
Enabling AMS Simulation using Recurrence
Notations

Naeem Abbasi, Rajeev Narayanan, Ghiath Al Sammane, MohamedH. Zaki and Sofiène Tahar
Hardware Verification Group,

Concordia University, Montreal, Quebec, Canada

May, 2008

1

1 Abstract

System of Recurrence Equations (SRE) have been shown to accurately model Analog
and Mixed Signal (AMS) circuits and systems which link digital systems to the analog
world. In this paper we present an efficient SRE simulation algorithm and its prototype
implementation. A comparison of speed of simulation of several benchmark circuits
shows that modeling the AMS design using SRE and simulation using the proposed
simulation algorithm can significantly speed up the simulation with out loosing accu-
racy of simulation results as compared to traditional HDL AMS simulators.

2

Contents

1 Abstract 2

2 Introduction 4

3 Related Work 4

4 The C-SRE Simulator Framework 5

5 C-SRE based Symbolic Simulation 6
5.1 The System of Recurrence Equations: SRE6
5.2 C-SRE Methodology . 8

5.2.1 Generating Recurrence Equation 9
5.2.2 Understanding Dependency Graph 10
5.2.3 SRE Coding as C Function 11

6 C-SRE Implementation 11
6.1 C-SRE Simulation Cycle . 11
6.2 C-SRE Simulation Algorithm . 13

7 Application and Simulation results 16
7.1 Example 1:Pulse Width Modulator Circuit 16
7.2 Example 2: Window Comparator Circuit17
7.3 Experimental Results . 17

8 Conclusion 28

3

2 Introduction

Traditionally, simulation was used where the evaluation ofthe results is often done
manually in an informal fashion and the search of the state space is not complete.
In general, simulation requires large memory and CPU resources as both the digital
and the analog parts of the design are translated to very detailed level of abstraction.
Simulation based techniques were then complemented by symbolic techniques where
the effect of parameters variations on the system behavior is analyzed. For a simulator,
tradeoff exists between accuracy of the results and the simulation speed. In selecting a
level of abstraction the verification engineer should consider the circuit and the system
property being verified to obtain accurate results and thus can lead to smaller simulation
times without sacrificing the accuracy. One such modeling technique is the use of
system of recurrence equations (SRE). The behavior of a complete AMS system can
be described using a system of recurrence equations (SRE) and then simulated using
one simulator. It has the additional advantage that symbolic simulation steps can be
easily incorporated to improve the overall efficiency of thesimulation.

In this paper we present an algorithm (C-SRE Simulator) for the simulation of AMS
SRE models. We present the simulation cycle, and describe animplementation of the
simulation algorithm. We investigated and compared various AMS HDL languages
for describing the behavior of a system of recurrence equations in terms of accuracy
and speed of simulation of the AMS design. We show the superiority of the proposed
simulator over traditional AMS HDL simulators in terms of simulation speed without
compromising on accuracy.

The rest of the report is organized as follows: We discuss about current simulators,
methodology/framework for AMS simulation in 3 section. In Section 4 we give an
overview of the proposed C-SRE simulation framework, followed by symbolic simu-
lation and SRE in Section 5. In Section 6 we describe the C-SREsimulation cycle and
implementation. We conclude the paper with experimental results in Section 7 and a
comparison of simulation run-times in Section 7.3, followed by conclusions in Section
8.

3 Related Work

During the past few decades, several work in the Computer-aided design (CAD) lit-
erature were concerned with studying possible frameworks/methodology for the sim-
ulation of mixed signal designs. For instance,FASTSPICE[24] simulator is a best
choice if the design contains circuit blocks which cannot bepartitioned easily. Ca-
denceVirtuosoAnalog Design Environment [25] is capable of accepting description in
Verilog-AMS, VHDL-AMS as well as various netlist formats like SPICE and Spectre,
or combinations of these languages and formats. On the otherhand, ModelSim [26]
is also capable of handling behavioral simulation using VHDL, Verilog and SystemC.
However, researchers have tried to develop methodology by combining different sim-
ulators. For instance, in [1], the authors proposed a SystemC/Simulink co-simulation
framework for embedded system that relies on Simulink for the continuous simulation

4

and SystemC for the discrete simulation based on one or more synchronization model.
While in [2], the authors provides a co-simulation environment based on SPICE and
SAVANT. Another mixed-domain simulation framework was proposed in [3] based
on VHDL and ELDO. The commercial tool Nexus-PDK [4] supportsco-simulation
of cycle accurate C/C++ with SystemC, MATLAB/Simulink, andVHDL/Verilog sim-
ulators. All the above papers, are not capable of handling the SRE based symbolic
simulation efficiently. For mixed-level simulation, a new type of simulator which can
should be capable of handling symbolic simulation is needed.

4 The C-SRE Simulator Framework

Figure 1 shows the C-SRE simulator Framework. The AMS description is composed
in general of a digital part and an analog part. For the analogpart, it could be described
using recurrence equations or a set of differential algebraic equations (DAEs) that can
be converted into an equivalent set of difference equations. For the digital part, it could
be described using a hardware description language (HDL) like VHDL. The AMS
description, the circuit topology along with design components are input to a symbolic
simulator that performs a set of transformations by rewriting rules in order to obtain a
normal mathematical representation called System of Recurrence Equations (SRE to be
described in Section 5.1). The symbolic simulator are implemented inside the computer
algebra systemMathematica. These are combined recurrence relations describing the
behavior of AMS system in terms of the continuous time (CT), the discrete time (DT),
and the discrete event (DE) SREs. The combined recurrence equation along with signal
source are applied as an input to the C-SRE Scheduler/Solver. The scheduler/solver
makes sure that the CT, DT, or DE SREs are executed at an appropriate instant of time
to simulate the correct transient behavior of the circuit. The simulation output of the
solver are then plotted using MAPLE script generator.

Figure 1: C-SRE Simulation Framework

5

5 C-SRE based Symbolic Simulation

A mixed signal system consists of three parts; a continuous-time part, a discrete-time
part, and a discrete-event part. The three parts of the system can be modeled using
SRE’s at various levels of abstractions. Recurrence equations at behavioral level of
abstraction are of interest to us because of their simplicity of expression and speed of
simulation. For discrete-event part and continuous-time part of the design the time step
is notuniform and is not known in advance. For the discrete-time part of thedesign
time steps are uniform and are known in advance. The time stepis chosen to find a
good compromise between the accuracy (to keep Local Truncation Error(LTE) below
acceptable level) [8] and the speed of the simulation.

�����

���	�
���
������

��
�	�

�����

�����
������

��
�	�

�����

���
�����
������

��
�	�

�����

���
������

��
�	�

���������
�
��������������

���������
�
��������������

���
���������� ���
����������

Figure 2: Discretization of differential algebraic equations

The simulator clock provides the reference in the event based framework where the
SRE describing the behavior of a mixed signal system can interact with each other by
scheduling events. The interactions between various recurrence equation processes are
managed by the simulator using a single event queue. The event queue keeps track of
events based on which part of the design do they belong to, andat what time it is to be
triggered. The events are sorted and then scheduled in earliest to latest order and with
the restriction thatTCT is always the smallest time step in the simulation.

Figure 2 shows two possible ways a continuous time domain model can be dis-
cretized [9]. First involves numerical integration or discretization in time domain and
the other involves transformation to frequency domain, followed by s to z transforma-
tion and then transformation back to discrete time domain.

5.1 The System of Recurrence Equations: SRE

A recurrence equation or a difference equation is the discrete version of an analog
differential equation. A recurrence equation defines a relation between consecutive el-
ements of a sequence. In [10], the notion of recurrence equation is extended to describe
digital circuits using the normal form: generalizedIf-formula.

Definition 1 Generalized If-formula The generalizedIf-formula is a class of
symbolic expressions that extend recurrence equations to describe digital systems. Let
i and n be natural numbers. LetK be a numerical domain in(N,Z,Q, R or B), a
generalizedIf-formula is one of the following:

6

• A variable Xi(n) or a constant C that take values inK

• Any arithmetic operation� ∈ {+,−,÷,×} between variables Xi(n) that take
values inK

• A logical formula: any expression constructed using a set ofvariables Xi(n) ∈ B

and logical operators: not,and,or,xor,nor, . . . etc.

• A comparison formula: any expression constructed using a set of Xi(n) ∈ K and
comparison operatorα ∈ {=, 6=,<,≤,>,≥}.

• An expression IF(X,Y,Z), where X is a logical formula or a comparison formula
and Y,Z are any generalizedIf-formula. Here, IF(x,y,z) : B×K×K −→ K

satisfies the axioms:
(1) IF(True,X,Y) = X
(2) IF(False,X,Y) = Y

We define a System of Recurrence Equations as follows:

Definition 2 A System of Recurrence Equations (SRE)
Consider a set of variables Xi(n) ∈ K, i ∈V = {1, . . . ,k}, n∈ Z, an SRE is a system of
the form:

Xi(n) = fi(Xj(n− γ)),(j,γ) ∈ εi ,∀n∈ Z

where fi(Xj(n− γ)) is a generalizedIf-formula. The setεi is a finite non empty
subset of1, . . . ,k×N. The integerγ is called the delay.

Example: 3rdOrder∆Σ modulator

∆Σ modulators with single-bit quantizers have made possible the construction of robust
high-resolution analog-to-digital and digital-to-analog converters. The design of the∆Σ
modulator in Figure 3 is given using vector recurrence equationsX(k+1) = C X(k)+
B u(k)+A v(k), whereA, B andC are matrices providing the parameters of the circuit,
u(k) is the input andv(k) is the digital part of the system.

The condition of the threshold of the quantizer is computed to be equal toc3x3(k)+
u(k). The digital description of the quantizer is transformed into a recurrence equation:
v(k) = IF (c3x3(k)+u(k)≥ 0,−a,a). The equivalent SRE of the system is then:

x1(k+1) = i f (c3x3(k)+u(k) >= 0,x1(k)+b1u(k)−a1a,

x1(k)+b1u(k)+a1a)

x2(k+1) = i f (c3x3(k)+u(k) >= 0,c1x1(k)+x2(k)+b2u(k)

−a2a,c1x1(k)+x2(k)+b2u(k)+a2a)

x3(k+1) = i f (c3x3(k)+u(k) >= 0,c2x2(k)+x3(k)+b3u(k)

−a3a,c2x2(k)+x3(k)+b3u(k)+a3a)

A ∆Σ modulator is said to be stable if the integrator output remains bounded under
a bounded input signal.

7

Always−1 < x3 < 1

x3

+

+

+

+ v[n]y[n]x2x1 +

3a

3c2c1c

b4

2a

b 3b1 2

1a

b

u[n]

Quantizer

+

+

z−1
1

z−1
1 1

z−1

Figure 3: Third Order∆Σ Modulator

Transforming Ordinary Differential Equations (ODEs) intodifference equation is
well known in the domain of analog circuits simulation. For the digital part, [10]
has defined a method and implemented tool to extract a set of recurrence equations
(difference equations) from a digital synchronized VHDL descriptions. We use the
same framework to extract the recurrence equation of the digital part. The proposed
C-SRE algorithm provides a practical platform for carryingout SRE based Symbolic
Simulation. The tool allows one to quickly build custom executable models of AMS
circuits describing the behavior of AMS systems using recurrence equations at various
levels of abstraction.

The SRE If-formulae operator is extremely useful in describing the non-linear be-
havior such as saturation, hysteresis and dead-band. For real circuits the signal output
generally cannot exceed the supply voltage and the output ofthe circuit levels off to a
value either equal to or a few volts below the supply voltage.This non-linear behavior
of the circuit is some times called saturation or saturationnon-linearity. The saturation
non-linearity can be modeled using a piece-wise linear approximation of the non-linear
behavior using the SRE If-formulae construct.

5.2 C-SRE Methodology

The overall methodology involves partitioning the design into continuous-time, discrete-
time and discrete-event parts, and then generating recurrence equation as described
in Section 5.2.1 and its equivalent dependency graph as described in Section 5.2.2.
The procedure described for generating an executable simulation model has eight main
steps. Figure 5 shows the methodology steps.

• Partition the design into small manageable parts preferably along the continu-
oustime, discrete-time, and discrete-event lines as shownin 4.

• Extract Recurrence Equations from each part.

• Simplify Recurrence Equations if needed (this step is optional)

• Code each Recurrence Equation as C function.

• From the initial design description or schematic extract the Dependency Graph

8

• Arrange the C Functions based on the Dependency Graph (From inputs to out-
puts)

• Include the above code into the C template for the program. Update stimulus
and any other simulator parameters if needed. Compile and Run the executable
model. The program generates a skeleton MATLAB script. Modify the script if
needed.

• Plot results using the MATLAB script.� � �� � � � � � �� � � �� � �� � � �
Figure 4: A mixed signal SRE model

Figure 5: C-SRE Methodology

5.2.1 Generating Recurrence Equation

There are several methods available to transform continuous-time behavior of an analog
component into a system of recurrence equations. Some of these methods are based
on frequency domain techniques [13] and some are based on time domain techniques.
We follow the following steps to derive the recurrence equations.

• Write down time domain differential algebraic equations

• Transform the equations into frequency domain using Laplace transform

9

• Using bilinear transformation [13] find a discrete time approximation of the
continuous time transfer function

• Take the inverse Z transform and convert it into a differenceequation.

The process involves derivation of transfer function from nodal equations using sym-
bolic rewriting inMathematica[14]. This is followed by S to Z bilinear transformation
usingMathematica[15] as well and finally conversion from Z transform to difference
equations.

5.2.2 Understanding Dependency Graph

The following example shows how the dependency graph is obtained from the descrip-
tion of the circuit such as from the circuit schematic. For the general circuit shown
in Figure 6(a) (F1, F2, F3 represents some functional blocks), Figure 6(b) shows the
dependency graph.

VA

VC

F3
F1

VA

VD
V

VF

F2VB

VE

(a)

VAVB

VV VD
VC

VE

VF

(b)

Figure 6: (a)General Circuit Example, (b) Dependency Graph

In these graphs each node corresponds to a node of interest inthe circuit and corre-
sponds to the Left-Hand Side (LHS) of the recurrence equation. The recurrence equa-
tions in Tables 1 represent the behavior of the each of the components in the respective

10

Table 1: Recurrence Equations
Recurrence Equation Logic Function
VF = ITE[VA,0,VB] and
VF = ITE[VA,NOT[VB],VB] xor
VF = ITE[VA,1,NOT[VB]] nand
Recurrence Equation Comment
VX = ITE[VA,0,VB] and
VH = ITE[VX,1,NOT[VB]] xor
VG = ITE[VX,NOT[VH],VH] nand

circuit and the order in which they should execute. The orderof execution can be eas-
ily determined from the dependency graphs shown in Figures 6(a) and (b) respectively.
A close inspection of the recurrence equation shows that thedependence is actually
built into the way behavior of the circuit is described in therecurrence equations. In
these examples the order of execution from input to output for recurrence equations is
[VA,VB] →VC →VD →VE →VF . (F1 shall be evaluated first thenF2 and thenF3)

5.2.3 SRE Coding as C Function

The C Function returns the value of the RHS of the recurrence equation to the calling
function and is usually assigned to the values of one of the nodes of interest. Recur-
rence equation in assumed to have the following general form:

Vnode=ITE (Condition,Statement(TRUE),Statement(FALSE))

Most C function implementations use the If-Then-Else construct.
Table 2 shows a few examples of C functions for basic logic gates.

6 C-SRE Implementation

This section gives an overview about the C-SRE simulation cycle and implementation
details.

6.1 C-SRE Simulation Cycle

Assuming that all three parts of the analog and mixed signal system have been trans-
formed into SRE, and that the simulation takes place in an event driven framework. An
elaborated SRE design consists of an interconnection of processes, one corresponding
to each equation in the AMS design description.

Let TCT, TDT , andTDE be the continuous-time, discrete-time, and discrete-event
time steps. LetTCT be the smallest time step required to provide a desired time res-
olution and accuracy for the numerical solution of the Ordinary Differential Equation
(ODE) [8]. TCT andTDE are not fixed and depend on the inputs to and the state of
the SRE’s of the continuous-time and discrete-event part ofthe designs respectively.

11

Table 2: C functions, Pseudo Code
C Functions Comment

char ANDGate(char &A, char &B){

if(A==1){

return(0);

} else {

return(B);

}

}

AND

char XORGate(char &A, char &B){

if(A==1){

return(not(B));

} else {

return(B);

}

}

XOR

char NANDGate(char &A, char &B){

if(A==1){

return(1);

} else {

return(not(B));

}

}

NAND

char CircuitVH(char &A, char &B){

char VX;

VX=ANDGate(&A, &B);

return (NANDgate(&VX, &VB));

}

VH

char CircuitVG(char &A, char &B){

char VX, VH;

VX=ANDGate(&A, &B);

VH=CircuitVH(&VX, &VB);

return XORGate((&VX, &VB));

}

VG

12

TDT on the other hand is uniformly spaced in time and is known in advance. TCT is
computed using SRE, and occurrence of external events at anygiven time. Its value
can be greater, equal or smaller than theTDT andTDE time steps.

In a mixed signal design the three parts of the design may interact with each other.
The discrete-time part of the design may only interact at intervals ofTDT with either
discrete-event or continuous-time parts. The continuous-time and discrete-event parts
may interact with each other at any time. As long asTCT is forced to be smaller than
TDT andTDE, the simulator will never miss an interaction between the discrete-event
and continuous-time parts of the design [12]. Figure 7 showsthe SRE simulation� 	
 � �
 � � � � �
 �
 � �
 � ��
 � � � �
 � �
 � � � � � � � � � 	
 � �
 � � � � �
 �
 � �
 � ��
 � � � �
 � �
 � � � � � � � � � 	
 � �
 � � � � � � � � � � � � �
�
 � � � �
 � �
 � � � � � � � �A B C D�
 �
 � � � �
 �
 � � � � �� 	
 � �
 � � � � �
 �
 � � �
 � 	
 � �
 � � � � �
 �
 � � �
 �
 �
 � � � �
 �
 � � � � � �
 �
 � � � �
 �
 � � � !�
 � � � �
 � �
 � � � � � � � ��
 �
 � � � �
 �
 � � � � ! �
 � � � �
 � �
 � � � � � � � ��
 �
 � � � �
 �
 � � � � !" # $ � ! % � � ! � �
 � ! % � � � & � '
 � (�) * � " # $ � ! % � � ! � �
 � ! + � � � & � '
 � ,�) * � " # $ � ! + � � ! � �
 � ! % � � � & � '
 � ��) * � " # $ � ! + � � ! � �
 � ! + � � � & � '
 � �

Figure 7: Recurrence Equation simulation flow

cycle. The main steps in the simulation are summarized below:

1. Initialize recurrence equations.

2. Determine initial analog solution attCT. DeterminetCT, tDT , andtDE. Where
tDE = tDE+TDE, tDT = tDT +TDT , tCT = tCT +TCT, andTcurrent = MIN(tDE,tDT ,tCT).
TCT should always be the smallest time step in the simulation.

Use the following four rules to determine the order in which the simulation cycle
should proceed.

• IF [(tCT = tDT)AND(tCT = tDE)] then update DE and then DT recurrence
equations

• IF [(tCT = tDT)AND(tCT < tDE)] then update DT recurrence equations

• IF [(tCT < tDT)AND(tCT = tDE)] then update DE recurrence equations

• IF [(tCT < tDT)AND(tCT < tDE)] then update CT recurrence equations

3. The simulation proceeds in simulation cycles until end ofsimulation is reached.

6.2 C-SRE Simulation Algorithm

C-SRE is a prototype implemented in C langauge that validates the simulation algo-
rithm of AMS system using the notion of SRE and explicate trace enumeration.

13

• Design Components: Each design component is an SRE model describing its
function. The blocks has several inputs and produces one output. The assump-
tion is that the SRE is an expression of the form:
V = ITE (Condition,Statement(TRUE),Statement(FALSE)).
Three parameters passed to theITE function. If the condition evaluates to
TRUE, Statement(TRUE) is executed, while Statement(FALSE) is executed in
case the condition is FALSE. A very basic library of components has been cre-
ated. A more extensive library of components will make the task of design and
verification easier.

• Signal Source: Various basic signal sources can be created in a similar way as
the design components.

The SRE Scheduler/Solver has three main blocks: Initialization block, TimeSync block,
and the ExecuteRecurrenceEquations block.

• The Initialization block initializes all the internal VCircuit data structure. Simu-
lation results are stored in this data structure.

• The TimeSync block and the ExecuteRecurrenceEquation block together imple-
ment the scheduling algorithms and make sure that various functions are called
and recurrence equations executed in the correct sequence and order.

In addition to the design components and signal sources or stimuli the user must pro-
vide the three time step values,TCT, TDT, andTDE. The scheduling algorithm takes
as input, TCT, TDT, and TDE and determines the instances of execution for a properly
synchronized simulation.

The algorithm output or the transient simulation results are stored in a two dimen-
sional array. The results are written to a MATLAB script file through the MATLAB
Script generator block . This can be used to plots the simulation results.

The main program flow is shown in Figure 8. The simulations starts with initializa-
tion. The simulation then proceeds guided by the algorithm described in subsection 6.1.
The simulation terminates when the current simulation timeeither exceeds or becomes
equal to the maximum simulation time provided by the user. The simulation progresses
in discrete time steps and is snapshot of the state of the system at a particular instant
of time. Figure 9 shows the time instants at which continuous-time, discrete-time, and
discrete-event SRE have to be evaluated. The figure also shows how the scheduling
algorithm makes sure that the simulation of the system is synchronized. Execution of
recurrence equations is in an order such that correct behavior is simulated. The num-
bers show the sequence of operation. The square, the triangle, and the circle represents
the instants of time at which an SRE must be executed. The simulation progresses in
discrete time steps and is a snapshot of the state of the system at a particular instant of
time. Consider a block diagram of a mixed signal system described as an interconnec-
tion of SRE. In a given system there may be more than one set of SREs for each type.
Lets further assume that each set of recurrence equations belong to either continuous-
time, discrete-time, or discrete-event part of the design and that the level of abstraction
has already been appropriately chosen for each part.

14

Figure 8: Simulation Algorithm Flow

1
4

7 8 9
10 11 12 16 18

Tcurrent

tCT

2
3

4

5 6

8 9
12

13

14 15

17
18

19
20

tDT

tDE

Figure 9: Timing diagram

15

There are two main challenges in simulating the behavior of an AMS system de-
scribed as an interconnection of a number of sets of systems of recurrence equations.
They are to:

• Determine the correct sequence of execution of each set of recurrence equa-
tion with reference to a real time reference. This sequence of execution is also
referred to as the schedule. The algorithm described in section 4 correctly se-
quences the execution of sets of recurrence equations in time.

• Determine the correct order of execution within each set of recurrence equations
such that the correct behavior of the circuit is modeled and simulated. The re-
currence equations have a built in dependency mechanism. Correct extraction
of recurrence equations guarantees that the recurrence equations shall execute in
the correct order to simulate the behavior of the circuit.

The sequence of execution refers to when during simulation,a time step takes place
between the execution of two sets of recurrence equations. The order of execution on
the other hand refers to when no time step takes place betweenthe execution of two
or more recurrence equations. The C-SRE implementation solves these two challenges
and correctly orders and sequences the execution of SREs.

7 Application and Simulation results

7.1 Example 1:Pulse Width Modulator Circuit

A pulse width modulator circuit is shown in Figure 10. It consists of an analog filter,
a first order switch capacitor filter and an analog comparatora digital logic gate and
a flip-flop. The circuit is modeled at circuit level and simulated using HSPICE. the
design is also modeled using generalized SRE and simulated using CSRE simulator.

Vdd

R1
1k

R4
1k

R6
1k

+
U2

Vcc

Vcc

Vp

VA

R2
1k

R5U1

+
U3Vee

Vcc Vee

VA

VB

VS

R3
1k

R5
1k+

U1

Vee

V3
0/5V

Vq VB

100 Hz

Figure 10: The circuit diagram of a simple PWM circuit

16

(a)

(b)

Figure 11: Simulation Results: (a) CSRE. (b) SPICE.

The transient analysis simulation results of the mixed signal circuit generated by
this C-SRE and SPICE are shown in Figures 7.1 (a) and (b) respectively and the two
simulation results are virtually identical. We see the accuracy of the proposed simulator
in comparison to SPICE. In the next section we compare simulation speed of C-SRE
with other AMS simulators.

7.2 Example 2: Window Comparator Circuit

In this circuit an analog input signal is compared against two fixed dc reference val-
ues (low and high threshold) values . The circuit consists ofa voltage divider circuit
used to generate the two reference voltages. The circuit hasthree mutually exclusive
binary outputs which indicate wether the input signal is below, above or between the
lower and upper threshold values. The operational amplifiers U1 and U2 compare in-
put signal Vin to the two threshold reference values and generate the Vhigh and Vlow
outputs. The Vhigh and Vlow are added together using the analog adder to generate the
Vmid value. WE simulated this circuit using HSPICE and C-SREsimulators . The cir-
cuit model uses ideal operational amplifier models and simulated using HSPICE. The
CSRE model describes the behavior of the circuti using generalized IF Formula. Fig-
ures 13, and 13 show that the SPICE and CSRE simulation results which are virtually
identical.

7.3 Experimental Results

We model several benchmark circuits [16] using SREs and describe the behavior in
several AMS HDL languages. We compare the ease of modeling the behavior and

17

Vsine

Vamp

First Order

1kHz

V3
-1/1V

R3
1k U3

Vdff

+

U2

Vcc

First Order

Switch Capacitor

Filter

R5
1kVpulse Vref

D

CP Q
_
Q

10kHz

V5
0/5V

C3
1uF

Vee

R4

10kHz

100 H

V6
0/5V

U1AVand

R4
1k

100 Hz

Figure 12: The circuit diagram of a simple mixed signal circuit

Figure 13: SPICE simulation results

Figure 14: CSRE simulation results

18

speed of simulation. sinusoidal inputs of general criticalfrequencies for circuits are
used as inputs to simulate the designs. We provide here some experimental results to
measure the performance of the proposed C-SRE algorithm using benchmark circuits.
As mentioned above, the algorithm is sensitive to the dynamic changes in the values
of continuous signals. Thus, we provide several experiments to observe the fluctuation
of the performance regarding the frequency of the simulatedcircuits and the different
configurations of the simulation parameters.
The selected circuits are small to medium sized analog, switch capacitor, and mixed-
signal circuits. The circuits simulated are:

1. Low Pass Active Filter (LPAF)

2. First Order Switch Capacitor Filter (FOSCF)

3. Continuous-Time State space Filter (CTSF)

4. Leap Frog Filter (LFF)

5. Phase Lock Loop (PLL)

The circuit diagrams are given in Figure 15, 16, 17, and 18. These are low to
medium complexity analog and mixed-signal circuits, containing both active and pas-
sive, and linear and non-linear components. Circuits are described using HSPICE [17],
VHDL-AMS [18], VERILOG-AMS [19], SystemC-AMS [20] and C [21]. Circuits
are modeled in HSPICE at the component level for reference purpose. The behavior
of the circuits is described both at component level and using SRE in the three AMS
HDLs. The SRE model is used to describe behavior in C and simulated using the C-
SRE simulation prototype. For all the filter circuits the small signal behavior can be
described with just difference equations.

C1R5R1

Vin

Vhp

Vlp

C2

R7

R4R3
R2

hp

VbpR6

Figure 15: Continuous-Time State Filter (CTSF)

The SRE model of the circuits are verified by comparing the SRETransient Sim-
ulation results with those obtained from HSPICE. Simulation of circuits is run for a
fixed duration of time (TSim). In each simulation cycle, the simulation progresses by
one real time unit. The size of this unit is fixed in SRE models.Where as the simulation
step size in case of circuit models is determined by the simulator during the simulation
based on the smallest time constant of the circuit, input signal rate of change of ampli-
tude or frequency, and the time resolution and accuracy requirements provided to the
simulator.

19

SW7SW4 C5C2
SW0 SW3

1 1 1 1

SW6SW5
C4

Vin

SW1 SW2

V

2222

1

SW8

in

C1

Vout

Figure 16: First Order Switch Capacitor Filter (FOSCF)

R2
R6

C1 C2

Vin R1 R2

R3

R4

R25
R8

C3

Vout

C4 R10

R9
R7

R11

Figure 17: Leap Frog Filter (LFF)

R2

Vout
Vin

C2

C1

R1

1

Figure 18: Low Pass Active Filter (LPAF)

20

Circuit Frequency Verilog-AMS VHDL-AMS SystemC-AMS CSRE
(Hertz) (Seconds) (Seconds) (Seconds) (Seconds)

Low Pass 1k 0.43 2.34 0.06 0.01
Active 2k 0.41 3.48 0.06 0.01
Filter 4k 0.59 3.53 0.03 0.01
(LPAF) 40k 2.05 4.37 0.07 0.01

First Order 500 0.40 1.19 0.04 0.01
Switch Cap. 1k 0.39 2.95 0.04 0.01
Filter 2k 0.34 2.82 0.04 0.01
(FOSCF) 4k 0.62 2.92 0.05 0.01

Continuous 100 0.52 3.23 0.06 0.01
Time State 795 0.54 3.52 0.05 0.01
Space 1k 0.49 3.96 0.04 0.01
Filter 10k 1.33 3.73 0.09 0.01
(CTSF) 40k 2.67 4.83 0.05 0.01

Leap 1k 0.49 3.36 0.05 0.01
Frog 1.4k 0.53 3.41 0.05 0.01
Filter 10k 1.13 5.13 0.05 0.01
(LFF) 100k 5.27 8.75 0.04 0.01

PLL 1MHz 0.31 0.09 0.06 0.08
Mixed-Signal
(SRE)

Table 3: SRE Simulation Run-Times (1000 simulation cycles)

SPICE [22] is used for circuit level simulations. Mentor Graphics AdvanceMS
[23] tools are used for VHDL-AMS and Verilog-AMs simulations. For SystemC-AMS
most recent libraries from [20] are used. The simulation is run for 10ms duration.

Table 3 shows simulation run-times for four circuits for various frequency sinu-
soidal inputs. In these simulatins the SRE models are used for all circuits and the
simulation is run for exactly 1000 simulation cycles. The sampling Period Tsmp and
the total simulation time Tsim used in the above simulations is 15.625µs and 15.625ms
respectively which corresponds to exactly 1000 simulationcycles. As can be seen from
the table that C-SRE simulation run-times are an order of magnitude faster than those
obtained from description of SRE models in the three HDLs.

For higher frequency inputs the simulation run time is slightly higher than for low
frequency inputs. This is because when the input signal changes at a faster rate (higher
frequency) the analog solver requires more iterations to converge to an analog solution
point for a given accuracy requirements and hence results ina slight increase in simu-
lation time. This is seen for each circuit described in the three HDLs as one looks at
the simulation run-time numbers starting from low frequency values to high frequency
values.

Table4 shows simulation run-times obtained from circuit level simulations. In these
simulations the the sampling period Tsmp for First Order Switch Capacitor Filer is
15.625µs. The sampling period Tsmp for the remaining circuits is 10ns. Total number

21

Circuit Frequency Verilog-AMS VHDL-AMS SystemC-AMS HSPICE CSRE
(Hertz) (Seconds) (Seconds) (Seconds) (Seconds) (Seconds)

Low 1k 0.12 0.13 48.24 48.72 1.10
Pass 2k 0.21 0.17 48.45 48.73 1.13
Active 4k 0.26 0.26 48.16 48.74 1.10
Filter 40k 1.32 0.96 48.20 48.75 1.02

First 500 21.04 6.72 70.28 184.34 1.06
Order 1k 21.94 6.84 70.27 185.65 1.09
Switch 2k 19.98 6.97 70.39 186.13 1.09
Capacitor 4k 18.77 7.06 70.40 185.38 1.12

Continuous 100 0.09 0.07 49.20 57.24 1.24
Time 795 0.07 0.07 48.26 56.61 1.34
State 1k 0.13 0.1 49.07 56.62 1.26
Filter 10k 0.50 0.38 49.71 56.61 1.28

40k 1.95 1.34 49.55 56.66 1.28

Leap 1k 0.22 0.09 50.26 66.85 1.21
Frog 1.4k 0.15 0.12 50.56 66.89 1.14
Filter 10k 0.82 0.52 50.66 66.70 1.20

100k 6.92 4.99 51.27 66.73 1.15

Table 4: Circuit Simulation Run-Times

of simulation cycles is equal to 1000,000. The simulation duration is 10 ms.
The seventh column in this table contains simulation run-times obtained by simulat-

ing SRE models using CSRE rudimentary simulation tool. The simulation run-time for
CSRE is more or less constant because the number of number of operation performed
per simulation cycle are constant.

The circuit simulation times of the first order switch capacitor filter are larger be-
cause of the non-linear switches in the filter circuit which cause the simulator to iterate
more often at the instants of time when the switches change states from ON to OFF or
vice versa. Since the switches are turned ON and OFF a fixed number of times in a
10ms simulation the simulation run-time is independent of the input signal frequency
but rather depends on the clock signal frequency used for controlling the switches. That
clock frequency is fixed and hence the number of ON/OFF instances for each switch
and consequently the simulation run-times.

For the three HDL languages, and for the three analog filter circuits, the simulation
run-times increase as the input signal frequency increases. This again is due to the fact
that the simulator requires more iteration for each analog solution point if the input
signal changes faster as compared to a slowly varying signalfor a given time resolution
and accuracy requirements.

The SPICE and SystemC-AMS run times are comparable for the three filter circuits
and are higher than VHDL-AMS and VERILOG-AMS. C-SRE simulation results are
shown in the last column for comparison.

Table5 shows the simulation run-times for SRE models. The simulation duration is
10ms. The sampling period Tsmpfor First Order Switch Capacitor Filer is 15.625µs and
for the the rest of the circuits it is 10ns. The simulation is run for exactly 1000,000 sim-

22

Circuit Frequency Verilog-AMS VHDL-AMS SystemC-AMS CSRE
(Hertz) (Seconds) (Seconds) (Seconds) (Seconds)

Low 1k 272.74 244.67 30.62 1.10
Pass 2k 280.34 247.01 30.61 1.13
Active 4k 303.27 248.73 30.43 1.10
Filter 40k 315.47 250.00 30.30 1.02

Continuous 100 347.38 286.22 51.21 1.24
Time 795 383.27 354.31 50.27 1.34
State 1k 392.64 430.57 50.62 1.26
Filter 10k 425.05 347.17 50.75 1.28

40k 421.85 326.32 49.42 1.28

Leap 1k 308.51 257.81 33.99 1.21
Frog 1.4k 311.83 256.64 34.15 1.14
Filter 10k 322.83 260.12 34.09 1.20

100k 322.02 260.76 34.13 1.15

Phase fo=1MHz 120.19 38.25 28.70 2.52
Locked
Loop

Table 5: SRE Simulation Run-Times for 1000,000 simulation cycles

ulation cycles. In these simulations specific language constructs from VHDL-AMS and
VERILOG-AMS are used for modeling the circuit behavior as SREs. For SystemC-
AMS the circuit behavior is described using SREs embedded indesign units sensitive
to an external sampling clock. Last column contains CSRE simulation results from
comparison. CSRE simulation runt-time is one to two orders of magnitude faster than
SRE models described in the three HDLs.

The description of behavior in terms of SRE in VHDL-AMS and VERILOG-AMS
takes far fewer lines of code and is more concise and easy to read and understand but
simulates slower. Both VHDL, and VERILOG to a lesser extent provides use of reals
and integer data types for modeling of behavior at higher levels of abstraction. The
circuit designer thus has an alternative to describe the SREbehavior in another way
using real and integer data types rather than terminals and quantities, and attributes of
quantities such as ‘delayed(Tsmp) and ‘zoh(Tsmp) in VHDL-AMS or using transfer
function related functions in VERILOG-AMS. The design are described in SystemC-
AMS and CSRE by encapsulating the SRE behavior in a design unit sensitive to an
external sampling clock signalTsmp.

In table 6 all circuits are described using SRE models. In allHDL languages and in C
implementations the SRE behavior is described in a design unit sensitive to an external
sampling clock signal.

The design description is much longer compared to using AMS specific language con-
structs in VHDL-AMS and VERILOG-AMS. The accuracy of simulation results is the
same. Introduction of external sampling clock required more time to plan, describe and
potentially debug the SRE simulation model. But it simulates faster.

23

Circuit Frequency Verilog-AMS VHDL-AMS SystemC-AMS CSRE
(Hertz) (Seconds) (Seconds) (Seconds) (Seconds)

Low 1k 31.18 19.31 30.62 1.10
Pass 2k 31.18 19.24 30.61 1.13
Active 4k 31.57 19.05 30.43 1.10
Filter 40k 31.15 18.94 30.30 1.02

Continuous 100 32.40 21.57 51.21 1.24
Time 795 31.90 22.62 50.27 1.34
State 1k 32.23 21.83 50.62 1.26
Filter 10k 32.69 21.88 50.75 1.28

40k 32.21 21.75 49.42 1.28

Leap 1k 31.25 18.54 33.99 1.21
Frog 1.4k 31.65 18.76 34.15 1.14
Filter 10k 31.70 18.57 34.09 1.20

100k 31.48 18.43 34.13 1.15
Phase fo=1MHz 120.19 38.25 28.70 2.52
Locked
Loop

Table 6: SRE Simulation Run-Times for 1000,000 simulation cycles, Behavior of each
circuit is embedded in a module or design unit which is sensitive to an external sam-
pling clock signalTsmp

The trade-off here is between less coding and debug time whenusing AMS specific
language constructs to less simulation run-time when embedding the behavior in design
units sensitive to external sampling clock.

In all these simulations the simulation run-times are more or less comparable for each
circuit. The CSRE simulation run-times are 30 to over 200 times faster.

Tables 7 presents a simulation run-time comparison of the two SRE behavioral models
of various circuits described in VHDL-AMS. Model # 1 used AMSlanguage specific
constructs for describing the behavior of the circuits. Model # 2 embeds the SRE
behavior in a design unit sensitive to an external sampling clock. Simulation run-
times for Model # 2 are an order of magnitude faster. The last column provides CSRE
simulation results for comparison.

Tables 8 presents a simulation run-time comparison of the two SRE behavioral
models of various circuits described in VERILOG-AMS. Model# 1 used AMS lan-
guage specific constructs for describing the behavior of thecircuits. Model # 2 embeds
the SRE behavior in a design unit sensitive to an external sampling clock. Simulation
run-times for Model # 2 are an order of magnitude faster. The last column provides
CSRE simulation results for comparison.
We observe the following summarizes the above results:

• The simulation of analog and mixed signal circuits is both memory and CPU
intensive.

• The simulation speed depends on the complexity of circuit, length of simulation,

24

Circuit Frequency VHDL-AMS VHDL-AMS C-SRE
(Model # 1) (Model # 2) C-SRE

(Hertz) (Seconds) (Seconds) (Seconds)

Low Pass 1k 244.67 19.31 1.10
Active 2k 247.01 19.24 1.13
Filter 4k 248.73 19.05 1.10
(LPAF) 40k 250.00 18.94 1.02

Continuous 100 286.22 21.57 1.24
Time State 795 354.31 22.62 1.34
Space 1k 430.57 21.83 1.26
Filter 10k 347.17 21.88 1.28
(CTSF) 40k 326.32 21.75 1.28

Leap 1k 257.81 18.54 1.21
Frog 1.4k 256.64 18.76 1.14
Filter 10k 260.12 18.57 1.20
(LFF) 100k 260.76 18.43 1.15
PLL 1MHz ¿1000 38.25 2.52
Mixed-Signal
(SRE)

Table 7: Simulation run-rimes for the two SRE behavioral models described in VHDL-
AMS(1000,000 simulation cycles). Model # 1 uses AMS specificVHDL-AMS lan-
guage constructs to model the SRE behavior. Model # 2 used only VHDL language
constructs.

25

Circuit Frequency VERILOG-AMS VERILOG-AMS C-SRE
(Model # 1) (Model # 2) C-SRE

(Hertz) (Seconds) (Seconds) (Seconds)

Low Pass 1k 272.74 31.18 1.10
Active 2k 280.34 31.18 1.13
Filter 4k 303.27 31.57 1.10
(LPAF) 40k 315.47 31.15 1.02

Continuous 100 347.38 32.40 1.24
Time State 795 383.27 31.90 1.34
Space 1k 392.64 32.23 1.26
Filter 10k 425.05 32.69 1.28
(CTSF) 40k 421.85 32.21 1.28

Leap 1k 308.51 31.25 1.21
Frog 1.4k 311.83 31.65 1.14
Filter 10k 322.83 31.70 1.20
(LFF) 100k 332.02 31.48 1.15
PLL 1MHz ¿1000 120.19 2.52
Mixed-Signal
(SRE)

Table 8: Simulation run-times for the two SRE behavioral models in VERILOG-
AMS(1000,000 simulation cycles). Model # 1 uses AMS specificVERILOG-AMS
language constructs to model the SRE behavior. Model # 2 usedonly VERILOG lan-
guage constructs except for in VCO module where cosine function was needed.

26

shape and frequency of the input signals.

• A faster change in input in general results in an increase in simulation time.

• Non linear components in a design usually take more time to simulate.

27

8 Conclusion

The SRE model provides a mathematical means to computes the symbolic trace for
the combined system (design + assertions). The SRE If-formulae operator is extremely
useful in describing the non-linear behavior such as saturation, hysteresis and dead-
band. For real circuits the signal output generally cannot exceed the supply voltage
and the output of the circuit levels off to a value either equal to or a few volts below
the supply voltage. This non-linear behavior of the circuitis some times called satu-
ration or saturation non-linearity. The saturation non-linearity can be modeled using a
piece-wise linear approximation of the non-linear behavior using the SRE If-formulae
construct.

In this paper we presented an SRE simulation algorithm and its prototype imple-
mentation for simulating AMS circuits and systems. This simple tool allows one to
very quickly build custom executable models of AMS circuitsdescribing behavior of
AMS systems using recurrence equations at various levels ofabstraction. The ability
to describe various design components at different levels of abstraction makes it possi-
ble for the verification engineer to describe important components of the design at an
appropriate level of abstraction thus guaranteeing accuracy of simulation results. Rest
of the design components can be modeled at as high a level of abstraction as possible.
This attractive feature makes sure that accuracy requirements are never sacrificed (an
extremely important concern in analog and mixed signal designs) while at the same
time where ever possible advantage of higher level of abstraction is taken to speed up
the simulation and thus indirectly allowing verification process to speed up as well.
The simple simulation algorithm described in this paper is one reason for the gain in
the speed of simulation when compared with other AMS HDL tools.

28

References

[1] F. Bouchhima, M. Brire1 G. Nicolescu1 M. Abid E. M. Aboulhamid. A Sys-
temC/Simulink Co-Simulation Framework for Continuous/Discrete-Events Sim-
ulation, In Proc. Behavioral Modeling and Simulation, IEEE, pp. 1-6, 2006.

[2] D.E. Martin, P.A. Wilsey, R.J. Hoekstra, E.R. Keiter, S.A. Hutchinson, T.V.
Russo, L.J. Waters. Integrating multiple parallel simulation engines for mixed-
technology parallel simulation, In Proc. Simulation Symposium, IEEE, pp. 45-52,
2002.

[3] H. El Tahawy, D. Rodriguez, S. Garcia-Sabiro, J.J. Mayol. VHD ELDO: A new
mixed mode simulation, In Design Automation Conference, IEEE/ACM, pp.546-
551, 1993.

[4] CeloxiaWebsite: http://www.celoxica.com/

[5] T.E. Bonnerud, B. Hernes, T. Ytterdal. A Mixed-signal Functional Level Sim-
ulation Framework based on SystemC for System-on-a-Chip Applications, In
Proc.Custom Integrated Circuits,IEEE, pp. 541-544, 2001.

[6] E. Markert, M. Schlegel, G. Herrmann,D. Mller. Subproject A2: Examination
of the Applicability of SystemCAMS for the Description of MEMS, Technical
Report, TU Chemnitz, Faculty of Electrical Engineering andInformation Tech-
nology, 2004. [3 Pages]

[7] H. Al-Junaid, T. Kazmierski. HDL Models of Ferromagnetic Core Hysteresis
Using Timeless Discretisation of the Magnetic Slope. IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems,vol. 25, no. 12, pp.
2757-2764, 2006

[8] Jan Ogrodzki. Circuit simulation methods and algorithms.

[9] Jaidip Singh Resve A. Saleh, Brian A. A. Antao. Multilevel and mixed- domain
simulation of analog circuits and systems.

[10] G. Al-Sammane. Simulation Symbolique des Circuits Decrits au Niveau Algo-
rithmique. PhD thesis, Université Joseph Fourier, Grenoble, France, July 2005.

[11] G. Al Sammane, M. Zaki, and S. Tahar: A Symbolic Methodology for the Verifi-
cation of Analog and Mixed Signal Designs; Proc. IEEE/ACM Design Automa-
tion and Test in Europe, pp. 249-254, 2007.

[12] Martin Padeke Werner Haas Thomas Buerner Herbert Braize Thomas Guetner
Alexander Grassman Ulrich, Heinkel. The VHDL reference, A practical guide to
computer aided integrated circuit design including VHDL-AMS (simulation and
synthesis), (Chapter 6 , VHDL-AMS tutorial), TK7885.7 V44.Wiley, 2000.

[13] Franklin, G.F., J.D. Powell, and M.L. Workman, DigitalControl of Dynamic Sys-
tems, Second Edition, Addison-Wesley, 1990.

29

[14] S.Wolfram. Mathematica: A System for Doing Mathematics by Computer. Addi-
son Wesley Longman Publishing, USA, 1991.

[15] Mathematica. Website: http://www.wolfram.com/products/mathematica/index.html,
2008.

[16] B. Kaminska K. Arabi, I. Bell, P. Goteti, J.L. Huertas, B. Kim, A. Rueda, M.
Soma. Analog and Mixed-Signal Benchmark Circuits-First Felease, In Proc. Test
Conference, IEEE, pp. 183-190, 1997.

[17] Website: http://www.synopsys.com/products/mixedsignal/hspice/hspice.html,
2008.

[18] VHDL-AMS IEEE Standard. Website: http://www.eda.org/vhdl-ams/, 2007

[19] Verilog Analog and Mixed Signal Language Reference Manual (2004). Available:
http://www.eda.org/verilog-ams/

[20] SystemC AMS. Website: http://www.systemc-ams.org/,2007.

[21] B. W. Kernighan and D. M. Ritchie, The C Programming Language, Prentice-
Hall, Englewood Cliffs New Jersey, 1978.

[22] SPICE University of California Berkely.

[23] Website: http://www.mentor.com/products/fv/ams/,2008.

[24] Berkeley Design Automation, Inc.http://www.berkeley-da.com/, 2008.

[25] Cadence Design Systems Inc.http://www.cadence.com/, 2008.

[26] Mentor Graphics Corporation.http://www.mentor.com/, 2008.

30

	Abstract
	Introduction
	Related Work
	The C-SRE Simulator Framework
	C-SRE based Symbolic Simulation
	The System of Recurrence Equations: SRE
	C-SRE Methodology
	Generating Recurrence Equation
	Understanding Dependency Graph
	SRE Coding as C Function

	C-SRE Implementation
	C-SRE Simulation Cycle
	C-SRE Simulation Algorithm

	Application and Simulation results
	Example 1:Pulse Width Modulator Circuit
	Example 2: Window Comparator Circuit
	Experimental Results

	Conclusion

