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Abstract— Approximate computing (AC) is an emerging
computing paradigm suitable for intrinsic error-tolerant appli-
cations to reduce energy consumption and execution time.
Different approximate techniques and designs, at both hardware
and software levels, have been proposed and demonstrated the
effectiveness of relaxing the average output quality constraint.
However, the output quality of AC is highly input-dependent, i.e.,
for some input data, the output errors may reach unacceptable
levels. Therefore, there is a dire need for an input-dependent
tunable approximate design. With this motivation, in this article,
we propose a lightweight and efficient machine-learning-based
approach to build an input-aware design selector, i.e., quality
controller, to adapt the approximate design in order to meet the
target output quality (TOQ). For illustration purposes, we use
a library of 8-bit and 16-bit energy-efficient approximate array
multipliers with 20 different settings, which are commonly used in
image and audio processing applications. The simulation results,
based on two sets of images, including an 8 Scene Categories
Dataset, which is a benchmark of images data set, demonstrate
the effectiveness of the lightweight selector where the proposed
tunable design achieves a significant reduction in quality loss
with relatively low overhead.

Index Terms— Approximate computing (AC), approximate
multiplier, decision tree (DT), image processing, input-aware
approximation, machine learning (ML), neural network (NN),
tunable design.

I. INTRODUCTION

DUE to the enormous explosion in new data, i.e., big data,
generated by billions of small, low-power, ubiquitous

computing devices, the computer architects are rethinking the
whole computing stack to process such big data in a timely
and energy-efficient manner. Furthermore, the present-age
embedded and mobile computing systems require an ultralow
power consumption, small footprint, and high-performance
designs [1], [2]. These battery-powered systems are integral
components of the Internet of Things (IoT), cyber–physical
systems (CPSs), near-sensor processing, and edge computing.
Approximate computing (AC) [3], known as best-effort com-
puting, is a nascent computing paradigm that promises to meet
these objectives, by sacrificing the arithmetic accuracy of the
results.

The popularity of AC is rising among the error-resilient
applications, such as multimedia, web search, data mining, and
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visualization, where computation is naturally tolerant to some
degree of imprecision. Moreover, the final output with reduced
quality is tolerable by perceptual, i.e., visual or hearing, human
limitations [4]. Despite the unprecedented power saving and
reduced execution time introduced by AC, it is still an imma-
ture computing paradigm, where a formal model of the impact
of approximation on other design metrics is still missing [4].
Various works have applied AC techniques at different layers
of the computing stack, i.e., circuit design, architectures, and
application software, to reduce power consumption but have
not yet explored their impact on the quality of individual
outputs. A detailed description of these computing layers and
approximation techniques can be found in [3].

Both hardware and software approximation techniques
require a quality assurance to adjust approximation set-
tings/knobs and monitor the quality of fine-grained individual
outputs. To the best of our knowledge, this pivotal direction
has acquired less attention from the scientific community
compared to the design of AC. In order to assure the quality
of results, there are two strategies to adjust the settings of
an approximate program: 1) forward design [5] that sets the
design knobs and then observes the quality of results; however,
the output quality of some inputs may reach unacceptable
levels and 2) backward design [6] that tries to find the optimal
knobs setting for a given bound of output quality; this requires
exploring a tremendous space of knob settings for a given
input, which is intractable [7].

To overcome the abovementioned limitations of design
approaches, we propose a tunable approximate design that
allows altering the settings of approximation, at runtime to
meet the target output quality (TOQ). The main idea is to
develop a machine learning (ML)-based input-aware design
selector, which is able to modify the approximate design
based on the applied inputs, in order to meet the required
quality constraints. Our approach is general in terms of quality
metrics and supported approximate designs. It is primarily
based on a library of 8-bit approximate multipliers with 20
different configurations and well-known power dissipation,
performance, and accuracy profiles [1]. Moreover, we utilize
a backward design approach to dynamically adapt the design
in order to meet the desired TOQ based on ML models [8].
The TOQ is a user-defined quality constraint, which represents
the maximum allowable error for a given application. The
contributions of this article are as follows:

1) a tunable approximate design approach based on fine-
grained input data to satisfy output quality constraints
set by the user;

2) an accuracy evaluation approach utilizing a magnitude-
based clustering/quantization of input data of the
approximate designs;
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3) an input-dependent ML-based, i.e., decision tree (DT)
and neural network (NN), design selector;

4) a fully automated toolchain based on the abovemen-
tioned approaches;

5) a validation of the proposed approach based on
image processing applications, i.e., image blending and
filtering.

The rest of this article is organized as follows. Section II
introduces the related work on AC quality assurance.
Section III explains the proposed methodology. Section IV
summarizes the accuracy and other design metrics of the
considered library of approximate multipliers. Section V
explains the AC design selector, based on DT and NN, and its
characteristics. Section VI provides experimental results of an
image/audio blending and filtering applications. The obtained
results are compared with related work in Section VII. Finally,
Section VIII concludes this article with some future directions.

II. RELATED WORK

The research efforts in the field of quality control of AC
can be mainly classified in terms of targeting software or
hardware designs. For instance, Green [9] and SAGE [10]
are two frameworks for checking the quality of software
approximation through sampling-based techniques. For every
N invocations, the exact result is computed and compared
with the approximate result. Whenever the error distance (ED),
i.e., the difference between the exact and approximate result,
is greater than a prespecified threshold, calibration is done.
However, the quality of unchecked samples cannot be ensured,
and the previous quality violations cannot be compensated.

Similarly, a rollback recovery scheme in the case of quality
violation is proposed in [11] and [12]. Accordingly, classifiers
were developed to predict whether the input data, when
processed by approximate accelerators, produces an output
with the allowed relative error. This kind of approach cannot
be applied exhaustively for every possible output since the
associated area and power dissipation overhead violates the
foremost motivation of using AC. Thus, lightweight quality
checkers with high-efficiency are used to decide about the
usage of rollback approximation. However, the quality checker
proposed in [11] is application-specific, and Khudia et al.
[12] show a low prediction accuracy for large applications.
Khudia et al. [12] showed that less than 20% of the inputs
exhibit significant approximate errors, which can lead to a
notable quality degradation in most applications. With the
motivation of achieving a high prediction accuracy, multi-
ple lightweight predictors have been proposed in [13] by
avoiding many unnecessary expensive rollback recoveries.
Chengwen et al. [14] proposed an optimization framework to
coordinate the training of the classifier (error predictor) and
the accelerator (used for approximate computation) with an
intelligent selection of training data, based on the iterative
training process. The above approaches reported in [9]–[14]
mainly target controlling software approximation only through
program reexecution and, thus, are not applicable to hardware
designs. Moreover, they ignore input dependencies and do not
consider choosing an adequate design from a set of available
designs.

Recently, Xu and Schafer [15] proposed a runtime a recon-
figurable manager to select the most suitable approximate
design based on the detected input data distribution. How-
ever, they utilize approximate accelerators designed at the
behavioral level for various coarse-grained expected input data

distributions. In addition, the proposed approximate circuits
heavily depend on the training data used during the approxi-
mation process, where not all possible workload distributions
can be precharacterized. Thus, the real workload may differ
completely from the training one. Xu and Schafer [16] also
presented a self-tunable runtime adaptive approximate archi-
tecture that is suitable for application-specific integrated circuit
(ASIC) designs. However, the used approximation techniques
are variable-to-variable (V2V) and variable-to-constant (V2C)
optimization only. Overall, none of these state-of-the-art tech-
niques, i.e., [9]–[16], exploits the potential of different settings
of AC and their adaptations based on a user-specified quality
constraint in order to ensure the accuracy of the individual
outputs, which is the main idea proposed in this work. Our
proposed work is complementary to [15] and [16] in the sense
that our designs are approximated independently of the applied
inputs (unlike [15]) and encompass various simplifications
(unlike [16]).

III. PROPOSED METHODOLOGY

The proposed methodology caters to the following chal-
lenges of AC [17]: 1) minimizing the approximate results with
large error magnitudes; 2) selecting the approximate designs
based on the input data as well as the user requirements;
and 3) continuously monitoring the output quality and com-
pensating the error where monitoring all the inputs is not
a feasible solution. Therefore, we propose a design selector
based on a computationally inexpensive ML-models [18].
The proposed methodology utilizes DTs and NNs to build
an input-aware model, i.e., AC quality manager, to pick the
most suitable approximate design based on the input data.
The characteristics of the models, including their accuracy,
execution time, power consumption, and computation cost, are
extremely important for the successful implementation of the
proposed methodology.

Without loss of generality, we consider an tunable approxi-
mate design with two settings, i.e., S1 and S2, that take values
from the finite sets s1 and s2, respectively, where s1 repre-
sents the type of the approximate block used to build the
approximate design, and s2 is the approximation degree of
the design. For example, we designed a set of energy-efficient
approximate multipliers based on three design decisions [1]:
1) the type of the full adders (FAs) used to construct the
multiplier where we used 11 different types; 2) the archi-
tecture, i.e., array or tree; and 3) the approximation degree
(how much of the results to be approximated), where we
have used two options: 1) all FAs are approximate (fully
approximate design) and 2) FAs that contribute to the least
significant 50% of the resultant bits are approximated. Based
on the obtained results, we have selected the most energy-
efficient designs to be used in this work that is: 1) utilizing
five types of FAs that are called approximate mirror adders,
i.e., Type = s1 = {AMA1, AMA2, AMA3, AMA4, AMA5},
chosen from the low-power approximate FAs [19]; 2) its
architecture is array; and 3) the approximation degree has
four options, i.e., Degree = s2 = {D1, D2, D3, D4}, where
D1 has 7 bits approximated out of 16-bit result, while D2–D4
have 8, 9, and 16 approximate bits, respectively. Table I shows
our library of approximate designs based on Degree and Type
knobs, i.e., ApprxMul = {Design1, . . . , Design20}. Also, the
library includes the exact design to be used whenever the
required TOQ cannot be satisfied. The proposed design flow is
adaptable, i.e., applicable to approximate functional units other
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TABLE I

LIBRARY OF 20 STATIC APPROXIMATE DESIGNS BASED
ON Degree AND Type KNOBS

Fig. 1. ML-based methodology for tunable design to control the quality of
AC.

than multipliers, e.g., adders, subtracters, dividers, square-root
circuit, approximate multiply-accumulate (MAC) units, and
approximate metafunctions.

As depicted in Fig. 1, our proposed methodology encom-
passes two phases: 1) an off-line phase (executed once) where
the training inputs are applied to the library of approximate
designs to generate the training data for building the ML-based
design selector and 2) an online phase where the design
selector continuously accept inputs and select the most suitable
design to match the required TOQ for the given inputs.
Overall, the proposed methodology consists of the following
main steps.

1) Library of Approximate Designs: The first step is to
generate a set of approximate designs, i.e., approximate
library. An approximate design with two knobs, i.e.,
S1 and S2, will have |S1| × |S2| different settings
that constitutes our library. For the example of 8-bit
approximate array multiplier, as shown in Table I, we
have |S1| × |S2| = 5 × 4 = 20 different settings
with reduced power consumption and execution time
compared to the exact design. Section IV evaluates
various design characteristics of the approximate library.

2) Training Inputs: For an approximate design with m
inputs, i.e., i1, i2, . . . , im , each of n-bit width, and value
ranging from 0 to 2n−1, we apply j inputs of k-bit width
each to the approximate design to generate the training
data, where j ≤ m and k ≤ n. For example, for an 8-bit
approximate array multiplier with m = 2 and n = 8, and
in order to enhance model’s accuracy, we choose using
the whole range of inputs for training, i.e., j = m = 2
and k = n = 8, where we have 65 536 different input
combinations. For 16- and 32-bit designs, the size of the
input combinations is 232 and 264, respectively. Thus,

a sampling of the training data could be used because
it is impossible to generate an exhaustive training
data set.

3) Input Clustering/Quantization: Evaluating the design
accuracy for a single input can provide the ED metric
only, as explained in [20]. Therefore, input clustering
is indispensable while generating the training data to
evaluate the design accuracy over a range of consecutive
inputs that belong to the same cluster. Thus, mean error
metrics, e.g., mean square error (MSE) and normalized
mean error distance (NMED), are evaluated for each
cluster. Considering the example of an 8-bit approximate
multiplier, where each design has a (2k) j = (28)2 =
65 536 possible input combinations, we propose to clus-
ter every 16 consecutive input values, where each input
encompasses C = (2k/16) = 16 clusters rather than
256 inputs. Thus, the total number of possible input
combinations per design is reduced to 256. Similarly,
for the 16-bit design, the number of clustered inputs is
reduced to 224 rather than 232.

4) Training Data: For an approximate design with |S1| ×
|S2| different settings adapted from [1] and (2k/C) j

different combinations of clustered input, we generate
a training data of |S1| × |S2| × (2k/C) j instances.
Each instance includes the clusters of the applied inputs,
design settings, and various accuracy metrics obtained
from the approximate results, such as error rate, ED, rel-
ative ED, MSE, peak-signal-to-noise ratio (PSNR), and
normalized error distance (NED), which are described in
[20]. Moreover, each design has its area, power, delay,
and PDP reduction compared to the exact design. For
the example of an 8-bit approximate multiplier, we have
a total number of 5×4×162 = 5120 training instances.
Similarly, for the library of 16-bit designs, we have
20 × 224 training instances.

5) Design Selector: It enables design adaptation for chang-
ing inputs to match the required TOQ where the error
distribution is input-dependent [21]. We realized this
in a two-steps design. The first step determines the
first setting of the design, i.e., approximation Degree.
Then, the second step determines the other setting, i.e.,
design Type. To train the model, the data were divided
into two groups: the training-testing data set and the
validation data set; 70% of the original data set were
selected randomly for model training using repeated
fivefold cross-validation. The most accurate model was
selected for the testing stage based on 15% for the
data set. Finally, we validated the model using the
remaining 15% for the data set. Thus, we ensure that
no training data leak into the test set. The obtained
accuracy of the DT-based model depends on the settings
of various parameters. Even when the model’s prediction
is inaccurate, the area, power, and delay of the selected
approximate design are still lower than the exact design
because all the approximate designs have less power,
area, delay, frequency, and energy compared to the exact
design. When the TOQ required by the user is higher
than the best value attainable by approximate designs,
the model selects the exact design. The characteristics
of these DT and NN-based models are summarized
in Table IV. Finally, the selected design is adapted
within an error-resilient multiplication-intensive applica-
tion. For example, 8-bit approximate multipliers are used
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Algorithm 1 Proposed Tunable Approximate Design

in multiplication intensive applications, such as image
processing, i.e., blending and filtering.

The proposed methodology is easily applicable to other
approximate designs, such as approximate adders, subtracters,
dividers, and MAC units. The first step of the proposed
methodology is generating the AC blocks. Based on this, the
remaining four steps of the methodology (generating training
inputs, performing input quantization, generating training data,
and building ML-based design selector) are general, where
they are applicable to any AC block. The flow of the proposed
methodology is shown in Algorithm 1. The main off-line steps
are done once. During the online phase, the user specifies the
TOQ, where we build our models based on NED and PSNR
error metrics. An important design decision is to determine
the configuration granularity, i.e., how much data to process
before readapting the design, which is termed the window
size (N). For image processing applications, we select N to
be equal to the size of colored components of a frame, i.e.,
250 × 400 = 100 000 pixels. Then, based on the length of
inputs, i.e., L and N, we determine the number of times
to reconfigure the design such that the final approximation
benefits, i.e., reduced energy and/or execution time, are still

significant. After N inputs, a design adaptation is done if any
of the inputs or TOQ changes. The first step in such adaptation
is input quantization, i.e., specifying the corresponding cluster
for each input based on its magnitude. In order to evaluate
the inputs of an approximate design, various metrics, such
as median, skewness, and kurtosis, have been used [15].
However, our approximate library is designed irrespective of
the applied inputs. Thus, the input magnitude is the most
suitable characteristic for design selection.

IV. LIBRARY OF APPROXIMATE MULTIPLIERS

Multipliers are an integral component for many digital
signal processors, embedded systems, and microprocessors.
They are extensively used in the operations of various appli-
cations related to speech processing, digital filtering, digital
signal processing, convolution, correlation, communication,
and video coding. Moreover, multipliers are one of the most
energy-hungry components with complex logic design [22].
Usually, multipliers have a complex structure, as well as being
laid in the critical path of digital circuits. Thus, approximate
multipliers have a major impact on the performance and energy
dissipation of the overall hardware design. Accordingly, we
noticed from the literature that approximate multiplier designs
with their quality control have gained a great research interest.
In this article, as a case study of our methodology, we use a
library of approximate multipliers, which we developed in a
previous work [1]. The methodology proposed in this article,
however, is equally applicable to other functional units, e.g.,
adders, subtracters, dividers, and MAC units.

In this section, we analyze various characteristics, i.e.,
accuracy, area, delay, energy, and power consumption, of
our approximate library. We consider 8-bit multipliers, which
are commonly used in low-power embedded systems and
image/video processing applications [23]. For example, the
CEVA-NP4000 DSP processor includes 4096 8-bit MAC units
[24], which are used in various high-performance energy-
constrained edge processing applications. Moreover, in [1], we
developed 8- and 16-bit approximate multipliers, and the simu-
lation results for 16-bit approximate array multipliers exhibit
significant similarities with the 8-bit version. Similarly, the
characterization of 16- and 8-bit approximate tree multipliers
is also very similar.

A. Related Approximate Multipliers

Many methods for designing approximate multipliers were
proposed in the literature. For example, Sabetzadeh et al.
[25] proposed ultraefficient approximate 4:2 compressor and
multiplier designs based on majority logic, where the proposed
compressor can tradeoff between ED and transistor count.
Moreover, the proposed compressor is based on the majority
logic, which leads to a more efficient imprecise multiplier.
The proposed designs are evaluated using FinFET technology.
Ansari et al. [26] used approximate multipliers to improve
the accuracy of NN. For that, they used a set of carefully
simplified approximate multipliers in addition to another set
of approximate multipliers designed based on the Cartesian
genetic programming (CGP). On the other hand, it is known
that array multipliers have periodic structures and, thus, lead
to compact hardware due to short wiring, which leads to
efficient pipelining. Due to its benefits, Mahdiani et al. [27],
Shao and Li [28], Shirane et al. [29], Yamamoto et al. [30],
and Sato and Ukezono [31] designed a series of approximate
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Fig. 2. PSNR for approximate multiplier based on AMA5 type and D1–D4 approximation degrees.

TABLE II

ACCURACY METRICS FOR THE LIBRARY OF APPROXIMATE MULTIPLIERS

array multipliers with different accuracy, area, power, and
delay properties.

Ansari et al. [26] indicated that there is no single design
of approximate multiplier, which is best for all applications.
Thus, selecting the most suitable design for a specific appli-
cation is a challenge. Similarly, in this work, we declared
that the most suitable approximate design depends on the
application, applied inputs, and user preferences. Therefore,
we propose using a DT-based model to help in selecting
the most suitable approximate design for image processing
applications. Our proposed methodology is perpendicular to
designing approximate multipliers, e.g., [25]–[27], where we
can integrate any set of approximate multipliers to the library
of approximate designs. Then, we built an ML-based model
that selects the most suitable design to perform the specified
operation.

B. Accuracy of Approximate Library

In [20], we performed an exhaustive error analysis for the
library of approximate designs. The analysis revealed a strong
correlation between the applied inputs and the various accu-
racy metrics, i.e., ED, NED, and PSNR. Table II summarizes
various error metrics, i.e., error rate (ER), mean error distance
(MED), NED, mean relative error distance (MRED), and
PSNR, which we obtained based on an exhaustive simulation
for the approximate library. The shown results are averaged
over the full range of the inputs and provide useful insights
about design accuracy. Based on the analysis of ED in [20],
we identified a strong correlation between the ED and both
design type and degree. However, considering the ED metric
as our TOQ mandates changing the design for every applied
input, which is impractical due to the associated overhead

PSNR = 10 × log10

(
2552

MSE

)
. (1)

For image processing, PSNR that depends on the MSE as
given by (1) is an image quality indication. Thus, we use

it as a TOQ metric in the proposed design selector. A low
value of PSNR indicates a low-quality image associated with a
large MSE. Similar to [32], as an example, we consider PSNR
≥ 25 dB as our threshold for an acceptable quality. Fig. 2
shows—as an example—the PSNR for designs based on AMA5
type. The D1-based design has an average of 46.8 dB with a
minimum of 16.3 dB, where it has five input combinations
with TOQ < 25 dB. Similarly, the design based on D2 has
an average of 40.3 dB with a minimum value of 10.4 dB,
and 14 input combinations have TOQ < 25 dB. The design
with D3 has an average of 34.6 dB for the PSNR, and
33 input combinations have TOQ < 25 dB. Regarding the
D4-based design, 239 clusters have a reduced quality with an
average of 8.8 dB. The analysis of the PSNR of 20 different
approximate designs [20] shows that every design has some
input combinations that violate the specified TOQ. Therefore,
the tunable design should avoid such quality violating cases.
Designs with low PSNR (high error) either: 1) have all bits
of the results being approximated based on designs with D4
approximation Degree or 2) have a low magnitude applied
inputs, where the low bits of the result are approximated, while
there are no bits applied to the most significant part of the
design causing the whole result being approximated.

C. Power, Area, Delay, and Energy of Approximate Designs

For the analysis of design metrics, of the approximate
library, we utilized the XC6VLX75T FPGA, which belongs
to the Virtex-6 family, and the FF484 package. For function-
ality verification, we use VHDL simulation based on Mentor
Graphics Modelsim. We use Xilinx XPower Analyser for the
power calculation based on exhaustive design simulation. For
logic synthesis, we use the Xilinx ISE 14.7 tool suite.

Table III shows the characteristics of the approximate
designs. As depicted in Fig. 3, all designs have reduced power,
area, and energy compared to the exact design. However,
few designs have a negligible longer critical path. Power
reduction varies from 27.2% to 93.4% with an average of
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Fig. 3. Power, area, delay, and energy reduction for the 20 static approximate multipliers.

TABLE III

POWER, AREA, DELAY, FREQUENCY, AND ENERGY FOR THE

LIBRARY OF APPROXIMATE MULTIPLIERS

60.8%. Similarly, energy reduction ranges between 23.2%
and 99.4% with an average of 65.5%. The designs based
on D1–D4 have an average of 42.2%, 56.9%, 66.6%, and
96.2% of energy reduction, respectively. These designs exhibit
a 21.3% execution time reduction on average. Each design of
the 8-bit approximate array multipliers implemented on FPGA
consists of 64 full adders (FAs). The designs D1–D4 have
25, 33, 40, and 64 approximate FAs, respectively. Based on
the experimentally obtained values, the power consumption
is reduced approximately by a factor of 1.3 for every bit of
the results being approximated, e.g., going from D1 to D2.
The dynamic power difference between D1 and D4 is about
10×, which equals ≈ 1.38. This clearly shows the benefits of
design approximation regarding power consumption, which is
obtained mainly due to the simplified design of approximate
FA with reduced switching activity. The approximate FAs
have a simplified structure compared with the exact FA.
Thus, approximated designs have a noticeable reduction in the
occupied LUTs

Reduced Energy = 1

X ×
(

E
ETOQ

)
+ (1 − X)

. (2)

The final energy reduction enabled by approximation is
weighted by the portion of circuit design that is truly beneficial
for approximation. This is similar to the improvement of com-
puter performance, which is obtained based on the enhanced

Fig. 4. Models for AC quality manager. (a) Forward design. (b) Inverse
design.

performance of specific components, as quantified by Amdal’s
law [33]. The final reduced energy can be expressed in the
form of Amdal’s law, as given in (2), where E is the energy
for the exact component, and ETOQ is the energy of the
approximate component, which satisfies the TOQ. The ratio
(E/ETOQ) is the energy saving in the approximate component
of the design, and X is the fraction of the design, which is
amenable to approximation. Thus, for best energy efficiency,
we aim to achieve (E/ETOQ) � 1 and X ≈ 1. Therefore, we
use image blending and filtering that are a pure multiplication
operation, i.e., X = 1.

V. ML-BASED MODELS

ML-based algorithms find solutions by learning through
training data [18]. Supervised learning allows for a fast,
flexible, and scalable way to generate accurate models that
are specific to the set of application inputs and TOQ. It
allows automated data analysis with a set of methods, which
detects patterns in the given data set and predict future data.
In supervised learning, a map between a set of input attributes
and an output variable is used to predict the unseen data.

The error for an approximate design with specific settings
can be predicted based on the applied inputs. For this purpose,
we developed a forward design-based model, as shown in
Fig. 4(a). The obtained accuracy for this model is 97.6% and
94.5%, for PSNR and NED error metrics, respectively. Such
high accuracy is attributed to the straightforward nature of
the problem. However, we mainly target the inverse design of
finding the most suitable design settings for given inputs and
error threshold, as shown in Fig. 4(b).

Utilizing the Rattle package [8], we designed and evaluated
various ML-based models, based on the analyzed data and
several algorithms, developed in the statistical computing
language R. These models represent the design selector for
the tunable design. Linear regression models (LMs) are the
simplest to develop; however, their accuracy is the lowest,
i.e., around 7%. Thus, they are not suitable to work with our
methodology. DT models based on both C5.0 and rpart algo-
rithms achieve an accuracy of up to 64%. Random forest (RF)
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models, with an overhead of 25 DTs, achieve an accuracy of
up to 68%. The most accurate models have been found to be
based on NNs, but they suffer from long development time,
design complexity, and high energy overhead [13]. Next, we
implement and evaluate two versions of the design selector,
based on DT and NN models. Accordingly, we identify
and select the most suitable one to be implemented in our
methodology.

A. DT-Based Design Selector

The DT algorithm uses a flowchart-like structure to partition
a set of data into various predefined classes, thereby providing
the description, categorization, and generalization of the given
data sets [34]. Unlike the LM, it models nonlinear relationships
quite well. Thus, it is applied in a wide range of applications,
such as credit risk of loans and medical diagnosis [35]. DTs
are usually employed for classification over data sets, through
recursively partitioning the data, such that observations with
the same label are grouped together [35].

Initially, we implemented and evaluated three different
DT-based models: 1) using the C5.0 function; 2) using the
rpart function; and 3) based on the cubist function [36].
The accuracy of the rpart-based models is found to be lower
than that of C5.0-based models. Cubist is a rule-based model,
which is an extension of Quinlan’s M5 model tree [37], where
a tree is developed such that the terminal leaves represent LMs.
Therefore, we have to discretize the results, which degrades
its accuracy. Moreover, the leaves with linear models need
more processing than the scalar leaves in the C5.0. Thus,
we implemented a two-step design selector utilizing the C5.0
function by predicting the design Degree and then its Type.
This kind of design selector is supposed to be lightweight
for constantly monitoring the workloads and continuously
adapting the design of every (N) input.

The gradient boosting machine (GBM) [38] is a well-known
ML algorithm. Similar to RF, GBM is a set of DTs. However,
RFs build an ensemble of deep independent trees, while GBMs
build an ensemble of shallow and weak successive trees where
each tree is capable of learning and improving on the previous
ones [39]. GBMs are computationally expensive, where they
often require many trees, e.g., more than 1000, which can
be time and memory exhaustive [40]. As shown in Table I,
a model to predict the approximation degree can achieve an
accuracy of 91.2% with the overhead of 30 000 trees. The
other four models to predict the design type have better
accuracies of 39.4%, 61.85%, 60.3%, and 46.2%, with an
overhead of 100, 500, 500, and 50 trees, respectively. However,
these GBM-based accuracies are less than the DT-based ones.
The GBM-based model to predict the design degree has
higher accuracy than the DT-based model with the overhead
of 5000 trees. However, the four GBM-based models to pre-
dict the design type have an accuracy lower than the DT-based
models with an overhead of hundreds of trees. Therefore, in
this work, we discarded GBMs due to the associated overhead
and reduced accuracy in all four models compared to DTs.

A DT model, which is built based on full training data,
could be replaced by a simple lookup table or exhaustive
search, especially for a small search space [8]. In general, for
embedded and limited resources systems, a lookup table is not
a viable solution if the number of entries becomes very large
which causes a significant area overhead [41]. For instance, for
a circuit with two 16-bit inputs, we need to generate 232 input

patterns to cover all possible scenarios of a circuit, which is
unsuitable for our target embedded system applications [42].

Based on the error analysis of the approximate designs [20],
we noticed that the error magnitude is correlated with the
approximation Degree in a more significant manner than the
design Type. Such correlation is manifested in the accuracy of
the models, where these models have an average accuracy of
77.8% and 74.3% for predicting the design Degree and Type,
respectively, as shown in Table IV. The time for executing the
implementation in MATLAB of these models is very small;
for example, around 8.87 ms are required to predict the design
Degree, and a maximum of 25.03 ms are required to predict
the design Type. This time is negligible compared to the time
of running an application, such as image blending or filtering.

This work aims to show the effectiveness of the proposed
methodology based on a software-based implementation (in
MATLAB) of the tunable approximate design. Moreover,
in order to prove its applicability to hardware designs, we
evaluate the power, area, delay, and energy of the hardware
implementation of the design selector in a similar manner as
evaluating the approximate library in Section IV-C. Table IV
shows the obtained results. The power consumption of the
model is less than 44 mW. This value is insignificant compared
to the power consumption of approximate multipliers, as
shown in Table III, where these multipliers are used for
N inputs. Similarly, the introduced area, delay, and energy
overhead are amortized by running the approximate design for
N inputs. The area of the model, represented in terms of the
number of slice LUTs, is 1099, at maximum. Also, the number
of occupied slices could reach 452 slices. The worst case
(slowest) frequency that the model could run is 43.65 MHz
with a period of 22.91 ns. The designed model could consume
maximum energy of 733.7pj. The set of approximate multi-
pliers exhibit an acceptable saving in their characteristics, i.e.,
area, power, delay, and energy, compared to the exact design,
as shown in Table III. It is important to note that the design
selector, which is synthesized only once, is specific for the
considered set of approximate designs.

B. NN-Based Design Selector

NNs have generally been implemented in embedded soft-
ware. However, recently, with the exploding number of embed-
ded devices, the hardware implementation of the NNs is
gaining significant attention. FPGA-based implementation of
the NN is complex due to the large number of neurons and the
calculation of complex equations, such as activation function
[43]. We use the sigmoid function f (x), which is given by

f (x) = 1

1 + e−x
, (3)

as an activation function. Targeting an inexpensive hardware, a
piecewise second-order approximation scheme for the imple-
mentation of the sigmoid function is proposed in [44], as given
by

f (x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

1, x > 4.0

1 − 1

2

(
1 − |x |

4

)2

, 0 < x ≤ 4.0

1

2

(
1 − |x |

4

)2

, −4.0 < x ≤ 0

0, x ≤ −4.0.

(4)

It has one multiplication, no lookup table, and no addition.
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TABLE IV

CHARACTERISTICS, I.E., ACCURACY, EXECUTION TIME, POWER, AREA, DELAY, FREQUENCY, AND ENERGY,
OF DESIGN SELECTORS BASED ON DT AND NN MODELS

We implemented a two-step design selector by predicting
the design Degree first and then the Type. The model for
Degree prediction has an accuracy of 82.17% (the highest
among all built models), while the four models for Type
prediction have an accuracy between 73.22% and 59.08% with
an average of 67.3%, as shown in Table IV. The time for
design prediction ranges between 37.6 and 26.3 ms with an
average of 32.7 ms.

We implemented the NN-based model on FPGA, and its
dynamic power consumption, slice LUTs, occupied slices,
operating frequency, and consumed energy are shown in
Table IV. These values are found to be insignificant compared
to the characteristics of approximate multipliers, as shown
in Table III, where these multipliers are used for N inputs.
However, compared to the DT-based model, the NN-based
model has an execution time, which is 1.31× higher than the
DT, while its average accuracy is almost 0.98× of the accuracy
achieved by the DT-based model. Other design metrics, includ-
ing power, slice LUTs, occupied slices, period, and energy,
have a value of 8.6×, 13.93×, 11.74×, 1.81, and 13.6×, con-
secutively, compared with the DT-based model. Unexpectedly,
the DT-based model is better than the NN-based model in all
design characteristics, including accuracy and execution time.
Section VI evaluates the software-based implementation of the
proposed methodology, which utilizes the DT-based design
selector that we described earlier. We discarded the NN-based
design selector due to the absence of advantages over DT.

VI. RESULTS

This section evaluates the effectiveness of the proposed
tunable approximate design, including the approximate library
and the DT-based design selector. Regarding the setup for
the execution time, we run MATLAB on a machine with
8-GB DRAM and i5 CPU with a speed of 1.8 GHz. We
evaluate the proposed methodology based on two applications
of images processing: 1) image blending, where we use two
sets of images, i.e., Set-1 with five examples and Set-2 with
50 examples and 2) image filtering, where we use two images,
i.e., Lina and Cameraman. Section VI-C evaluates an audio
mixing application based on 16-bit models. The execution time
is considered as a quality metric, where its overhead is found
to be relatively small compared to the original applications, as
shown next.

A. Image Blending

Image blending in multiplication mode allows blending
multiple images together to look like a single image. This
process is widely used in developing animation and effect
movies where video blending requires the multiplication of
several consecutive images. For example, blending two colored
videos, each with N f frames of size Nr rows by Nc columns

Fig. 5. Tunable image blending at the component level.

per image, involves a total of 3N f × Nr × Nc pixels. Each
image has three colored components/channels, i.e., red, green,
and blue, where the values of their pixels are expected to differ.
A static configuration uses a single design, to perform all
multiplications, even when their pixels are different. Therefore,
for enhanced output quality, we propose to adopt the approx-
imate design per channel parameter, as shown in Fig. 5. This
way, the design selector continuously monitors the inputs and
efficiently locates the most suitable design for each colored
component to meet the required TOQ.

Various metrics, e.g., median, skewness, and kurtosis, have
been used in the literature to characterize the inputs of approx-
imate designs [15]. However, their proposed approximate
circuits heavily depend on the training data used during the
approximation process. Our approximate library is designed
regardless of the applied inputs. Thus, the relationship between
the consecutively applied inputs, such as skewness and kurto-
sis, is insignificant for our designs. Since the error magnitude
depends on the applied inputs, we rely on pixel values to
select the suitable design. However, setting the configuration
granularity at the pixel level is impractical. On the other hand,
the design selection per colored component is more suitable.

We evaluate the average of the pixels of each colored
component to select the most suitable design. Two completely
different images may have the same average of their pixels.
Unfortunately, this could result in the same selected approxi-
mate design because the training is performed at the multiplier
level and not the image level. To avoid this scenario, we
reduce the configuration granularity by dividing the colored
component into multiple segments, e.g., four segments. There-
after, we propose to use multiple designs, rather than a single
design, for each colored component. This triggers training and
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TABLE V

CHARACTERISTICS OF Set-1 BLENDED IMAGES

building the model at the image level to control the quality
of approximation in image processing applications. Next, we
analyze the results of applying the proposed methodology on
two sets of images: 1) Set-1 with ten images used in our prior
work [45] and 2) Set-2 with 100 images based on a well-
known database of images [46]. The images of each set are
then blended at the component level, as shown in Fig. 5, to
evaluate the efficiency of the proposed methodology.

1) Blending of Set-1 of Images: We use a set of ten
different images, each of size Nr × Nc = 250 × 400 pixels.
Table V shows the characteristics of the images, where each is
segmented into three colored components. The average values
of the pixels of each component and the associated input
cluster are denoted as Average and Cluster, respectively.

We target 49 different values of TOQ, i.e., PSNR ranges
from 17 to 65 dB, for each blending example. Thus, we
run the methodology 245 times, i.e., 5 × 49. For every
invocation, based on C1, C2, and the associated target PSNR,
one of the 20 designs is selected and used for blending. For
illustration purposes, we explain Example5 in detail. As shown
in Table V, the Girl image has a red-component with an
average of 102, which belongs to Cluster 7, i.e., C1R = 7.
Similarly, the Tree image has a red-component with an average
of 239, which belongs to Cluster 16, i.e., C2R = 16. The
green components belong to Clusters 5 and 13 (C1G = 5 and
C2G = 13), while the blue components belong to Clusters 3
and 8 (C1B = 3 and C2B = 8). Then, we adapt the design by
calling the design selector thrice, i.e., once for every colored
component, assuming TOQ = 17 dB. The selected designs
(based on line 29 of Algorithm 1) are given by

Selector(C1R, C2R, TOQ) → DesignR → Design8 (5)

Selector(C1G, C2G, TOQ) → DesignG → Design16 (6)

Selector(C1B, C2B, TOQ) → DesignB → Design11. (7)

The selected DesignR, DesignG, and DesignB are Design8,
Design16, and Design11, respectively. Based on that, the
obtained quality is 16.9 dB, which is close to the TOQ.

a) Accuracy analysis of tunable design: Fig. 6 shows
the minimum, maximum, and average curves of the obtained
output quality, each evaluated over five examples of image
blending. Out of the 245 selected designs, 49 predicted designs
are violating the TOQ, i.e., the obtained output quality is
below the red line. The unsatisfied output quality is attributed
mainly to model imperfection. The best achievable predic-
tion accuracy is based on the accuracy of the two models
executed consecutively, i.e., Degree model with 77.8% and
Type model with 76.1%. Thus, the best achievable accu-
racy is 77.8% × 76.1% = 59.2%. However, a false predicted
design can still achieve an acceptable output quality because
there can be multiple designs that may achieve the required
quality constraints. The accuracy of our model prediction is

Fig. 6. Obtained output quality for image blending of Set-1.

80%, which is in agreement with the average accuracy of the
DT-based models, as shown in Table IV.

Fig. 7 shows the fluctuation in the value of the PSNR, which
is obtained by applying different input images for a specific
static design. Based on the images of Set-1, Design3, Design7,
Design11, Design15, and Design19 have a fluctuation of
14.2%, 2.4%, 7.9%, 4.1%, and 3.1% of the obtained PSNR,
respectively. Similarly, for the images of Set-2, the obtained
PSNR fluctuates by 15.4%, 13.7%, 15.2%, 9.6%, and 9.8%
for Design3, Design7, Design11, Design15, and Design19,
respectively. Thus, for any design, the PSNR fluctuates for
different images due to the dependence of the output quality
on inputs, as observed in [47].

b) Execution time analysis of tunable design: Fig. 8
shows the average execution time of the five examples of
image blending evaluated over 20 static designs. The shown
time is normalized with respect to the execution time of the
exact design. All designs have a time reduction ranging from
1.9% to 13.7% with an average of 3.96%, while the average
execution time of the tunable design is 98.2% compared to
the exact design. Thus, the tunable design is able to satisfy
the user required TOQ with an execution time similar to the
static design. For the five examples of image blending, we
evaluated the execution time of the tunable design, where the
target PSNR ranges between 17 and 65 dB for each example.
Fig. 9 shows the execution time for the five examples using
the exact design, the tunable design averaged over 49 different
TOQ, and the static design averaged over 20 approximate
designs. The time difference between the static time and the
tunable time is due to design adaptation overhead. The time
for design adaptation is 30.5, 93.9, 164.6, 148.6, and 42.1
ms for examples 1–5, which have a data processing time of
50.90, 50.91, 51.10, 51.69, and 51.04 s, respectively. For these
five examples, the design adaptation time represents 0.06%,
0.18%, 0.32%, 0.28%, and 0.08% of the total execution time,
respectively, which is negligible.

c) Energy analysis of tunable design: One of the fore-
most goals of designing a library of approximate multipli-
ers is to enhance energy efficiency. To calculate the energy
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Fig. 7. Dependence of the output quality on the applied inputs.

Fig. 8. Normalized execution time for blending of Set-1 images using
20 static designs.

Fig. 9. Execution time of the exact, static, and tunable design.

consumed by the approximate multiplier to process an image,
we use the following equation:

Energy = Power ∗ Delay ∗ N (8)

where Power and Delay are obtained from the synthe-
sis tool, as shown in Table III, and N is the number
of multiplications required to process an image, which
equals 250*400 = 100 000 pixels. As shown in Table III,
Design9 has the highest energy consumption with 2970pj and
a saving of 896pj compared to the exact design. Thus, the
design adaptation overhead of 733.7pj (based on Table IV) is
almost negligible compared to the total energy savings of 89.6
μj (896pj × 100 000) obtained by processing a single image.
This validates our lightweight design selector.

Fig. 10. Obtained output quality for image blending of Set-2.

2) Blending of Set-2 of Images: We used a set of 100
images from the database of 8 Scene Categories Data set [46],
which is downloadable from [48]. It contains eight outdoor
scene categories: coast, mountain, forest, open country, street,
inside city, tall buildings, and highways. Similar to Set-1,
we target 49 different value of TOQ, for 50 examples of
blending, and execute the proposed methodology 2450 times.
Fig. 10 shows the minimum, maximum, and average curves of
the obtained output quality, each evaluated over 50 examples
of image blending. Out of the 2450 selected designs, 430
predicted designs are violating the TOQ, i.e., the obtained
output quality is below the red line. Thus, the accuracy of
our model prediction is 82.45%, which is slightly higher
than the accuracy obtained for Set-1 images. We consider
PSNR ≥ 25 dB as a threshold for an acceptable quality of
images, as proposed in [32]. As shown in Figs. 6 and 10, the
proposed methodology has a high prediction accuracy for an
acceptable PSNR, while its prediction accuracy is low when
TOQ < 25 dB.

B. Gaussian Smoothing/Filtering of Two Images

Here, we evaluate the accuracy of the tunable design on
a Gaussian smoothing low-pass filter, which reduces image
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Fig. 11. Exact, noisy, and filtered images.

Fig. 12. Obtained output quality for tunable image filtering.

details through attenuating high-frequency signals. Applying
a Gaussian smoothing is the same as convolving the image
with a circularly symmetric 2-D Gaussian function, given in
[49]

G(x, y) = 1

2πσ 2
e− x2+y2

2σ2 . (9)

The Gaussian distribution is nonzero everywhere. Practi-
cally, it is effectively zero more than three standard deviations
(σ ) from the mean (μ). The Gaussian smoothed output is a
weighted average of each pixel’s neighborhood. We use a (3 ×
3) kernel, based on σ = 1.5, where the kernel average weight
depends significantly on the value of the central pixels.

We use the benchmarks lena and Cameraman as input
images, with the addition of zero-mean Gaussian white noise,
with a variance of 0.01 to the original gray-scale image. Fig. 11
shows the benchmark images with Gaussian noise added and
the noisy images filtered with the exact design. The Gaussian
kernel, as given in (9), is applied to the 8-bit gray-scale input
images of size (512 × 512) pixels.

Fig. 12 shows the obtained PSNR for two examples of
image filtering based on tunable design where the TOQ ranges
between 17 and 53 dB. The proposed methodology was able
to satisfy the required TOQ. When it ranges between 17 and
34 dB, the obtained output quality for the two examples is

Fig. 13. Output quality (PNSR) for two examples of image filtering based
on 20 static designs.

different. However, when the TOQ is 35 dB or more, both
examples have almost the same obtained PSNR. Fig. 13 shows
the PSNR obtained by using the 20 static designs. The result-
ing values are computed with respect to the image obtained by
applying the Gaussian filter with the exact multiplier design
on the noisy image. The approximate designs were able to
obtain a maximum PSNR of 53.2 dB.

C. Audio Mixing/Blending

Sounds are propagating waves represented in a 16-bit binary
depth, which is able to cover a wide range of amplitudes with
enhanced quality. We perform a set of audio blending appli-
cations, to evaluate the DT-based model for 16-bit designs.
We evaluate the proposed methodology over 45 examples,
where the target PSNR ranges between 15 and 70 dB. The
used WAV sound files were obtained. Fig. 14 presents the
achieved PSNR, i.e., minimum, maximum, and average, based
on the DT model, which is designed to learn from the
limited input data, to predict a result for the unseen data.
The accuracy of the “average obtained TOQ” (blue curve)
is 85.7%. Figs. 6 and 10 for the image blending application
were showing a smoother curve of predicted results since the
DT-model was built using a full set of training data. However,
the stairs/steps in the predicted PSNR, as shown in Fig. 14, are
due to the expectations of the model, which was built based on
the sampled training data. The comparable accuracy of both
models shows the effectiveness of ML even with the sampled
training data.

VII. COMPARISON WITH RELATED WORK

We compare the output accuracy achieved by our tun-
able design with the accuracy of two static approximate
designs based on approximate multipliers proposed by
Kulkarni et al. [50] and Kyaw et al. [51], which have similar
structures as our approximate array multipliers. Moreover, we
compare the accuracy of our work with a third approximate
design based on the approximate tree compressor multiplier
(ATCM), as proposed by Yang et al. [52], which is a Wallace
tree multiplier.

Kulkarni et al. [50] construct a large (8 × 8)
multiplier—which we call 2 × 2-based multiplier—using
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Fig. 14. Obtained output quality for audio blending.

TABLE VI

COMPARISON OF THE OBTAINED ACCURACY (PSNR)
FOR VARIOUS APPROXIMATE DESIGNS

smaller (2 × 2) approximate multipliers as building blocks.
The work in [51] presents an (8 × 8) error-tolerant multiplier
(ETM) based on the truncation principle by dividing the
multiplier into two parts, i.e., accurate and approximate. For
an 8-bit multiplier, the most significant 8 bits of the result are
generated based on exact multiplication, while the least signifi-
cant 8 bits of the result are generated based on probabilistic bit
manipulation. ATCM utilizes a 4-to-2 compressor [53], which
equally partitions the rows of the partial product tree array
to reduce power and delay. In the rest of this article, we call
the above three multiplier designs: KUL, ETM, and ATCM,
respectively.

Table VI shows a summary of the obtained PSNR for image
blending and filtering, based on KUL [50], ETM [51], ATCM
[52], and the proposed adaptive design, which achieves better
output quality than static designs due to the ability to select
the most suitable design from the approximate library.

Table VII shows the power, area, delay, frequency, and
energy of various multipliers, including the exact design, and
three related designs, i.e., KUL, ETM, and ATCM, in addition
to the approximate designs of our library with minimum and
maximum values. We notice that the various circuit metrics,
i.e., area, power, delay, and energy, of the related designs

TABLE VII

POWER, AREA, DELAY, FREQUENCY, AND ENERGY
OF VARIOUS MULTIPLIERS

are within the range of our designed approximate multipliers.
The related designs, i.e., KUL, ETM, and ATCM, have a
saving of 2656pj, 3341pj, and 2999pj, respectively, compared
to the exact design. Thus, for processing a single image, the
design adaptation overhead of 733.7pj (based on Table IV)
is negligible compared to the total energy savings of 265.6,
334.1, and 300 μj for KUL, ETM, and ATCM designs,
respectively.

We compare the proposed methodology with the state of
the art [9]– [16] in terms of several requirements related
to hardware/software applicability, data dependence, quality
assurance, and methodology overhead. Table VIII summarizes
the comparison between the different approaches for AC
quality control. Generally, all approaches are able to control
the average quality of approximation results.

A. Hardware/Software

Existing work [9]– [14] exhibit limited applicability for
software approaches only, while the approaches in [15] and
[16] are applicable to hardware with limited configurations.
The methodology that we propose in this article is applicable
to both hardware and software approximate applications with
approximable components. This work explains a full software-
based implementation (in MATLAB) of the proposed method-
ology. Moreover, we presented a hardware implementation of
the approximate library and design selector.

B. Input Data Dependence

A distinctive characteristic of our methodology is its data
dependence. To the best of our knowledge, none of the previ-
ous works targeted fine-grained input dependence of approx-
imate designs to control the output quality. The proposed
approach clusters the input data and then uses it with a library
of approximate designs to generate training data. Another
peculiar feature of the proposed approach is the development
of a lightweight DT-based model for design selection with
satisfying accuracy.

C. Quality Assurance and Overhead

The approaches [9]–[14] control the quality of results
through rollback and program reexecution. However, they
require extra time and out-of-order-execution. The approach
in [15] depends on the training data used during the approx-
imation process, which may differ significantly from the real
workload, while the approach in [16] relies on V2V and V2C
approximation techniques only. On the other hand, the pro-
posed approach needs a one-time data generation, training, and
model building. Then, the design is adapted, with negligible
overhead.
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TABLE VIII

COMPARISON BETWEEN AC QUALITY CONTROL APPROACHES

VIII. CONCLUSION

AC reduces execution time or/and energy consumption of
error-resilient applications by relaxing the quality constraints.
However, when the inputs are dynamic, a static design may
lead to extremely large output errors. Previous work has
ignored considering the changing inputs to assure the quality
of individual outputs. In this work, targeting approximate
programs, we proposed and implemented a novel fine-grained
input-based tunable design based on ML models. The proposed
solution considers the input data in generating the training
data, building ML-based models, and adapting the design to
satisfy the TOQ. This approach is applicable to both hardware
and software designs where we were able to satisfy the TOQ
with negligible energy and delay overhead more than 80%
of the time. These benefits come at the one-time cost of
generating the training data, deploying and evaluating the
model. With design adaptation, the most suitable design is
always identified and selected for controlling the quality loss.
Our ongoing work seeks to expand the approximate library
to encompass approximation techniques across various levels
of designs, including algorithmic, architectural, and functional
units. For follow up work, we are targeting a fully hardware
implementation of our proposed system.
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