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Abstract

Linear algebra is a mathematical theory which is essential to both pure and
applied mathematics. While many theorem provers support linear spaces,
they usually consider only real vector spaces or provide very abstract for-
malizations which are useful for the formalization of mathematics but lack
many notions required for applied mathematics and therefore many other
fields, e.g., computer science, engineering, physics, economics, natural sci-
ences, etc. In this paper, we propose a new formalization of complex linear
algebras whose objective is to be a toolbox for various engineering applica-
tions.
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1 Introduction
Linear algebra is essential to many fields of applied mathematics. In engineer-
ing, it has applications in mechanics [12], signal processing [10], control [16], etc.
Many of these applications require not only real vector spaces but also complex
vector spaces. We do not know of any formalization which answer our goals in
a satisfactory way. In Coq, we know of [14] which provides a general, axiomatic,
formalization of linear algebras. However, this work lacks many notions that are
useful for applications (e.g., hermitians, self-adjoints) and actually corresponds to
the formalization of a classic linear algebra textbook. Even though this is ex-
tremely useful for the formalization of mathematics, this does not answer most of
the engineering needs that we mentioned earlier. [5] presents a formalization of
real vector spaces in PVS and applies it to control theory. This work lacks the sup-
port of infinite-dimension and of complex vectors. In HOL Light, even though the
amount of proved theorems in [4] is impressive, it suffers from the same problems
for engineering applications. The work we present in this paper is an extension
of [9]: it is more general, covers more concepts, and provides many tools which
improve the usability as a toolbox instead of just a list of theorems.

In our formalization, finite-dimension vector spaces are implemented by vectors
(in the sense of HOL Light datatypes) and infinite-dimension ones by function
spaces [9]. We show some of the formalized definitions and related properties of
complex vectors, which are oriented towards an engineering use. We also provide
some tactics allowing to automate some common theorem proving tasks. The
rest of the paper is organized as follows: Section 2 presents our formalizations of
complex vector spaces, in finite dimension. Section 3 makes use of higher-order
rewriting to derive some properties of finite-dimension spaces from the ones of
infinite-dimension spaces. In Section 4 we conclude the paper.

All the source codes corresponding to the work presented in this paper, includ-
ing the application, are available at: http://hvg.ece.concordia.ca/projects/
optics/CXVEC.zip.

2 Finite Dimension Complex Vector Spaces
For finite dimension vector spaces, we make use of the HOL Light built-in type
of vectors. Note that this type does not denote, in general, elements of a vector
space (contrarily to what their name suggests). Namely, vectors in HOL-Light are
basically lists whose length is explicitly encoded in the type. Whereas a vector
space V over field F is a set [15] with two operations, vector addition (+ : V× V→ V)

and scalar multiplication (· : F× V→ V), satisfying eight axioms, specified in Table
1. Therefore, we first define addition and scalar multiplication over CN as well as
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the identity element of addition:

Definition 2.1 (Arithmetics over complexN)

` cvector_add = vector_map2 (+ : C→ C)
` cvector_mul (a : C) = vector_map ((∗ : C→ C) a)

where vector_map and vector_map2 are defined as follows:

Definition 2.2 (Unary and binary componentwise operators)
` ∀(f : A→ B)(v : AN). vector_map f v = lambda i. f(v$i) : BN

` ∀(f : A→ B→ C)(v1 : AN)(v2 : BN).

vector_map2 f v1 v2 = lambda i. f(v1$i)(v2$i) : CN

where v$i returns the ith component of v and lambda i. f(v$i) applies the unary
operator f on each component of v and returns the vector which has f(v$1) as its
first component, f(v$2) as its second component, etc.

Property Formalization
Addition associativity ` ∀ u v w. u+ v+ w = (u+ v) + w

Addition commutativity ` ∀ u v. u+ v = v+ u

Addition unit ` ∀ u. u+ cvector_zero = u

Addition inverse ` ∀ u. u+ (−− u) = cvector_zero

Vector distributivity ` ∀ a u v. a % (u+ v) = a % u+ a % v

Scalar distributivity ` ∀ a b u. (a+ b) % u = a % u+ b % u

Mul. associativity ` ∀ a b u. a % b % u = (a ∗ b) % u

Scalar mul. unit ` ∀ u. Cx(&1) % u = u

Table 1: Vector Space Axioms for Complex Vectors

We developed a tactic, called CVECTOR_ARITH_TAC, which is majorly adapted
from the tactic VECTOR_ARITH_TAC [3] and is able to prove simple arithmetics
properties of complex vectors in an automated way. Using this tactic we prove all
eight axioms of vector spaces, indicated in Table 1, plus many other basic but useful
facts. The symbol (%) and (−−), in Table 1, are overloaded by scalar multiplication
and complex vector negation, respectively, and cvector_zero is complex null vector.
Both cvector_zero and negation are formalized using componentwise operators.
Having all the eight axioms of linear space formalized, we have the complex vector
space formalized.

Next, we address notions of the dot product and the cross product, which are
extensively useful in engineering, e.g., mechanics and electromagnetics. The dot
product is defined for two complex vectors u, v of dimension n as

∑n
i=1 uivi, where
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x denotes the complex conjugate of x. Note that the dot product is a complex
number, and that the fact that the conjugate is used is an important difference
with the real case. This is defined in HOL Light as follows:

Definition 2.3 (Complex vector dot product)
` ∀ (u : CN) (v : CN). u · v = vsum (1..dimindex(: N)) (λi. cnj (u$i) ∗ v$i)

where cnj denotes the complex conjugate in HOL Light. From dot product,
many interesting notions can be defined. Here we present norm, orthogonality
and collinearity, which is defined as follows:

Definition 2.4 (Norm, orthogonality and collinearity of complex vectors)

` ∀u. cnorm u = sqrt (real_of_complex (u cdot u))

` ∀x y. corthogonal x y⇔ x cdot y = Cx(&0)

` ∀x y. collinear_cvectors x y ⇔ ∃a. (y = a%x) ∨ (x = a%y)

where real_of_complex is a function casting a complex number with no imaginary
part into a real number. Many basic properties of dot product, norm, orthogo-
nality and collinearity are proved, e.g., symmetry of orthogonality, preservation of
orthogonality by scalar multiplication, etc. We also proved some more involved
theorems, e.g., the Pythagorean theorem:

Theorem 2.5 (Pythagorean Theorem)
` ∀x y. corthogonal x y⇔ cnorm2(x+ y) = cnorm2 x+ cnorm2 y

or existence of an orthogonal decomposition for any vector w.r.t. another one:

Theorem 2.6 (Decomposition)
` ∀u v. let cunit_v = inv (Cx(cnorm v)) in

corthogonal (u− (u cdot cunit_v)%cunit_v) v

These two theorems play a crucial role in practice. They are also very useful when
proving the Cauchy-Schwarz Inequality, which has itself many applications, e.g.,
in the error analysis of many engineering systems:

Theorem 2.7 (Cauchy-Schwarz Inequality)
` ∀u v. norm (u cdot v) ≤ cnorm u ∗ cnorm v

where norm denotes the norm of a complex number. In addition to the notions
presented here, many other concepts were defined, and some related theorems were
proved, We refer to the implementation [1] for details.

The cross product between two vectors u and v of C3 is classically defined as
(u2v3 − u3v2, u3v1 − u1v3, u1v2 − u2v1). Note that, contrarily to the dot product,
the outcome is again a vector of C3. This is formalized as follows:
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Definition 2.8 (Complex cross product)
` ∀u v : C3. u× v : C3 =
vector [u$2 ∗ v$3− u$3 ∗ v$2; u$3 ∗ v$1− u$1 ∗ v$3; u$1 ∗ v$2− u$2 ∗ v$1]

where vector is a HOL Light function taking a list as input and returning a vector.
In Table 2, we present some of the properties of cross product.

Property Formalization
Left zero ` ∀ u. cvector_zero× u = cvector_zero

Right zero ` ∀ u. u× cvector_zero = cvector_zero

Irreflexivity ` ∀ u. u× u = cvector_zero

Asymmetry ` ∀ u v.− (u× v) = v× u

Left-distributivity over addition ` ∀ u v w. (u+ z)× w = u× w+ z× w

Right-distributivity over addition ` ∀ u v w. u× (v+ w) = u× v+ u× w

Left-distributivity over scalar mul. ` ∀ a u v. (a%u)× v = a%(u× v)

Right-distributivity over scalar mul. ` ∀a u v. u× (a%v) = a%(u× v)

Table 2: Cross Product Properties

One of major properties of cross product between two vector is that u × v is
perpendicular to u and v, therefore it is normal to the plane containing them. This
property is used in particular as a criterion to check the collinearity of two vectors,
as follows:

Theorem 2.9 (Cross product and collinearity)
` ∀ x : C3 y. x× y = cvector_zero ⇔ collinear_cvectors x y

We also define many basic notions of linear algebras like, e.g., the canonical
basis of the vector space, i.e., the set of vectors (1, 0, 0, 0, . . . ), (0, 1, 0, 0, . . . ),
(0, 0, 1, 0, . . . ), etc. This is done as follows:

Definition 2.10 ` ∀k. cbasis k = λi. if i = k then 1 else 0

With this definition cbasis 1 represents (1, 0, 0, . . . ), cbasis 2 represents (0, 1, 0, . . . ),
etc. Finally, an essential notion of finite-dimension vector spaces is the one of ma-
trix. Matrices are essentially defined as vectors of vectors: a M × N matrix is
formalized by a value of type CNM. Several arithmetic notions can then be formal-
ized over matrices:

Definition 2.11 (Complex Matrix Arithmetic)
` m1 +CNM m2 = lambda i. m1$i+CN m2$i

` a %CNM m = lambda i. a %CN m$i

` m1 ∗ ∗ m2 = lambda i j. vsum (1..dimindex(: N)) (λk. m1$i$k ∗ m2$k$j)
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where vsum s f denotes
∑

x∈s f x, dimindex s is the number of elements of s,
and (: N) is the set of all inhabitants of the type N (the “universe” of N, also written
UNIV). Note that the indices providing the type information of operators, e.g., +CNM ,
are for readability purposes only: the overload mechanism of HOL Light allows
one to use the same symbol for various types. We will use them, every time we
introduce a new domain to a function.

Here, we conclude by the definition of matrix-vector multiplication, which
makes the connection between matrices and vectors, essentially used in appli-
cations:

Definition 2.12 (Matrix-Vector Multiplication)
` m ∗ ∗ v = lambda i. vsum (1..dimindex(: N)) (λj. m$i$j ∗ v$j)

In [9], we present the formalization of complex vector with infinite dimension, us-
ing the concept of linear operators. In next section, not only we derive properties
of complex matrices from the properties of linear operators, we connect our for-
malization of finite and infinite complex vectors by deriving the properties of the
former from the latter.

3 Deriving Complex Vectors Properties
Complex vector spaces can be seen as a particular case of complex function spaces,
presented in [9]: indeed, if the type A in A→ C is instantiated with a finite type,
say a type with three inhabitants one, two, three, then functions mapping each
of one, two, three to a complex number can be seen as 3-dimension vectors. For
instance the function {one 7→ 1+ ii, two 7→ ii, three 7→ 2}, (where ii denotes
the HOL Light counterpart of the complex number j) can be seen as the vector
(1 + j, j, 2). So, for a type t with n inhabitants, there is a bijection between
complex-valued functions of domain t and complex vectors of dimension n.

This bijection is actually at the heart of vector representation in HOL Light,
as introduced by Harrison [4], defining the type constructor (A)finite_image
which has a finite set of inhabitants whatever is A. In addition, if A is already
finite and has n elements then (A)finite_image also has n elements. Harrison
also defines two inverse operations: ` mk_cart : ((A)finite_image→ B)→ BA

and ` dest_cart : BA → ((A)finite_image→ B) where BA is the type of vectors
with as many coordinates as A has elements.

For complex vectors, we can even go further by looking at how operations trans-
late from one type to the other. For instance, by using the above inverse func-
tions, we can transfer cfun addition to the type CN as follows: v+CN w = mk_cart
(dest_cart v+cfun dest_cart w). This definition basically takes two vectors as
input, transforms them into values of type cfun, computes their cfun-addition,
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and transforms back the result into a vector. This operation can actually be easily
seen to be equivalent to Definition 2.1. Therefore, not only we have a bijection be-
tween the types (N)finite_image→ C and CN, but also an isomorphism between
the structures ((N)finite_image→ C,+cfun) and (CN ,+CN).

We now show how to use these observations to derive automatically properties
from the type cfun to the type CN.

3.1 Arithmetic properties

We provide in our formalization an Ocaml function cfun_to_cvector which takes
as input a theorem stating some fact about cfun arithmetic, and returns its coun-
terpart CN theorem. For example, the theorem CFUN_ADD_RDISTRIB states the
right distributivity of cfun scalar multiplication over addition:

Theorem 3.1 (CFUN_ADD_RDISTRIB)
` ∀a b f. (a+ b) % f = a % f + b % f

Then the following Ocaml function call returns automatically the counterpart the-
orem for complex vectors:
# cfun_to_cvector CFUN_ADD_RDISTRIB;;
val it : thm = ∀a b v : CN. (a+ b) % v = a % v + b % v

In practice, the theorems dealing with complex function arithmetic are stored
in a database (a simple association list mapping names with theorems). Then
the function cfun_to_cvector is called on all the theorems of this database
and the result is automatically assigned to a theorem with the same name ex-
cept that the prefix CFUN_ is replaced by CVECTOR_. This entails a systematic
transfer of new cfun theorems to CN, ensuring a naming uniformity across both
types. For instance the above theorem CFUN_ADD_RDISTRIB yields the theorem
CVECTOR_ADD_RDISTRIB. Given th, the theorem we want to port to cfun, the im-
plementation of cfun_to_cvector follows the following steps:

1. Instantiate cfun (i.e., A→ C) with (N)finite_image→ C (application of
the HOL Light primitive rule of type instantiation);

2. Replace every variable f of type (N)finite_image→ C by dest_cart v,
where v is of type CN. This is done by (higher-order) rewriting with the
following theorem proved easily by using the bijectivity of dest_cart:

Theorem 3.2 (FORALL_CFUN) ` ∀P. (∀f. P f)⇔ (∀v. P (dest_cart v))

Example 1 If th is CFUN_ADD_RDISTRIB, then we obtain the theorem:
` ∀a b v. (a+ b) % dest_cart v = a % dest_cart v+ b % dest_cart v
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3. “Pull” every occurrence of dest_cart from atomic to outermost positions.
This is done by rewriting with the following commutativity theorem:

Theorem 3.3 (PULL_DEST_CART)
` ∀a v v1 v2.
dest_cart v1 +cfun dest_cart v2 = dest_cart (v1 +CN v2)
∧ a %cfun dest_cart v = dest_cart (a %CN v)
∧ cfun_zero = dest_cart (cv_zero)

This theorem is easily proved by using the definitions of the involved opera-
tions and the fact that dest_cart is a bijection.

Example 2 Applying this step after Example 1 yields:
` ∀a b v. dest_cart ((a+ b) % v) = dest_cart (a % v + b % v)

4. Apply injectivity of dest_cart by using the following theorem:

Theorem 3.4 (DEST_CART_INJ)
` ∀f g. dest_cart f = dest_cart g⇔ f = g

which follows trivially from the fact that dest_cart is a bijection.

Example 3 Applying injectivity of dest_cart after Example 2 yields:
` ∀a b v. (a+ b) % v = a % v + b % v

which corresponds indeed to the CN counterpart of the original theorem.

More than 50 theorems over CN were derived from cfun using solely these four
steps. As can be seen this procedure is extremely simple and its implementation
does not take more than 10 lines. The proofs of all three theorems FORALL_CFUN,
PULL_DEST_CART and DEST_CART_INJ take no more than 15 lines, including their
statements. Finally, since all the theorems dealing with cfun arithmetic have been
stored in a single database, deriving the corresponding theorems for CN is simply
achieved by iterating over this database and applying cfun_to_cvector.

This approach is new, as far as we know. The closest related work that we are
aware of are [2, 8] which use type isomorphisms in order to improve proof reuse in
Coq. These works make a thorough analysis of type isomorphisms and their use
to change data representation in presence of dependent types. Also in [6, 7], by
reinterpreting the concept of quotient operation of set theory, types are divided
by an equivalence relation to create new types; quotient types. Then constants
and those theorems about the original types, which are valid about new types,
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are automatically lifted to corresponding constants and theorems of the quotient
types. All these approaches go much further than we do by being more general
and systematic, however our method is a lot simpler and applies not only to type
isomorphisms but also simply to sets which are in bijection. This simplicity of
our approach allowed us to make the corresponding development very quickly and
concisely.

3.2 Inner Spaces as Type Classes

We now derive from properties of cfun inner spaces their counterpart properties
for CN with the dot product (Definition 2.3), exactly as it is the case in theorem
provers making use of type classes [17, 13]. Note however that, in addition to
the instantiation of the axiom for inner spaces, we also deal with the bijection
between complex-valued functions with finite dimension and the set of complex
vectors. This work thus goes beyond what is done with standard type classes.

This time, we define an Ocaml function inner_space_to_cdot which takes as
input a theorem th of the form is_inner_space s⇒ P s and turns it into P′ s

where P′ is the cdot counterpart of P. For instance the following theorem:

Theorem 3.5 (INSPACE_ADD_RZERO)
` ∀s inprod (f : cfun).
is_inner_space (s, inprod) ∧ f ∈ s⇒ inprod f cfun_zero = 0

should be automatically turned into:

Theorem 3.6 (CDOT_RZERO)
` ∀v : CN. v · cfun_zero = 0

This is implemented as follows:

1. Remove the is_inner_space antecedent, by applying Modus Ponens be-
tween th and the following theorem, which states that the dot product, up
to translation to the cfun type, is an inner product over the universe of
(N)finite_image→ C:

Theorem 3.7 (CDOT_IS_INNER_SPACE)
` is_inner_space ((: (N)finite_image→ C), λf g. (mk_cart f) · (mk_cart g))

Example 4 For instance Theorem 3.5 is turned into:
` ∀f. f ∈ (: (N)finite_image→ C) ⇒ mk_cart f · mk_cart cfun_zero = 0.

2. Remove trivial membership predicates of the form f ∈ (: (N)finite_image
→ C), by rewriting with IN_UNIV: ` ∀x : A. x ∈ (: A).
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Example 5 The same example becomes:
` ∀f. mk_cart f · mk_cart cfun_zero = 0.

3. Apply steps 2 and 3 of cfun_to_cvector, i.e., rewrite by FORALL_CFUN and
PULL_MK_ CART, yielding, for the example:
` ∀v. mk_cart (dest_cart v) · mk_cart (dest_cart cv_zero) = 0.

4. Remove the occurrences of dest_cart and mk_cart by using step 4 of
cfun_to_cvector and the fact that dest_cart and mk_cart are inverse.
The example finally becomes:
` ∀v. v · cv_zero = 0.

The implementation of this procedure does not take more than 20 lines. Only
the theorem CDOT_IS_ INNER_SPACE is non trivial, but a similar result would be
proved in any formalization of the dot product anyway so its cost is not proper to
our method. The above procedure can easily be extended to integrate transforma-
tions of theorems dealing with orthogonality, which yielded, in the end, around 30
theorems proved entirely automatically. Note that these theorems are not toy ex-
amples: even involved results like the Cauchy Schwartz inequality are “translated”
using this method. As far as we know, this approach is also new in HOL Light:
the only related work is [11], which provides an implementation of type classes in
HOL Light. However it is very unsatisfying since it actually runs again the tactic
scripts for every instantiation of the type class.

3.3 Deriving Complex Matrices Arithmetic from Linear Op-
erators

We finally present the way to derive matrix arithmetic from operators’ and linear
operators’ arithmetic. It is well known that, to any linear operator op of a finite
dimension vector space, one can map a matrix m such that, for every vector v,
op v = m.v, where . denotes matrix-vector multiplication. We first present the
transformation cmatrix_of_cop allowing to obtain this matrix, and its converse
cop_of_cmatrix, as well as their important properties.

The matrix canonically associated with a linear operator op is classically ob-
tained by taking for every column the outcome of op applied to a basis vector.
More precisely:

M =

 (op e1)1 (op e2)1 . . .
(op e1)2 (op e2)2 . . .
. . . . . . . . .


where (e1, e2, . . . ) is the canonical base of the space.
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In addition, since operators are defined on cfun, we need to apply the now
usual translations from/to CN. Formally, this yields the following definition:

Definition 3.8 (cmatrix_of_cop)
` ∀op. cmatrix_of_cop op

= lambda i j. mk_cart (op (dest_cart (cbasis j)))$i

where cbasis comes from Definition 2.10.
Reciprocally, the operator associated with a matrix is classically defined simply

by taking matrix-vector multiplication:

Definition 3.9 (cop_of_cmatrix)
` ∀m : CNM. cop_of_cmatrix m = λf : cfun. dest_cart (m ∗ ∗ mk_cart f)

where ∗∗ is the matrix-vector multiplication (Definition 2.12).
We then prove the following theorem:

Theorem 3.10
` ∀m : CNM. cmatrix_of_cop (cop_of_cmatrix m) = m

` ∀op. is_linear_cop op⇒ cop_of_cmatrix (cmatrix_of_cop op) = op

This theorem is not trivial (especially the second conjunct) and requires in partic-
ular some induction on the space dimension.

These theorems allow to develop again a procedure similar to the ones for
Sections 3.1 and 3.2. Once again we define an Ocaml function lincop_to_cmatrix
which takes a property on operators (linear or not) as input and returns its matrix
counterpart. For instance, take the theorem stating the left-distributivity between
operators when the first operator is linear:

Theorem 3.11 (LINCOP_ADD_MUL_LDISTRIB)
` ∀op1 op2 op3. is_linear_cop op3

⇒ op3 ∗ ∗ (op1 + op2) = op3 ∗ ∗ op1 + op3 ∗ ∗ op2

Then:
# lincop_to_cmatrix LINCOP_ADD_MUL_LDISTRIB;;
val it : thm = ∀m1 m2 m3. m3 ∗ ∗ (m1 + m2) = m3 ∗ ∗ m1 + m3 ∗ ∗ m2

We present once again the steps that allow to implement such a function:

1. Replace every universally quantified operator by a matrix, using the following
theorem:

Theorem 3.12 (FORALL_COP)
∀P. (∀op. P op)⇒ (∀m. P (cop_of_cmatrix m))

∀P. (∀op. is_linear_cop op⇒ P op)⇔ (∀m. P (cop_of_cmatrix m))
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which allows us to replace both linear and non-linear operators by matrices
(note that a property which holds for non-linear operators also holds for
linear ones since these are more general).

2. Pull cop_of_cmatrix occurrences to outermost positions, by rewriting with
the following theorem:

Theorem 3.13 (PULL_COP_OF_CMATRIX)
∀a m1 m2.

cop_of_cmatrix m1 ∗ ∗ cop_of_cmatrix m2 = cop_of_cmatrix (m1 ∗ ∗m2)
∧ cop_of_cmatrix m1 + cop_of_cmatrix m2 = cop_of_cmatrix (m1 + m2)

∧ a % cop_of_cmatrix m = cop_of_cmatrix (a % m)

∧ cop_zero = cop_of_cmatrix cmatrix_zero

3. Eliminate cop_of_cmatrix by injectivity.

Once again, this very simple procedure takes no more than 10 lines to im-
plement, with no more than 20 lines to prove all the required theorems. Still,
it is powerful enough to derive automatically more than 50 theorems from op-
erators and linear operators properties. The only difference is that the theorem
FORALL_COP has an implicational form for linear operators. This shows again how
flexible our method is since matrices are in bijection with linear operators only1.

This technique can be used to derive other properties and can be applied to
other situations, for instance to deal with the alternative representation of com-
plex vectors as two real vectors (one for the real part and one for the imaginary
part). In the next section, we now apply all these results to the formalization of
electromagnetic planar waves.

4 Conclusion
We presented a toolbox for complex vector spaces in HOL Light: complex function
spaces were defined along with useful operations on them; complex vectors, in
finite dimension, were formalized, adding some particular cases in dimension 3. An
essential aspect of this formalization is that it is engineering-oriented: we favoured
the notions and theorems that are useful in applications, and we provided tactics to
automate the most frequent tasks. We then made use of this theory to formalize

1Note that since dependent types are much more powerful than the simple type theory used in
HOL, such sets bijections could still often be represented as type isomorphisms in a type theory
like the Calculus of Inductive Constructions.
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a fragment of electromagnetics, and we verified some classical results for plane
waves: the law of the plane of incidence and of reflection.

In addition, an insightful aspect of our formalization is that many of the proper-
ties of complex vector spaces have been proved entirely automatically by analyzing
their relation with complex function spaces. This reminds of many proof engineer-
ing techniques, e.g., type isomorphism or type classes, but our approach presents
the advantage of being very easy to implement by making an elegant use of the
rewriting functions already present in HOL Light.

As a future work, we plan to develop extensively electromagnetic applications,
particularly in the verification of optical systems. We also investigate ray and
quantum optics which make both use of the presented formalization. Finally, we
consider applying our proof engineering technique to other cases like the dual
data representation of complex vectors as vectors of complexes or as a pair of real
vectors.
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