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Abstract

Mixed-Signal extensions to VHDL, Verilog, and SystemC laages
have been developed in order to provide a unifying envirarinier the
modeling and verification of Analog and Mixed Signal (AMS)sims at
different levels of abstraction. In this paper, we modellikbavior of a set
of benchmark designs in VHDL-AMS, Verilog-AMS and SysterA®AS
and compare the simulation performance with HSPICE. Thiewarexper-
imental results observed for the benchmark circuits shavsilperiority
of VHDL-AMS and Verilog-AMS against SystemC-AMS and HSPIGE
terms of simulation run-times at lower level of abstraction



1 Introduction

Verification of Analog and Mixed Signal (AMS) circuits andssgms is a chal-
lenging task because it requires both an accurate mode¢&iytstem and an effi-
cient method of simulation. For a simulator, a tradeoff esdetween accuracy of
the results and the simulation speed.

Traditionally, circuit simulators are used to simulate andlyze the AMS de-
sign described as a netlist in SPICE. Circuit simulators fadottleneck of long
simulation run-times for complex circuits. An alternatgoegach would be to
capture the behavior of AMS designs at higher level of absta using AMS
hardware description languages (HDLs). This approacltgbritown the simula-
tion run-times, but is less accurate compared to SPICE ationl For a tradeoff
between accuracy and run-time, designers can look at rmgd&MS designs at
higher levels of abstraction. This paper compares the padoce of different
AMS HDLs in terms of simulation run-times. Figure 1 shows thethodology
used for comparing the simulation run-times of three copiaary AMS HDLs
namely VHDL-AMS, Verilog-AMS and SystemC-AMS against HEH.
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Figure 1: Modeling and Simulation Environment

During the past few decades, several work in the ComputiEdaiesign (CAD)
literature were concerned with studying possible framéwdor the simulation of
mixed signal designs. For instance, in [6], the authorsudises a new method-
ology for the Jiles-Atherton model of ferromagnetic corsteyesis using mixed-
domain SystemC and VHDL-AMS implementation to ensure nucaby reli-
able integration of the magnetisation slope. In [1], théhatg proposed a Sys-
temC/Simulink co-simulation framework for embedded systieat relies on Simulink
for the continuous simulation and SystemC for the discregtrilgtion based on
one or more synchronization model. While in [2], the authmrgvides a co-
simulation environment based on SPICE and SAVANT. Anotheredidomain
simulation framework was proposed in [3] based on VHDL an®BL The com-
mercial tool Nexus-PDK [4] supports co-simulation of cyateurate C/C++ with
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SystemC, MATLAB/Simulink, and VHDL/Verilog simulatorsn|[5], the authors
implemented a mixed-signal, functional level simulaticaniework based on Sys-
temC for system-on-a-chip applications. The frameworkudes a C++ mixed-
signal modules. In [15], the authors presents a prelimiapproach for the mod-
eling and simulation of a simple but complete Wireless SeNsiwork with two
nodes using SystemC-AMS. The paper also explains the aalyaif SystemC-
AMS over other HDL's in modeling and simulation of such netiwoln [7], the
author focuses on commonalities and differences betweshamb mixed-signal
hardware description languages, VHDL-AMS and Verilog-AMiSthe case of
modeling heterogeneous or multidiscipline systems.

The rest of the paper is organized as follows. In Section 2deseribe the
AMS simulation approaches used in Verilog-AMS, VHDL-AMSda8ystemC-
AMS with emphasis on the concept of simulation cycle. In BecB, we il-
lustrate and compare the simulation experiments using af #8¥1S benchmark
circuits [11], before concluding with an outline for futwlegections in Section 4.

2 AMS Simulation approach

VHDL-AMS, Verilog-AMS and SystemC-AMS allow the modelind discrete
and continuous-time signals, or a combination of both innglsi design. Con-
necting functional and behavioral models is accomplishigh thie help of termi-
nals and quantities. VHDL-AMS, Verilog-AMS and SystemC-8Man capture
of behavior of AMS designs at higher levels of abstractiohjcl brings down
the simulation time, while preserving the functionalitytbé design.

21 VHDL-AMS

VHDL-AMS [9] was developed as an extension to VHDL to desernd specify
AMS circuits and systems. The analog parts are modeled ageldraystems
and can be described by ordinary differential and algelegications. Systems
in both electrical and non-electrical domains can be deedriand specified at
various levels of abstraction.

The VHDL-AMS simulation cycle starts with the initializat phase [Figure
2], which consists of four main steps. The analog systemtamqmsare deter-
mined from the analog part of the VHDL-AMS model. The init@nditions
for the equations are determined from the initial valueshef quantities, their
attributes and also from the break statements. The inighles of the driving
signals, and quantities defined by attributes are first céego’ he processes are
then executed once until they suspend. At the end of the gseseexecution the
simulation time is set to zero. Both Verilog-AMS and Syste#KaS follow a
similar initialization technique as above.

The actual VHDL-AMS simulation cycle (Figure 3) begins witte computation
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Figure 2: VHDL-AMS Simulation Cycle- Initialization [9].

of analog solution points (arrow 1). This continues untd tiext digital event is
scheduled or an event occurs on the analog and digital & (arrow 2). To com-
pute a digital evaluation point, signals are updated firgterAhat, any triggered
processes are executed until they settle. If the time fonéxe digital evaluation
T, is equal to current time T the digital simulator is called again (arrow 3). If T
is not equal to T, the analog solver is called, and the next cycle begins\ed)o
This continues until the end of simulation is reached (arspw
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Figure 3: VHDL-AMS Simulation Cycle- Execution [9].

2.2 Veilog-AMS

Verilog-AMS HDL [16] is derived from IEEE 1364-1995 VerilddDL. It allows
designers to capture the behavior of AMS designs at diffdesels of abstrac-
tion. Verilog-AMS HDL [17], can also be used to describe dite (digital) sys-
tems (per IEEE 1364-1995 Verilog HDL) and mixed-signal esyss using both
discrete and continuous descriptions as defined in this Wageg Reference Man-
ual (LRM). Verilog-AMS HDL consists of the complete IEEE 86995 Verilog
HDL specification, an analog equivalent for describing agaystems, and ex-
tensions to both for specifying the full Verilog-AMS HDL.

Figure 4, illustrates a typical Verilog-AMS HDL simulatiaycle which in-
cludes:

1. Initialization: The initialization phase of a transient analysis is the pssc
of initializing the circuit state before advancing time.
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Figure 4: Verilog-AMS Simulation Cycle [16]

2. Synchronisation: A Verilog-AMS simulation consists of a number of ana-
log and digital processes communicating via events, sharethory and
conservative nodes. All conservative nodes (macro prpeessepresented
by matrices and solved jointly.

3. Evaluation: The equation describing the design is differential and non-
linear, which makes it impossible to solve directly. All apaches dis-
cretize time and solve the nonlinear equations iteratively
When an analog macro process is evaluated, the analog ehgisea po-
tential solution at a future time, and it stores values fothe process nodes
up to that time. Awake up event is scheduled for the acceptance time of
the process, and the process is then inactive until it iseitoken up or
receives an event from another process.

4. Update: If a process is woken up by its owmake up event, it calculates
a new solution point and deactivates. If it is woken up prioatceptance
time by an event that disturbs its current solution, it waincel its own
wake up event, recalculate its solution and schedule a make up event
for the new acceptance time. The process may also wakeutselarly for
reevaluation by use of a timer (which can be viewed as justh&n@ro-
cess). If the analog process identifies future analog egeits as crossings
or timer events then it will schedule its wake-up event fa time of the
first such event rather than the acceptance time. If the gipaticess is wo-
ken by such an analog event it will communicate any relatemhisvat that
time and de-activate, rescheduling its wake-up for the apatog event or
acceptance. Events to external processes generated falagavents are
not communicated until the global simulation time reachestime of the
analog event. If the time to acceptance is infinite then noeagk event
needs to be scheduled. Analog processes are sensitive nigeshan all
variables and digital signals read by the process unlesatiass is only in
statements guarded by event expressions.

5. Convergence: In the analog kernel, the behavioral description is evaliiat
iteratively until the Newton-Raphson method converges. tlanfirst it-
eration, the signal values used in expressions are appabiend do not
satisfy Kirchhoffs Laws. As the iteration progresses, tigaal values ap-



proach the solution. Iteration continues until two conegrcg criteria are
satisfied.

2.3 SystemC-AMS

SystemC-AMS [13] is an extension of SystemC that uses an apdrayered
approach [14]. The base layer is the existing SystemC 2.0ekers shown in
Figure 5. On top of the base layer, two sets of layers are defingerface to
the existing SystemC layers, (e.g, discrete event chanreld a new set of AMS
layers such as the synchronisation layer, the solver layerthe user layers.

User view layer View 1 View 2 View N

SystemC
layers

Solver layer Solver 1 Solver N

Synchronization AMS synchronization
layer

SystemC kernel
SystemC layer

Figure 5: SystemC-AMS Architecture

The user view layer provides methods to describe the continuous-time models
in terms of procedural behavior, equations, transfer fonst state-space for-
mulations, and as netlists of primitives. Due to its opernrsewarchitecture, the
user can add additional features to the simulator deperatirtfeir application.
SystemC-AMS uses a Synchronous Data Flow (SDF) [12] modebwiputation
for modeling and simulation [8]. Theolver layer provides different implementa-
tions of solvers (such as linear solver to solve electrieavork) that are required
to simulate specific AMS descriptions. Thgnchronization layer implements a
mechanism to organize the simulation of a SystemC-AMS muusl may in-
clude different continuous-time and discrete-event pa&8stemC-AMS defines
a generic interface for various continuous-time solveis piovides methods to
synchronize analog solvers and the discrete kernel of By3te

In [14], the authors describe the semantic model of Syst&S and pro-
pose changes to the SystemC 2.0 simulation cycle to extendpiabilities to sup-
port the execution of dataflow clusters. A dataflow clustera@luster process)
consists of one or more continuous-time modules embeddsdeira discrete-
event process which is managed by a coordinator. An eladubr@fS design in
SystemC-AMS consists of a set of interconnected clustesgases and discrete-
event SystemC processes. The cluster process simulathisratia constant time
step determined by a coordinator based on the samplingofties signals in the
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dataflow cluster and is generally much higher than the mimmeguired Nyquist
rate. Discrete-event models are simulated using deltaeayechanism which
allows emulation of concurrent behavior.

The SystemC-AMS simulation cycle [14] is shown in Figure @ aixsumma-
rized below:

1. Initialization: The initialization methods registered in SystemC-AMS mod-
ules are executed including the initial condition defimgo

2. Evaluation: Processes are only executed at delta O in the order defined by
the static scheduling (delta cycles provide a standard weynulate concur-
rency when simulating discrete-event models). The clystecesses will
be reactivated, always at delta O, at every time step deforetié cluster.

3. Repeat step 2 while there are still processes ready t@lsengo to step 4.
4. Update: Signals are updated with their new values.

5. Go to step 2 if the signal updates generated events withdeday (delta
cycle), else go to step 6.

6. Finish simulation if there are no more pending eventg, gtsto step 7.
7. Advance the time to the earliest pending event.

8. Determine ready to run processes and go to step 2.

A SystemC model consists of a hierarchical network of paradfocesses,
which exchange messages under the control of the simuliegiorel process and
concurrently update the value of signals and variablesnabigssignment state-
ments do not affect the target signals immediately, but #& walues become
effective in the next simulation cycle. The kernel processimes when all user-
defined processes become suspended either by executingstat&inent or upon
reaching the last process statement. On resumption, thelkgodates the signal
and variable and suspends again when the user-defined piees. If the time
of the next earliest event,Tis equal to the current simulation time,Tthe user
processes execute a delta cycle.

3 Comparison and Simulation Results

For the comparison, we have chosen four small to medium saredbg and
switch capacitor circuits. We modeled those circuits in VHBMS, Verilog-

AMS, SystemC-AMS and in HSPICE and simulated them for tremtsand AC
analysis run-time measurements. HSPICE run-time measumeam@sults are pro-
vided as reference since it is still the dominant and widebeated simulator for
analog circuits to-date. We define the simulation run-tirmehee time taken by
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Figure 6: SystemC-AMS Simulation Cycle [14]

Update Signals

a given machine to simulate the design for a specified duratMHDL-AMS,
Verilog-AMS, and HSPICE designs were simulated using Me@i@phics Tools
on an ULTRA SPARC-IIli machine (177 MHz CPU, 1024 Mbyte megjofThe
SystemC-AMS design descriptions were also compiled andut@d on the same
workstation.

The four circuits selected for the simulation are:

1. Continuous-Time State Filter [11].

2. Low Pass Active Filter [10].

3. Leap Frog Filter [11].

4. First Order Switch Capacitor Filter [10].

The Continuous-Time State space Filter circuit (Figure a4 tihree outputs; the
low pass output/,, the high pass output,,, and the band pass outpi,. The
circuit design parameter and the resulting component gadwe summarized in
Table 1.

Figure 7: Continuous-Time State Filter

Table 1: Continuous Time State Filter Parameters.
Circuit Parameters Fc¢=795Hz,G4.=1, Q=1.11

Resistors R1=R2=R3=R4=R5=10k§2, R6=7kQ, R7=3kQ
Capacitors C1=20nF,C3=20nF




‘ R, c,

v

Cl“ I Vout
11
cl

Figure 8: Low Pass Active Filter

The Low Pass Active Filter circuit is shown in Figure 8. Thecuait design
parameter and the resulting component values are summanidable 2.

Table 2: Low Pass Active Filter Parameters.
Circuit Parameters G,.=1, Fj,=1kHz

Resistors R,=3982, R2=3.98K)
Capacitors C1=100pF,C5=10nF

The low pass Leap Frog Filter circuit is shown in Figure 9, relas the design
parameters and the resulting component values are giveabie B.

Figure 9: Leap Frog Filter

The First Order Switch Capacitor Filter circuit is shown iige 10. The
circuit is modeled at component level using ideal switchebs@perational ampli-
fiers. The design is simulated using ideal two-phase nonlagyeing clock. The
circuit design parameter and the resulting component gadwe summarized in
Table 4.



Table 3: Leap Frog Filter Parameters.

Circuit Parameters F;,=900Hz,G 4.=1

Resistors Ri=Ry=R3=R,=R;=10k
R6=R7=R8=R9=R10:R11=10k§2

Capacitors C1=10nF,C3,=20nF,C5=20nF,C,=10nF
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I

Figure 10: First Order Switch Capacitor Filter

Table 4: First Order Switch Capacitor Filter Parameters.

Circuit Parameters

$ Gy4.=1, F,=64kHz, F,=1kHz,T,=15.63%s

Capacitors

C,=0pF, C,=1.032pF(>=1.032pFC,=10pF

Table 5: Simulation Times for 10ms Simulation run.
Circuit Frequency] VHDL-AMS | Verilog-AMS | SystemC-AMS| HSPICE
(Hertz) (Seconds) (Seconds) (Seconds) | (Seconds

Low 1k 0.13 0.12 48.24 48.72
Pass 2k 0.17 0.21 48.45 48.73
Active 4k 0.26 0.26 48.16 48.74
Filter 40k 0.96 1.32 48.20 48.75
First 500 6.72 21.04 70.28 184.34
Order 1k 6.84 21.94 70.27 185.65
Switch 2k 6.97 19.98 70.39 186.13
Capacitor 4k 7.06 18.77 70.40 185.38
Continuous 100 0.07 0.09 49.20 57.24
Time 795 0.07 0.07 48.26 56.61
State 1k 0.10 0.13 49.07 56.62
Filter 10k 0.38 0.50 49.71 56.61

40k 1.34 1.95 49.55 56.66
Leap 1k 0.09 0.22 50.26 66.85
Frog 1.4k 0.12 0.15 50.56 66.89
Filter 10k 0.52 0.82 50.66 66.70

100k 4.99 6.92 51.27 66.73
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3.1 Discussion

Table 5 summarises the experiment results. The first anchdeoalumn rep-
resents the circuit and the frequency of operation. The oekimns represent
the simulation run-times of, respectively, VHDL-AMS, Meg-AMS, SystemC-
AMS and HSPICE in seconds. From the table statistics, we thatiefor all fre-
guency ranges, the simulation run-times for VHDL-AMS andiMg-AMS are
almost comparable and in some cases negligible. Both VHMSAnNnd Verilog-
AMS outperforms SystemC-AMS and HSPICE in their simulation-times. On
the other hand, the simulation run-times are comparabl&ystemC-AMS and
HSPICE with SystemC-AMS performing slightly better in sooases.

For higher frequency inputs the simulation run time is dlighigher than for
low frequency inputs. This is because when the input sighahges at a faster
rate (higher frequency) the analog solver requires moratites to converge to
an analog solution point for a given accuracy requirementstence results in
a slight increase in simulation time. This is seen for eacbudi described in
the VHDL-AMS, Verilog-AMS, SystemC-AMS and HSPICE as onels at the
simulation run-time numbers starting from low frequencluea to high frequency
values.

The circuit simulation times of the first order switch capaucfilter are larger
because of the non-linear switches in the filter circuit whtause the simulator
to iterate more often at the instants of time when the swid@ange states from
ON to OFF or vice versa. Since the switches are turned ON arfe ®fixed
number of times in a 10ms simulation the simulation run-timmdependent of
the input signal frequency but rather depends on the clapkasifrequency used
for controlling the switches.

4 Conclusion

The simulation of analog and mixed signal circuits is bothmmogy and CPU
intensive. The simulation speed depends on the complekitiieocircuit, the
length of simulation, and the frequency of the input signdfs this paper, we
give an overview about the simulation cycles of VHDL-AMS reg-AMS and
SystemC-AMS. Four benchmark circuits were described, lsited and their run-
times were compared with that of HSPICE simulation.

Our experience can be summarised as follows: First, thdtseshow that for
all filter circuits, the simulation run-times increase as thput signal frequency
increases. This is again due to the fact that the simulatprires more iterations
for each analog solution point if the input signal changesgiaas compared to a
slowly varying signal for a given time resolution and aceyreequirements. We
observe the superiority of VHDL-AMS and Verilog-AMS agatii$ystemC-AMS
and HSPICE simulation runtimes. However, the HSPICE ante8yS-AMS run
times are comparable for all filter circuits.
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Unfortunately, SystemC-AMS is still in its development pbaso there is
a lack of available libraries that would have allowed to explmore complex
case studies. We believe that with growing user and develogpamunity for
SystemC-AMS such library would be available allowing us émduct more ex-
perimental results on the language.

Future plans include a detailed investigation about theukition cycle algo-
rithms and also to tackle larger case studies to get a moepthd&nowledge about
the quantitative properties of the language simulators.
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