
International Journal of Network Security, Vol.8, No.2, PP.207–218, Mar. 2009 207

Rank Functions Based Inference System for

Group Key Management Protocols Verification

Amjad Gawanmeh1, Adel Bouhoula2, and Sofiène Tahar1

(Corresponding author: Amjad Gawanmeh)

Department of Electrical and Computer Engineering, Concordia University1

Montreal, Quebec, H3G 1M8, Canada. (Email: {amjad, tahar}@ece.concordia.ca)

Higher School of Communication of Tunis (Sup’Com), University of November 7th at Carthage2

City of Communication Technologies, 2083 Ariana, Tunisia. (Email: adel.bouhoula@supcom.rnu.tn)

(Received Oct. 16, 2007; revised and accepted Apr. 23, 2008)

Abstract

Design and verification of cryptographic protocols has
been under investigation for quite sometime. However,
most of the attention has been paid for two parties pro-
tocols. In group key management and distribution proto-
cols, keys are computed dynamically through cooperation
of all protocol participants. Therefore regular approaches
for two parties protocols verification cannot be applied on
group key protocols. In this paper, we present a frame-
work for formally verifying of group key management and
distribution protocols based on the concept of rank func-
tions. We define a class of rank functions that satisfy spe-
cific requirements and prove the soundness of these rank
functions. Based on the set of sound rank functions, we
provide a sound and complete inference system to detect
attacks in group key management protocols. The infer-
ence system provides an elegant and natural proof strat-
egy for such protocols compared to existing approaches.
The above formalizations and rank theorems were imple-
mented using the Prototype Verification System (PVS)
theorem prover. We illustrate our approach by applying
the inference system on a generic Diffie-Hellman group
protocol and prove it in PVS.

Keywords: Inference system, security protocols verifica-
tion, theorem proving

1 Introduction

Cryptographic protocols provide security services for
communicating entities. They involve precise interactions
in order to achieve the required security services, there-
fore, it is very important to verify that the protocol op-
erations are not vulnerable to attacks. There are differ-
ent kinds of environments that protocols must interoper-
ate with. Besides, networks handle more and more tasks
in a potentially hostile environment. Therefore, crypto-
graphic protocols should take more responsibilities in or-

der to capture these new requirements. Some security
properties like availability and fairness take more impor-
tant roles in some protocols like in commercial systems.
This requires that the complexity of the cryptographic
protocol should be increased. There are different kinds
of environments that protocols must interoperate with,
besides, networks handle more and more tasks in a po-
tentially hostile environment. Therefore, cryptographic
protocols should take more responsibilities in order to
capture these new requirements. This of course, makes
both modelling and verification more difficult. It also re-
quires the search for new modelling and verification ap-
proaches for cryptographic protocols. In fact, group key
management protocols need security retention in the case
of dynamic member actions, such as leaving the group
for an existing member, or joining the group for a new
member. We should also guarantee that all authorized
members are able to access the group, at the same time
unauthorized ones are unable to have this access.

Security properties that are well defined in normal two-
party protocols have different meanings and different in-
terpretations in group key distribution protocols, and so
they require a more precise definition before we look at
how to verify them. An example of such properties is se-
crecy, which deals with the fact that secret data should
remain secret and not compromised. However, for group
key distribution protocols, this property has a further di-
mension since there are long-term secret keys, short-term
secret keys, in addition to present, future, and past keys;
where a principal who just joined the group and learned
the present key should not be able to have enough in-
formation to deduce any previous keys, or similarly a
principal who just left the group should not have enough
information to deduct any future keys. Therefore, sys-
tems designed for two-party protocols may not be able to
model a group protocol, or its intended security proper-
ties because such tools require an abstraction to a group
of fixed size to be made before the automated analysis
takes place. This can eliminate chances of finding at-

International Journal of Network Security, Vol.8, No.2, PP.207–218, Mar. 2009 208

tacks on these protocol. Also in group key protocols, the
key should be computed through cooperation of all pro-
tocol participants. This makes the verification problem
for group key distribution protocols more challenging. In
addition, some protocol may contain unbounded number
of data fields or unbounded number of sessions [14].

There are some trials to address modelling and veri-
fication of protocols that involve more than two parties,
these are discussed in the next section. In this paper, we
suggest an approach for the verification of group key man-
agement protocols. We define an inference system based
on the idea of rank functions, which was used by Schnei-
der et al. [7, 11, 23, 24]. We first define a set of sound rank
functions that satisfy specific requirements, and prove the
correctness of every rank function with these requirement.
Then, we define an inference system that is composed of
a set of inference rules over rank functions, where, every
rule can be applied in order to generate new knowledge
and assign new ranks to these generated messages. We
also define a special rule called Attack that represents the
bottom of the system, and, when executed, illustrates an
attack in the protocol. We formally prove the soundness
and the completeness of the inference system for a sound
rank function. We implement the verification of a generic
Diffie-Hellman group protocol [9, 26] in the PVS (Proto-
type Verification System) theorem prover [20] based on
the inference system approach. Although there is a con-
siderable amount of work on GDH protocol verification,
little effort has been put on machine assisted verification,
specifically on theorem proving. The advantages of our
framework are mainly its applicability for a class of pro-
tocols that is difficult to tackle. In addition, the inference
system provides a natural and elegant proof strategy com-
pared to existing approaches in the literature. The results
we achieved are promising and can be applied on similar
protocols.

We applied our approach on the example protocol in
the existence of an active adversary. The case of a passive
adversary is more restricted than an active one. In addi-
tion, it has been shown that a protocol that is secure in
the passive setting can be considered secure in the active
case [13]. Therefore, we believe it is adequate to handle
the active adversary case for the case study, and consider
the passive adversary case as restricted special case which
may be considered for further investigations.

We believe the contributions of this paper are: (1) The
definition of a set of sound rank functions and proof of
their soundness; (2) The combination of rank functions
with basic cryptographic protocols operation to define
primitive rules. These rules are combined together to ob-
tain an inference system. The primitive rules are enough
to model regular protocol operations; and (3) The system
can be extended to support special and more complex
operations that may exist in some protocols.

The rest of the paper is organized as follows. Section 2
discusses related work to ours. In Section 3, we overview
preliminary definitions and notations we use. In Section
4, we define and prove a consistent set of rank functions

that satisfy specific requirements for group key protocols.
In Section 5, we describe the details of our rank functions
based inference system, and prove the soundness and com-
pleteness of the system. Section 6 illustrates our approach
by applying the inference system on the case study of the
Group Diffie-Hellman protocol and provide an implemen-
tation in PVS for the verification of the protocol. Finally,
Section 7 concludes the paper with future work hints.

2 Related Work

In this section we discuss work related to ours in the
literature to the best of our knowledge. We discuss two
main directions: (1) Group key protocols verification;
and (2) Rank functions and theorem proving.

Group Key Protocols Verification. Meadows et al.
[18] provided a detailed specification of the requirements
for Group Domain Of Interpretation and then formally
analyzed the protocol with respect to these requirements
using the NRL Protocol Analyzer. However, the problem
with this approach is that no general set of requirements
for protocols requirements can be applied on a specific
protocol, or can be used for the refinement of protocol
specifications during the design process is provided.

Pereira and Quisquater [21] proposed a systematic ap-
proach to analyze protocol suites extending the Diffie-
Hellman key-exchange scheme to a group setting. He
pointed out several unpublished attacks against the main
security properties claimed in the definition of these pro-
tocols. The method provided is essentially manual and
applicable only on Group Diffie-Hellman (GDH) proto-
cols. In a recent work Pereira and Quisquater [22] pro-
vided a systematic way to derive an attack against any
A-GDH-type protocol with at least four participants and
exhibit protocols with two and three participants. They
provided a generic insecurity results concerning authenti-
cation protocols. In their work, the authors did not at-
tempt to address the general problem of deciding whether
a term is derivable in an attacker algebra with the equa-
tional theory of multiplication, or whether a particular
symbolic attack trace has a feasible instantiation [19].

In a similar work, Sun and Lin [27] extended the strand
space theory to analyze the dynamic security of Group
Key Agreement Protocols (GKAP) and discussed the con-
ditions of the security retention in the dynamic cases of
the protocol. This work treats the analysis dynamic as-
pects of the protocol with no reasoning about the correct-
ness of the protocol under these dynamic events. This
work provides a method to verify complex group proto-
cols. However, the solutions provided in all cases focus
only on specific aspects of one protocol rather than focus-
ing on general requirements.

In another related work, Steel et al. [25] modeled a
group key protocol by posing inductive conjectures about
the trace of messages exchanged in order to investigate
novel properties of the protocol, such as tolerance to dis-

International Journal of Network Security, Vol.8, No.2, PP.207–218, Mar. 2009 209

ruption, and whether it results in an agreement on a single
key. The method, however, is applicable on limited groups
of two or three members only. More recently, Truderung
[28] presented a formalism, called selecting theories, which
extends the standard non-recursive term rewriting model
and allows participants to compare and store arbitrary
messages. This formalism can model recursive protocols,
where participants, in each protocol step, are able to send
a number of messages unbounded w.r.t. the size of the
protocol. This modelling, however, cannot be applied on
non–recursive protocols such as GDH or the Enclaves.
In addition the model provided is not readable and very
complex to construct.

There are many other efforts in the literature that deal
with formal analysis for GDH style protocols. Some used
symbolic approaches such as the work of Mazaré [17]
who proposed a symbolic model to analyze cryptographic
protocols using bilinear pairing. Boreale and Buscemi
[3] used another symbolic approach to verify protocols
checking consistency of symbolic traces, however they
require an a-priori upper bound on the number of
participants. Millen and Shmatikov [19] considered
a symbolic approach to reason about GDH protocol
style operators, such as exponentiation, with a bounded
number of role instances. In another effort, Bresson
et al. [4, 5, 6] discussed the GDH problem thoroughly
and suggested a model for this class of protocols in the
presence of malicious participants. Kats et al. [12, 13]
addressed the case of attacks by malicious insiders for
authenticated key exchange protocols. Finally, Abadi [1]
discussed decidability issues for knowledge formalizations
of both participants and attackers. These recent amount
of work provide mathematical models for GDH like
protocols, in addition, they focus on rigorous analysis of
security of these protocols, however, these approaches
lack the ability to mechanize the proof, in particular with
theorem proving techniques.

Rank Functions and Theorem Proving. Dutertre
and Schneider [11] used an embedding of CSP in PVS
in order to verify the authentication property of Need-
ham Shroeder public key protocol. They proposed the
idea of rank functions in order enable CSP verification
of Needham Shroeder protocol. Later, Schneider [23, 24]
used the idea of rank functions for the verification of CSP
(Communication Sequential Process). The work did not
present a method that can be applied on security prop-
erties in other classes of protocols, specifically, group key
protocols. In fact, the method, as is, may not be applied
on secrecy property for group key management protocols.
Delicata and Schneider [8] present an algebraic approach
for reasoning about secrecy in a class of Diffie-Hellman
protocols. The technique uses the notion of a message
template to determine whether a given value can be gen-
erated by an intruder in a protocol model. The work is
restricted to certain alegebraic form of messages that are
expressible as g raised to the power of a sum of prod-
ucts of integers, and therefore requires further extension

to handle messages with different algebraic structures.
Even though rank functions were introduced and used

by Schneider et al. [7, 11, 23, 24] in different directions,
in this paper, we use their definition in order to precisely
define a set of sound rank functions and prove their cor-
rectness. We then propose a rank functions based infer-
ence system for the verification of group key distribution
protocols and prove the soundness and completeness of
the system using the defined set of rank functions.

In a more recent work, Layouni et al. [15] used a
combination of model checking, theorem proving, and a
Random Oracle Model to verify authentication property,
safety and liveness properties such as proper agreement,
and robustness and unpredictability properties, respec-
tively. The verified protocol is a complex protocol de-
veloped for group key agreement under multiple leaders
scheme, and is called the Enclaves protocol [10]. This ex-
ample shows how difficult it is to verify and analyze this
class of protocols. While the authors achieved a promising
success in verifying a complex protocol such as Enclaves,
they failed to accomplish the formal proof of the three
components in a single formalism.

Archer [2] provided a mechanized correctness proof of
the basic TESLA protocol based on establishing a se-
quence of invariants for the protocol using the tool TAME.
The model of the protocol is rather simple, and the proof
was made under a strong assumption stating that the ad-
versary has no initial knowledge, and can only use facts
revealed by users.

In all the above efforts in this area, we noticed that
there is a need for a mechanized approach, since most of
the approaches in the literature focused on mathemati-
cal proofs, neglecting machine assisted verification tech-
niques, such as theorem proving. We try to fill this gap
in the work we introduce here.

3 Preliminaries

In this section we present our formal model and the no-
tations we will use throughout this paper.

M: Set of all possible messages (messages space).

P : A honest principal who is willing to communicate.

P: Set of knowledge of member P , P ⊆ M.

S: Secret messages space, the set of all secret messages,
S ⊂ M. These are the messages we want to keep
hidden from the intruder. They are defined by the
protocol.

I: A dishonest member. We assume that the intruder is
a dishonest member who is trying to find an attack
in the protocol by using his unlimited resources and
computational power. However, we state normal as-
sumptions about the intruder such as being able to
encrypt or decrypt a message only if he knows the
appropriate key, or the ability to block or read any
message in the system.

International Journal of Network Security, Vol.8, No.2, PP.207–218, Mar. 2009 210

E: Set of all events, or dynamic operations, i.e., join,
leave, merge, and split. An event is a term from the
message space to the message space, E : M → M. It
represents an action the user can perform in order to
obtain extra information and update his own set of
knowledge.

T: Set of all possible traces, where a trace of events is
the execution of the sequence of these events. We
use τ ∈ T, such that τ : E × M → M, m ∈ M, then
we write m = τ(E, M) to say that a message m is
generated by the trace τ by executing the vector of
events E on the set of messages M , we also write
τ(E, M) m to represent a predict formula that
evaluates to true if and only if m = τ(E, M).

K0: Set of initial knowledge of the intruder, where
K0 ⊂ M. The initial knowledge of the intruder is
basically the information he/she can collect before
executing the protocol events. This information is
usually public and known, so there are no secret in-
formation that is in the intruders initial set of knowl-
edge. In other words ∀m ∈ M : m ∈ S ⇒ m /∈ K0

K: Set of knowledge of the intruder. The intruder up-
dates this knowledge by executing events. The in-
truder starts with the initial set of knowledge and
the set of events, then, by executing a sequence of
events, he/she updates this set. K0 ⊆ K and K ⊆ M.

attack : We define attack w.r.t. confidentiality as the
ability of the intruder to have a message in the set of
secret messages in his own set of knowledge, attack ≡
m ∈ K and m ∈ S. The notion of attack can be seen
differently depending on the nature of the security
property under investigation.

We define traces since it will be used to prove the
soundness of the inference system. We use t to repre-
sent a single execution of one event or inference rule that
updates the intruder set of knowledge. For a given events
e1, e2, · · · , en ∈ E, we use M to represent the messages
generated by executing each event: m1 = e1(M0), m2 =
e2(M), · · · , mn = en(M), where M0 ∈ K0 is a set of
messages in the initial set of knowledge of the intruder,
and Mp ∈ K0 is a vector of p messages in the updated
set of knowledge of the intruder. Now we can define
t1, t2, · · · , tn as follows:

t1 : m1 = e1(K0), ρ(m1) = c1, K1 = K0 ∪ {m1}.

t2 : m2 = e2(K1), ρ(m2) = c2, K2 = K1 ∪ {m2}.

ti : mi = ei(Ki), ρ(mi) = ci, Ki = Ki−1 ∪ {mi}.

...
...

tn : mn = en(Kn), ρ(mn) = cn, K = K ∪ {mn}.

We define a trace Tn ∈ T as the sequence of executing
t1, t2, · · · , tn in order.

Tn : t1, t2, · · · tn; K = K0∪{m1, m2, · · · , mn}; ρ(mn) =
cn. We say that mn = Tn(E, M) which means that the
trace Tn generates the message mn of rank cn.

A rank function is a map between the set of facts about
the protocol and the set of natural integers. The set of
facts include protocol events, protocol execution traces,
keys, and messages. This map assigns a value or rank to
each fact, such that facts that can be generated by the
protocol have positive rank, and facts that cannot be ob-
tained by the intruder cannot have positive rank. The
ranks that are assigned will depend on the protocol itself,
the initial knowledge and capabilities of the intruder, and
the property we want to prove. This map function will
be useful in partitioning the message space and enabling
mechanized proof of security protocols properties. The
set of events and traces are concretely defined by the pro-
tocol, which allows defining them at different levels of
abstraction in the final step of our approach.

The definition of the rank function is formally given as
follows:

Definition 1. Rank Functions [23]. A rank function ρ
is a map function ρ M → Z which maps the set of all
messages into integers.

4 Rank Functions based Inference

System

4.1 Rank Functions Soundness

It is necessary to verify that protocol participants cannot
generate non-positive ranks. The appropriate rank func-
tion we choose to apply on the protocol should be sound.
We define a set of rank functions with a number of re-
quirements, which will be used to prove the correctness
of the rank function.

Definition 2. a rank function is initially sound if it
satisfies these three requirements:

1) ∀m ∈ M, ρ(m) >= 0, there are no negative ranks
generated by the system.

2) ∀m ∈ K0, ρ(m) > 0, intruder initial knowledge must
be of positive rank.

3) ∀m ∈ S, ρ(m) = 0, all secret messages must have a
zero rank.

Definition 3. Two events are invertible if each one is
the inverse of the other.

e2(e1(m1)) = m1, where e1, e2 ∈ E, and m1, m2 ∈ M.

Definition 4. a rank function is invertible for all in-
vertible events of inference rules. e2(e1(m1)) = m1 ⇒
ρ(e2(e1(m1))) = ρ(m1), where e1, e2 ∈ E, and m1, m2 ∈
M, and any user of the system cannot apply an invertible
event unless he is able to apply the inverse.

Definition 5. a rank function is bounded if ρ(m)− 1 ≤
ρ(e(m)) ≤ ρ(m) + 1, where e ∈ E, and m ∈ M.

International Journal of Network Security, Vol.8, No.2, PP.207–218, Mar. 2009 211

Theorem 1. (Rank Function Soundness)
A rank function is sound, if it is initially sound, in-

vertible and bounded.

The theorem states that a rank function with the above
specifications is consistent. It ensures that the zero rank
cannot be generated by the initial knowledge of the in-
truder, or by the definition of the rank function for the
events. In other words, applying each single event sep-
arately on the set of intruders initial knowledge will not
generate a zero rank, simply because a secret is not re-
vealed to the intruder. Formally, ∀m ∈ K0, ρ(m) > 0 and
∀m ∈ K0, e ∈ E, ρ(e(m)) > 0. We use R to represent the
set of all sound rank functions.

Proof. We prove this theorem using absurdum, by assum-
ing that the rank function evaluates to zero then we show
that for all possible execution events, there exists no mes-
sage in the intruder’s initial set of knowledge that can
generate this zero rank.

Assume there exists m ∈ M such that ρ(m) = 0, the
message m is either in the intruders initial set of knowl-
edge (Case (a) below) or generated after applying on sin-
gle event on a message in the intruder’s initial set of
knowledge (Case (b) below), therefore, we can write:

ρ(m) = 0 ⇒ ∃ m′ ∈ K0 such that:
{

(a) : m = m′ or
(b) : m = e(m′)

Now we consider both cases and show the contradiction
of the assumption:

For Case (a): m = m′ , since the rank function ρ is
initially sound by definition, then there is a clear contra-
diction which can be stated as follows:

Only messages in S have the rank zero: ρ(m′) = 0 ⇒
m′ ∈ S. However, messages in S are not in K0: m′ ∈
S ⇒ m′ /∈ K0. Which contradicts the assumption stated
above: m′ ∈ K0. Therefore ρ(m′) > 0 is valid.

For Case (b): m = e(m′), and ρ(m) = 0: the message
m is generated after the application of one single event e
on a message m′ from K0.

Since ρ is bounded, then we can say that the rank of
the message m is bounded by the rank of the message m′,
we can write this as follows:

m = e(m′) ⇒ ρ(m′) − 1 ≤ ρ(m) ≤ ρ(m′) + 1.
By assumption, we have ρ(m) = 0. This means that

either ρ(m′) = 0 or ρ(m′) = 1 (from above inequality).
Now we consider both cases: The case where ρ(m′) = 0
and ρ(m′) = 1.

The first case is similar to Case (a) above, and will lead
to the same contradiction. We consider the second pos-
sibility: ρ(m′) = 1, m = e(m′) and ρ(m′) = ρ(m) + 1.
ρ is invertible, therefore, there is an event e′ that we
can apply on the message m to generate the message
m′, we can write: m = e(m′), m′ = e′(m) and there-
fore m′ = e′(e(m′)) (which is a typical invertible relation
in encryption).

We have ρ(m′) = 1 and m′ = e′(m) therefore ρ(m) =
ρ(m′)− 1, which means that the message m′ is generated

after one single application of an event e′ in the set of
events on the message m: m′ = e′(m).

If the intruder can apply one single invertible event,
then he/she can apply the other one. Since the events e
and e′ are invertible, and the intruder can apply e on m′

to generate m, therefore he/she can also apply the event
e′ on m to generate m′.

This means that e, e′ ∈ E, m′ ∈ K0, and m ∈ S, so
ρ(m) = 0 ⇒ m /∈ K0 or e /∈ E which contradicts the
assumption stated above.

The fact that the intruder cannot generate secret
knowledge from its initial knowledge (without executing
the protocol), i.e., the intruder cannot decrypt a message
encrypted with a secret key.

4.2 Inference System

Our inference system consists of a set of inference rules.
Every rule represents an event in the protocol. Rules have
a precondition that has to be satisfied before they are ap-
plied. We define the pair 〈m, c〉 to represent a message m
and its rank c. A special rule, Attack, is defined with a
precondition, such that, when executed by the intruder,
it indicates the occurrence of an attack by reaching the
bottom of the system ⊥. Figure 1 shows the set of rules
in the inference system. The intruder, by executing these
rules on the set of knowledge K, generates new knowledge
with new ranks and updates his/her set. For this system
to work, we assume the fairness of executing these rules,
i.e., the intruder will not keep using the rule compose for-
ever, but other rules will have their chance to be executed,
specially the rule Attack.

Rule1: Encryption: K∪{〈m,ρ1〉,〈k,ρ2〉}
K∪{〈m,ρ1〉,〈k,ρ2〉}∪{〈{m}

k
,ρ1+1〉} ,

where {m}k = Encr(m, k).

Rule2: Decryption: K∪{〈Encr(m,k),ρ1〉,〈k,ρ2〉}
K∪{〈{m}

k
,ρ1〉,〈k,ρ2〉}∪{〈m,ρ1−1〉} ,

where m = Decr({m}k, k).

Rule3: Compose:
K∪{〈m1,ρ1〉,〈m2,ρ2〉}

K∪{〈m1,ρ1〉,〈m2,ρ2〉}∪{〈Comp(m1,m2),min(ρ1,ρ2)〉} .

Rule4: Decompose:
K∪{〈Comp(m1,m2),ρ1〉}

K∪{〈Comp(m1,m2),ρ1〉}∪{〈m1,ρ1〉,〈m2,ρ1〉}
.

Rule5: Expo: K∪{〈expo(m1,m2),ρ1〉}
K∪{〈Comp(m1,m2),ρ1〉}∪{〈m1

m2 ,ρ1−1〉} .

Rule6: Attack: K∪{〈m,0〉}
⊥ .

Figure 1: Inference system

For this inference system, we use the event Enc(m, k)
to represent a message m that is encrypted w.r.t. a sym-
metric encryption algorithm with the key k. The event

International Journal of Network Security, Vol.8, No.2, PP.207–218, Mar. 2009 212

Dec(Enc(m, k), k) represents decrypting a message that
is already encrypted, where the same key used for the en-
cryption is to be used for the decryption event. These two
events are invertible, therefore m = Dec(Enc(m, k), k).
The event Comp(m1, m2) represents two composed mes-
sages by concatenation. The function min gives the min-
imum rank from two given ranks.

4.3 Soundness and Completeness

In this subsection we define theorems for the soundness
and completeness of the approach. The first theorem
states that if we can find a message in the set of knowledge
of the intruder that has the rank zero, or equivalently, if
the rule attack of the inference system is applied, then
there is an attack in the system. We assume fairness in
applying the inference rules.

Theorem 2. (Soundness)
Let P be a security protocol, let ρ be a sound rank func-

tion, and let K0 be the set of the initial knowledge of the
intruder. Then, the protocol P has an attack if the infer-
ence rule attack can be applied in a fair inference system.

∃m ∈ K : ρ(m) = 0 and ρ ∈ R ⇒ ∃attack in P.

Proof. We prove this theorem by deduction, where we
assume the left hand side and deduce the right hand side
of the theorem.

Assume there exists m ∈ K such that ρ(m) = 0.
Given that m ∈ K, then we have m = m0 ∈ K0, m =

e(m0), or m = Tn(E, M). However, ρ(m) = 0 ⇒ m /∈ K0,
the rank function is sound since ρ ∈ R.

ρ(m) = 0 ⇒ @ (e ∈ E, m0 ∈ K0) : m = e(m0), since
the rank function is sound.

It is clear now that there exists m ∈ K such that
ρ(m) = 0 ⇒ ∃Tn ∈ T such that m = Tn(E, M), which
means that there exists a trace the intruder can execute
to compute m.

Also ρ(m) = 0 ⇒ m ∈ S, since only messages in S have
the rank zero. Hence, we find that m ∈ S and m ∈ K.
Therefore, the rule attack can be applied. Then, we can
write:

attack ⇒ m ∈ S and m ∈ K. This means that there
exists an attack in the system.

The following corollary is deduced from the above the-
orem and states that if there is no attack in the system,
then a sound rank function will be greater than zero. We
can view it as the complimentary case of the above theo-
rem.

Corollary 1. (Absence of Attack) Assuming the same
conditions as Theorem 2, if the protocol P has no attack,
then the rule attack will never be applied in a fair infer-
ence system.

@attack in P ⇒ ∀m ∈ K : ρ(m) > 0.

The second theorem states that if there is no message
in the set of knowledge of the intruder that has the rank
zero, or equivalently, if the rule attack of the inference

system can never be applied, assuming fairness of the
strategy application of inference rules, then there is no
attack in the system.

Theorem 3. (Completeness)
Assuming the same conditions as Theorem 2, if the rule

attack cannot be applied in a fair inference system, then
the protocol P has no attack.

∀m ∈ K : ρ(m) > 0, ρ ∈ R ⇒ @attack in P.

Proof. We prove this theorem by absurdum. We assume
the right hand side is false and deduce a contradiction to
the left hand side of the theorem.

Assume there exists an attack in the system, then we
can write:

∃attack ⇒ ∃m such that m ∈ K and m ∈ S.
A message m in the intruder’s set of knowledge K

means that either the message is in his initial set of knowl-
edge K0, is generated by applying one single event in E,
or is generated after applying a trace in T.

m ∈ K ⇒ m = m0 ∈ K0, m ∈ K1 = E(K0), or m =
Tn(E, M).

However, since ρ ∈ R is sound and m ∈ S then m /∈ K0

and m /∈ K1.
Therefore, m = Tn(E, M).
Since m ∈ S, then the rank of this message ρ(m) = 0.
So ∃attack ⇒ ρ(m) = 0.
Therefore, we conclude that ρ(m) > 0 ⇒ @attack.

Corollary 2. (Detecting Attacks)
Assuming the same conditions as Theorem 2, if the rule

attack can be applied in a fair inference system, then the
protocol P has an attack.

∃m ∈ K : ρ(m) = 0 and ρ ∈ R ⇒ ∃attack in P.

This corollary states that when the rank function eval-
uates to zero, then there exists an attack in the protocol.
Theorems 2 and 3 and Corollaries 1 and 2 provide the
formal link between the protocol model and the imple-
mentation model in PVS. Therefore, the soundness of the
above theorems and corollaries represents the sounds of
the verification technique.

In summary, the inference system we defined can prove
that an attack exists in the protocol using Soundness The-
orem 2. However, the limitation of the Soundness The-
orem comes in the type of implementation that will be
used. In case of theorem proving, there is no guarantee
that the attack can be generated. This is a general prob-
lem and is applicable on any approach for tool supported
verification this type of protocols.

In case we want to prove that there is no attack in the
protocol, the inference system can diverge in case we ap-
ply the Completeness Theorem 3. The inference system
may terminate with a result, depending on the nature of
the protocol and the strategies used while conducting the-
orem proving. However, there is no guarantee for termi-
nation because of two reasons: first, the type of problem

International Journal of Network Security, Vol.8, No.2, PP.207–218, Mar. 2009 213

we are trying to solve has unbounded number of partici-
pants, and unbounded message space. Second, the lower
level implementation method, theorem proving, does not
guarantee termination, which means the inference system
may run infinitely without reaching a result.

However, we still can reason about absence of attacks
in protocols using Completeness Theorem 3. An indirect
proof can be generated using the completeness theorem
by proving that the strategy is fair and the application
of our inference system diverges. This indirect proof can
be achieved by generating partial proofs that affirm that
the inference system will diverge when the applied strat-
egy is fair. We believe that in order to be apply this
approach, we have to provide an implementation for the
inference system that allows partial proofs based on di-
vergence. This later issue will be considered for further
study.

4.4 PVS Embedding of the Inference Sys-

tem

The most important and challenging part is how to de-
fine the inference system, and how to instantiate it by the
dishonest user. For this purpose, we represent each infer-
ence rule as a PVS deduction statement which allows the
user who is executing these rules to compute new mes-
sages and add it to his/her own set of knowledge. In our
case, the intruder is such user. These rules are defined
based on the events of the GDH protocol. We abstract
the mathematical power operation used in the protocol,
since power operator is not supported in PVS. Therefore
αN is represented in PVS by the alphaN , where N rep-
resents the power of alpha, so when applying a rule that
generates αN1N2 from αN1 and N2 we just multiply the
nounce in alpha by N2, and the rank function is defined
of a type that maps MESSAGE to int.

MESSAGE: TYPE ALPHA: TYPE FROM MESSAGE nounc: int alpha: int

alphaN: ALPHA m: MESSAGE rankf: [MESSAGE -> int]

Next we define the appropriate inference rules for this
protocol. These rules are used by the intruder in order
to build his/her set of knowledge starting from his initial
knowledge and applying one rule at a time. The first
rule is compose, where two message records are used to
generate one new message with one rank. The second
one we show here is the decompose message, which is
used to separate an already composed message. Similarly,
we define encrypt and decrypt rules, where the rank is
updated then the rules are applied. We also show the rule
expo which is used to generate the αN messages. Finally
we show the rule attack which is executed when there is
a message of rank zero in the intruders set of knowledge.

rule_compose(msg1: MESSAGE, msg2: MESSAGE): MESSAGE
= (comp(msg1,msg2), min(rankf(msg1), rankf(msg2)))

rule_decomp(msg1: MESSAGE): [MESSAGE, int, MESSAGE, int]
= (left(msg1),rankf(msg1), (right(msg1), rankf(msg1))

rule_encr(msg1: MESSAGE, key: MESSAGE): [MESSAGE, int]
= (append(msg1,key), rankf(msg1)-1)

rule_decr(msg1: MESSAGE, key: MESSAGE): [MESSAGE, int]

= (extract(msg1,key), rankf(msg1)+1)

rule_expo(a:ALPHA,N:int): [ALPHA, int]
= (alphaN, rankf(a)-1)

rule_attack(msg: MESSAGE): bool =
rankf(msg) = 0

5 Application: GDH Protocol

In order to illustrate the proposed verification methodol-
ogy, we consider the Group Diffie-Hellman (GDH) proto-
col [9, 26], which is a basic group key management pro-
tocol widely studied in the literature. In the first part,
we show how to manually detect the attack in a step by
step application of the inference system. Then we use the
PVS theorem prover in order to implement the inference
system and apply it on the protocol for two, three, and
n-users case. Throughout this work, we assume perfect
cryptographic conditions, we analyze the key agreement
nature of the protocol, and we abstract the algebraic ex-
ponentiation property of the protocol.

Although the protocol is not a challenging case study,
since it has been studied quite enough in the literature,
we use it as illustrative case to show the feasibility of our
approach, not to prove something that has been already
proved before. In addition, we provide, to the best of our
knowledge, a new attempt to use theorem proving in the
context of group key protocols verification. In the first
part of this section we show how the inference system can
be applied directly on the GDH protocol of 4 participants.
We demonstrate how the attack is generated in the step
by step application of the inference system. In the second
part, we discuss the embedding and verification of the
protocol using theorem proving in PVS.

The protocol is used to generate and distribute a safe
key between a group of members over a non-secure net-
work. It consists of two stages: upflow and downflow. The
first stage is used to collect contributions from all group
members that will be used in calculating the group key.
Given n members in the group: P1, P2, · · · , Pn, who are
willing to generate a secret key that will be used among
them, the protocol works as follows: in the upflow stage,
every intermediate member Pi receives a collection of in-
termediate values from member Pi−1, computes another
value, by adding his/her own share of the key, appends
it to the values he/she received, and forwards this infor-
mation to the next group member Pi+1. In the downflow
stage, the last member appends his own share of the key
to every value he received and sends them back to pre-
vious members. This way, every member receives partial

International Journal of Network Security, Vol.8, No.2, PP.207–218, Mar. 2009 214

information to compute the key.

For example, in a group of 4 members, the first mem-
ber uses a generator α and a random number N1, com-
putes {αN1} and forwards it to member P2. P2 chooses a
random number N2 and computes αN1N2 , then forwards
{αN1 , αN1N2} to P3. P3 computes αN1N2N3 and forwards
{αN1N3 , αN1N2 , αN1N2N3} to P4. Now P4 uses the last
value and a random number he/she generates, N4, to
compute the group key αN1N2N3N4 . For the downflow
stage, the member raises all other values to N4 and sends
back to P3 {αN4 , αN1N2N4 , αN1N3N4}. P3 uses the latest
value αN1N2N4 and his/her own random number N3 to
compute the key, raises the first value to N3 and sends
{αN3N4 , αN1N3N4} back to P2, who uses the last one to
compute the key, then computes and sends {αN2N3N4 to
P1, who can compute the same key.

We choose a group of three members, P1, P2, and P3,
and apply our verification approach on the protocol, by
defining the intruder I, and executing the inference sys-
tem by this intruder. The first step is to define the rank
function ρ for the set of messages in the message space M
as follows:

ρ(m) =

0, if m ∈ {N1, N2, N3, α
N1N2N3 , αNiN2N3 ,

αN1NiN3 , αN1N2Ni , αN1N2N3Ni}

1, if m ∈ {Ni, α, αN1 , αN2 ,
αN3 , αN1N2 , αN1N3 , αN2N3}

Here, αN1N2N3 represents the group key members in-
tend to generate, and Ni represent the intruders nounce.
For the protocol to be correct, there should not be a
way for an intruder to share a key with the rest of the
members that can be considered as the group key, even
if its different from the group key the members intend
to generate, simply because the members have no clue
about the final key, until each has enough shares from
other members to compute it. Therefore, we consider
αNiN2N3 , αN1NiN3 , αN1N2Ni , αN1N2N3Ni as assumed group
keys that the intruder should not be able to share with
the members making them believe it is the group key they
intended to share when they started the protocol.

Then, we define the events that can be executes by
members. This includes send(m), recv(m), expo(m, n),
comp(m1, m2), decomp(m1, m2), and block(m). The lat-
est is an event that can be executed only by the intruder.
The rank function ρ can be defined for these events as
follows:

ρ(send(m)) = ρ(m); ρ(recv(m)) = ρ(m);

ρ(expo(m, n)) = ρ(n) + 1;

ρ(comp(m1, m2)) = ρ(min(m1, m2));

ρ(block(m)) = ρ(m);

ρ(m1) = ρ(m1.m2);

ρ(m2) = ρ(m1.m2)

for decomp(m1, m2) event.

The inference system is composed of an inference rule
for each of these events in addition to the inference rule
Attack defined above. The event expo(m, n) models the
exponent function used in the protocol. The intruder
starts with an initial set of knowledge K0 = {Ni, α}, and
we assume he has the ability to fully monitor the network,
send, receive, or block messages on his/her will. We also
assume that signing messages is not used between mem-
bers.

The upflow stage of the protocol is started by mem-
ber P1, who uses α, N1, and expo(α, N1) to compute
αN1 , where ρ(αN1) = ρ(N1) + 1 = 1. P1 sends this mes-
sage to next user in the group, P2. The intruder, apply
the inference rules corresponding to the event recv(αN1),
therefore, K = K′ ∪ {αN1}. We use K′ to represent the
intruder’s set of knowledge before he executes the infer-
ence rule. The intruder similarly applies the inference
rule block(αN1), then, computes αNi and sends it to the
member P2, who computes αNiN2 , uses the compose rule
to generate αNi .αNiN2 and forwards it to the last member
P3. The intruder can receive this message and block it,
then, composes and sends to P3 the message αN1 .αNiN2 .
P3 receives it, decomposes it and uses the last term αNiN2

to compute the key αNiN2N3 believing it is the intended
group key. At this point the intruder’s set of knowledge
is updated to the following:

K = {Ni, α, αN1 , αN1Ni , αNiN2}.

Member P3 then starts the downflow stage, and computes,
composes and sends αN3 .αN1N3 back to user P2. The in-
truder will receive and block this message, and therefore,
updates his knowledge such that K = K′ ∪ {αN3 , αN1N3}.
The intruder composes and sends to P2 the message
αN3 .αNiN3 . P2 receives the message and he/she uses the
last term αNiN3 to compute his/her key αNiN2N3 . Then
he sends back to user P1 the message αN2N3 . The intruder
receives this message, updates his set of knowledge, blocks
the message, and instead, he sends αNiN3 to P1 who, in
turn will use it to compute his key αN1N3Ni . The intruder
updates his/her set of knowledge at this point, and it will
be K = {Ni, α, αN1 ,
αN1Ni , αNiN2 , αN1N3 , αNiN2N3 , αNiN1N3}. Figure 2
shows a step by step execution of the inference system
by the intruder.

Now, given a fair system, the intruder can apply the
inference rule Attack, since there is a message in his/her
set of knowledge that has the rank zero.

PVS Implenetation. This manual step by step appli-
cation of the inference system can be mechanized using
available tools. In our case, we used the PVS theorem
prover in order to show that the inference system will
lead to the same attack. In our PVS model, we first de-
fine the sets of messages we used, including the set of all
messages, secret messages, events, traces, intruders initial
knowledge, intruders updated knowledge. We also define

International Journal of Network Security, Vol.8, No.2, PP.207–218, Mar. 2009 215

I : K0 = {Ni, α}
P1: expo(α, Ni) 7→ αNi ; K = {Ni, α, αNi}
P1: expo(α, N1) 7→ αN1 , ρ(αN1) = ρ(N1) + 1 = 1
P1: send(αN1); P1 → P2

I : recv(αN1), block(αN1); K = {Ni, α, αN1}
I : send(αNi); I → P2

P2: recv(αNi);
P2: expo(αNi , N2) 7→ αNiN2

P2: compose(αNi , αNiN2) 7→ αNi .αNiN2

P2: send(αNi .αNiN2); P2 → P3

I : recv(αNi .αNiN2), block(· · ·); K = {Ni, α, αN1 , αNi .αNiN2}
I : decompose(αNi .αNiN2) 7→ αNi , αNiN2 ; K = K′ ∪ {αNiN2}
I : compose(αN1 , αNiN2) 7→ αN1 .αNiN2

I : send(αN1 .αNiN2); I → P3

P3: recv(αN1 .αNiN2)
P3: decompose(αN1 .αNiN2) 7→ αN1 , αNiN2

P3: expo(αNiN2 , N3) 7→ αNiN2N3; P3 generates a bad group key αNiN2N3

P3: expo(αN1 , N3) 7→ αN1N3;
P3: expo(α, N3) 7→ αN3;
P3: compose(αN3 , αN1N3) 7→ αN3 .αN1N3

P3: send(αN3 .αN1N3); P3 → P2

I : recv(αN3 .αN1N3), block(· · ·); K = K′ ∪ {αN3 .αN1N3}
I : decompose(αN3 .αN1N3) 7→ αN3 , αN1N3 ; K = K′ ∪ {αN3 , αN1N3}
I : expo(αN3 , Ni) 7→ αNiN3 ;
I : compose(αNi , αNiN3) 7→ αNi .αNiN3

I : send(αNi .αNiN3); I → P2

P2: recv(αNi .αNiN3)
P2: decompose(αNi .αNiN3) 7→ αNi , αNiN3

P2: expo(αNiN3 , N2) 7→ αNiN2N3; P2 generates a bad group key αNiN2N3

P2: expo(αNi , N2) 7→ αNiN2

P2: send(αNiN2); P2 → P1

I : recv(αNiN2), block(· · ·)
I : expo(αN3 , Ni) 7→ αNiN3;
I : send(αNiN3); I → P1

P1: recv(αNiN3)
P1: expo(αNiN3 , N1) 7→ αNiN1N3; P1 generates a bad group key αNiN1N3

I : expo(αN1N3 , Ni) 7→ αNiN1N3; K = K′ ∪ {αNiN1N3}
I : Attack(〈αNiN1N3 , 0〉) 7→ ⊥

Figure 2: Applying the inference system on GDH protocol

International Journal of Network Security, Vol.8, No.2, PP.207–218, Mar. 2009 216

the dischonest user I and a set of n users who all to-
gether will participate in the protocol. We also define the
intruder’s initial set of knowledge to be α, Ni as stated
above.

In order to conduct the verification for the secrecy
property in PVS, we first considered the simple case of
GDH protocol where two users are establishing the se-
cret key. For this purpose, we define two users and a
dishonest user and the set of messages used in the pro-
tocol. In addition, we show how the intruder updates
his set of knowledge when a message is sent between two
users and blocked by the intruder. For illustration pur-
poses, we show parts of the protocol implementation in-
cluding send and receive operations that take place be-
tween users. The GDHP update function applies the in-
ference rules on the set of messages and then updates the
intruders set of knowledge. The functions send and re-
ceive, if the message is not blocked, then it is received at
the destination user, the intruder add the message to his
set of knowledge, and finally he/she updates this set by
executing the function update.

M: VAR set[MESSAGE]
Key: VAR set[KEY]

K: VAR set[MESSAGE]
A: VAR USER

I: VAR USER
S: VAR set[MESSAGE]

rule_initial(alpha: ALPHA) = K_0:= [alpha,Ni]

GDHP_update?(K, I): bool =
(FORALL m: K do K:= union(K, inf_rule(I,m)))

GDHP_send?(UserA, UserB, m) =
if(!block(UserA,UserB,m) then GDHP_recv(UserA,UserB,m)

addMsg(K,m)
GDH_update(K,I)

GDHP_recv?(UserA, UserB, m) =

addMsg(UserB.knldgSet,m)

The secrecy property we verify for this protocol is de-
fined as a lemma stating that the protocol satisfies this
secrecy property if it does not execute the inference rule
attack. The property shows that when the protocol is
initiated by a user and the intruder can execute the the
events of the protocol (rules in the inference system), then
the intruder will be able to share a secret key between
him/her and the user in the group. The property is de-
fined as follows:

secrecy_prop_x: THEORY
BEGIN

secrecy_attack: LEMMA
Reachable(rule_inital)AND knows(I,K_0)

IMPLIES Reachable(rule_attack)
END forward_secrecy

In the next step we did the verification for the same
property by executing the inference system on a protocol

between three users instead of two. The verification com-
plexity and effort were more in this case, however there
was no technical changes in the verification techniques
and strategies used. In following we show how the prop-
erty definition for the GDH protocol with three users in
PVS:

secrecy_prop_3: THEORY
BEGIN

A, B, C: VAR USER
secrecy_attack: LEMMA

Reachable(rule_inital)AND knows(I,K_0) AND GDHP(A,B,C)
IMPLIES Reachable(rule_attack)

END secrecy_prop_3

The challenging part was to verify the N users case of
GDH protocol. This was achieved by applying the same
proof strategies used for the 3 users case for an array of
n-users in order to show that the same attack can be gen-
erated in this case. In the following, we show the secrecy
property definition for the GDH protocol for an array for
n users:

secrecy_prop_n: THEORY
BEGIN

n: VAR int
users: array[n] of USER

secrecy_attack: LEMMA
Reachable(rule_inital)AND knows(I,K_0) AND GDHP(users)

IMPLIES Reachable(rule_attack)

END secrecy_prop_n

Implementing and verifying this part in PVS required
hundreds lines of code, including several proof strategies.
We believe using the framework to verify similar proto-
cols can be achieved in shorter time given the provided
implementation of the inference system and the experi-
ence gained. As opposed to previous works, our approach
give a simple, natural and elegant proof strategy. The
computer experiment shows that our technique is very
promising.

It is true that Diffie-Hellman based protocols are con-
sidered as an algebraic protocols. Therefore, it could be
argued that our approach is more appropriate for non-
algebraic protocol, however, the non-algebraic framework
described here is appropriate to model the distributive
features of such protocols, while most other works ana-
lyze this class of protocols algebraically. We intended, in
this paper, to keep our focus entirely within these non-
algebraic features which has prompted us to make some
necessary assumptions to be able to model and verify the
protocol.

6 Conclusion

The correctness of group key protocols in communication
systems remains a great challenge because of the sensitiv-
ity of the services provided. In this paper, we illustrated
the need for a verification methodology for a class of pro-
tocols that deal with group key distribution. While most

International Journal of Network Security, Vol.8, No.2, PP.207–218, Mar. 2009 217

approaches in the literature target cryptographic prop-
erties for two parties protocols, the verification problem
for group key distribution protocols is more challenging
because properties for these protocols are not trivial ex-
tensions of the two-parties models. For example, the fact
that a group member computes a bad key can remain
undiscovered by the group, specially for a large group.

We provided a new approach for the verification of
group key management protocols by using an inference
system defined over rank functions. The approach is
based on an elegant and natural proof strategy for the
verification of group key protocols. We believe to have
contributed in defining a set of rank function and pro-
viding the proof of soundness of these functions, and a
complete and sound inference system for verification of
group protocols. Discovering if the protocol is vulnera-
ble for attacks from an intruder is done by executing the
inference system by a model of the intruder with specific
assumptions about the protocol and the intruder. We
applied this system on a group key protocol, the Group
Diffie-Hellman protocol. Although the protocol is not a
challenging case study, since it has been studied quite
enough in the literature, we use it as illustrative case to
show the feasibility of the proposed approach. Therefore
we provide a mechanized approach using theorem prov-
ing in the context of group key protocols verification. We
found that, under certain assumptions, the intruder can
force members using the protocol to generate bad keys,
which is a well known weakness point in the protocol. The
results we achieved are very promising and we believe that
our framework can be applied efficiently on protocols of
similar complexity level.

As future work, an open issue is applying abstraction
techniques on the rank function to be able to model them
in first-order logic, and therefore, make model checking
feasible using supporting tools. This will reduce the com-
plexity of the verification process and make it more auto-
matic, but it will limit the applicability of the method on
large scale and complex protocols. In addition, the appli-
cation of the inference system on similar protocols in the
existence of a passive adversary should be investigated
further. Another direction is to provide an implementa-
tion of the inference system itself, rather than defining
it in a theorem prover. This will provide more flexibility
for modelling different protocols, however, If we imple-
ment our inference system, then we need to implement
some strategies in order to guarantee the success of the
verification process. If necessary the user can help the sys-
tem in order to find an attack. Another open issue is to
provide an implementation for the inference system that
allows partial proofs based on divergence. Other group
protocols [16] will be considered for future study under
this approach.

References

[1] M. Abadi, and V. Cortier, “Deciding knowledge in

security protocols under equational theories,” Theo-
retical Computer Science, vol. 367, no. 1, pp. 2-32,
2006.

[2] M. Archer, “Proving correctness of the basic
TESLA multicast stream authentication protocol
with TAME,” Workshop on Issues in the Theory of
Security, Portland, OR, USA, Jan. 2002.

[3] M. Boreale, and M. Buscemi, “Symbolic analysis
of crypto-protocols based on modular exponentia-
tion,” Mathematical Foundations of Computer Sci-
ence, LNCS 2747, pp. 269-278, Springer-Verlag,
2003.

[4] E. Bresson, O. Chevassut, and D. Pointcheval,
“Provably-secure authenticated group diffie-hellman
key exchange,” ACM Transactions on Information
and System Security, vol. 10, no. 3, pp. 1–45, Aug.
2007.

[5] E. Bresson, and M. Manulis, “Malicious participants
in group key exchange: Key control and contribu-
tiveness in the shadow of trust,” Proceedings of the
4th Autonomic and Trusted Computing Conference,
LNCS 4610, pp. 395-409, Springer-Verlag, July 2007.

[6] E. Bresson, M. Manulis, and J. Schwenk, “On secu-
rity models and compilers for group key exchange
protocols,” the second International Workshop on
Security, LNCS 4752, pp. 292-307, Springer-Verlag,
Oct. 2007.

[7] R. Delicata, and S. Schneider, A Formal Model
of Diffie-Hellman using CSP and Rank Functions,
Technical Report CSD-TR-03-05, Department of
Computer Science, Royal Holloway, University of
London, 2003.

[8] R. Delicata, and S. Schneider, “An algebraic ap-
proach to the verification of a class of diffie-hellman
protocols,” International Journal of Information Se-
curity, vol. 6, no. 2, pp. 183-196, 2007.

[9] W. Diffie, and M. Hellman, “New directions in cryp-
tography,” IEEE Transactions on Information The-
ory, vol. IT-22, no. 6, pp. 644-654, 1976.

[10] B. Dutertre, V. Crettaz, and V. Stavridou,
“Intrusion-tolerant enclaves,” Proceedings of IEEE
International Symposium on Security and Privacy,
pp. 216-224, May 2002.

[11] B. Dutertre, and S. Schneider, “Using a PVS embed-
ding of CSP to verify authentication protocols,” The-
orem Proving in Higher Order Logics, LNCS 1275,
pp. 121-136, Springer-Verlag, 1997.

[12] J. Katz, and J. Shin, “Modeling insider attacks on
group key-exchange protocols,” the 12th ACM Con-
ference on Computer and Communications Security,
pp. 180-189, ACM Press, 2005.

[13] J. Katz, and M. Yung, “Scalable protocols for au-
thenticated group key exchange,” Advances in Cryp-
tology, LNCS 2729, pp. 110-125, Springer-Verlag,
2003.

[14] R. Küsters, “On the decidability of cryptographic
protocols with open-ended data structures,” Inter-
national Journal of Information Security, vol. 4, no.
1-2, pp. 49-70, 2005.

International Journal of Network Security, Vol.8, No.2, PP.207–218, Mar. 2009 218

[15] M. Layouni, J. Hooman, and S. Tahar, “Formal spec-
ification and verification of the intrusion-tolerant en-
claves protocol,” International Journal of Network
Security, vol. 5, no. 3, pp. 288-298, 2007.

[16] M. Manulis, Security-Focused Survey on Group Key
Exchange Protocols. Rohr-University of Bochum,
Germany, no. 2006/03, 2006.

[17] L. Mazaré, “Computationally sound analysis of pro-
tocols using bilinear pairings,” Preliminary Proceed-
ings of International Workshop on Issues in the The-
ory of Security, pp. 6-21, Braga, Portugal, Mar. 2007.

[18] C. Meadows, P. Syverson, and I. Cervesato, “For-
malSpecification and Analysis of the Group Domain
of Interpretation Protocol using NPATRL and the
NRL Protocol Analyzer,” Journal of Computer Se-
curity, vol. 12, no. 6, pp. 893-932, 2004.

[19] J. Millen, and V. Shmatikov, “Symbolic protocol
analysis with an abelian group operator or Diffie-
Hellman exponentiation,” Journal of Computer Se-
curity, vol. 13, no. 3, pp. 515-564, 2005.

[20] S. Owre, J. M. Rushby, and N. Shankar, “PVS: A
prototype verification system,” Automated Deduc-
tion, LNCS 607, pp. 748-752, Springer-Verlag, 1992.

[21] O. Pereira, and J. Quisquater, “Some attacks upon
authenticated group key agreement protocols,” Jour-
nal of Computer Security, vol. 11, no. 4, pp. 555-580,
2004.

[22] O. Pereira, and J. Quisquater, “On the impossibility
of building secure cliques-type authenticated group
key agreement protocols,” Journal of Computer Se-
curity, vol. 14, no. 2, pp. 197-246, 2006.

[23] P. Ryan, and S. Schneider, The Modelling and
Analysis of Security Protocols: The CSP Approach,
Addison-Wesley, 2001.

[24] S. Schneider, “Verifying authentication protocols in
CSP,” IEEE Transactions on Software Engineering,
vol. 24, no. 9, pp. 741-758, Sep. 1998.

[25] G. Steel, A. Bundy, and M. Maidl, “Attacking a Pro-
tocol for Group Key Agreement by Refuting Incor-
rect Inductive Conjectures,” Automated Reasoning,
LNCS 3097, pp. 137-151, Springer-Verlag, 2004.

[26] M. Steiner, G. Tsudik, and M. Waidner, “Diffie-
Hellman key distribution extended to group commu-
nication,” Proceedings of the 3rd ACM Conference on
Computer and Communications Security, pp. 31-37,
ACM Press, 1996.

[27] H. Sun, and D. Lin, “Dynamic security analysis of
group key agreement protocol,” IEEE Transactions
on Communication, vol. 152, no. 2, pp. 134-137, Apr.
2005.

[28] T. Truderung, “Selecting theories and recursive pro-
tocols,” Concurrency Theory, LNCS 3653, pp. 217-
232, Springer-Verlag, 2005.

Amjad Gawanmeh received his Bachelors degree in
Electrical and Computer Engineering from the Faculty
of Engineering of the Jordan University of Science and
Technology, Jordan and a Master’s degree in Electri-
cal Engineering from Concordia University, Montreal,
Quebec, Canada. He is currently a Ph.D. candidate in
Electrical Engineering in the Department of Electrical
and Computer Engineering of Concordia University.
His research interests include formal methods, formal
verification of security protocols, group key management
protocols, abstract state machines, SystemC semantics,
and multiway decision graphs.

Adel Bouhoula received in 1990 the Diploma degree in
computer engineering with Distinction from the Univer-
sity of Tunis, Tunisia. In 1991, he received a Master’s
degree, in 1994 a PhD degree with Distinction and in
1998 the Habilitation degree all in computer science from
Henri Poincare University in Nancy, France. Currently
he is Professor at the Sup’Com Engineering School of
Telecommunications in Tunisia. He is also the Director of
the Research Unit on Digital Security and the President
of the Tunisian Association of Digital Security. His
research interests include automated reasoning, network
security, cryptography, and validation of cryptographic
protocols. Dr. Bouhoula has been in the past the Chair-
man and CEO of the Research Institute for Computer
Science and Telecommunication in Tunisia (IRSIT).
Prior to that, he has been the Director of Information
Technologies and Networks at “Tunisie Telecom” and
a Senior Researcher with the INRIA French National
Institute for Research in Computer Science and Control
in France.

Sofiène Tahar received in 1990 the Diploma degree in
computer engineering from the University of Darmstadt,
Germany, and in 1994 the Ph.D. degree with Distinc-
tion in computer science from the University of Karlsruhe,
Germany. Currently he is Professor in the Department of
Electrical and Computer Engineering at Concordia Uni-
versity, Montreal, Quebec, Canada. His research inter-
ests are in areas of formal methods, formal hardware ver-
ification, microprocessor and system-on-chip verification,
VLSI design automation, and communications architec-
tures and protocols. Dr. Tahar is Concordia University
Senior Research Fellow and Chair.

