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Abstract

Optical and laser resonators are widely used in optical communication, bio-sensors and aerospace

systems. Ray optics provides an efficient formalism to analyze the stability properties of such resonators.

In this report, we describe the use of our formalization of ray optics in HOL Light theorem prover for

the broad range of readers from Computer Science, Physics and Optical Engineering. In particular,

we outline the complete steps to execute our source code including the installation for Linux/Windows

operating systems. Finally, we give a tutorial like demonstration of the formal analysis of a real-world

Fabry Pérot resonator.
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1 Introduction

Generally, optical systems are composed of different components (e.g., mirrors and lenses)
which process light to achieve desired functionalities such as light amplification, ultrashort
pulse generation and astronomical imaging. In order to model and analyze the behavior of
such systems, light can be characterized at three levels of abstraction, i.e., ray, electromag-
netic and quantum [8]. Geometrical optics (also known as ray optics) describes light as a
collection of straight lines which linearly propagates through optical systems. On the other
hand, electromagnetic and quantum optics characterize light as a coupled vector field and a
stream of photons, respectively. The analysis of engineering optical systems (e.g., refractom-
etry of cancer cells and optical networks) using geometrical optics is an integral part of their
design life-cycle. Traditional optical system analysis techniques like paper-and-pencil based
proofs and numerical algorithms have some known limitations of human-error proneness and
incompleteness, respectively, which impeded their usage in the designing of critical optical
systems which may result in the loss of human lives (e.g., laser surgeries) or heavy financial
loss (e.g., Hubble Telescope failure [1]). We therefore propose theorem proving based formal
methods for the accurate and scalable analysis of optical systems.

The stability analysis of optical resonators identifies geometric constraints of the optical
components which ensure that light remains inside the resonator. Both stable and unstable
resonators have diverse applications, e.g., stable resonators are used in the measurement
of refractive index of cancer cells [13], whereas unstable resonators are used in the laser
oscillators for high energy applications [12]. In this report, we describe the use of our
formalization of ray optics [11] and optical resonators [10, 9]. Note that only the usability
aspects are presented in tutorial like fashion and technical details are omitted which can be
found in [11, 10, 9]. In Section 2, we present the installation detail of HOL Light on Linux
and Windows operating systems along with the steps to load our optical resonator stability
analysis files which we refer to as Formal-Stability. We present a case study about the formal
stability analysis of a real-world Fabry Pérot resonator in Section 3. Finally, we conclude
our report in Section 4 and point to further readings.

2 Installation

In this section, we describe the procedure to install HOL Light and load our stability veri-
fication code (Formal-Stability) on two most widely used operating systems, i.e., Linux and
Windows.

2.1 Linux

Generally, there are several methods to install HOL Light on different Linux based systems.
Here, we describe the use of a little script that will download, compile and install HOL Light,
including compatible versions of OCaml and Camlp5. This is a very quick and easy way to
get things up and running, even if the distribution does not provide suitable packages for
OCaml. All installation is local to a given directory (say, under your home directory). So,
no root permissions are required in case you are using your university’s or organizations’
server. This script has been tested on Linux (both 32 and 64 bit). It might also work on
other Unix-like systems, possibly with modifications.

Open the terminal and execute the following commands:
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Step 1: We need to install the subrevision (svn) package by the following command:
sudo apt-get install subversion

Step 1: mkdir hol-light-workbench

Step 2: cd hol-light-workbench

Step 3: wget https://bitbucket.org/akrauss/hol-light-workbench/raw/tip/setup

The corresponding output is shown in Figure 1.

Fig. 1: HOL Light Installation on Linux

Step 4: chmod 755 setup

Step 5: ./setup

The corresponding output is shown in Figure 2.

Step 6: . setpaths

The installer creates a little script with shell environment settings (PATH etc.).
Import it into the current shell as follows to adjust the paths.

Finally, we can verify the installation by loading HOL Light (see Figure 2) as follows:

cd hol-light

ocaml

#use "hol.ml";;
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Fig. 2: HOL Light Installation on Linux

Fig. 3: Loading HOL Light

2.2 Windows

We can install HOL Light on Windows operating system (32 or 64 bit) without the Cygwin.
Following are the detailed steps for installation:

Step 1: We need to install Objective CAML 3.09.3 which can be downloaded (.zip format)
here:

http://caml.inria.fr/pub/distrib/ocaml-3.09/
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Do not install the latest version 3.10 or later.

Step 2: Download HOL Light from http://www.cl.cam.ac.uk/~jrh13/hol-light/. Best
way is to download by subrevision which can be downloaded as an executable file
from https://sliksvn.com/en/download/. Once subrevision is installed, we can
download HOL Light by using the command prompt:

svn checkout http://hol-light.googlecode.com/svn/trunk/ hol_light

Step 3: Change the cureent directory with the DOS command cd to make hol light the
current directory.

Step 4: For HOL-Light to run for the first time, you also need to create files called pa j.cmo
and pa j.cmi in your hol light directory. If you know somebody else who has
created these files using the same versions of Objective CAML and HOL Light,
you can copy their files. Otherwise, you need to create them yourself as follows.
Rename the file pa j 3.09.ml to pa j.ml. (It can be done manually).

Step 5: Run the following command:

ocamlc -c -pp "camlp4r pa_extend.cmo q_MLast.cmo" -I +camlp4 pa_j.ml

This should create the files pa j.cmo and pa j.cmi. It can be verified in the HOL
Light folder manually.

As described in the previous section, we can verify the installation by loading HOL Light
(see Figure 2) as follows:

cd hol-light

ocaml

#use "hol.ml";;

On most computers it takes a few minutes to start up. Note that # is necessary even though
you might see it on screen it will look like this # #use "hol.ml";;)

2.3 Loading Formal-Stability

The latest version of the code can be downloaded from http://hvg.ece.concordia.ca/

projects/optics/rayoptics.htm. Table 1 outlines the included files and their correspond-
ing description.

We need to unzip ray.zip and move (in ocaml) to the directory containing our files:

#cd "path/to/directory";;

Finally, load the top file:

needs "main.ml";;

This will also load all the intermediate files1. If the last theorem showing on window is
STABLE FP, this means all the files have been loaded correctly.

1This development needs ”Multivariate” analysis libraries of HOL Light. It takes 3 hours on my laptop with Intel Core i3
processor and 4GB of RAM. On my lab server it takes one hour or so. In any case it takes a while to load depending upon the
machine.
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Table 1: Structure of Formal-Stability Code

File Name Description

main.ml Top file which can load all the required libraries
ray optics.ml Core formalization of ray optics. It includes type definitions, modeling of the physical

behavior of ray and ray transfer matrices.
component libray Formalization of some basic optical components such as think lens, thick lens and

parallel plate. These components can further be used to formalize more complex
optical components

resonator.ml Main formalization of optical resonators, their validity, some fundamental operations
(e.g., unfolding and round trip) and generalized stability theorem for symmetric and
non-symmetric resonators

fp fiber rod lens Modeling and stability analysis of Fabry Pérot resonator with fiber-rod lens
z resonator Modeling and stability analysis of Z-shaped resonator
fp resonator Modeling and stability analysis of two mirror Fabry Pérot resonator

Last Loaded Theorem

val (STABLE_FP) : thm =

|- !R d n.

~(R = &0) /\ &0 < d / R /\ d / R < &2 /\ &0 < n /\ &0 < d

==> is_stable_resonator (fp_cavity R d n)

3 Case Study: Fabry-Pérot Resonator with Fiber-rod-lens

In optics literature, Fabry-Pérot resonator has numerous variants in terms of its structure
due to its wide scope of applications (e.g., wavelength division multiplexing [7] measurement
of the refractive index of cancer cells [13] and optical bio-sensing devices [2]). Recently, a
state-of-the-art FP core architecture has been proposed which overcomes the some known
limitations of existing FP resonators [6, 4]. In the new design, cylindrical mirrors are com-
bined with a fiber rod lens (FRL) inside the cavity, to focus the beam of light in both
transverse planes as shown in Figure 4 (a). The fiber rod lens is used as light pipe which
allows the transmission of light from one end to the other with relatively small leakage.
Building a stable FP resonator requires to determine the geometric constraints in terms of
the radius of curvature of mirrors R and the free space propagation distance (dfree space)
using the stability analysis. It is important to note that the design shown in Figure 4 (a), has
a 3-dimensional structure. We can still apply the ray-transfer-matrix approach to analyze
the stability by dividing the given architecture into two planes, i.e., XZ and YZ planes. In
this case, the stability problem becomes a couple of planar problems which are still valid
since the ray focusing behaviours in both directions (XZ and YZ) are decoupled. This can
be seen in Figure 4 (b) and (c), where the resonator is divided into two cross-sections. In
the following, we focus only on the analysis of the YZ plane, since the analysis in the XZ
plane is fairly similar (the complete analysis can be found in [10] along with the source code
at [14]).

In the YZ cross-section (Figure 4 (c)), the curved mirrors becomes a straight mirror and
the fiber rod lens acts as a converging lens. In this case, a ray that makes a round-trip in
the cavity undergoes (from left to right) first reflection from the straight mirror, propagation
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Fig. 4: Fabry Pérot (FP) Resonator with fiber rod lens (a) 3-Dimensional Resonator Design
(b) Cross-Section view in the XZ Plane (c) Cross-Section view in the YZ Plane

through free space of length dy and refractive index 1, refraction through the curved interface

with radius of curvature
df
2 (due to concavity), propagation within the fiber rod lens of length

df and refractive index nf , refraction through the curved interface with radius of curvature

−df
2 (due to convexity) and again the propagation through free space of length dy . We

formally model this system description as follows:

HOL Script: FP Resonator Model in YZ Plane

let fp_frl_cav_yz = new_definition

‘ fp_frl_cav_yz dy df nf : resonator =

plane,[(&1,dy),(spherical (df/ &2)),transmitted;

(nf,df),(spherical (--df/ &2)),transmitted],(&1,dy),plane‘;;

Output: FP Resonator Model in YZ Plane

|- !nf df dy.

fp_frl_cav_yz dy df nf =

plane,[(&1,dy),spherical (df / &2),transmitted;

(nf,df),spherical (--df / &2),transmitted],

(&1,dy),plane

where function fp frl cav yz takes the parameters free space of length (dy), length of fiber

7



rod lens (df) and refractive index (nf) and it returns an optical resonator.
Now, we analyze this model in three steps: 1) Model Validity; 2) Verification of ray-

transfer-matrix and 3) the stability.
Step 1: For an optical resonator structure is considered to be valid, it should satisfy some
constraints such as distances cannot be negative, and refractive index needs to be non-
negative etc. We can check the validity of the model using the tactic VALID RESONATOR.
The general format of the tactic is as follows: VALID RESONATOR def goal, it takes two
parameters, i.e., def which indeed represents the definition of the resonator mode (in our
case fp frl cav yz) and goal which is a desired goal that needs to be proved. So we can
verify resonator validity as follows:

HOL Script: FP Resonator Model Validity

VALID_RESONATOR fp_frl_cav_yz

‘!dy df nf. &0 < dy /\ &0 < df /\ &0 < nf

==> is_valid_resonator (fp_frl_cav_yz dy df nf)‘;;

Output: FP Resonator Model Validity

1 basis elements and 0 critical pairs

2 basis elements and 0 critical pairs

2 basis elements and 0 critical pairs

3 basis elements and 0 critical pairs

3 basis elements and 0 critical pairs

1 basis elements and 0 critical pairs

val it : thm =

|- !dy df nf.

&0 < dy /\ &0 < df /\ &0 < nf

==> is_valid_resonator (fp_frl_cav_yz dy df nf)

Step 2: It is clear from the Figure 3 (c) that the resonator configuration in YZ plane
is symmetric which means that order of components in unfolded resonator is equal to the
concatenation of two half round trips. Mathematically, for any resonator, the system com-
position is equal to square of a matrix (which essentially represents the half round trip). We
define the matrix of half round trip as follows:

HOL Script: FP Resonator Half Roundtrip Matrix

let fp_frl_yz_mat_u = new_definition

‘ fp_frl_yz_mat_u dy df nf =

mat2x2 (--(df * (-- &2 + nf) + &4 * dy * (-- &1 + nf)) / (df * nf))

(((df + &2 * dy) * (df - &2 * dy * (-- &1 + nf))) / (df * nf))

((&4 - &4 * nf) / (df * nf))

(--(df * (-- &2 + nf) + &4 * dy * (-- &1 + nf)) / (df * nf))‘;;

Then we verify the symmetry in HOL Light as follows (here, we give the whole proof which
involves mainly rewriting and quite obvious):
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Complete Proof Script: FP Resonator Matrix (in Symmetric Form)

let FP_FRL_YZ_MATRIX = prove (‘

!dy df nf dy. !dy df nf. &0 < dy /\ &0 < df /\ &0 < nf ==>

system_composition (unfold_resonator_s (fp_frl_cav_yz dy df nf) 1) =

fp_frl_yz_mat_u dy df nf pow 2‘,

(*-------------PROOF STEPS-----------------*)

REWRITE_TAC[fp_frl_yz_mat_u;MAT_POW2] THEN

REWRITE_TAC common_defs THEN

REPEAT(POP_ASSUM MP_TAC) THEN REWRITE_TAC[GSYM ONE] THEN

SIMP_TAC[GSYM MATRIX_MUL_ASSOC] THEN

SIMP_TAC[MAT2X2_MUL;REAL_MUL_RZERO;REAL_MUL_LZERO;REAL_ADD_LID;

REAL_ADD_RID;REAL_MUL_LID;REAL_MUL_RID] THEN

SIMP_TAC[MAT2X2_EQ ] THEN

SIMP_TAC[lemma1] THEN

CONV_TAC REAL_FIELD);;

Step 3: Finally, we formally verify the stability of the FP resonator in YZ-plane as follows:

Complete Proof Script: Stability Verification

let STABLE_FP_FRL_YZ = prove(‘

!dy df nf. &0 < dy /\ &0 < df /\ &0 < nf /\

&0 < (&1 - &2/nf) + (&4*dy/df)*(&1 - &1/nf) /\

(&1 - &2/nf) + (&4*dy/df)*(&1 - &1/nf) < &1 ==>

is_stable_resonator(fp_frl_cav_yz dy df nf)‘,

(*-------------PROOF STEPS-----------------*)

REPEAT STRIP_TAC THEN MP_REWRITE_TAC STABILITY_THEOREM_SYM THEN

EXISTS_TAC(‘fp_frl_yz_mat_u dy df nf :real^2^2‘) THEN

CONJ_TAC THENL[ASM_SIMP_TAC[VALID_FP_FRL_YZ_CAVITY]; ALL_TAC] THEN

CONJ_TAC THENL[ASM_SIMP_TAC[FP_FRL_YZ_MATRIX]; ALL_TAC] THEN

CONJ_TAC THENL[REWRITE_TAC[DET_MAT2X2;fp_frl_yz_mat_u] THEN

REPEAT(POP_ASSUM MP_TAC) THEN

SIMP_TAC[lemma2] THEN

asm_real_prove ; ALL_TAC] THEN

REWRITE_TAC[fp_frl_yz_mat_u ;VECTOR_2;mat2x2 ] THEN

IMP_REWRITE_TAC[LEMMA_BASIC] THEN

REPEAT(POP_ASSUM MP_TAC) THEN

SIMP_TAC[lemma3] THEN

asm_real_prove);;

The verification of this theorem is a direct consequence of generalized stability theorem [14]
and Steps 1 and 2.
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It is important to note that for the case of FP resonator with fiber rod lens, we have
obtained two sets of stability constraints, i.e., in the XZ plane and in the YZ plane. In
fact, the resonator can be stable in one plane and unstable in the other. Therefore, stability
constraints in both planes have to be satisfied. In real-world scenarios, the most fundamental
step is to find the allowable values of the parameters associated with resonators such as radius
of convergence and the width of free space. The verification of above theorems have been
done in a generic form, i.e., we derive the stability constraints for arbitrary values of R dx
df and nf . The is one of the main advantage of theorem proving based stability analysis of
optical resonators. We further demonstrate the strength of our approach by the verification
of stability constraints used as the guidelines for the fabrication of FP resonators, reported
in [5]. In the design its considered that dx = dx = d and the values of nf and df are fixed
and equal to 1.47 and 125µm, respectively. The main goal is to find the ranges of d where
the resonator is stable in both planes. We developed a tactic (STABILITY PROVE TAC) which
can automatically verify that the resonators is stable under the given range of parameters.
For example, first we define the resonator model in XZ and YZ planes as follows:

HOL Light Script: FP Resonator Real-world Model

let FP_XZ_RES = define ‘

FP_XZ_RES d = fp_frl_xz_cavity

(#140 * #0.000001) d (#125.0 * #0.000001) (#1.47)‘;;

let FP_YZ_RES = define ‘

FP_YZ_RES d = fp_frl_cav_yz

d (#125.0 * #0.000001) (#1.47)‘;;

Based on the general format (STABILITY PROVE TAC) needs two parameters, i.e., the goal
which needs to be proved and list of theorems or definitions. One particular case is given as
follows:

Automatic Verification of Resonator Stability

let RANGE_1_YZ = STABILITY_PROVE

‘(d IN real_interval (#97.5 * #0.000001,#132.9 * #0.000001))

==> is_stable_resonator (FP_YZ_RES d)‘ [FP_YZ_RES];;

(*----------VERIFIED THEOREM-----------------------*)

val ( RANGE_1_YZ ) : thm =

|- d IN real_interval (#97.5 * #0.000001,#132.9 * #0.000001)

==> is_stable_resonator (FP_YZ_RES d)

It is interesting to see the time required to verify the resonator stability. We have im-
plemented a variant of above mentioned tactic namely STABILITY PROVE TIME which also
provides the cpu time along with the verified theorem. We have verified important stability
ranges in XZ and YZ domain inspired from the paper [5]. The corresponding theorems along
with timing information are given as follows:
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Different Stability Ranges in XZ and YZ Domain

(*------------------RANGE 1------------------*)

CPU time (user): 3.381

val ( RANGE_1_XZ_TIME ) : thm =

|- d IN real_interval (#27.5 * #0.000001,#35 * #0.000001)

==> is_stable_resonator (FP_XZ_RES d)

(*------------------RANGE 2------------------*)

CPU time (user): 3.121

val ( RANGE_2_XZ_TIME ) : thm =

|- d IN real_interval (#38 * #0.000001,#97 * #0.000001)

==> is_stable_resonator (FP_XZ_RES d)

(*------------------RANGE 3------------------*)

CPU time (user): 3.456

val ( RANGE_1_YZ_TIME ) : thm =

|- d IN real_interval (#97.5 * #0.000001,#132.9 * #0.000001)

==> is_stable_resonator (FP_YZ_RES d)

(*------------------RANGE 4------------------*)

CPU time (user): 3.42

val ( RANGE_2_YZ_TIME ) : thm =

|- d IN real_interval (#38 * #0.000001,#97 * #0.000001)

==> is_stable_resonator (FP_YZ_RES d)

4 Conclusions

In this report, we described the use of our resonator stability code (Formal-Stability). In
particular, we describe the detailed steps to install HOL Light on Linux and Windows based
systems followed by the loading steps for our source code. Finally, we presented the case
study to verify the stability of sate-of-the-art Fabry Pérot resonator. The main intention was
to give a tutorial like introduction to non formal methods people (e.g., Physicists and optical
engineers) and formal methods people which are not user of HOL Light. This work is a part
of an ongoing project to develop a formal reasoning support for the analysis of geometrical
optics. More details can be found at http://hvg.ece.concordia.ca/projects/optics/

rayoptics.htm and interested readers can found more details in [3, 9, 10, 11].
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