust to noise, resulting usually in highly accurate predic-
tions. Here, we discuss only the results of the Fair scheduler,
because we find that the three schedulers performances fol-
low the same trend. For map tasks, the Random Forest
model can achieve an accuracy up to 88.5 percent, a preci-
sion up to 87.6 percent, a recall up to 93.4 percent, an error
rate of to 25.1 percent, and an execution time of 29.33 ms.
For reduce tasks, the Random Forest model achieves an
accuracy up to 94.5 percent, a precision up to 97.4 percent, a
recall up to 96.5 percent and an error up to 15.4 percent. The
total execution time of the evaluation of Random Forest for
reduce tasks is 38.41 ms.

TABLE 2
Accuracy, Precision, Recall, Error (%)

and Execution Time (ms) for Different Algorithms

Map Task

Algorithm Acc. Pre. Rec. Err. Time
Tree 68.6 75.8 63.4 9.14 10.02
Boost 67.3 84.2 69.7 34.9 201.4
Glm 65.6 89.5 65.4 39.9 13.54
CTree 69.4 84.4 68.3 32.6 17.34

Random Forest 79.9 81.8 93.5 23.6 23.9
Neural Network 64.8 86.3 74.1 31.3 63.61

Reduce Task

Algorithm Acc. Pre. Rec. Err. Time
Tree 74.5 85.4 74.0 29.8 15.23
Boost 84.4 81.7 74.7 10.9 268.77
Glm 77.2 94.3 71.3 25.3 19.19
CTree 82.4 88.4 79.4 25.4 20.52

Random Forest 94.12 92.3 96.5 15.4 29.77
Neural Network 84.3 85.4 75.6 19.6 98.14
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We also analyse the results of the different models under
different training rates in terms of accuracy, precision, and
recall. Here, we find that the performance of the FIFO, Fair,
and Capacity schedulers is following the same trend and
hence, we only discuss the results of one scheduler: Fair
scheduler. We can report that the Random Forest has the
highest values for the accuracy, precision, and recall when
compared to the other algorithms for the map and reduce
tasks. Furthermore, the accuracy, precision, and recall val-
ues increase when the training rate increases, and can reach
83.9, 94.3, and 94.3 percent, respectively, under 90 percent
training rate for the map tasks. For the reduce tasks, the
accuracy, precision, and the recall values are 93.4, 97.8, and
93.9 percent, respectively, when trained with 90 percent.
Consequently, we can claim that the Random Forest is
highly dependent on the training rate and can achieve better
results when the training rate is large. In light of these
results, we select Random Forest for the implementation of
the ATLAS+ scheduler (at line 13 of Algorithm 1) and
retrain its model to collect data each 10 minutes.

5.2.2 Dynamic TaskTracker Failure Detection

Figs. 3 and 4 present the performance of the five algorithms
used to detect the failures of TT nodes. Specifically, they rep-
resent the variation of detection times of these algorithms
over time when the same number of failures are injected. We
find that the performance of the five algorithms under the
different failure rates is following the same trend. Hence, we
only present here the results of 30, and 50 percent TT failures.
The obtained results show that the SFD algorithm is charac-
terized by a smaller detection delay over time when com-
pared to the other algorithms for the same number of
injected failures. The Bertier-FD and the f-FD do not give
good results as their detection times under different failure
rates are close to that of the basic Hadoop algorithm, which

is giving the worst performance (8 minutes as detection
time). This can be explained by the fact that the Bertier-FD
and the f-FD rely on historical information to identify good
failure predictors. For instance, the f-FD requires a large
window size to obtain more data for the normal distribution
function and hence computes a more adaptive normal distri-
bution function. For the Bertier-FD, it does not have dynamic
parameters to tune, which is why the window size does not
affect the behavior of the algorithm over time. For the Chen-
FD, its performance is close to that of SFD. This is because
they use the same function to estimate the expected arrival
time of the next heartbeat as explained in Appendix A, avail-
able in the online supplemental material. The main differ-
ence between the two is how they update the safety margin.
For the SFD, it uses an adaptive function to update it accord-
ing to the occurrence of failures in the cluster. However, the
Chen-FD uses a constant safety margin. Therefore, the SFD
can find the value for sending the heartbeats in less time
compared to theChen-FD.

Table 3 presents the results of the failure detection algo-
rithms in terms of mistake rate, for different recovery times
of TTs (1, 2, and 3 minutes) and different failure rates (from
10 to 50 percent). Here, we notice that the performance of
the algorithms are following the same trend for the three
different recovery times. Hence, we only present the results
for a recovery time of 2 minutes. We observe that the SFD
algorithm is making more mistakes over time. Whereas, the
Bertier-FD and the f-FD makes less errors when identifying
failures of nodes. This is because their interval timeout is
longer than that of the SFD algorithm. In other words, there
is a compromise between the mistake rate and the detection
time. The longer is the detection time, the less would be the
number of mistakes and vice versa. For instance, the Basic
FD is characterized by a constant detection time (8 minutes
according to Fig. 3), when injecting 40 percent TT failures
and the recovery time is 2 minutes. Overall, it is character-
ized by a normalized values of wrong failure detection
equal to 0.48 (see Table 3). While the SFD is characterized
by a decreasing detection time over time (which reaches 2
minutes: see Fig. 3) and by a normalized value of wrong fail-
ure detection equal to 0.56 (see Table 3). These observations
are valid for other algorithms, failure rates, and recovery
times. In this context, we should mention also that some
heartbeats are lost when sent to the JT. This is due to net-
work conditions and not because of a failure of a TT. For
ATLAS+, we select the following algorithms: f-FD and SFD
and integrate them within our proposed scheduler. This is
to evaluate the scheduler performance under shorter detec-
tion times and lower mistake rates.

Fig. 3. Detection time under 30 percent of failures.

Fig. 4. Detection time under 50 percent of failures.

TABLE 3
Normalized Values of Wrong Failure Detection Rate of TT

TT Recovery Time (2 min)

Failure
Rate

Basic
FD

f
FD

Bertier
FD

Chen
FD

SFD

10% �1.41 �1.17 �1.06 �1.18 �1.27
20% �0.46 �0.65 �0.62 �0.51 �0.47
30% 0.14 �0.16 �0.42 �0.28 �0.16
40% 0.48 0.71 0.88 0.65 0.56
50% 1.23 1.28 1.23 1.34 1.34
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5.2.3 Scheduling Policies Modelling

Figs. 5 and 6 present the cumulative performance of the two
algorithms Q-learning and SARSA in terms of number of
explored policies and policy success rate for 30 experiments
such that the confidence level is 95 percent. We observe that
the SARSA algorithm shows better results on the generation
of policies. It can explore more scheduling policies than the
Q-learning algorithm. For example, it can explore 2,896 poli-
cies while the Q-learning selects only 1,345 in 20 minutes
(see Fig. 5). This is expected since the SARSA algorithm
uses a random policy to select the next state and action,
which allows it to select more policies. However, we find
that Q-learning achieves a success rate of 0.67 percent while
the SARSA only achieves a success rate of 0.52 percent. This
is because the Q-learning algorithm has a function to select
the next possible action that maximizes the reward of the
next action for each policy (as explained in Appendix B,
available in the online supplemental material). Further-
more, we notice that after 30 minutes, the two algorithms
have almost the same performance. This is because SARSA
and Q-learning explored most of the possible policies for
the submitted tasks, and the scheduler is mostly using the
previously generated scheduling policies.

We analyse the relation between the policy attributes and
their outcomes using the VIF, and obtain a strong correlation
between the policy reward (0.45), selected TT (1.34), Q-Value
(0.83), load (1.41), available slots (2.07), selected slots (2.42),
requested slots (2.58), used slots (2.25), frequency of policy
positive (3.18)/ negative usage (3.24) and the policy outcome.
The other attributes have a VIF greater than 5 and hence,
we do not consider them in the analysis. Next, we measure
the importance of the obtained attributes using the Random
Forest model. According to the “MeanDecreaseGini” score,
the most important attributes affecting the policy outcome
(success or failure) are ordered as follows: load, available/

selected slots on selected TT, policy Q-Value, frequency of
policy positive/negative usage, policy reward, locality/
execution Type, and number of tasks in queue.

Given these results, we decide to train our scheduling
algorithm using these selected attributes and the SARSA
algorithm, at the beginning (to explore more scheduling
policies) and then to switch to the Q-learning algorithm (to
guarantee that the scheduler explores more policies and
selects the policy that gives a maximum reward). For
ATLAS+, we run the SARSA algorithm for a given interval
of time; 30 minutes (since the two algorithms have the same
trend starting at 30 minutes as shown in Fig. 5) and then
switch to the Q-learning algorithm (at lines 10 and 30 of
Algorithm 4).

5.2.4 ATLAS+

In the sequel, we first discuss the performance of our pro-
posed scheduling algorithm ATLAS+. Next, we evaluate
the scalability of our proposed framework.

Performance Analysis. compare the performance of our
proposed scheduler ATLAS+ when integrated respectively
with the FIFO, the Fair, and the Capacity schedulers. All
comparisons are done using the exact same jobs, tasks and
data. Specifically, we run 2,000 Hadoop jobs (10 percent sin-
gle jobs, 30 percent sequential chains, 30 percent parallel
chains, and 30 percent mix chains), and around 50,000
map/reduce tasks. The performance of each Hadoop’s
scheduler is measured using the total execution times of
jobs, the amount of used resources (CPU, memory, HDFS
Read/Write), the numbers of finished and failed tasks and
jobs. We calculate the upper and lower bounds of these val-
ues, obtained for 30 runs, with a confidence level of 95 per-
cent. We implement ATLAS+, for these evaluations, using:
(1) the Random Forest algorithm, (2) our proposed MDP-
model, (3) and an algorithm to control the communication
between the TTs and the JT (the f-FD and the SFD algo-
rithms). In summary, we consider the following configura-
tions of our ATLAS+ scheduler: (1) ATLAS+ with MDP, (2)
ATLAS+ with MDP and f-FD, and (3) ATLAS+ with MDP
and SFD, such that ATLAS+ algorithm is built on top of
these three existing schedulers.

Figs. 7, 9, and 11 present, respectively, the number of fin-
ished jobs, map, and reduce tasks, with a confidence level of
95 percent, for the three schedulers together (as shown in
the x-axis: FIFO, Fair, and Capacity). Overall, we observe
that ATLAS+MDP increases the number of finished jobs,
map, and reduce tasks when compared to the FIFO, Fair,
and Capacity algorithms. These results are expected since
the early identification of failures allows ATLAS+ to quickly

Fig. 5. Evaluation of number of explored policies.

Fig. 6. Evaluation of policy success rate.

Fig. 7. Evaluation of number of finished jobs.
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reschedule the potential failed tasks accordingly. Also, we
notice that the numbers of finished jobs and tasks (map and
reduce) are higher for the ATLAS+MDP+SFD-based algo-
rithm in comparison to the ATLAS+MDP+fFD-based algo-
rithm, ATLAS+MDP-based algorithm, and the basic
algorithms for the FIFO, Fair, and Capacity schedulers.
Hence, despite the fact that it can make more wrong TT fail-
ure detections, the SFD-based algorithm can quickly detect
the failures of the TTs, in comparison to the f-FD, and
dynamically adjusts the interval to detect TTs’ failures. The
FIFO and Fair schedulers show good performance when
compared to the Capacity scheduler because the Capacity
scheduler forces the killing of tasks that consume large
amounts of memory. Moreover, we observe that the number
of finished jobs is lower than the improvement observed on
the number of finished tasks. This can be explained by the
fact that a single task failure can cause the failure of the
whole job. Overall, the number of finished tasks is
improved by up to 54 percent when using ATLAS+ instead
of the Fair scheduling algorithm (see ATLAS+MDP+SFD-
Fair in Fig. 11), and the number of finished jobs increased
by 41 percent when using ATLAS+ instead of the Fair algo-
rithm (see ATLAS+MDP+SFD-Fair in Fig. 7). Overall, we
find that ATLAS+MDP+SFD-based algorithm (particularly,
when integrated with the Fair scheduler) is the “winner”
compared to the other ATLAS+ implementations.

Figs. 8, 10, and 12 present, respectively, the number of
failed jobs, map, and reduce tasks with a confidence level of
95 percent, for the three schedulers together (as shown in
the x-axis: FIFO, Fair, and Capacity). The number of failed
tasks is decreased by up to 59 percent (see ATLAS+MDP+
SFD-Capacity in Fig. 12) and the number of failed jobs is
decreased by up to 43 percent (see ATLAS+MDP+SFD-
Capacity in Fig. 8). Moreover, we notice that ATLAS+ can
reschedule the reduce tasks more efficiently since most of
their failures are caused by the failure of their

corresponding map task. ATLAS+ is able to achieve better
scheduling decisions thanks to the shared failure informa-
tion in the cluster. This is expected because ATLAS+ can
quickly detect the failures of the TTs and update the list of
dead nodes, so that the scheduler does not assign new tasks
to them. Moreover, ATLAS+ enables the successful process-
ing of single and chained jobs because of the dependency
between the jobs within the chained jobs. Specifically, we
observe that the number of successful single jobs is higher
than the successful chained jobs because of the dependency
between the jobs composing these chains. The obtained
results show that the number of failed jobs is reduced by up
to 43 percent and that the failure rates of tasks (map and
reduce) are also reduced by up to 59 percent for FIFO, Fair,
and Capacity schedulers, respectively. In addition, the
ATLAS+MDP+SFD-based algorithm (particularly, when
integrated with the Capacity scheduler) outperforms the
other implementations of the scheduler and achieves the
best performance.

The execution time of ATLAS+ is lower compared to
other existing scheduling algorithms. ATLAS+ can reduce
the number of failed attempts of map/reduce tasks and con-
sequently it can reduce their execution times. Figs. 13 and 14
present the execution times of the jobs, tasks (map and
reduce), respectively. We observe that the execution times
of tasks are decreased on average by 3 minutes (see ATLAS
+MDP+SFD-Capacity in Fig. 14). Consequently, the total
execution time of jobs is decreased on average by 10
minutes, representing a 40 percent reduction on the total
execution time of these jobs (see ATLAS+MDP+SFD-Capac-
ity in Fig. 13). We also observe that the execution times of
long running jobs are reduced from 30-40 minutes to less
than 20 minutes, which represents approximately a 50 per-
cent reduction. Furthermore, the reduction in the number of
failures compensates largely the time spent on the training

Fig. 9. Evaluation of number of finished map tasks.

Fig. 8. Evaluation of number of failed jobs.

Fig. 11. Evaluation of number of finished reduce tasks.

Fig. 10. Evaluation of number of failed map tasks.
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phase of the predictive algorithm and on adjusting the com-
munication between the JT and TTs. In general, our pro-
posed scheduling algorithm ATLAS+ can reduce the overall
execution times of tasks and jobs in Hadoop.

By early identifying the failure of tasks and rescheduling
them, ATLAS+ is able to improve the resource utilisation of
the cluster. This is expected since the amount of resources
that would have been assigned to failed tasks is reduced
along with the number of failed tasks. The results presented
in Table 4 confirm this anticipated outcome. Table 4
presents the results of the Fair scheduler, which are similair
to those for the FIFO and Capacity schedulers. Overall, the
jobs and tasks executed using ATLAS+ policies consume
less resources than those executed using the FIFO, Fair, or
Capacity scheduling algorithms (in terms of CPU (22 per-
cent), memory (20 percent), and disk (29 percent)).

Figs. 15 and 16 present the number of failed jobs, and
tasks (map and reduce) of the four implementations of
ATLAS+ after an execution period of 3 days (120,000,000
jobs and 350,000,000 tasks). Here, we observe that the
ATLAS+MDP+SFD based algorithm outperforms the other
three implementations of ATLAS+, and it is able to reduce

the job failures rate by up to 56.33 percent for the three
schedulers. Furthermore, the obtained results show that
ATLAS+MDP+SFD based algorithm can reduce the failures
rate by up to 60.21 percent for the three schedulers. In addi-
tion, it can reduce the execution time of the running jobs
and tasks (particularly the long running-execution jobs) and
improve the resources utilisation. These findings can be
explained by the fact that the learning time has an impact
on the performance of ATLAS+. Indeed, the more data the
scheduler collects, the better the scheduling decisions
would be, because it allows the scheduler to learn from its
previous decisions. Furthermore, the MDP-based model
learns new policies and obtains more knowledge about
when and where to apply them.

ATLAS+ learns new strategies to allocate the resources
among the scheduled tasks in order to improve their utilisa-
tion and hence, reduce the total execution times of the jobs
and tasks. However, we notice that ATLAS+ requires time
to access the scheduling rules database and select the

Fig. 13. Evaluation of number of execution times of jobs.

Fig. 14. Evaluation of number of execution times of tasks.

TABLE 4
Resources Utilisation of Hadoop Schedulers

Job/
Task

Scheduler Fair

Basic ATLAS
MDP

ATLAS
MDP f-FD

ATLAS
MDP SFD

Resource Avg. Avg. Avg. Avg.

Job

CPU (ms) 14,251 12,783 11,370 11,150
Memory (105 bytes) 9,458 8,766 8,042 7,647

HDFS Read (103 bytes) 10,568 8,615 8,339 8,257
HDFS Write (103 bytes) 9,943 7,453 7,124 7,066

Task

CPU (ms) 4,730 4,672 4,513 4,313
Memory (105 bytes) 3,007 2,955 2,912 2,496

HDFS Read (103 bytes) 1,954 1,834 1,809 1,783
HDFS Write (103 bytes) 1,963 1,893 1,811 1,776

Fig. 15. Evaluation of number of failed jobs over 3 days.

Fig. 16. Evaluation of number of failed tasks over 3 days.

Fig. 12. Evaluation of number of failed reduce tasks.
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appropriate decisions to apply. This is because of the size of
the database, the more it generates scheduling rules the lon-
ger would be their selection process. We solve this issue by
sorting the scheduling decisions by the frequency of usage
and the scheduling outcome (finished or failed). We find
that this approach can reduce the selection time but, it
penalizes some policies since they are not on top of schedul-
ing policies database. On the other hand, we affirm that
ATLAS+ is able to identify and catch more failures of tasks
and TTs within Hadoop based on the shared failure infor-
mation, in a comparison with ATLAS [8]. This is because it
integrates new strategies to better schedule tasks when
there is network congestion, overloaded TTs, struggling
tasks, etc. Table 5 presents the benefits of each component
in our proposed framework and a comparison between
ATLAS and ATLAS+. Overall, we find that ATLAS is able
to early identify the failures of tasks within Hadoop by up
to 26 percent. Whereas, ATLAS+ was able catch more fail-
ures and reduce the failures rate by up to 33 percent.

Scalability Analysis. To evaluate the scalability of our pro-
posed framework, we assess the performance of ATLAS+
when executing a large workload on a larger cluster. To do
so, we perform new experiments on a Hadoop cluster com-
posed of 1,000 nodes using different workloads. More pre-
cisely, we perform experiments to execute a different
number of jobs: 30,000, 60,000, and 90,000 jobs composed of
750,000, 900,000, and 2,250,000 tasks, respectively. In addi-
tion, we use different sizes of tasks (identified as: small/
medium/large tasks). We also vary the failures rates in our

experiments from 5 to 40 percent while injecting different
types of failures. We repeat the experiments 30 times and
measure the median values.

We first measure the overhead generated by ATLAS+ by
calculating the Worst Case Execution Time (WCET) of each
of our proposed algorithms given the running workload.
The obtained results show that when the size of the Hadoop
cluster and a number of scheduled jobs/tasks increase, the
overhead associated with ATLAS+ increases as presented
in Table 6. For Algorithms 1 and 3, the WCET can reach up
to 117 and 183 seconds, respectively. While, it can reach up
to 258 seconds for Algorithm 2. This result was expected
due to the higher number of running jobs/tasks and nodes.
We can explain this result by the fact that ATLAS+ requires
more time to collect more data about the running tasks, the
scheduler environment, received heartbeats from 1,000
nodes, etc., to generate its scheduling strategies.

Second, we evaluate the performance of ATLAS+, in the
newly created cluster, in terms of failures rates, execution
time, and resources usage. Although ATLAS+ is character-
ized by an added overhead, we found out that it could
improve the performance of the existing Hadoop schedu-
lers. Concretely, we found out that the generated overhead
due to the training time of the prediction model, the sched-
uling policy calculation time and the time spent to adjust
the sending of heartbeats messages, is largely compensated
by the time saved on the failed tasks that would have been
executed otherwise. To better explain these findings, Table 7
presents the obtained results of the three proposed algo-
rithms in ATLAS+ in terms of reduction rates of the number
of tasks’ failures, execution time, CPU and memory usage
for the different workloads (30,000, 60,000, and 90,000 jobs).
Here, we discuss only the results of the Fair scheduler,
because we observed that the three schedulers performance
follow the same trend. At this level, we can report that
ATLAS+ could identify up to 74 percent tasks’ failures and
reschedule these tasks accordingly. It was also able to
reduce the execution times of tasks by up to 59 percent. Fur-
thermore, it could improve the resources utilization by
reducing the amount of used CPU and memory by up to 53
and 48 percent, respectively. We should also mention that

TABLE 5
Comparison ATLAS versus ATLAS+ (%)

Failure
Rate

Execution
Time

CPU
Usage

Memory
Usage

ATLAS
Task Failure
Prediction

26 17 16 14

ATLAS+

Scheduling Policies
Modelling

19 14 9 8

TaskTracker
Failure Detection

14 8 7 5

TABLE 6
Worst-Case Execution Time (Seconds) of Algorithms 1, 2 and 3

Number of Jobs 30,000 Jobs (750,000 Tasks) 60,000 Jobs (900,000 Tasks) 90,000 Jobs (2,250,000 Tasks)

Type of Task Small Medium Large Small Medium Large Small Medium Large

Algorithm 1 27 63 98 29 74 103 35 96 117
Algorithm 2 211 234 258
Algorithm 3 45 105 143 53 127 159 71 148 183

TABLE 7
Reduction Rates (%) of Algorithms 1, 2 and 3

Number of Jobs 30,000 Jobs (750,000 Tasks) 60,000 Jobs (900,000 Tasks) 90,000 Jobs (2,250,000 Tasks)

Reduction
Rate (%)

Tasks’
Failures

Execution
Time

CPU
Usage

Memory
Usage

Tasks’
Failures

Execution
Time

CPU
Usage

Memory
Usage

Tasks’
Failures

Execution
Time

CPU
Usage

Memory
Usage

Algorithm 1 32 19 18 19 36 21 19 16 35 23 20 20
Algorithm 2 11 15 10 13 17 17 14 10 11 17 15 14
Algorithm 3 24 21 19 12 21 19 18 13 25 19 18 14
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Algorithm 2 was able to early catch up to 58 percent of the
failures of TTs in the new created Hadoop cluster. Upon
these failures’ detections, Algorithm 2 could help ATLAS+
better assign tasks to alive nodes and avoid poor scheduling
decisions leading to tasks’ failures.

In light of these results, we can confirm that the sizes of
the cluster and workloads have a direct impact on ATLAS+
performance. Indeed, the more data the scheduler collects
from its environment (nodes, tasks, failures, etc), the better
scheduling decisions would be. In other words, this would
allow the scheduler to learn more about the failures and
obtain more knowledge about how to avoid them.

6 THREATS TO VALIDITY

6.1 Construct Validity

Construct validity threats is about analysing the relation
between theory and observation. Our proposed algorithm
for ATLAS+ considers that tasks characteristics are the
main factors that impact the scheduling outcome of a task,
this may not be the case. Particularly, the resource allocation
strategy can affect the scheduling decision. But, while build-
ing ATLAS+, we find a low correlation between the amount
of allocated resource and the scheduling outcome of a task.
So, the resource allocation is more likely to affect resource
usages than scheduling outcomes. Nevertheless, ATLAS+
may identify task failures that are due to shortage of resour-
ces using data from its environment by collecting informa-
tion about the available resources on the TTs to reschedule
tasks on under-loaded nodes. This will allow the scheduler
to make scheduling decisions based on usage characteris-
tics. Hence, it can offer better resource utilization and pro-
vide improvement in job running time for ATLAS+.

6.2 Internal Validity

Internal validity threats concern the techniques and tools
used to build and evaluate our proposed solution. For
instance, we adapt and apply four existing algorithms that
are used to adjust the sending of heartbeats between the
master and the workers of network applications in the
cloud. The drawback of doing this is that if the communica-
tion interval is small (e.g., 2 minutes), the TTs can send
many heartbeats to the JT resulting in too frequent messages
exchanges and an overhead on the JT. Furthermore, ATLAS
+ can consider alive nodes as dead because of receiving
their messages after the expiry interval (due to the small
time interval). In addition, we use data from Google clus-
ters [7] to specify the amount of injected failures (up to 40
percent). Also, we use Amazon EMR to create the Hadoop
nodes, which is a real world environment, where other fail-
ures can occur. However, it is possible that such Hadoop
clusters do not face this failure rate. Therefore, we perform

more experiments to demonstrate the benefits of our frame-
work under low failure rates of 1-2 percent. The obtained
results show that ATLAS+ can reduce the number of failed
jobs by up to 9 percent and the number of failed tasks by up
to 12 percent. These results confirm our claim that the more
data the scheduler collects about failures from its environ-
ment, the better the scheduling decisions would be, because
it allows the scheduler to learn from its previous decisions.
On the other hand, the injected failure cases may not repre-
sent real failure scenarios, which can affect the performance
of the proposed scheduler. Therefore, it is very important to
validate our case study with a more diverse set of Hadoop
clusters and different failure rates.

6.3 Conclusion Validity

Conclusion validity threats is about analysing the relation
between the treatment and the outcome. The main goal of
ATLAS+ is to provide better scheduling decisions with a
minimal impact on the execution time of the received
tasks. Although we integrate new procedures to current
Hadoop schedulers, we have verified that they do not
introduce a large overhead. In addition to the performed
experiments to evaluate the scalability of ATLAS+ (Sec-
tion 5.2.4), we measured the Worst Case Execution Time
of our proposed algorithms for different other scenarios
(small/medium/large tasks and cluster). Specifically, we
performed experiments to execute 10,000 tasks using
ATLAS+ to measure the added overhead for each single
task separately. We repeated the experiments 100 times
and measured the median values. In the following, we
present the performance results of the Fair scheduler that
achieves similar results to the ones of the FIFO and
Capacity scheduler.

For Algorithm 2, we measure the WCET for three types
of clusters: 10-nodes, 50-nodes, and 100-nodes Hadoop clus-
ters. The obtained WCET values of Algorithm 2 are 54, 132
and 216 seconds for 10-nodes, 50-nodes, and 100-nodes clus-
ters, respectively. At this level, we should mention that all
steps of Algorithm 2 are off the critical path of the sched-
uler. This is because they are used to collect data about the
received heartbeats and to adjust the expiry interval timeout
accordingly. Hence, the integration of Algorithm 2 within
Hadoop does not impact the execution time of the sched-
uled tasks; it only impacts the communication time between
the JT and TTs.

For Algorithms 1 and 3, the obtained results when exe-
cuting three different types of tasks including “small,
medium, and large” tasks can be summarized in Table 8.
For Algorithm 1, the steps from lines 2 to 11 are required to
collect the log files and retrain/select the models, and hence
do not generate an overhead to the scheduler. The only
steps that are on the critical path of the scheduler are from
lines 13 to 17 in Algorithm 1. We measured the complexity
of these steps in terms of time, and found that it can reach
73 seconds. For Algorithm 3, all the steps are on the critical
path of the scheduler. We measured the complexity of this
algorithm in terms of time, and found that it can reach 158
seconds. Overall, we can claim that by reducing the number
of failed tasks and the overall resources utilisation ATLAS+
was able to compensate the added overhead of its different
components.

TABLE 8
Worst-Case Execution Time of Algorithms 1 and 3

Worst-Case Execution Time (Seconds)

Small Tasks Medium Tasks Large Tasks

Algorithm 1 20 58 73
Algorithm 3 57 104 158
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6.4 Reliability Validity

Reliability validity threats are related to the replication of
our study on other platforms. The proposed framework can
be integrated with other cloud platforms like Microsoft
Azure, or Google platform. To do so, it requires to collect
logs from these platforms, build the statistical predictive
models and validate them, and finally adjust the proposed
MDP model and its corresponding reinforcement learning
algorithms. Then, the proposed framework can be inte-
grated and built on top of any cloud scheduler to reduce
task failure rates and provide better resources utilisation
and execution time.

6.5 External Validity

External validity threats concern the generalization of our
results. Our case study is performed on a 100-nodes
Hadoop cluster running on Amazon EMR. Further studies
can be done to validate the results of ATLAS+ on a larger
scale. In addition, it is necessary to use different failure
cases and rates, to validate the failure detection mechanism
on ATLAS+. To generalize these findings, we plan to extend
and evaluate our proposed framework on Spark [31], a
novel in-memory computing framework for Hadoop. Spe-
cifically, we will extend Spark using the three components
of the proposed framework described in Section 3 and eval-
uate the performance of the used algorithms on Hadoop to
integrate them within Spark.

7 RELATED WORK

Many approaches have been proposed to improve schedul-
ing decisions in Hadoop. We discuss the most relevant to
our work in the following:

7.1 Fault-Tolerance Mechanisms in Hadoop

Hadoop tracks the processing of the received tasks using the
JT which will re-schedule map and reduce tasks on other
nodes in case of a failure. Despite the fact that this solution
is simple and guarantees the successful processing of failed
tasks, it is not always effective and comes with additional
costs (e.g., resources usage, extra delays in execution time).
For instance, the JT has to reschedule all tasks belonging to
the failed jobs including the finished tasks despite their suc-
cessful completion. To alleviate this issue, some studies
have proposed fault-tolerant mechanisms for Hadoop. Dinu
et al. [5], who analyse the performance of Hadoop under
failure, claim that many failures occur in Hadoop due to the
lack of sharing failure information (e.g., straggling tasks,
TT failure, etc). Therefore, they design RCMP [32], as a first
order failure resilience strategy, that allows for efficient job
recomputation upon failure by recomputing the necessary
tasks rather than data replication. But, RCMP is only valid
for I/O intensive jobs, which makes it not valid for all
types of MapReduce workload (e.g., CPU intensive jobs).
Hao et al. [33] implement an adaptive module to track the
heartbeat-based communication between the TTs and the
JT. This module can adjust the expiry interval for the JT to
detect whether a TT is considered as dead or not, according
to various job sizes in a Hadoop cluster. Moreover, they
develop a reputation-based detector to decide whether a
worker is failed or not; when its reputation is lower than a

specified threshold. This approach can help detect failures
of TT early, and reduce the total execution time of jobs.
RAFT [34], a Recovery Algorithm for Fast-Tracking in Map-
Reduce, is proposed by Quiane-Ruiz et al. to track tasks at
different checkpoints. The checkpoints are responsible for
storing the execution status of tasks. When a task encoun-
ters a failure, the JT will re-schedule the tasks from the last
available checkpoint. RAFT does not re-execute the finished
tasks belonging to the failed jobs and only failed tasks will
be re-executed; which would reduce some additional costs
(e.g., reduce the total execution time by 23 percent). Yildiz
et al. [35] propose Chronos, a failure-aware scheduling
strategy that enables an early action to recover the failed
tasks in Hadoop. Chronos is characterized by a pre-emption
technique to carefully allocate resources to the recovered
tasks. It could reduce the job completion times by up to 55
percent. However, it is still relying on wait and kill pre-
emptive strategies, which could lead to resource wastage
and degrade the performance of Hadoop clusters. Our
work is different in early detecting the task failure before its
occurrence and an early recovery action, which allow to
avoid resource wastage compared to Chronos.

7.2 Adaptive Scheduling in Hadoop

There are also related work on adaptive scheduling in
Hadoop. LATE [36] is proposed to prioritize tasks waiting
in the queue based on collected information about running
tasks and their progress. LATE can improve the scheduling
decisions by considering the progress rate of the running
tasks and the availability of resources in the cluster; which
could reduce the total execution time by a factor of 2 in
Hadoop clusters. Hadoop clusters are a heterogeneous envi-
ronment, where there are machines with different software
and hardware configurations. Quan et al. [37] show that
these configurations can help improve scheduling decisions
in Hadoop. To do that, they propose the SAMR (Self-Adap-
tive MapReduce scheduling) algorithm, which estimates the
progress of tasks based on collected hardware system infor-
mation. While SAMR could integrate different information
about the hardware system, it does not considered other
important factors about job characteristics (e.g., the task
size, data locality, etc). To overcome these limitations,
ESAMR (Enhanced Self-Adaptive MapReduce schedul-
ing) [38] is proposed to take into account new information
about straggling tasks, job size, and remaining time. SARS
[39] (Self-Adaptive Reduce Start time) was proposed as a
scheduling algorithm to decide when to start a reduce task.
SARS uses information about the completion time of maps
and reduce tasks and the job total completion time to evalu-
ate the impact of different times to start the reduce tasks on
the total execution time. SARS could reduce response time
on average by 11 percent.

8 CONCLUSION

In this paper, we propose a dynamic and failure-aware
scheduling framework for Hadoop that can adjust its sched-
uling strategies based on collected information from the
Hadoop cluster. We demonstrate the possibility of predict-
ing potential task failures early, using historical information
about events occurring in the cloud. Second, we propose an

SOUALHIA ET AL.: A DYNAMIC AND FAILURE-AWARE TASK SCHEDULING FRAMEWORK FOR HADOOP 567



MDP-based model to guide the scheduler, to make better
scheduling decisions. Finally, we propose to use adaptive
algorithms to adjust the frequency of communication
between nodes in a Hadoop cluster. To show the benefits of
our solution, we integrate our framework within Hadoop
and build ATLAS+ (An AdapTive faiLure-Aware Schedul-
ing), a new scheduling algorithm for Hadoop. To the best of
our knowledge, ATLAS+ is the first adaptive algorithm that
can early identify failure of tasks and TTs using collected
information from cloud environment, and adjust its schedul-
ing decisions on the fly. We implement ATLAS+ in Hadoop
and deploy it on a 100-nodeHadoop cluster in Amazon Elas-
tic MapReduce. We compare the performance of ATLAS+
with those of three main Hadoop scheduling algorithms.
The obtained results show that ATLAS+ outperforms the
three common scheduling algorithms of Hadoop. It can
reduce the number of failed jobs by up to 43 percent and the
number of failed tasks by up to 59 percent. Also, ATLAS+
can reduce the total execution time of jobs and tasks and
reduce CPU and memory usage. As a future work, we plan
to extend ATLAS+ using scheduling procedures to optimize
the resources allocation across tasks. In addition, we can use
unsupervised algorithms to train the prediction algorithm in
ATLAS+, and evaluate their impacts onHadoop scheduler.
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