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Abstract

Continuous-time Markov chain has been extensively applied to model diverse real-world systems. The

analysis of these systems has been conducted using conventional simulation technique and computer

algebra systems, more recently, probabilistic model checking. However, these methods either cannot

guarantee accurate analysis or are not scalable due to the unacceptable computation consumption. As

a complemental technique, theorem proving is proposed to reason about continuous-time Markov chain

using HOL theorem proving. To our best knowledge, the formalization of continuous-time Markov chain

has not been found in any theorem prover. In this report, we provide the idea on the formal de?nition

of continuous-time Markov chain and two of its formally verified properties as the first step to formalize

the continuous-time Markov chain theory. Also, we present the next step and the predict the potential

challenges in the formalization process. Finally, a certain of applications are listed to be targeted using

the formalized continuous-time Markov chain.
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1 Introduction

Stochastic processes are mainly used to describe the evolution of numerous real-world sys-
tems. Basically, the evolution of a system is a series successive changes. In order to simplify
the study of the evolution of a system, a series discrete steps of the evolution process are con-
sidered and the system is then abstracted to be a discrete-time stochastic model. However,
the behaviors within the small intervals are ignored and not able to be analyzed. In this case,
continuous-time stochastic models are usually applied to describe the model so that the grad-
ual changes occurring on many continuous and unpredictable components can be studied.
Mathematically, the continuous-time stochastic process is the fundamental concept of con-
structing such kind of continuous-time models. As one of extensively used continuous-time
stochastic processes, continuous-time Markov chains (CTMC) are of interest in numerous
science and engineering domains.

A continuous-time Markov chain refers to a random process, in which the random variables
remain in the current state for some random (particularly, exponentially distributed) interval
of time and then transit to different states. Numerous mathematical theories, such as the
embedded Markov chain theory, hidden Markov models theory, Queueing theory, are based
on the concept of the CTMC. In the real world, CTMC theory can be applied in constructing
reliability models and analyzing system performance. It can also be used to estimate the
sojourn time in some diseases, such as breast cancer [10] and diabetes mellitus [6], which are
safety critical cases.

Traditionally, engineers have been using paper-and-pencil proof methods to perform prob-
abilistic and statistical analysis of systems. Nowadays, these systems have become consider-
ably complex and the behaviors of some critical subsystems need to be analyzed accurately.
Paper-and-pencil proofs can hardly guarantee the analysis of those key components and thus
cannot be used to model and analyze the whole system. With the increasing requirements
for predicting the reliability of systems, evaluating the performance and dependability of
products and verifying systems properties, researchers are investigating all sorts of methods
and techniques for providing accurate and reliable results for general systems.

During the last two decades, computer science has developed dramatically fast. Sim-
ulation has been the most commonly used computer based analysis technique for Markov
chain models. Currently, the most advanced simulation algorithms are Markov chain Monte
Carlo (MCMC) methods [25], which are based on constructing a Markov chain that has the
desired distribution as that of the random variables. These kind of methods are usually
applied to dynamic simulation which is used for modeling the time varying behavior of a
system. Whereas, typical use of MCMC sampling can only approximate the desired distribu-
tion in terms of the residual effect of the initial position. Although some more sophisticated
MCMC-based algorithms are capable of producing exact samples, they introduce additional
computation and unbounded running time.

Other state-based approaches to analyze a Markov chain model include some software
packages, such as Markov analyzers and reliability or performance evaluation tools, which
are all based on numerical methods (for details refer to [23]). The direct methods are
only suitable for small models so that most of the models are analyzed by using expanded
iterative methods, which often lead to approximations because the computations stop at
some convergence point. It is unavoidable that roundoff and truncation errors affect the
numerical computations. Hence, the results at convergence point might become unbelievable.
Another technique, Stochastic Petri Nets (SPN) [12], has been found as a powerful method for
modeling and analyzing Markovian systems because it allows locating modeled states instead
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of global modeling. The key factor limiting the application of SPN models is the complexity
of their complicated analysis. In order to tackle this problem, Generalized Stochastic Petri
Net (GSPN) [20] was proposed but the tools based on its principles are seldom. Another
major limitation of GSPN is the combinatorial growth of the models’ state space.

Based on powerful verification techniques, Probabilistic Model Checking Tools (PMCT)
combine a range of techniques for calculating the likelihood of the occurrence of certain events
during the execution of the system and can establish properties to be considered. Most of the
models that they can analyze are Markovian models. However, because of the limitations of
the logics that are used to express the properties, some important probabilistic questions are
not able to be answered directly. Also, the algorithms integrated in these tools for analysis
are based on iterative methods are not able to conduct accurate results. Moreover, these
tools suffer from the state-explosion problem even though some advanced data structures,
such as Multi-Terminal Binary Disicion Diagram (MTBDD) [36], have been embedded in
their algorithms.

Higher-order logic interactive theorem proving provides a conceptually simple formalism
with a precise semantics, allowing secure extensions for many mathematical theories, and
has been employed to develop probabilistic algorithms [17]. Even probabilistic analysis
[13] of many stochastic systems has been available in theorem prover. Later, Coble [7]
formalized the measure space as the triple (X, Σ, µ). This allows to define an arbitrary
space X and this overcomes the disadvantage of Hurd’s work. Coble’s probability theory
is built upon finitely-valued (standard real numbers) measures and functions. Specifically,
the Borel sigma algebra cannot be defined on open sets and this constrains the verification
of some applications. More recently, Mhamdi [29] improved the development based on the
axiomatic definition of probability proposed by Kolmogorov [21]. Mhamdi’s theory provides
a mathematical consistent for assigning and deducing probabilities of events. Hölzl [16] has
also formalized three chapters of measure theory in Isabelle/HOL. Affeldt [2] simplified the
formalization of probability theory in Coq [8]. Among these works, the probability theory
formalized by Mhamdi provides a very generic formal reasoning support and thus can be
used to analyze wider range of applications.

The main difference between a DTMC and CTMC is the type of random variable: in the
DTMC, the random variables are discrete and in CTMC, the random variables are continu-
ous. In [24], the formalization of DTMC in the HOL theorem prover is provided and it is the
fundamental of Markov chain theory. Also, the measure and probability theories formalized
in [27] offer the flexibility of formally defining continuous ransom processes in HOL4. These
fundamentals can facilitate the formalization of continuous-time Markov chains. However,
to our best knowledge, continuous-time Markov chains have never been formalized in any
theorem prover. This is one of the biggest limitations of this emerging research domain
because the probabilistic analysis of a wide variety of real-world systems can only be done
using continuous-time Markov chains.

In this report, we present the idea on formalize CTMC using the fundamental concept of
DTMC in a higher-order logic. The rest of this report is organized as follows: In Section 2,
we give an overview of main definitions of some required notions. Section 3 presents our
formalization of the continuous-time Markov chain, which is used in Section 4 to prove two
main properties of CTMC. In Section 5, we predict the main challenges in proving the other
properties of CTMC. Finally, Section 6 concludes the report and provides hints to future
work.
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2 Preliminaries

In this section, we present the higher-order-logic theorem proving technique and probability
theory, which comprise the foundational material required to understand this thesis.

2.1 Theorem Proving

One of the major methods to formally verify a stochastic system is probabilistic theorem
proving, which makes use of higher-order logic [11] to deduct systems with a precise seman-
tics, due to its high expressiveness. The popular theorem proving tools are ACL2 [1], PVS
[33], Isabellel/HOL [18], ProofPower [32], HOL-Light [14], HOL4 [15], Coq [8], etc.

In past two decades, some researchers investigated various relevant probabilistic theorems
in different tools. Nedzusiak [30] and Bialas [5] were among the first ones who proposed
to formalize some probability theory in high-order-logic. Hurd [17] verified probabilistic
algorithms in HOL [15]. Then Hasan [13] extended Hurd’s work and formalized continuous
random variables so that the probabilistic and statistical properties of these random variables
are capable of being verified in the HOL system. Based on Hurd’s work, Richter [34] and
Coble [?] devoted to formalize Lebesgue-style integration theory for extending the probability
concept of expectation in Isabellel/HOL and HOL4, respectively. Daumas et. al. [9] and
Lester [22] presented their work on measure and integration theories in PVS seperately.
To overcome the limitations of previous work, Mhamdi et. al. [29] proposed a significant
formalization of a measure space to improve in Coble’s work and by this formalization,
he proved Lesbesgue integral properties and convergence theorems for arbitrary functions.
Their work has build upon the foundation for providing the framework to develop formal
theories for analyzing stochastic systems.

In Table 1, we list some frequently used symbols and functions associated with the de-
scription in the following chapters of this thesis.

2.2 Probability Theory

Mathematically, a measure space is defined as a triple (Ω,Σ, µ), where Ω is a set, called the
sample space, Σ represents a σ-algebra of subsets of Ω, where the subsets are usually referred
to as measurable sets, and µ is a measure with domain Σ. A probability space is a measure
space (Ω,Σ,Pr) such that the measure, referred to as the probability and denoted by Pr,
of the sample space is 1. Probability theory is developed based on three axioms:

1. ∀ A. 0 ≤ Pr(A)

2. Pr(Ω) = 1

3. For any countable collection A0, A1, · · · of mutually exclusive events,
Pr(

⋂
i∈ΩAi) =

∑
i∈ΩPr(Ai).

In probability and statistical theory, the probabilistic function called random variable is
an essential concept. The random variable concept is a function from a probability space to
a measurable space. A measurable space refers to a pair (S,Σ), where S denotes a set and
Σ represents a nonempty collection of subsets of S. Especially, if the set S is a discrete set,
which contains only isolated elements, then this random variable is called a discrete random
variable. The probability that a discrete random variable X is exactly equal to some value
i is defined as the probability mass function (PMF) and it is mathematically expressed as
Pr(X = i).
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Table 1: HOL Symbols and Functions

HOL Symbol Meaning

∀ Logical for all

∧ Logical and

∨ Logical or

(a, b) A pair of two elements

λx.fx Function that maps x to f(x)

{x|P(x)} Set of all x such that P (x)

∅ Empty Set

a ∈ S a in S

FINITE S S is a finite set⋂
P Intersection of all sets in the set P⋃
P Union of all sets in the set P

A ∩ B A intersection B

A ∪ B A union B

disjoint A B Sets A and B are disjoint

IMAGE f A Set with elements f(x) for all x ∈ A
SIGMA (λn. f n) s

∑
n∈s f(n)

Mhamdi defined a probability space in higher-order logic as a measure space (Ω,Σ,Pr) [29],
which is exactly matched with the aforementioned mathematical definition . The probabil-
ity theory is then developed by giving a probability space p and the functions space and
subsets which return the corresponding Ω and Σ, respectively. The above approach has
been successfully used to formally verify most basic probability theorems [28], such as:

0 ≤ Pr(B) ≤ 1 (1)∑
Bi∈ Ω

Pr(Bi) = 1 (2)

Another important concept in probability theory is random process, which denotes a
collection of random variables Xt (t ∈ T ). If the indices (t) of random variables Xt are
continuous, then this random process is a continuous-time random process. In Mhamdi’s
development, a random variable is formally defined (formalized) as a measurable function X

between a probability space p and a measurable space s. It is written as random variable X

p s in HOL. The definition of random variables is general enough to formalize both discrete
and continuous random variables.

Now, utilizing the formalization of random variables, the random process {Xt}t≥0 can be
easily written as ∀ t. random variable (X t) p s in higher-order logic. The distribution
and conditional probability are defined in [27]:

|- !p X. distribution p X = (\s. prob p (PREIMAGE X s INTER p_space p))

|- !p X Y.

joint_pmf p X Y =
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(\(A,B). prob p (PREIMAGE X A INTER PREIMAGE Y B INTER p_space p))

|- !p X Y.

cond_pmf p X Y =

(\(A,B). joint_pmf p X Y (A,B) / distribution p Y B)

We can prove that cond pmf is equivalent to the following conditional probability :

Definition 1. (Conditional Probability)
The conditional probability of the event A given the occurrence of the event B is

Pr(A|B) = Pr(A ∩B)/Pr(B)

` ∀ A B. cond prob p A B = prob p (A ∩ B) / prob p B

In order to facilitate the formalization of Markov chains, we verified various classical
properties of conditional probability based on Definition 2.1. Some of the prominent ones
are listed below:

Pr(A ∩B) = Pr(A|B)Pr(B) (3a)

Pr(A) =
∑
i∈Ω

Pr(Bi)P(A|Bi) (3b)∑
i∈Ω

Pr(Bi|A) = 1 (3c)

where A, B and C are events in the event space, and the finite events set {Bi}i∈Ω contains
mutually exclusive and exhaustive events. The first two theorems are obviously based on
Definition 1. The third one is the Total Probability Theorem and the fourth one is a lemma
of the Total Probability Theorem. The last theorem is the Additivity Theorem.

3 Formalization of Continuous-time Markov Chain

Given a probability space, a stochastic process {Xt : Ω → S} represents a sequence of
random variables X, where t represents the time that can be discrete (represented by non-
negative integers) or continuous (represented by real numbers) [4]. The set of values taken
by each Xt, commonly called states, is referred to as the state space. The sample space Ω
of the process consists of all the possible state sequences based on a given state space S.
Now, based on these definitions, a Markov process can be defined as a stochastic process
with Markov property. If a Markov process has finite or countably infinite state space, then
it is called a Markov chain and satisfies the following Markov property: 0 ≤ t0 ≤ · · · ≤ tn
and f0, · · · , fn+1 in the state space, then:

Pr{Xtn+1 = fn+1|Xtn = fn, . . . , Xt0 = f0} = Pr{Xtn+1 = fn+1|Xtn = fn} (4)

This mathematical equation expresses that the future state Xt+1 only depends on the current
state Xtn and is independent of the passed state Xti . This feature can be formally expressed
in higher-order logic as Definition 2.

Definition 2. (Markov Property)

|- !X p s.

mc_property X p s <=>
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(!t. random_variable (X t) p s) /\

!f t n.

increasing_seq t /\

prob p

(BIGINTER

(IMAGE (\k. PREIMAGE (X (t k)) {f k} INTER p_space p)

(count n))) <> 0 ==>

(cond_pmf p (X (t (n + 1))) (X (t n)) ({f (n + 1)},{f n}) =

cond_prob p

(PREIMAGE (X (t (n + 1))) {f (n + 1)} INTER p_space p)

(PREIMAGE (X (t n)) {f n} INTER p_space p INTER

BIGINTER

(IMAGE (\k. PREIMAGE (X (t k)) {f k} INTER p_space p)

(count n))))

where the type of variable t is real and the index sequence increasing seq is defined as:

Definition 3. (Increasing Sequence)

|- !t. increasing_seq t <=> !i j. i < j ==> t i < t j

In our work, we mainly focus on the continuous-time Markov chain (CTMC), in which the
states are discrete in a finite space and for readability reasons, we abbreviate it as CTMC.

A DTMC with finite state space is usually expressed by specifying: an initial distribution
p0 which gives the probability of initial occurrence Pr(X0 = s) = p0(s) for every state; and
transition probabilities pij(t) which give the probability of going from i to j for every pair of
states i, j in the state space [31]. For states i, j and a time t, the transition probability pij(t)
is defined as Pr{Xt+1 = j|Xt = i}, which can be easily generalized to n-step transition
probability.

p
(n)
ij (t) =


{

0 if i 6= j

1 if i = j
n = 0

Pr{Xt+n = j|Xt = i} n > 0

(5)

This is formalized in HOL as follows:

Definition 4. (Transition Probability)

|- !X p s t n i j.

Trans X p s t n i j =

if i IN space s /\ j IN space s then

if n = 0 then

if i = j then 1 else 0

else

cond_prob p (PREIMAGE (X (t + n)) {j} INTER p_space p)

(PREIMAGE (X t) {i} INTER p_space p)

else 0

where the type of variable t is real.
It is easy to understand that the probability of an event is zero, when this event is not in

the event space. For instance, i is not in the state space implies that event {Xt = i} = ∅.
In this case, the conditional probability related to an empty set is zero.

Now, the continuous-time Markov chain (CTMC) can be formalized as follows:
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Definition 5. (Continuous-Time Markov Chain)

|- !X p s Linit Ltrans.

ctmc X p s Linit Ltrans <=>

mc_property X p s /\ (!x. x IN space s ==> {x} IN subsets s) /\

(!i. i IN space s ==> (Linit i = distribution p (X 0) {i})) /\

!i j t.

distribution p (X t) {i} <> 0 ==>

(Ltrans t i j = Trans X p s t 1 i j)

where the first three variables are inherited from Definition 2, p0 and pij refer to the functions
expressing the given initial status and transition matrix associated with this random process,
respectively. The first condition in this definition describes Markov property presented in
Definition 2 and the second one ensures the events associated with the state space (space s)
are discrete in the event space (subsets s), which is a discrete space. The last two conditions
assign the functions p0 and pij to initial distributions and transition probabilities.

It is important to note that X is polymorphic, i.e., it is not constrained to a particular
type, which is a very useful feature of our definition.

Most of the applications actually make use of time-homogenous CTMCs, i.e., CTMCs with
finite state-space and time-independent transition probabilities [3]. The time-homogenous
property refers to the time invariant feature of a random process. Thus, the transition
probability of the random process in a fixed interval, say [0, t - n], is independent of the
start time. This can be simplified as pij = Pr{Xt = j|Xn = i} = pij(t − n), based on
Equation (5). Then, the time-homogenous DTMC with finite state-space can be formalized
as follows:

Definition 6. (Time homogeneous DTMC)

|- !X p s Linit Ltrans.

th_ctmc X p s Linit Ltrans <=>

ctmc X p s Linit Ltrans /\ FINITE (space s) /\

!t n i j.

n < t ==> (Trans X p s t n i j = Trans X p s 0 (t - n) i j)

4 Verification of Two Properties

Using the formalized CTMC in previous section, we formally verified two of its properties in
this section.

4.1 Unconditional Probability

The unconditional probabilities associated with a Markov chain are called absolute proba-
bilities, which can be computed by applying the initial distributions and n-step transition
probabilities. This shows that, given a distributions at the start time v and the transition
probabilities in time interval , the absolute probability in the state j after n steps from the
start time 0 can be obtained by using this equation.

This property is formally verified as the following theorem: In a finite time homogeneous

DTMC, the absolute probabilities p
(t)
j satisfy

p
(t)
j = Pr(Xt = j) =

∑
k∈Ω

Pr(X0 = k)Pr(Xt = j|X0 = k)
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Theorem 1. (Unconditional Probability)

|- !X p s Linit Ltrans t j.

ctmc X p s Linit Ltrans /\ FINITE (space s) ==>

(prob p (PREIMAGE (X t) {j} INTER p_space p) =

SIGMA (\i. cond_prob p (PREIMAGE (X t) {j} INTER p_space p)

(PREIMAGE (X 0) {i} INTER p_space p) *

prob p (PREIMAGE (X 0) {i} INTER p_space p)) (space s)) :

The proof of Theorem 1 is based on the Total Probability theorem (3b) along with some
basic arithmetic and probability theoretic reasoning.

4.2 Chapman-Kolmogorov Equation

The Chapman-Kolmogorov equation [4] is a widely used property of time homogeneous
DTMCs. It gives the probability of going from state i to j in m + n steps. Assuming
the first m steps take the system from state i to some intermediate state k and the remain-
ing n steps then take the system from state k to j, we can obtain the desired probability by
adding the probabilities associated with all the intermediate steps.

For a finite time homogeneous DTMC {Xt}t≥0, its transition probabilities satisfy the
Chapman-Kolmogorov Equation

pij(v, t) =
∑
k∈Ω

pik(v, u)pkj(u, t) for0 ≤ v < u < t

Theorem 2. (Chapman-Kolmogorov Equation)

|- !X p s Linit Ltrans t v i j.

ctmc X p s Linit Ltrans /\ u < t /\ 0 <= v /\ v < u /\

FINITE (space s) ==>

(cond_prob p (PREIMAGE (X t) {j} INTER p_space p)

(PREIMAGE (X v) {i} INTER p_space p) =

SIGMA (\k. Trans X p s u (t - u) k j * Trans X p s v (u - v) i k)

(space s))

Proof. Theorem 2 is again verified using induction on the variables t and v.

5 Potential Challenges

The verified two properties are the basic theorems, which might be required in diverse other
CTMC theorems. In fact, the most important concept in CTMC theory is the transition
rate, which is a nonnegative continuous function qij(t). Usually, in a CTMC model, the
transition rates are given instead of transition probabilities. The mathematic expression of
a transition rate is shown as follows:

∂pij(v, t)

∂t
= [

∑
k 6=i

pkj(v, t)qik(t)]− pij(v, t)qi(t). (6)

where it requires the limit theory to define the transition rate and the verification of the
related theorems will associated with the limit, derivative and integral theories. For example,
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the Kolmogorov’s forward equation

∂pij(v, t)

∂t
= [

∑
k 6=i

pkj(v, t)qik(t)]− pij(v, t)qi(t); (7)

and Kolmogorov’s backward equation

∂pij(v, t)

∂v
= [

∑
k 6=i

pkj(v, t)qik(v)]− pij(v, t)qi(v). (8)

Equations (7) and (8) can be used to derive the unconditional probability by the following
differential equation:

it is able to formally derive the Kolmogorov’s backward equation [35] as well as variety of
its other properties in HOL4.

6 Conclusions & Future Work

In this report, we explored the formalization of continuous-time Markov chain (CTMC)
based on the development of discrete-time Markov chain (DTMC) in [24]. Using the formal
definition of the continuous-time Markov chain and two of its verified properties presented
in this report, diverse systems described as CTMCs can be formally analyzed. This report
provides a simply definition as a prototype and offers the necessary information on the
formalization of CTMC.

The formalization of CTMC lead to many new directions of research in the domain of
formal verification. For example, continuous-time HMMs, which are used for formally as-
sessing the diseases in medical and biological domains, as well as estimating the electronic
system reliability; and continuous-time semi-Markov process [19] and Markov jump process
[26] can be formalized using the CTMC formalization.
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