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Abstract

Mixed-Signal extensions to VHDL, Verilog, and SystemC languages
have been developed in order to provide a unifying environment for the
modeling and verification of Analog and Mixed Signal (AMS) designs at
different levels of abstraction. In this paper, we model thebehavior of a set
of benchmark designs in VHDL-AMS, Verilog-AMS and SystemC-AMS
and compare the simulation performance with HSPICE. The various exper-
imental results observed for the benchmark circuits show the superiority
of VHDL-AMS and Verilog-AMS against SystemC-AMS and HSPICEin
terms of simulation run-times at lower level of abstraction.

1



1 Introduction

Verification of Analog and Mixed Signal (AMS) circuits and systems is a chal-
lenging task because it requires both an accurate model of the system and an effi-
cient method of simulation. For a simulator, a tradeoff exists between accuracy of
the results and the simulation speed.

Traditionally, circuit simulators are used to simulate andanalyze the AMS de-
sign described as a netlist in SPICE. Circuit simulators face a bottleneck of long
simulation run-times for complex circuits. An alternate approach would be to
capture the behavior of AMS designs at higher level of abstraction using AMS
hardware description languages (HDLs). This approach brings down the simula-
tion run-times, but is less accurate compared to SPICE simulation. For a tradeoff
between accuracy and run-time, designers can look at modeling AMS designs at
higher levels of abstraction. This paper compares the performance of different
AMS HDLs in terms of simulation run-times. Figure 1 shows themethodology
used for comparing the simulation run-times of three contemporary AMS HDLs
namely VHDL-AMS, Verilog-AMS and SystemC-AMS against HSPICE.

Figure 1: Modeling and Simulation Environment

During the past few decades, several work in the Computer-aided design (CAD)
literature were concerned with studying possible frameworks for the simulation of
mixed signal designs. For instance, in [6], the authors discusses a new method-
ology for the Jiles-Atherton model of ferromagnetic core hysteresis using mixed-
domain SystemC and VHDL-AMS implementation to ensure numerically reli-
able integration of the magnetisation slope. In [1], the authors proposed a Sys-
temC/Simulink co-simulation framework for embedded system that relies on Simulink
for the continuous simulation and SystemC for the discrete simulation based on
one or more synchronization model. While in [2], the authorsprovides a co-
simulation environment based on SPICE and SAVANT. Another mixed-domain
simulation framework was proposed in [3] based on VHDL and ELDO. The com-
mercial tool Nexus-PDK [4] supports co-simulation of cycleaccurate C/C++ with
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SystemC, MATLAB/Simulink, and VHDL/Verilog simulators. In [5], the authors
implemented a mixed-signal, functional level simulation framework based on Sys-
temC for system-on-a-chip applications. The framework includes a C++ mixed-
signal modules. In [15], the authors presents a preliminaryapproach for the mod-
eling and simulation of a simple but complete Wireless Sensor Network with two
nodes using SystemC-AMS. The paper also explains the advantage of SystemC-
AMS over other HDL’s in modeling and simulation of such network. In [7], the
author focuses on commonalities and differences between the two mixed-signal
hardware description languages, VHDL-AMS and Verilog-AMS, in the case of
modeling heterogeneous or multidiscipline systems.

The rest of the paper is organized as follows. In Section 2, wedescribe the
AMS simulation approaches used in Verilog-AMS, VHDL-AMS and SystemC-
AMS with emphasis on the concept of simulation cycle. In Section 3, we il-
lustrate and compare the simulation experiments using a setof AMS benchmark
circuits [11], before concluding with an outline for futuredirections in Section 4.

2 AMS Simulation approach

VHDL-AMS, Verilog-AMS and SystemC-AMS allow the modeling of discrete
and continuous-time signals, or a combination of both in a single design. Con-
necting functional and behavioral models is accomplished with the help of termi-
nals and quantities. VHDL-AMS, Verilog-AMS and SystemC-AMS can capture
of behavior of AMS designs at higher levels of abstraction, which brings down
the simulation time, while preserving the functionality ofthe design.

2.1 VHDL-AMS

VHDL-AMS [9] was developed as an extension to VHDL to describe and specify
AMS circuits and systems. The analog parts are modeled as lumped systems
and can be described by ordinary differential and algebraicequations. Systems
in both electrical and non-electrical domains can be described and specified at
various levels of abstraction.

The VHDL-AMS simulation cycle starts with the initialization phase [Figure
2], which consists of four main steps. The analog system equations are deter-
mined from the analog part of the VHDL-AMS model. The initialconditions
for the equations are determined from the initial values of the quantities, their
attributes and also from the break statements. The initial values of the driving
signals, and quantities defined by attributes are first computed. The processes are
then executed once until they suspend. At the end of the processes execution the
simulation time is set to zero. Both Verilog-AMS and SystemC-AMS follow a
similar initialization technique as above.

The actual VHDL-AMS simulation cycle (Figure 3) begins withthe computation
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Figure 2: VHDL-AMS Simulation Cycle- Initialization [9].

of analog solution points (arrow 1). This continues until the next digital event is
scheduled or an event occurs on the analog and digital interface (arrow 2). To com-
pute a digital evaluation point, signals are updated first. After that, any triggered
processes are executed until they settle. If the time for thenext digital evaluation
Tn is equal to current time Tc, the digital simulator is called again (arrow 3). If Tn

is not equal to Tc, the analog solver is called, and the next cycle begins (arrow 4).
This continues until the end of simulation is reached (arrow5).

Figure 3: VHDL-AMS Simulation Cycle- Execution [9].

2.2 Verilog-AMS

Verilog-AMS HDL [16] is derived from IEEE 1364-1995 VerilogHDL. It allows
designers to capture the behavior of AMS designs at different levels of abstrac-
tion. Verilog-AMS HDL [17], can also be used to describe discrete (digital) sys-
tems (per IEEE 1364-1995 Verilog HDL) and mixed-signal systems using both
discrete and continuous descriptions as defined in this Language Reference Man-
ual (LRM). Verilog-AMS HDL consists of the complete IEEE 1364-1995 Verilog
HDL specification, an analog equivalent for describing analog systems, and ex-
tensions to both for specifying the full Verilog-AMS HDL.

Figure 4, illustrates a typical Verilog-AMS HDL simulationcycle which in-
cludes:

1. Initialization: The initialization phase of a transient analysis is the process
of initializing the circuit state before advancing time.
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Figure 4: Verilog-AMS Simulation Cycle [16]

2. Synchronisation: A Verilog-AMS simulation consists of a number of ana-
log and digital processes communicating via events, sharedmemory and
conservative nodes. All conservative nodes (macro process) are represented
by matrices and solved jointly.

3. Evaluation: The equation describing the design is differential and non-
linear, which makes it impossible to solve directly. All approaches dis-
cretize time and solve the nonlinear equations iteratively.
When an analog macro process is evaluated, the analog enginefinds a po-
tential solution at a future time, and it stores values for all the process nodes
up to that time. Awake up event is scheduled for the acceptance time of
the process, and the process is then inactive until it is either woken up or
receives an event from another process.

4. Update: If a process is woken up by its ownwake up event, it calculates
a new solution point and deactivates. If it is woken up prior to acceptance
time by an event that disturbs its current solution, it will cancel its own
wake up event, recalculate its solution and schedule a newwake up event
for the new acceptance time. The process may also wake itselfup early for
reevaluation by use of a timer (which can be viewed as just another pro-
cess). If the analog process identifies future analog eventssuch as crossings
or timer events then it will schedule its wake-up event for the time of the
first such event rather than the acceptance time. If the analog process is wo-
ken by such an analog event it will communicate any related events at that
time and de-activate, rescheduling its wake-up for the nextanalog event or
acceptance. Events to external processes generated from analog events are
not communicated until the global simulation time reaches the time of the
analog event. If the time to acceptance is infinite then no wake-up event
needs to be scheduled. Analog processes are sensitive to changes in all
variables and digital signals read by the process unless that access is only in
statements guarded by event expressions.

5. Convergence: In the analog kernel, the behavioral description is evaluated
iteratively until the Newton-Raphson method converges. Onthe first it-
eration, the signal values used in expressions are approximate and do not
satisfy Kirchhoffs Laws. As the iteration progresses, the signal values ap-
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proach the solution. Iteration continues until two convergence criteria are
satisfied.

2.3 SystemC-AMS

SystemC-AMS [13] is an extension of SystemC that uses an openand layered
approach [14]. The base layer is the existing SystemC 2.0 kernel as shown in
Figure 5. On top of the base layer, two sets of layers are defined: Interface to
the existing SystemC layers, (e.g, discrete event channels), and a new set of AMS
layers such as the synchronisation layer, the solver layer,and the user layers.

Figure 5: SystemC-AMS Architecture

The user view layer provides methods to describe the continuous-time models
in terms of procedural behavior, equations, transfer functions, state-space for-
mulations, and as netlists of primitives. Due to its open source architecture, the
user can add additional features to the simulator dependingon their application.
SystemC-AMS uses a Synchronous Data Flow (SDF) [12] model ofcomputation
for modeling and simulation [8]. Thesolver layer provides different implementa-
tions of solvers (such as linear solver to solve electrical network) that are required
to simulate specific AMS descriptions. Thesynchronization layer implements a
mechanism to organize the simulation of a SystemC-AMS modelthat may in-
clude different continuous-time and discrete-event parts. SystemC-AMS defines
a generic interface for various continuous-time solvers and provides methods to
synchronize analog solvers and the discrete kernel of SystemC.

In [14], the authors describe the semantic model of SystemC-AMS and pro-
pose changes to the SystemC 2.0 simulation cycle to extend its capabilities to sup-
port the execution of dataflow clusters. A dataflow cluster (or a cluster process)
consists of one or more continuous-time modules embedded inside a discrete-
event process which is managed by a coordinator. An elaborated AMS design in
SystemC-AMS consists of a set of interconnected cluster processes and discrete-
event SystemC processes. The cluster process simulation runs at a constant time
step determined by a coordinator based on the sampling ratesof the signals in the
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dataflow cluster and is generally much higher than the minimum required Nyquist
rate. Discrete-event models are simulated using delta cycle mechanism which
allows emulation of concurrent behavior.

The SystemC-AMS simulation cycle [14] is shown in Figure 6 and is summa-
rized below:

1. Initialization: The initialization methods registered in SystemC-AMS mod-
ules are executed including the initial condition definitions.

2. Evaluation: Processes are only executed at delta 0 in the order defined by
the static scheduling (delta cycles provide a standard way to emulate concur-
rency when simulating discrete-event models). The clusterprocesses will
be reactivated, always at delta 0, at every time step defined for the cluster.

3. Repeat step 2 while there are still processes ready to run,else go to step 4.

4. Update: Signals are updated with their new values.

5. Go to step 2 if the signal updates generated events with zero delay (delta
cycle), else go to step 6.

6. Finish simulation if there are no more pending events, else go to step 7.

7. Advance the time to the earliest pending event.

8. Determine ready to run processes and go to step 2.

A SystemC model consists of a hierarchical network of parallel processes,
which exchange messages under the control of the simulationkernel process and
concurrently update the value of signals and variables. Signal assignment state-
ments do not affect the target signals immediately, but the new values become
effective in the next simulation cycle. The kernel process resumes when all user-
defined processes become suspended either by executing a wait statement or upon
reaching the last process statement. On resumption, the kernel updates the signal
and variable and suspends again when the user-defined process starts. If the time
of the next earliest event Tn is equal to the current simulation time Tc, the user
processes execute a delta cycle.

3 Comparison and Simulation Results

For the comparison, we have chosen four small to medium sizedanalog and
switch capacitor circuits. We modeled those circuits in VHDL-AMS, Verilog-
AMS, SystemC-AMS and in HSPICE and simulated them for transient and AC
analysis run-time measurements. HSPICE run-time measurement results are pro-
vided as reference since it is still the dominant and widely accepted simulator for
analog circuits to-date. We define the simulation run-time as the time taken by
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Figure 6: SystemC-AMS Simulation Cycle [14]

a given machine to simulate the design for a specified duration. VHDL-AMS,
Verilog-AMS, and HSPICE designs were simulated using Mentor Graphics Tools
on an ULTRA SPARC-IIIi machine (177 MHz CPU, 1024 Mbyte memory). The
SystemC-AMS design descriptions were also compiled and executed on the same
workstation.

The four circuits selected for the simulation are:

1. Continuous-Time State Filter [11].

2. Low Pass Active Filter [10].

3. Leap Frog Filter [11].

4. First Order Switch Capacitor Filter [10].

The Continuous-Time State space Filter circuit (Figure 7) has three outputs; the
low pass outputVlp, the high pass outputVhp, and the band pass outputVbp. The
circuit design parameter and the resulting component values are summarized in
Table 1.

C1R5R1

Vin

Vhp

Vlp

C2

R7

R4R3
R2

hp

VbpR6

Figure 7: Continuous-Time State Filter

Table 1: Continuous Time State Filter Parameters.
Circuit Parameters Fc=795Hz,Gdc=1, Q=1.11
Resistors R1=R2=R3=R4=R5=10kΩ, R6=7kΩ, R7=3kΩ
Capacitors C1=20nF,C2=20nF
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Figure 8: Low Pass Active Filter

The Low Pass Active Filter circuit is shown in Figure 8. The circuit design
parameter and the resulting component values are summarized in Table 2.

Table 2: Low Pass Active Filter Parameters.
Circuit Parameters Gdc=1,Flp=1kHz
Resistors R1=398Ω, R2=3.98kΩ
Capacitors C1=100pF,C2=10nF

The low pass Leap Frog Filter circuit is shown in Figure 9, whereas the design
parameters and the resulting component values are given in Table 3.

R2
R6

C1 C2

Vin R1 R2

R3

R4

R25
R8

C3

Vout

C4 R10

R9
R7

R11

Figure 9: Leap Frog Filter

The First Order Switch Capacitor Filter circuit is shown in Figure 10. The
circuit is modeled at component level using ideal switches and operational ampli-
fiers. The design is simulated using ideal two-phase non-overlapping clock. The
circuit design parameter and the resulting component values are summarized in
Table 4.
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Table 3: Leap Frog Filter Parameters.
Circuit Parameters Flp=900Hz,Gdc=1
Resistors R1=R2=R3=R4=R5=10kΩ

R6=R7=R8=R9=R10=R11=10kΩ
Capacitors C1=10nF,C2=20nF,C3=20nF,C4=10nF

SW7SW4 C5C2
SW0 SW3

1 1 1 1

SW6SW5
C4

Vin

SW1 SW2

V

2222

1

SW8

in

C1

Vout

Figure 10: First Order Switch Capacitor Filter

Table 4: First Order Switch Capacitor Filter Parameters.
Circuit Parameters Gdc=1,Fs=64kHz,Fp=1kHz,Ts=15.635µs
Capacitors C1=0pF,C2=1.032pF,C3=1.032pF,C4=10pF

Table 5: Simulation Times for 10ms Simulation run.
Circuit Frequency VHDL-AMS Verilog-AMS SystemC-AMS HSPICE

(Hertz) (Seconds) (Seconds) (Seconds) (Seconds)
Low 1k 0.13 0.12 48.24 48.72
Pass 2k 0.17 0.21 48.45 48.73
Active 4k 0.26 0.26 48.16 48.74
Filter 40k 0.96 1.32 48.20 48.75
First 500 6.72 21.04 70.28 184.34
Order 1k 6.84 21.94 70.27 185.65
Switch 2k 6.97 19.98 70.39 186.13
Capacitor 4k 7.06 18.77 70.40 185.38
Continuous 100 0.07 0.09 49.20 57.24
Time 795 0.07 0.07 48.26 56.61
State 1k 0.10 0.13 49.07 56.62
Filter 10k 0.38 0.50 49.71 56.61

40k 1.34 1.95 49.55 56.66
Leap 1k 0.09 0.22 50.26 66.85
Frog 1.4k 0.12 0.15 50.56 66.89
Filter 10k 0.52 0.82 50.66 66.70

100k 4.99 6.92 51.27 66.73
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3.1 Discussion

Table 5 summarises the experiment results. The first and second column rep-
resents the circuit and the frequency of operation. The nextcolumns represent
the simulation run-times of, respectively, VHDL-AMS, Verilog-AMS, SystemC-
AMS and HSPICE in seconds. From the table statistics, we notethat for all fre-
quency ranges, the simulation run-times for VHDL-AMS and Verilog-AMS are
almost comparable and in some cases negligible. Both VHDL-AMS and Verilog-
AMS outperforms SystemC-AMS and HSPICE in their simulationrun-times. On
the other hand, the simulation run-times are comparable forSystemC-AMS and
HSPICE with SystemC-AMS performing slightly better in somecases.

For higher frequency inputs the simulation run time is slightly higher than for
low frequency inputs. This is because when the input signal changes at a faster
rate (higher frequency) the analog solver requires more iterations to converge to
an analog solution point for a given accuracy requirements and hence results in
a slight increase in simulation time. This is seen for each circuit described in
the VHDL-AMS, Verilog-AMS, SystemC-AMS and HSPICE as one looks at the
simulation run-time numbers starting from low frequency values to high frequency
values.

The circuit simulation times of the first order switch capacitor filter are larger
because of the non-linear switches in the filter circuit which cause the simulator
to iterate more often at the instants of time when the switches change states from
ON to OFF or vice versa. Since the switches are turned ON and OFF a fixed
number of times in a 10ms simulation the simulation run-timeis independent of
the input signal frequency but rather depends on the clock signal frequency used
for controlling the switches.

4 Conclusion

The simulation of analog and mixed signal circuits is both memory and CPU
intensive. The simulation speed depends on the complexity of the circuit, the
length of simulation, and the frequency of the input signals. In this paper, we
give an overview about the simulation cycles of VHDL-AMS, Verilog-AMS and
SystemC-AMS. Four benchmark circuits were described, simulated and their run-
times were compared with that of HSPICE simulation.

Our experience can be summarised as follows: First, the results show that for
all filter circuits, the simulation run-times increase as the input signal frequency
increases. This is again due to the fact that the simulator requires more iterations
for each analog solution point if the input signal changes faster as compared to a
slowly varying signal for a given time resolution and accuracy requirements. We
observe the superiority of VHDL-AMS and Verilog-AMS against SystemC-AMS
and HSPICE simulation runtimes. However, the HSPICE and SystemC-AMS run
times are comparable for all filter circuits.

11



Unfortunately, SystemC-AMS is still in its development phase, so there is
a lack of available libraries that would have allowed to explore more complex
case studies. We believe that with growing user and developer community for
SystemC-AMS such library would be available allowing us to conduct more ex-
perimental results on the language.

Future plans include a detailed investigation about the simulation cycle algo-
rithms and also to tackle larger case studies to get a more indepth knowledge about
the quantitative properties of the language simulators.
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