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Abstract

Reliability analysis of combinational circuits has become imperative these days due
to the extensive usage of nanotechnologies in their fabrication. Traditionally, reliability
analysis of combinational circuits is done using simulation or paper-and-pencil proof
methods. But, these techniques do not ensure accurate results and thus may lead to
disastrous consequences when dealing with safety critical applications. In this paper,
we mainly tackle the accuracy problem of reliability analysis by presenting a formal
reliability analysis approach that is based on higher-order-logic theorem proving. The
distinguishing feature of the approach is that, despite being based on higher-order logic
that is undecidable, it is capable of automatically evaluating the precise reliability of
combinational circuits. The paper summarizes the formalization infrastructure that is
fundamental to our approach. For illustration purposes, it also presents the reliability
analysis of a few benchmark combinational circuits.

1 INTRODUCTION

Reliability analysis involves the usage of probabilistic techniques for the prediction of relia-
bility related parameters, such as a system’s resistance to failure and its ability to perform a
required function under some given conditions. This information is in turn utilized to design
more reliable and secure systems. The reliability analysis of combinational circuits has been
conducted since their early introduction [12, 13]. Nowadays, the ability to efficiently analyze
the reliability of combinational circuits has become very challenging since they are being
fabricated at the nanoscale level and are thus not only humongous in size but are also more
prone to errors because of the inherent variability in the fabrication processes.
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A number of reliability analysis approaches for combinational circuits have been recently
proposed that tend to somewhat meet the above mentioned challenges. The first worth
mentioning approach is based on representing the erroneous behavior of a gate as a matrix,
referred to as the probabilistic transfer matrix (PTM) [11]. Depending on the interconnec-
tions of the gates, their PTMs are then utilized to attain the erroneous behavior of the
whole circuit as a relatively large PTM by performing matrix arithmetic operations. The
PTM of the whole circuit can now be used with the input and output probabilities of the
combinational circuit to compute its reliability. Since the PTM evaluation is based on the
exhaustive listing of all input and output probabilities, a circuit with 𝑖 inputs and 𝑗 out-
puts is represented by a PTM with 2(𝑖+𝑗) entries. Thus, as the circuits grow bigger in size,
their PTMs require a significant amount of memory for storage and computational time
for their reliability evaluation. Algebraic decision diagrams have been utilized to minimize
these requirements but still the scalability remains a big issue in this approach. A more
efficient approach, in terms of space and time complexity, than the PTM method, has been
proposed in [8] that calls for developing von-Neumann models, called the probability gate
models (PGMs), for unreliable logic gates and use these models to analytically analyze the
reliability for a single output and an input pattern. Such a capability has been found to be
particularly useful for the reliability modeling of certain critical paths in a circuit.

Both of the above mentioned techniques have been utilized extensively to analyze the
reliability of many combinational circuits. Thus, as far as conducting the analysis of the
present age combinational circuits is concerned, these techniques are quite efficient but in
terms of the accuracy of the results, the analysis cannot be termed as 100% precise. The main
reason behind that is the fact that the analysis in these approaches is primarily based either
on paper-and-pencil proof methods or simulation. The paper-and-pencil proof methods have
always some risk of an erroneous analysis due to the lengthy nature of computations involved
in the case of conducting reliability analysis of present age combinational circuits coupled
with the human-error factor. Whereas in computer simulations, the fundamental idea is
to approximately answer a query by analyzing a large number of samples and thus by its
inherent nature the results cannot be termed as accurate.

The accuracy of hardware system reliability analysis results has become imperative these
days because of the extensive usage of these systems in safety critical areas, like medicine,
military and transportation, where an erroneous analysis could even result in the loss of hu-
man lives. Therefore, traditional techniques like simulation or paper-and-pencil proofs should
not be relied upon for the reliability analysis of combinational circuits that are supposed to
be used in safety-critical domains. Formal methods [7] are capable of conducting precise sys-
tem analysis and thus overcome the above mentioned limitations of traditional approaches.
The main principle behind formal analysis of a system is to construct a computer based
mathematical model of the given system and formally verify, within a computer, that this
model meets rigorous specifications of intended behavior. Two of the most commonly used
formal verification methods are model checking [3] and higher-order-logic theorem proving
[5]. Model checking is an automatic verification approach for systems that can be expressed
as a finite-state machine. Higher-order-logic theorem proving, on the other hand, is an inter-
active verification approach that allows us to mathematically reason about system properties
by representing the behavior of a system in higher-order logic.

Given the dire need of accuracy in the area of reliability analysis of combinational circuits,
probabilistic model checking, which enables analyzing systems with random or unpredictable

2



behaviors, has been recently used for their analysis as well [1, 2]. More specifically, reliability-
redundancy trade-offs for NAND multiplexing have been evaluated and the reliability of
some fixed bit adders has been assessed. Due to the inherent nature of model checking, the
worst case space and time complexity for the reliability analysis of a combinational circuit
with 𝑖 inputs and 𝑗 inputs is 𝑂(2(𝑖+𝑗)). This limits the applicability of probabilistic model
checking approach for such an analysis due to its well-known state-space explosion problem
[4]. Similarly, to the best of our knowledge, it has not been possible to precisely reason
about most of the commonly used reliability related statistical quantities, such as averages
and variances, using probabilistic model checking so far.

We believe that due to its high expressiveness nature, higher-order-logic theorem proving,
which is the other commonly used formal method, can be utilized to overcome the above
mentioned limitations of probabilistic model checking in the domain of accurate reliability
analysis of combinational circuits. Though, this solution mainly involves two main chal-
lenges. The first one is that we need a foundational infrastructure to be able to formally
specify and reason about the erroneous behavior of logical gates, which is unpredictable in
nature, in logical terms. Whereas, the second one is related to the inherent nature of the
higher-order-logic theorem proving, i.e., the user efforts involved in interactively reasoning
about the reliability properties of the system in hand, which could be very tedious at times.
The second point mentioned here is one of the major limitations associated with the theo-
rem proving approach and is the biggest reason why theorem proving has not been widely
accepted as a verification tool in the industry.

This paper tackles the above mentioned challenges and, to the best of our knowledge,
presents the first theorem proving based approach for the reliability analysis of combina-
tional circuits. The proposed infrastructure, illustrated in Figure 1, is primarily inspired by
the PGM method. It accepts the VHDL model of the combinational circuit, the output port
name in the circuit for which the reliability needs to be computed, the error probability and
a combination of its input values. Whereas, it returns the precise reliability of the given cir-
cuit under the given conditions without any user interaction. The reliability problem is first
translated to its corresponding higher-order-logic proof goal by a C++ module. This goal
is then automatically verified based on some already verified properties in a theorem prover
and is thus 100% precise. The theorem proving infrastructure, which enables the automatic
verification, is based on the formal definitions of a faulty component and reliability of com-
binational circuits in higher-order-logic. These definitions exhibit random and probabilistic
behaviors, due to the random nature of gate-faults, and thus have been formally defined
by building upon the methodology for higher-order-logic formalization of probabilistic algo-
rithms given in [10]. These definitions are then utilized to interactively verify key properties
associated with the reliability evaluation of combinational circuits in the PGM approach.
These properties include a generalized form of von-Neumann equation, which allows us to
evaluate the probability of getting a logical 1 for any combinational gate, and a generic
expression that allows us to evaluate the reliability of a combinational circuit in terms of the
probabilities of getting a logical 1 at its output or any one of its intermediate nodes. Due to
their generic nature, the formally verified properties can be used to automatically verify the
reliability requirement goal for any combinational circuit under the given conditions.

To illustrate the practical effectiveness of the proposed infrastructure, we utilize it to
assess the reliability of a simple comparator and four benchmarks, i.e., LGSynth’91-C17,
LGSynth’91-Majority, LGSynth’91-Parity, and ISCAS-85-74283 (4-bit Adder), in this paper.
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Figure 1: Proposed Reliability Analysis Infrastructure

We used the HOL theorem prover [6], which is based on higher-order logic, for this work.
The HOL core consists of only 5 basic axioms and 8 primitive inference rules, which are
implemented as ML functions. Soundness is assured as every new theorem must be verified
by applying these basic axioms and primitive inference rules or any other previously verified
theorems/inference rules. The main motivation behind choosing HOL for our work is that
the probabilistic analysis of algorithms infrastructure that we build upon is developed in
HOL.

The rest of the paper is organized as follows. In Section 2, we present an overview of the
infrastructure for the probabilistic analysis of algorithms. Section 3 presents the core of this
paper, where we present the formalization and verification details regarding the reliability
properties that allow us to automatically conduct the reliability analysis of combinational
circuits. The experimental results along with a more detailed explanation of the proposed
tool, shown in Figure 1, are given in Section 4. Finally, Section 5 concludes the paper.

2 PROBABILISTIC ANALYSIS IN HOL

The foremost criteria for implementing a theorem proving based reliability analysis frame-
work is to be able to formalize random variables in higher-order logic and verify their prob-
abilistic properties. Random variables are fundamentally probabilistic functions that can be
modeled in higher-order logic as deterministic functions with access to an infinite Boolean
sequence 𝔹∞; a source of infinite random bits [10]. These deterministic functions make ran-
dom choices based on the result of popping the top most bit in the infinite Boolean sequence
and may pop as many random bits as they need for their computation. When the functions
terminate, they return the result along with the remaining portion of the infinite Boolean
sequence to be used by other programs. Thus, a random variable which takes a parameter
of type 𝛼 and ranges over values of type 𝛽 can be represented by the function.

ℱ : 𝛼 → 𝐵∞ → 𝛽 ×𝐵∞

Consider the following formalization of the Bernoulli(1
2
) random variable that returns 1

or 0 with equal probability 1
2
:

bit=(𝜆s.if shd s then 1 else 0,stl s)
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where s is the infinite Boolean sequence and shd and stl are the sequence equivalents of
the list operation ’head’ and ’tail’. The probabilistic programs can also be expressed in the
more general state-transforming monad where the states are the infinite Boolean sequences.

∀a s.unit a s = (a,s)

∀f g s.bind f g s=g(fst(f s))(snd(f s))

The HOL functions fst and snd return the first and second components of their argument,
which is a pair, respectively. The unit operator is used to lift values to the monad, and
the bind is the monadic analogue of function application. All monad laws hold for this
definition, and the notation allows us to write functions without explicitly mentioning the
sequence that is passed around, e.g., function bit can be defined as

bit monad=bind sdest

(𝜆b. if b then unit 1 else unit 0)

where sdest gives the head and tail of a sequence as a pair (𝑠ℎ𝑑 s, 𝑠𝑡𝑙 s) and (𝜆x.t)
denotes the lambda abstraction function in HOL that maps its argument 𝑥 to 𝑡(𝑥). Now, by
formalizing a probability space of infinite Boolean sequences in higher-order logic, where the
probability function ℙ maps from sets of infinite Boolean sequences to real numbers between
0 and 1, we can formally prove probabilistic properties for random variables in a theorem
prover [10]. For example, the following Probability Mass Function (PMF) property can be
verified for the function bit.

ℙ{s | fst(bit s)=1}=1
2

The above approach has been successfully used to formalize most of the commonly used
random variables and verify them based on their corresponding probability distribution
properties. In this paper, we utilize the model for the Bernoulli random variables, formalized
as the function ber rv, and verified using the following PMF relation [10]:

Lemma 1: PMF of Bernoulli(p) Random Variable
∀ p. 0 ≤ p ∧ p ≤ 1 ⇒

ℙ {s | fst (ber rv p s)} = p

The function ber rv for the Bernoulli(p) random variable models an experiment with two
outcomes; True and False, whereas 𝑝 represents the probability of obtaining a True.

3 HOL RELIABILITY ANALYSIS INFRASTRUCTURE

In this section, we describe the formalization and verification of our HOL definitions and
theorems, which lead to the automatic and precise reliability evaluation of combinational
circuits in the proposed infrastructure.

As illustrated in Figure 1, the first step in the proposed theorem proving based reliability
analysis infrastructure is to formally express the behavior of a faulty component.
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Definition 1: von-Neumann Faulty Component
∀ f P e. faulty comp f P e =

bind (bern rv e) (𝜆x. bind (rv list P)

(𝜆y. unit (if x then ¬(f y)

else (f y))))

where ¬ denotes the logical negation in the above defnition. The function rv list accepts
a list of random variables and returns the list of the same random variables such that the
outcome of each one of these random variables is independent of the outcomes of all the
others. The function faulty comp accepts three variables, i.e., a function f that represents
the Boolean logic functionality of the given component with data type 𝑏𝑜𝑜𝑙 𝑙𝑖𝑠𝑡 → 𝑏𝑜𝑜𝑙,
where the 𝑏𝑜𝑜𝑙 𝑙𝑖𝑠𝑡 represents the list of Boolean values corresponding to the inputs of the
component and the return type 𝑏𝑜𝑜𝑙 corresponds to the output of the component, a list
of Boolean random variables P, which corresponds to the values available at the input of
the component, and the probability e of error occurrence in the component. Whereas, the
function faulty comp returns a Boolean value corresponding to the output of the component
with parameters f and e, when its inputs are modeled by calling the random variables in
the list of random variables P independently. It is important to note here that the output
of such a faulty component is an unpredictable quantity, which is dependent on the error
probability e and the input random variable list P. Therefore, this function is formally
modeled using the infrastructure explained in Section 2. Another worth mentioning point
here is that we have used the Bernoulli random variable function bern rv to model the
random behavior associated with the error occurrence. This way, the function faulty comp

models the erroneous behavior of a component based on the von-Neumann model [8], which
assumes that the component flips its output with a probability e, given that the input and
output lines function correctly.

Next, we verify a general expression for the probability of obtaining a 𝑇𝑟𝑢𝑒 or a logical
1 at the output of the von-Newmann model of a component.

Theorem 1: General Expression for Gate Reliability
∀ e f P. (0 ≤ e ≤ 1) ⇒

(ℙ {s|fst(faulty comp f P e s)} =

e (1 - ℙ {s|f(fst (rv list P s))}) +

(1 - e) (ℙ {s|f(fst (rv list P s))}))
The theorem is verified under the assumption that the error probability of the component e
is bounded in the closed interval [0, 1]. The right-hand-side (RHS) of the theorem represents
the given probability in terms of the probability of obtaining a 𝑇𝑟𝑢𝑒 from an error-free
component, which is much easier to reason about. The HOL proof is primarily based on
the independence of error occurrence and PMF of the Bernoulli random variable, given in
Lemma 1.

Theorem 1 can now be used to formally reason about the probability of obtaining a
logical 1 from any logical gate. For illustration purposes, consider an N-input AND-gate for
which the Boolean functionality can be formally defined as follows:

Definition 2: N-Bit AND Gate
and g [] = True ∧
∀h t. and g (h::t) = h ∧ (and g t)
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The function and g accepts a list of Boolean values and recursively returns the logical con-
junction of these values. The theorem corresponding to the probability of obtaining a 𝑇𝑟𝑢𝑒
from this component can be expressed as follows:

Theorem 2: Probability of True output in N-Bit AND Gate
∀ e P. (0 ≤ e ≤ 1) ⇒

(ℙ {s|fst(faulty comp and g P e s)} =

e (1 - prob rv list mul P) +

(1 - e) (prob rv list mul P))

where the function prob rv list mul returns the multiplication of the probabilities of each
random variable being equal to 𝑇𝑟𝑢𝑒 in the given list of random variables. The proof of
Theorem 2 is based on Theorem 1 along with the fact that the probability of obtaining a
logical 1 at the output of an error-free AND-gate is equal to the product of the probabilities
of obtaining all logical 1’s at its inputs. The result of Theorem 2 is generic and can be
specialized for any AND-gate with a specific number of inputs. For example, the theorem
for a 2 input AND-gate is as follows:

Theorem 3: Probability of True output in 2-Bit AND Gate
∀ x1 x2 e. (0 ≤ e ≤ 1) ⇒
ℙ{s|fst(faulty comp and g[x1;x2]e s)}=

(ℙ {s|fst(x1 s)})(ℙ {s|fst(x2 s)})+
e(1-2(ℙ{s|fst(x1 s)})(ℙ{s|fst(x2 s)}))

where x1 and x2 are Boolean random variables and [x1;x2] is a list containing these two
random variables, which represent the inputs of the 2-input AND-gate. Theorem 3 allows
us to evaluate the probability of obtaining a logical 1 at the output of a 2-input AND-gate
if we know the probabilities of obtaining a logical 1 at both of its inputs individually.

The probability of obtaining a logical 1 from any logical gate be verified in a similar way
as described above. The formally verified theorems corresponding to such probabilities for
some commonly used 2-input logical gates are given in Table I, which are verified under the
assumption that e lies in the interval [0, 1]. In this table, the probability of an input 𝑥𝑖

being equal to 1, i.e., ℙ{s∣fst(xi s)}, is represented as 𝑋𝑖. These results play a vital role
in reasoning about the reliability of combinational circuits as will be seen next.

The next step in the proposed reliability analysis infrastructure is to formally define the
reliability of a combinational circuit. Reliability of a system or component is defined as the
probability that it performs its intended function. Based on this definition, the reliability for
a logical gate or a combinational circuit can be represented as the probability that it produces
the error free result [8]. This can be formally expressed using the function faulty comp,
given in Definition 1, as follows:

Definition 3: Reliability
∀ f L e. rel f L e=

ℙ {s|fst(faulty comp f (L e) e s) =

fst(faulty comp f (L 0) 0

(snd (faulty comp f (L e) e s)))}
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Gate Theorem

NAND
ℙ{𝑠∣𝑓𝑠𝑡(𝑓𝑎𝑢𝑙𝑡𝑦 𝑐𝑜𝑚𝑝 𝑛𝑎𝑛𝑑 𝑔[𝑋1;𝑋2]𝑒 𝑠)}
= (1− 𝑒) + (2𝑒− 1)𝑋1𝑋2

NOR

ℙ{𝑠∣𝑓𝑠𝑡(𝑓𝑎𝑢𝑙𝑡𝑦 𝑐𝑜𝑚𝑝 𝑛𝑜𝑟 𝑔[𝑋1;𝑋2]𝑒 𝑠)}
= 1−𝑋2 −𝑋1 +𝑋1𝑋2(1− 2𝑒)+

𝑒(2𝑋1 + 2𝑋2 − 1)

Interconnect
ℙ{𝑠∣𝑓𝑠𝑡(𝑓𝑎𝑢𝑙𝑡𝑦 𝑐𝑜𝑚𝑝 𝑥𝑐𝑜𝑛𝑛𝑒𝑐𝑡[𝑋]𝑒 𝑠)}
= 𝑋 + 𝑒(1− 2𝑋)

Inverter
ℙ{𝑠∣𝑓𝑠𝑡(𝑓𝑎𝑢𝑙𝑡𝑦 𝑐𝑜𝑚𝑝 𝑛𝑜𝑡 𝑔[𝑋]𝑒 𝑠)}
= 1−𝑋 − 𝑒+ 2𝑒𝑋

XOR

ℙ{𝑠∣𝑓𝑠𝑡(𝑓𝑎𝑢𝑙𝑡𝑦 𝑐𝑜𝑚𝑝 𝑥𝑜𝑟 𝑔[𝑋1;𝑋2]𝑒 𝑠)}
= 𝑋2 +𝑋1 − 2𝑋1𝑋2+

𝑒(4𝑋1𝑋2 − 2𝑋2 − 2𝑋1 + 1)

Majority

ℙ{𝑠∣𝑓𝑠𝑡(𝑓𝑎𝑢𝑙𝑡𝑦 𝑐𝑜𝑚𝑝 𝑚𝑎𝑗 𝑔[𝑋1;𝑋2]𝑒 𝑠)}
= 𝑋1𝑋2 +𝑋1𝑋3 +𝑋2𝑋3 − 2𝑋1𝑋2𝑋3+

𝑒(4𝑋1𝑋2𝑋3 − 2𝑋1𝑋2 − 2𝑋1𝑋3 − 2𝑋2𝑋3 + 1)

Table 1: Probability of Output equal to 1 for Commonly used Gates

The function rel accepts three parameters, whereas, just like the function faulty comp,
the variables f and e represent the Boolean logic functionality of the given component
and the probability of error occurrence in the component, respectively. The third variable
L is a function that accepts an error probability as a real number and returns a list of
Boolean random variables with the same type as the variable P in the function faulty comp.
The function rel returns the desired reliability of the component with functionality f and
error probability e. The left-hand-side (LHS) term in the set represents the output of the
component while considering the effect of error and the the RHS term represents the error
free output of the given component. It is important to note that the remaining portion of
the infinite Boolean sequence from the LHS side term is used to model randomness in the
RHS term in order to ensure probabilistic independent between them.

Building upon the above definition of reliability and using some probability theoretic
reasoning, we formally verified the following alternative expression for reliability of a com-
ponent. This is the same expression that has been used to assess the reliability of logical
circuits in the PGM approach [14].

Theorem 5: Alternate Expression for Reliability
∀ f L e. 0 ≤ e ≤ 1 ⇒

(rel f L e =

ℙ{s|fst(faulty comp f (L e) e s)}
ℙ{s|fst(faulty comp f (L 0) 0 s)} +

(1-ℙ{s|fst(faulty comp f (P e) e s)})
(1-ℙ{s|fst(faulty comp f (P 0) 0 s)}))

The main advantage of the above expression is that it can be used to evaluate the reliability
of a logical gate or a combinational circuit in terms of the probability of attaining a logical
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1 at its output. This is a very useful result in terms of automatically reasoning about the
reliability in a theorem prover since we have already verified the relations, given in Table I,
for finding the probability of attaining a logical 1 at the output for most of the commonly
used gates. This infrastructure, i.e., the theorems given in Table I and Theorem 5, is based
on the formally verified results in the HOL theorem prover and hence the results attained
by building on top it can be regarded as 100% precise unlike all the available combinational
logic reliability analysis approaches.

4 EXPERIMENTAL RESULTS

In order to demonstrate the utilization and practical effectiveness of our approach, we now
present the some examples. First consider the comparator circuit of Figure 2. The proposed
infrastructure, given in Figure 1, accepts the concurrent VHDL model of the circuit, the
output node for which the circuit reliability needs to be assessed, the probability of error
and an input pattern (00, 01, 10 or 11 in the case of the comparator circuit corresponding
to the two inputs A and B). The infrastructure has a built-in Translator, written in C++,
that converts the concurrent VHDL model of the given circuit to its corresponding higher-
order-logic description using the function faulty comp, explained in Section 3. The output
of the Translator in the case of analyzing the output O1 or O3 for an input pattern (pA,pB)
is given below.

and g (𝜆x. [ber rv pA; (faulty comp nand g

[ber rv pA;ber rv pB] x)])

The function and g above corresponds to the AND-gate in Figure 2, the output of which
is the one that we are interested in finding the reliability for. It is a two input gate and its
list of random variables, which corresponds to the inputs of the gate, contains two random
variables. The first input is coming from a primary port and therefore we use the Bernoulli
random variable function ber rv with input probability pA of getting a logical 1 at this input
for its input random variables list. Thus, ensuring that if pA is 1 then the probability of
getting a logical 1 at this input is 1 and if pA is 0 then the probability of getting a logical
1 is 0. The second input of the AND-gate is coming from a 2-input NAND-gate, for which
the inputs are in turn connected to the primary ports A and B and these connections can
be observed in the input random variable list for the function nand g in the output of the
Translator.

A

B

O1

O2

O3

Figure 2: A 2-bit Comparator

The second C++ module, i.e., the Goal Generator (c.f. Figure 1), utilizes the output of
the Translator to first generate the following goal:
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∀ pA pB e. 0 ≤ e ≤ 1 ∧
0 ≤ pA ∧ pA ≤ 1 ∧ 0 ≤ pB ∧ pB ≤ 1 ⇒

(rel and g

(𝜆x. [ber rv pA; (faulty comp nand g

[ber rv pA;ber rv pB] x)]) e = Z)

The LHS of the proof goal represents the reliability of the given comparator circuit, using
the function rel given in Definition 3, and the RHS is set to an arbitrary real number Z. At
this point, the goal is fed to the HOL theorem prover and is simplified using the theorems
given in Table I and Theorem 5. Once the most simplified form is obtained in HOL, the
expression is fed back to the Goal Generator module, which replaces the real number 𝑍 by
the simplified expression and generates a new proof goal, which in the case of the comparator
circuit is as follows:

Theorem 6: Reliability for Comparator Output o1/o3
∀ pA pB e. (0 ≤ e ≤ 1) ∧

(0 ≤ pA ≤ 1) ∧ (0 ≤ pB ≤ 1) ⇒
(rel and g

(𝜆x. [ber rv pA; (faulty comp nand g

[ber rv pA;ber rv pB] x)]) e =

(pA(1-e+(2e-1)pApB)+

e(1-2pA(1-e+(2e-1)pApB)))(

pA(1-(pApB)))+(1-(pA(1-e+(2e-1)pApB)+e(1

-2pA(1-e+(2e-1)pApB))))(1-pA(1-(pApB))))

The new goal is now fed to HOL and this time is automatically verified using the theorems
given in Table I and Theorem 5. The distinguishing feature of the above theorem is its
generic nature, i.e., it is true for all values of e, pA and pB. In other words, once this theorem
is verified it can be readily used to evaluate the reliability of outputs 𝑜1 or 𝑜3 for any values
of e, pA and pB. Thus, we evaluate the expression on the RHS of the above subgoal in ML
for the given values of these variables and the reliabilities for the input combinations 00, 01,
10 and 11 with error probability equal to 0.1 were found to be 0.9, 0.9, 0.7624 and 0.6984,
respectively.

Just like the comparator circuit, we assessed the reliabilities of 4 benchmark circuits,
given in Table II, with all inputs set to logical 1’s and gate error probability e = 0.05. The
experiments were run on a Linux workstation with Sparc-v9 processor operating at 1015
MHz with 4096 Megabytes of memory. First of all these reliability results are based on
formally verified theorems in a theorem prover and thus their integrity cannot be doubted,
i.e., they are 100% precise. This accuracy is the main motivation of the proposed approach
and to the best of our knowledge, cannot be achieved by any other existing reliability analysis
approach. Secondly, the results have been obtained automatically and no user guidance was
required during this process, which is also a distinguishing feature of our approach when
compared to other higher-order-logic theorem proving based analysis frameworks. Another
worth mentioning point here is that the times reported against the reliability computations
in Table II include the verification of generic reliability theorems like Theorem 6 for the
benchmark circuits. This means that the times for evaluating reliabilities for other input
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Benchmark Circuit Gates Inputs OutputsOutput Reli- Time

Name ability (sec)

LGSynth91

C17 6 5 2
O1 0.8788 3.66

O2 0.6972 4.17

Majority13 5 1 F 0.8644 230.42

Parity 15 16 1 Q 0.5235 462.61

C 0.9477 27.22

ISCAS’85 4-bit S0 0.6998 26.00

74X Adder 36 9 5 S1 0.7075 57.02

series (74283) S2 0.7101 214.43

S3 0.6844 240.27

Table 2: Reliability of Benchmark combinational Circuits

combinations for the same benchmarks now would be almost negligible since they would
utilize the same theorems as well.

Comparing the proposed approach to the other existing approaches [8, 11], it can be
observed that our approach does not rely on paper-and-pencil proof methods or simulation,
which are the major sources of error in the PTM and PGM based approaches. Similarly,
the proposed approach somewhat overcomes the scalability issue since there is no simulation
involved. Also, the powerful induction proofs can be utilized to analyze the reliability of
generic circuits. For example, if the reliability or the probability of having a 1 at the output
of a full-adder circuit is evaluated, then it can be built upon to formally assess the reliability
of an N-bit adder using the powerful induction methods in a theorem prover. The other
formal reliability analysis approach, i.e., the one based probabilistic model checking (PMC),
do not enjoy such benefits and its usage is limited by the state-space-explosion problem. For
example, Table 1 in [2] provides more details regarding the well known state-space-explosion
problem in the reliability analysis of adder circuits with more than 4 inputs using PMC.
Similarly, the analysis done based on the PMC approach does not provide generic results,
like the proposed theorem proving based approach does, and thus the whole analysis needs
to be repeated if some parameter changes. For example, the reliability of combinational
circuits have been assessed in [2] for only a specific set of values of error probabilities.

5 CONCLUSIONS

The paper presents the first theorem proving based infrastructure for the reliability analysis
of combinational circuits. Due to the formal nature of the approach, the reliability results
are 100% accurate and thus can be very useful for the analysis of combinational circuits
that are used in safety critical applications. The results of Section 3 of the paper form
the main core of the proposed infrastructure and were interactively verified in HOL. This
part consumed around 120 man hours and is composed of approximately 2000 lines of HOL
code. These formally verified theorems then in turn can be used to automatically assess the
reliability of any combinational circuit, which has been illustrated in the paper by analyzing
some combinational circuit benchmarks.
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This work opens the doors of many new areas in the direction of theorem proving based
reliability analysis of combinational circuits. First of all, one of our ongoing projects is to
analyze the average or expected reliability of circuits by building on top of the higher-order-
logic formalization of expectation theory [9] instead of evaluating the reliability for individual
input patterns. The work presented in this paper can also be extended upon to model the
source of the signal dependencies [14], i.e., fanouts, feedbacks etc., to further improve upon
the accuracy of the results.
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