
Dynamic Fault Trees Analysis using an Integration

of Theorem Proving and Model Checking

Yassmeen Elderhalli1, Osman Hasan1,2, Waqar Ahmad2

and Sofiène Tahar1

1Department of Electrical and Computer Engineering,
Concordia University, Montréal, Canada
{y elderh,o hasan,tahar}@ece.concordia.ca

2Electrical Engineering and Computer Science,
National University of Science and Technology, Islamabad, Pakistan

waqar.ahmad@seecs.nust.edu.pk

TECHNICAL REPORT

December 2017

1

Abstract

Dynamic fault trees (DFTs) have emerged as an important tool for capturing
the dynamic behavior of system failure. These DFTs are then analyzed qual-
itatively and quantitatively using stochastic or algebraic methods to judge the
failure characteristics of the given system in terms of the failures of its sub-
components. Model checking has been recently proposed to conduct the failure
analysis of systems using DFTs with the motivation to provide a rigorous failure
analysis of safety-critical systems. However, model checking has not been used
for the DFT qualitative analysis and the reduction algorithms used in model
checking are usually not formally verified. Moreover, the analysis time grows
exponentially with the increase of the number of states. These issues limit the
usefulness of model checking for analyzing complex systems used in safety-critical
domains, where the accuracy and completeness of analysis matters the most. To
overcome these limitations, we propose a comprehensive methodology to perform
the qualitative and quantitative analysis of DFTs using an integration of theorem
proving and model checking based approaches. For this purpose, we formalized
all the basic dynamic fault tree gates using higher-order logic based on the alge-
braic approach and formally verified some of the simplification properties. This
formalization allows us to formally verify the equivalence between the original
and reduced DFTs using a theorem prover, and conduct the qualitative analysis.
We then use model checking to perform the quantitative analysis of the formally
verified reduced DFT. We applied our methodology to five benchmarks and the
results show that the formally verified reduced DFT was analyzed using model
checking with up to six times less states and up to 133000 times faster.

Keywords— Dynamic Fault Trees, Theorem Proving, Model Checking, HOL4, STORM

2

Contents

1 Introduction 4

2 Related Work 5

3 Proposed Methodology 7

4 Formalization of Dynamic Fault Trees in HOL 8
4.1 Identity Elements . 8
4.2 Temporal Operators . 9
4.3 Fault Tree Gates . 10

5 Formal Verification of the Simplification Theorems 13
5.1 Simplification Theorems using OR and AND 14
5.2 Simplification Theorems using Before Operator 14
5.3 Simplification Theorems using Simultaneous Operator 16
5.4 Simplification Theorems using Inclusive Before Operator 18
5.5 Simplification Theorems for Combinations of Operators 20

6 Experimental Results 21
6.1 Verifying the Reduced DFTs . 24

6.1.1 Verifying the Reduced Cascaded PAND DFT (CPAND) 24
6.1.2 Verifying the Reduced AHRS DFT 25
6.1.3 Verifying the Reduced MCS DFT 26
6.1.4 Verifying the Reduced HECS DFT 26
6.1.5 Verifying the Reduced HCAS DFT 28

6.2 Probabilistic Analysis Results using STORM 28

7 Conclusion 30

3

1 Introduction

A fault tree (FT) [1] is a graphical representation of the causes of failure of a system
that is usually represented as the top event of the fault tree. FTs can be categorized
as Static Fault trees (SFT) and Dynamic Fault trees (DFT) [1]. In SFT, the struc-
ture function (expression) of the top event describes the failure relationship between
the basic events of the tree using FT gates, like AND and OR, without considering
the sequence of failure of these events. DFTs, on the other hand, model the failure
behavior of the system using dynamic FT gates, like the spare gate, which can capture
the dependent behavior of the basic events along with the static gates. DFTs provide
a more realistic representation of systems using the dynamic gates. For example, the
spare DFT gate can model the failure of the car tires and their spares that cannot be
modeled using the SFT gates.

Fault Tree Analysis (FTA) [1] has become an essential part of the safety-critical
system design process, where the causes of failure and their probabilities should be
considered at an early stage. There are two main phases for FTA, the qualitative anal-
ysis and the quantitative analysis [2]. In the qualitative analysis, the cut sets and cut
sequences are determined, which, respectively, represent combinations and sequences
of basic events of the DFT that cause a system failure [1]. The quantitative analysis
provides numeric analysis results about the probability of failure of the top event and
the mean time to failure among other metrics [1]. Dynamic FTA is commonly done
algebraically [3] and using Markov chains [2]. In the algebraic approach, an algebra
similar to the Boolean algebra is used to determine the structure function of the top
event. Based on this algebra, the structure function can be reduced to determine a
reduced form of the cut sets and sequences. The probabilistic analysis of the FT can
then be performed based on the reduced form of the generated structure function by
considering the probability of failure of the basic events. For the Markov chain based
analysis, the FT is first converted to its equivalent Markov chain and then the probabil-
ity of failure of the top event is determined by analyzing the generated Markov chain.
The resultant Markov chain can be very large, while dealing with complex systems,
which limits the usage of Markov chains in DFT analysis.

Traditionally, the dynamic FTA is performed using paper-and-pencil proof methods
or computer simulation. While the former is error prone, specially for large systems, the
latter provides a more scalable alternative. However, the results of simulation cannot
be termed as accurate due to the involvement of several approximations in the under-
lying computation algorithms and the sampling based nature of this method. Given
the dire need of accuracy in failure analysis of safety-critical systems, formal meth-
ods [1] have also been recently explored for DFT analysis. For example, the STORM
probabilistic model checker [4] has been used to analyze DFTs based on Markov chain
analysis [5]. Similarly, higher-order logic (HOL) theorem proving has been used to for-
malize and analyze SFTs [6]. However, probabilistic model checking has not been used
in the formal qualitative analysis of DFTs. Moreover, it cannot support the analysis of
large systems unless a reduction algorithm is invoked, and the implementation of such
reduction is usually not formally verified. This means that one cannot ascertain that
the analysis results after reduction are accurate or correspond to the original system.

4

On the other hand, the only support for FTs in HOL is limited to SFTs.
We propose to overcome the above-mentioned limitations of formal DFT analy-

sis by using an integrated model checking and theorem proving based methodology.
We propose to use theorem proving for verifying the equivalence between the origi-
nal and the reduced form of the DFT. The formally verified reduced DFT can then
by quantitatively analyzed using model checking. Thus, the proposed methodology
tends to provide a more sound analysis than the sole model checking based analysis
due to the involvement of a theorem prover in the verification of the reduced model.
Moreover, it caters for the state-space based issues of model checking by providing it
a reduced model for the quantitative analysis. The foremost components of the pro-
posed methodology include the formalization of the dynamic gates and their formally
verified reduction theorems, which in turn are used to verify the equivalence between
the original DFTs and the reduced ones. Using this verified reduced DFT, a reduced
form of the cut sets and sequences of the structure function of the DFT can be for-
mally verified within a theorem prover. We then perform the quantitative analysis of
the formally verified reduced DFT in model checking and thus reduce the generated
state space and the analysis time. More importantly, we are confident that the analysis
results of the reduced DFT correspond to the original DFT, as the reduction is verified
using theorem proving. In order to illustrate the utilization and effectiveness of the
proposed methodology, we analyzed five benchmark DFTs, i.e., a Hypothetical Exam-
ple Computer System (HECS) [2], a Hypothetical Cardiac Assist System (HCAS) [3,7],
a scaled cascaded PAND DFT [7, 8], a multiprocessor computing system [7, 9] and a
variant of the Active Heat Rejection System (AHRS) [10].

The reduced DFTs and their reduced cut sequences are formally verified using HOL4
theorem prover. In addition, each DFT is analyzed twice using STORM model checker,
one without any reduction and the other using the reduced DFTs. The analysis results
show that using the verified reduced DFT for the quantitative analysis allows us to
reduce the number of generated states by the model checker and the time required to
perform the analysis.

The rest of the report is structured as follows: Section 2 presents some related work.
Section 3 provides a detailed description of the proposed methodology. In Section 4,
we present our HOL formalization of DFT gates. In Section 5, we provide the details of
the verification of the simplification theorems. Section 6 describes a set of experimental
results. Finally, we conclude the report in Section 7.

2 Related Work

DFT analysis has been conducted using various tools and techniques [1]. For example,
Markov chains have been extensively used for the modeling and analysis of DFTs [2].
The scalability of Markov chains in analyzing large DFTs is achieved by using a modu-
larization approach [11], where the DFT is divided into two parts: static and dynamic.
The static subtree is analyzed using the ordinary SFT analysis methods, such as Bi-
nary Decision Diagrams (BDD) [1], and the dynamic subtree is analyzed using Markov
chains. This kind of modularization approach is available in the Galileo tool [12]. In [7],

5

the authors use a compositional aggregation technique to develop Input-Output Inter-
active Markov Chains (I/O-IMC) to analyse DFTs. This approach is implemented in
the DFTCalc tool [13]. The algebraic approach has also been extensively used in the
analysis of DFTs [3], where the top event of the DFT can be expressed and reduced
in a manner similar to the ordinary Boolean algebra. The reliability of the system
expressed algebraically can be evaluated based on the algebraic expression of the top
event [8]. The main problem with the Markov chain analysis is the large generated
state space when analyzing complex systems, which requires high resources in terms
of memory and time. Moreover, simulation is usually utilized in the analysis process,
which does not provide accurate results. Although modularization tends to overcome
the large state-space problem with Markov chains, we cannot obtain a verified reduced
form of the cut sequences of the DFT. The algebraic approach provides an algebraic
framework for performing both the reduction and the analysis of the DFT. However,
the foundations of this approach have not been formalized, which implies that the re-
sults of the analysis should not be relied upon especially in safety-critical systems.

Formal methods can overcome the above-mentioned inaccuracy limitations of tra-
ditional DFT analysis techniques. Probabilistic model checkers, such as STORM [4],
have been used for the analysis of DFTs. The main idea behind this approach is to au-
tomatically convert the DFT of a given system into its corresponding Markovian model
and then analyze the safety characteristics quantitatively of the given system using the
model checker [14]. The STORM model checker accepts the DFT to be analyzed in
the Galileo format [12] and generates a failure automata of the tree. This approach al-
lows us to verify failure properties, like probability of failure, in an automatic manner.
However, the approach suffers from scalability issues due to the inherent state-space
explosion problem of model checking. Moreover, the implementation of the reduction
algorithms used in model checkers are generally not formally verified. Finally, model
checkers have only been used in the context of probabilistic analysis of DFTs and not
for the qualitative analysis, as the cut sequences in the qualitative analysis cannot be
provided unless the state machine is traversed to the fail state, which is difficult to
achieve for large state machines.

Exploiting the expressiveness of higher-order logic (HOL) and the soundness of
theorem proving, Ahmad et.al [6, 15] formalized static fault trees in HOL4 and evalu-
ated the probability of failure based on the Probabilistic Inclusion-Exclusion principle.
However, the main problem in theorem proving lies in the fact that it is interactive, i.e.,
it needs user guidance in the proof process. Moreover, to the best of our knowledge, no
higher-order-logic formalization of DFTs is available in the literature so far and thus
it is not a straightforward task to conduct the DFT analysis using a theorem prover as
of now.

It can be noted that both model checking and HOL theorem proving exhibit com-
plementary characteristics, i.e., model checking is automatic but cannot deal with large
systems and does not provide qualitative analysis of DFTs, while HOL theorem proving
allows us to verify universally quantified generic mathematical expressions but at the
cost of user interventions. In this work, we leverage upon the complementary nature of
these approaches to present an integrated methodology that provides the expressiveness
of higher-order logic and the existing support for automated probabilistic analysis of

6

DFTs using model checking. The main idea is to use theorem proving to formally verify
the equivalence between the original and the reduced DFT and then use a probabilistic
model checker to conduct quantitative analysis on the reduced DFT. As a result, both
the generated state machine and the analysis time are reduced. In addition, a formally
verified reduced form of the cut sequences is also obtained.

3 Proposed Methodology

The proposed methodology for the formal DFT analysis is depicted in Figure 1. It
provides both formal DFT qualitative analysis using theorem proving and quantitative
analysis using model checking. The DFT analysis starts by having a system descrip-
tion. The failure behavior of this system is then modeled as a DFT, which can be
reduced based on the algebraic approach [3]. The idea of this algebraic approach is
to deal with the events, which can represent the basic events or outputs, according to
their time of failure (d). For example, d(X) represents the time of failure of an event
X. In the algebraic approach, temporal operators (Simultaneous (∆), Before (C) and
Inclusive Before (E)) are defined to model the dynamic gates. Based on these temporal
operators, several simplification theorems exist to perform the required reduction. This
reduction process can be erroneous if it is performed manually using paper-and-pencil.
Moreover, reduction algorithms may also provide wrong results if they are not formally
verified. In order to formally check the equivalence between the original model and the
reduced one, we developed a library of formalized dynamic gates in HOL and verified
their corresponding simplification theorems. These foundations allow us to develop a
formal model for any DFT using the formal gate definitions. Based on the verified sim-
plification theorems, we can then verify the equivalence between the formally specified
original and the reduced DFT models using a theorem prover. The formally verified
reduced structure function can then be utilized to perform the qualitative analysis of
the reduced model in the theorem prover as well as its quantitative analysis by using
a model checker.

The qualitative analysis represents an important and a crucial step in DFT analysis,
since it allows to identify the sources of failure of the system without the availability of
any information or actual numbers about the failure probabilities of the basic events.
In static fault trees, the qualitative analysis is performed by finding the cut sets. Due
to the temporal behavior of the dynamic gates, just finding the cut sets does not
capture the sequence of failure of events that can cause the system failure. The cut
sequences on the other hand capture not only the combination of basic events but also
the sequence of events that can cause the system failure. In the proposed methodology,
a theorem prover is used to verify a reduced expression of the structure function of the
top event, which ensures that the reduction process is accurate. Using this reduced
structure function, a formally verified reduced form of the cut sequences can also be
determined.

The formally verified cut sets and sequences for the DFT and a reduced form of the
structure function of the top event can now be used in a probabilistic model checker
to do the quantitative analysis of the given system. Because of the reduced model, we

7

Figure 1: Overview of Proposed Methodology

get a reduction in the analysis time and number of states. In this work, the STORM
model checker is used to perform the probabilistic analysis of the DFT. Several input
languages are supported by this model checker including the Galileo format for DFT.
Both the probability of failure of the top event as well as the mean time to failure
can be computed using STORM. It is worth mentioning that since the analyzed model
of the DFT is a Markov Automata (MA) (in case of non-deterministic behavior) or
a Continuous Time Markov Chain (CTMC), only exponential failure distributions are
supported by the proposed methodology.

4 Formalization of Dynamic Fault Trees in HOL

In this section, we present the formal definitions in HOL of the identity elements, the
temporal operators and the dynamic gates. It is assumed that a fault is represented
using an event. The occurrence of a fault indicates that the corresponding event is
true. It is also assumed that the events are non-repairable.

4.1 Identity Elements

Two identity elements are defined, these are the ALWAYS and the NEVER elements.
The ALWAYS identity element represents an event with a time of failure equals to 0.
The NEVER element represents an event that never occurs. These two elements are
defined based on their time of failure in HOL as follows:

Definition 1. ALWAYS element
` ALWAYS = (0:extreal)

Definition 2. NEVER element
` NEVER = PosInf

8

where extreal is the HOL data type for extended real numbers, which includes positive
infinity (+∞) and negative infinity (-∞) and PosInf is the (+∞) representation in
HOL.

4.2 Temporal Operators

We formalize three temporal operators to model the dynamic behavior of the DFT:
Simultaneous (∆), Before (C) and Inclusive Before (E). The Simultaneous operator
has two input events, which represent basic events or subtrees. The time of occurrence
(failure) of the output event of this operator is equal to the time of occurrence of the
first or the second input event considering that both input events occur at the same
time:

d(A∆B) =

{
d(A), d(A) = d(B)

+∞, d(A) 6= d(B)
(1)

It is assumed that for any two basic events, if the failure distribution of the random
variables that represent these basic events is continuous then they cannot have the
same time of failure, and hence the result of the Simultaneous operator between them
is NEVER. d(A∆B) = NEV ER (2)

where A and B are basic events with random variables that exhibit continuous failure
distributions.

The Before operator accepts two input events, which can be basic events or two
subtrees. The time of occurrence of the output event of this operator is equal to the
time of occurrence of the first input event if the first input event (left) occurs before
the second input event (right), otherwise the output never fails:

d(ACB) =

{
d(A), d(A) < d(B)

+∞, d(A) ≥ d(B)
(3)

The Inclusive Before combines the behavior of both the Simultaneous and Before
operators, i.e., if the first input event (left) occurs before or at the same time as the
second input event (right), then the output event occurs with a time of occurrence
equal to the time of occurrence of the first input event:

d(AEB) =

{
d(A), d(A) ≤ d(B)

+∞, d(A) > d(B)
(4)

We formalize these temporal operators in HOL as follows:

Definition 3. Simultaneous Operator
` ∀ (A:extreal) B. D SIMULT A B = if (A = B) then A else PosInf

Definition 4. Before Operator
` ∀ (A:extreal) B. D BEFORE A B = if (A < B) then A else PosInf

Definition 5. Inclusive Before Operator
` ∀ (A:extreal) B. D INCLUSIVE BEFORE A B = if (A ≤ B) then A else PosInf

9

(a) AND (b) OR (c) PAND (d) FDEP (e) Spare

Figure 2: Fault Tree Gates

where A and B represent the time of failure of the events A and B, respectively.

4.3 Fault Tree Gates

Fig. 2 shows the main FT gates [2]; dynamic gates as well as the static ones.

Although, the AND (·) and OR (+) gates are considered as static operators or gates,
their behavior can be represented using the time of occurrence of the input events. For
example, the output event of an AND gate occurs if and only if all its input events
occur. This implies that the output of the AND gate occurs with the occurrence of
the last input event, which means that the time of occurrence of the output event
equals the maximum time of occurrence of the input events. The OR gate is defined
in a similar manner with the only difference that the output event occurs with the
occurrence of the first input event, i.e., the minimum time of occurrence of the inputs:

d(A ·B) = max(d(A) , d(B)) (5)

d(A + B) = min(d(A) , d(B)) (6)

We model the behavior of these gates in HOL as follows:

Definition 6. AND gate (operator)
` ∀ (A:extreal) B. D AND A B = max A B

Definition 7. OR gate (operator)
` ∀ (A:extreal) B. D OR A B = min A B

where max and min are functions that return the maximum and the minimum values
of their arguments, respectively.

The Priority-AND (PAND) gate is a special case of the AND gate, where the output
occurs when all the input events occur in sequence, conventionally from left to right.
For the PAND gate, shown in Figure 2c, the output Q occurs if A and B occur and A
occurs before or with B. The behavior of the PAND gate can be represented using the
time of failure as:

d(Q) =

{
d(B), d(A) ≤ d(B)

+∞, d(A) > d(B)
(7)

The behavior of the PAND gate can be expressed using the temporal operators as:

10

Q = B · (AEB) (8)

We define the PAND in HOL as:

Definition 8. PAND gate
` ∀ (A:extreal) B. PAND A B = if (A ≤ B) then B else PosInf

We verify in HOL that the PAND exhibits the behavior given in Equation 8:

Theorem 1. ` ∀ A B. PAND A B = D AND B (D INCLUSIVE BEFORE A B)

The Functional Dependency (FDEP) gate , shown in Figure 2d, is used when there
is a failure dependency between the input events or sub-trees, i.e., the occurrence of
one input (or a sub-tree) can trigger the occurrence of other input events (or subtrees)
in the fault tree. For example, in Figure 2d, the occurrence of T triggers the occurrence
of A. This implies that A occurs in two different ways: firstly, when A occurs by itself,
and secondly, when the trigger T occurs. This means that the time of failure of AT

(triggered A) equals the minimum time of occurrences of T and A:

d(AT) = min(d(A), d(T)) (9)

We define the FDEP in HOL as:

Definition 9. FDEP gate
` ∀ (A:extreal) T. FDEP A T = min A T

where T is the occurrence time of the trigger. We also verify in HOL that the FDEP
is equivalent to an OR gate as follows:

Theorem 2. ` ∀ A T. FDEP A T = D OR A T

The spare gate, shown in Figure 2e, represents a dynamic behavior that occurs in
many real world systems, where we usually have a main part and some spare parts.
The spare parts are utilized when the main part fails. The spare gate, shown in Figure
2e, has a main input (A) and a spare input (B). After the failure of A, B is activated.
The output of the spare gate fails if both the main input and the spare fail. The spare
gate can have several spare inputs, and the output fails after the failure of the main
input and all the spares. The spare gate has three variants depending on the failure
behavior of the spare part: the hot spare gate (HSP), the cold spare gate (CSP) and
the warm spare gate (WSP). In the HSP, the probability of failure for the spare is the
same in both the dormant and the active states. For the CSP, the spare part cannot
fail unless it is activated. The WSP is the general case, where the spare part can
fail in the dormant state as well as in the active state, but the failure distribution of
the spare in its dormant state is different from the one in the active mode, and it is
usually attenuated by a dormancy factor. In order to be able to distinguish between the
different states of the spare input, two different variables are assigned to each state. For
example, for the spare gate, shown in Figure 2e, B is represented using two variables;
Ba for the active state and Bd for the dormant state.

The input events of the spare gate cannot occur at the same time if they are basic
events. However, if these events are subtrees then they can occur at the same time.

11

For a two input warm spare gate, with A as the primary input and B as the spare
input, the output event occurs in two ways; firstly, if A fails first then B, i.e., the spare
part, is activated and then B fails in its active state. The second way is when B fails
in its dormant state (inactive) then A fails with no spare to replace it. For the general
case where the input events can occur at the same time (if they are subtrees or depend
on a common trigger), an additional option for the failure of the spare gate is added,
where the two input events occur at the same time. This general warm spare gate can
be described as:

Q = A.(Bd C A) + Ba.(ACBa) + A∆Ba + A∆Bd (10)

We formalize the WSP in HOL as:

Definition 10. Warm Spare Gate
` ∀ A B a B d. WSP A B a B d = D OR (D OR (D OR (D AND A(D BEFORE B d A))

(D AND B a(D BEFORE A B a)))(D SIMULT A B a))(D SIMULT A B d)

The time of failure of the CSP gate with primary input A and cold spare B can be
defined as:

d(Q) =

{
d(B), d(A) < d(B)

+∞, d(A) ≥ d(B)
(11)

which means that the output event of the CSP occurs if the primary input fails and
then the spare fails while in its active state. We define the CSP in HOL as:

Definition 11. Cold Spare Gate
` ∀ (A:extreal) B. CSP A B = if (A < B) then B else PosInf

We verify in HOL that the CSP gate is a special case of WSP, where the spare part
cannot fail in its dormant state.

Theorem 3. ` ∀ A B a B d.

ALL DISTINCT [A; B a] ∧ COLD SPARE B d ⇒ (WSP A B a B d = CSP A B a)

where ALL DISTINCT ensures that A and B a are not equal, which means that they
cannot fail at the same time, and COLD SPARE B d indicates that the spare B is a cold
spare, i.e., it cannot fail in its dormant mode (B d).

The spare part in the HSP has only one failure distribution, i.e., the dormant state
and the active state are the same. The output of the HSP fails when both the primary
and the spare fail, and the sequence of failure does not matter, as the spare part has
only one failure distribution. The HSP is defined as:

d(Q) = max(d(A) , d(B)) (12)

where A is the primary input and B is the spare. We define this in HOL as:

Definition 12. Hot Spare Gate
` ∀ (A:extreal) B. HSP A B = max A B

We verify in HOL that if both the dormant and the active states of the spare are equal,
then the WSP is equivalent to the HSP:

Theorem 4. ` ∀ A B a B d. (B a = B d) ⇒ (WSP A B a B d = HSP A B a)

12

Figure 3: Spare Gates with Shared Spare

It is important to mention that more than one spare gate can share the same spare
input. In this case, there is a possibility that one of the primary inputs is replaced by
the spare, while the other input does not have a spare in case it fails. The outputs of
the spare gates, shown in Figure 3, are represented as follows (assuming that A, B and
C are basic events):

Q1 = A.(Cd C A) + Ca.(AC Ca) + A.(B C A) (13)

Q2 = B.(Cd CB) + Ca.(B C Ca) + B.(ACB) (14)

The last term in Q1 indicates that if B occurs before A, then the spare part C is used
by the second spare gate. This means that no spare is available for the first spare gate,
which causes the failure of the output of the first spare gate if A occurs. We formalize
the output Q1 of the first spare gate in HOL as:

Definition 13. Shared Spare
` ∀ A B C a C d. shared spare A B C a C d = D OR (D OR (D AND A(D BEFORE C d A))(D AND

C a (D BEFORE A C a)))D AND A(D BEFORE B A))

We define a function in HOL called Never events, which ensures that its operands
are mutual exclusive, i.e., only one of them can occur. We formalize it in HOL as:

Definition 14. Never events
` ∀ A B. NEVER events A B = (D AND A B = NEVER)

This function is useful when we want to make sure that two events cannot happen
together. For example, for a CSP gate, the spare part can only fail in one of its two
states and not in both.

5 Formal Verification of the Simplification Theo-

rems

As with classical Boolean algebra, many simplification theorems also exist for DFT
operators, which can be used to simplify the structure function of the DFT. We for-
mally verified over 80 simplification theorems for the operators, defined in the previous
section, including commutativity, associativity and idempotence of the AND, OR and
Simultaneous operators, in addition to more complex theorems that include a combi-
nation of all operators. The verification process of these theorems was mainly based

13

on the properties of extended real numbers, since the DFT operators are defined based
on the time of failure of the events, which we choose to model using the extreal data
type in HOL. During the verification process, each theorem was divided into several
sub-goals based on the definition of the operators. Most of these sub-goals were auto-
matically verified using automated tactics that utilize theorems from the extreal HOL
theory. These simplification theorems can be classified into four groups depending on
the operators involved in the simplification.

5.1 Simplification Theorems using OR and AND

These simplification theorems are similar to the OR and AND related Boolean algebra
theorems, such as commutativity and associativity. Based on the theorems presented
in [3], Table 1 lists the formalization for these theorems, which we proved in HOL.

Table 1: Simplification Theorems for OR and AND

HOL Theorems DFT Algebra Theorems

` ∀ A B. D OR A B = D OR B A A + B = B + A
` ∀ A B. D AND A B = D AND B A A.B = B.A
` ∀ A B C. D OR A (D OR B C) =

D OR (D OR A B)C
A + (B + C) = (A + B) + C

` ∀ A B C. D AND A (D AND B C) =

D AND (D AND A B) C
A.(B.C) = (A.B).C

` ∀ A . D OR A A = A A + A = A
` ∀ A . D AND A A = A A.A = A
` ∀ A B C . D AND A (D OR B C) =

D OR (D AND A B)(D AND B C)
A.(B + C) = A.B + A.C

` ∀ A. D OR A NEVER = A A + NEV ER = A
` ∀ A. D AND A ALWAYS = A A.ALAWY S = A
` ∀ A. D OR A ALWAYS = ALWAYS A + ALAWY S = ALWAY S
` ∀ A. D AND A NEVER = NEVER A.NEV ER = NEV ER
` ∀ A B C. D OR A (D AND B C) =

D AND (D OR A B)(D OR A C)
A + (B.C) = (A + B).(A + C)

` ∀ A B. D OR A (D AND A B) = A A + (A.B) = A
` ∀ A B. D AND A (D OR A B) = A A.(A + B) = A

5.2 Simplification Theorems using Before Operator

As with the AND and OR, several simplification theorems were introduced in [3] to sim-
plify expressions that include the Before operator. Our formalization of these theorems
in HOL is given in Table 2.

14

Table 2: Simplification Theorems for Before Operator

HOL Theorems DFT Algebra Theorems
` ∀ A B.

D AND (D BEFORE A B) D BEFORE B A) = NEVER
(ACB).(B C A) = NEV ER

` ∀ A B C.

D BEFORE A (D BEFORE B C) =

D OR (D BEFORE A B)(D AND (D AND A B)

(D OR (D BEFORE C B)(D SIMULT C B)))

AC (B C C) = (ACB) + (A.B.

((C CB) + (C∆B)))

` ∀ A B C.

D BEFORE A (D BEFORE B C) =

D OR (D BEFORE A B)(D AND (D AND A B)

(D INCLUSIVE BEFORE C B))

AC (B C C) = (ACB) + (A.B.

((C EB)))

` ∀ A B C.

D BEFORE (D BEFORE A B) C =

D AND (D BEFORE A B)(D BEFORE A C)

(ACB) C C = (ACB).(AC C)

` ∀ A. D BEFORE NEVER A = NEVER NEV ERC A = NEV ER
` ∀ A. D BEFORE A NEVER = A ACNEV ER = A
` ∀ A. D BEFORE A A = NEVER AC A = NEV ER
` ∀ A B C.

D BEFORE A (D OR B C) =

D AND (D BEFORE A B)(D BEFORE A C)

AC (B + C) = (ACB).(AC C)

` ∀ A B C.

D BEFORE A (D AND B C) =

D OR (D BEFORE A B)(D BEFORE A C)

AC (B.C) = (ACB) + (AC C)

` ∀ A B C.

D BEFORE A (D SIMULT B C) = D OR (D OR

(D OR (D AND A (D BEFORE B C))

(D AND A (D BEFORE C B)))

(D BEFORE A B))(D BEFORE A C)

AC (B∆C) = (A.(B C C))+

(A.(C CB)) + (ACB)+

(AC C)

` ∀ A B C.

D BEFORE A (D INCLUSIVE BEFORE B C) =

D OR (D BEFORE A B)(D AND

(D AND A B)(D BEFORE C B))

AC (B E C) = (ACB)+

(A.B.(C CB))

` ∀ A B C.

D BEFORE (D OR A B) C =

D OR (D BEFORE A C)(D BEFORE B C)

(A + B) C C = (AC C)+

(B C C)

` ∀ A B C.

D BEFORE (D AND A B) C =

D AND (D BEFORE A C)(D BEFORE B C)

(A.B) C C = (AC C).(B C C)

15

HOL Theorems DFT Algebra Theorems
` ∀ A B C.

D BEFORE (D SIMULT A B) C =

D AND (D SIMULT A B)(D BEFORE A C)

(A∆B) C C = (A∆B).(AC C)

` ∀ A B C.

D BEFORE (D SIMULT A B) C =

D AND (D SIMULT A B)(D BEFORE B C)

(A∆B) C C = (A∆B).(B C C)

` ∀ A B C.

D BEFORE (D SIMULT A B) C =

D SIMULT (D BEFORE A C)(D BEFORE B C)

(A∆B) C C = (AC C)∆

(B C C)

` ∀ A B C.

D BEFORE (D INCLUSIVE BEFORE A B) C =

D AND (D INCLUSIVE BEFORE A B)

(D BEFORE A C)

(AEB) C C = (AEB).(AC C)

` ∀ A B. D OR A(D BEFORE A B) = A A + (ACB) = A
` ∀ A B.

D OR (D BEFORE A B)B = D OR A B
(ACB) + B = A + B

` ∀ A B.

D AND A(D BEFORE A B) = D BEFORE A B
A.(ACB) = ACB

` ∀ A B C.

D AND (D AND (D BEFORE A B)

(D BEFORE B C))(D BEFORE A C) =

D AND (D BEFORE A B)(D BEFORE B C)

(ACB).(B C C).(AC C) =

(ACB).(B C C)

5.3 Simplification Theorems using Simultaneous Operator

Table 3 shows the simplification theorems which can be used with the Simultaneous
operator along with their formalizations in HOL.

Table 3: Simplification Theorems for Simultaneous Operator

HOL Theorems DFT Algebra Theorems
` ∀ A B. D SIMULT A B = D SIMULT B A A∆B = B∆A
` ∀ A B C.

D SIMULT A (D SIMULT B C) =

D SIMULT (D SIMULT A B) C

A∆(B∆C) = (A∆B)∆C

` ∀ A B C.

D SIMULT A (D SIMULT B C) =

D AND (D SIMULT A B)(D SIMULT B C)

A∆(B∆C) = (A∆B).(B∆C)

16

HOL Theorems DFT Algebra Theorems
` ∀ A B C.

D SIMULT A (D SIMULT B C) =

D AND (D SIMULT A C)(D SIMULT C B)

A∆(B∆C) = (A∆C).(C∆B)

` ∀ A. D SIMULT A NEVER = NEVER A∆NEV ER = NEV ER
` ∀ A. D SIMULT A A = A A∆A = A
` ∀ A B C.

D SIMULT A (D OR B C) = D OR (D OR

(D AND (D SIMULT A B)(D SIMULT B C))

(D AND (D SIMULT A B)(D BEFORE B C)))

(D AND (D SIMULT A C)(D BEFORE C B))

A∆(B + C) = (A∆B).(B∆C)

+(A∆B).(B C C)

+(A∆C).(C CB)

` ∀ A B C.

D SIMULT A (D OR B C) = D OR

(D AND (D SIMULT A B)

(D INCLUSIVE BEFORE B C))(D AND

(D SIMULT A C)(D INCLUSIVE BEFORE C B))

A∆(B + C) = (A∆B).(B E C)+

(A∆C).(C EB)

` ∀ A B C.

D SIMULT A (D AND B C) = D OR

(D OR (D AND (D SIMULT A B)

(D SIMULT B C))(D AND (D SIMULT A B)

(D BEFORE C B)))(D AND

(D SIMULT A C)(D BEFORE B C))

A∆(B.C) = (A∆B).(B∆C)

+(A∆B).(C CB)

+(A∆C).(B C C)

` ∀ A B C.

D SIMULT A (D AND B C) =

D OR (D AND (D SIMULT A B)

(D INCLUSIVE BEFORE C B))

(D AND (D SIMULT A C)

(D INCLUSIVE BEFORE B C))

A∆(B.C) = (A∆B).(C EB)

+(A∆C).(B E C)

` ∀ A B C.

D SIMULT A (D BEFORE B C) =

D AND (D SIMULT A B)(D BEFORE B C)

A∆(B C C) = (A∆B).(B C C)

` ∀ A B C.

D SIMULT A (D INCLUSIVE BEFORE B C) =

D AND (D SIMULT A B)

(D INCLUSIVE BEFORE B C)

A∆(B E C) = (A∆B).(B E C)

` ∀ A B.

D OR A (D SIMULT A B) = A
A + (A∆B) = A

` ∀ A B.

D AND A (D SIMULT A B) = D SIMULT A B
A.(A∆B) = A∆B

17

HOL Theorems DFT Algebra Theorems
` ∀ A B C.

D AND (D AND (D SIMULT A B)

(D SIMULT B C))(D SIMULT A C) =

D AND (D SIMULT A B)(D SIMULT B C)

(A∆B).(B∆C).(A∆C) =

(A∆B).(B∆C)

5.4 Simplification Theorems using Inclusive Before Operator

Table 4 shows the HOL verified formalization of the theorems that can be used with
the Inclusive Before operator.

Table 4: Simplification Theorems for Inclusive Before Operator

HOL Theorems DFT Algebra Theorems
` ∀ A B.

D AND (D INCLUSIVE BEFORE A B)

(D INCLUSIVE BEFORE B A) = D SIMULT A B

(AEB).(B E A) = A∆B

` ∀ A B C.

D INCLUSIVE BEFORE A

(D INCLUSIVE BEFORE B C) =

D OR (D OR (D BEFORE A B)

(D AND (D AND A B)(D BEFORE C B)))

(D AND (D SIMULT A B)

(D INCLUSIVE BEFORE B C))

AE (B E C) = (ACB)

+(A.B.(C CB))

+(A∆B).(B E C)

` ∀ A B C.

D INCLUSIVE BEFORE

(D INCLUSIVE BEFORE A B) C =

D AND (D INCLUSIVE BEFORE A B)

(D INCLUSIVE BEFORE A C)

(AEB) E C = (AEB).(AE C)

` ∀ A.

D INCLUSIVE BEFORE NEVER A = NEVER
NEV ERE A = NEV ER

` ∀ A.

D INCLUSIVE BEFORE A NEVER = A
AENEV ER = A

` ∀ A.

D INCLUSIVE BEFORE A A = A
AE A = A

` ∀ A B C.

D INCLUSIVE BEFORE A (D OR B C) =

D AND (D INCLUSIVE BEFORE A B)

(D INCLUSIVE BEFORE A C)

AE (B + C) = (AEB).(AE C)

18

HOL Theorems DFT Algebra Theorems
` ∀ A B C.

D INCLUSIVE BEFORE A (D AND B C) =

D OR (D INCLUSIVE BEFORE A B)

(D INCLUSIVE BEFORE A C)

AE (B.C) = (AEB) + (AE C)

` ∀ A B C.

D INCLUSIVE BEFORE A (D BEFORE B C) =

D OR(D OR(D BEFORE A B)(D AND (D AND A B)

(D INCLUSIVE BEFORE C B)))

(D AND (D SIMULT A B)(D BEFORE B C))

AE (B C C) = (ACB)

+(A.B.(C EB)

+(A∆B).(B C C)

` ∀ A B C.

D INCLUSIVE BEFORE A (D SIMULT B C) =

D OR(D OR(D OR(D OR(D AND A

(D BEFORE B C))(D AND A

(D BEFORE C B)))(D BEFORE A B))

(D BEFORE A C))(D AND

(D SIMULT A B)(D SIMULT B C))

AE (B∆C) = (A.(B C C))

+(A.(C CB))

+(ACB) + (AC C)

+(A∆B).(B∆C)

` ∀ A B C.

D INCLUSIVE BEFORE (D OR A B) C =

D OR (D INCLUSIVE BEFORE A C)

(D INCLUSIVE BEFORE B C)

(A + B) E C = (AE C)

+(B E C)

` ∀ A B C.

D INCLUSIVE BEFORE (D AND A B) C=

D AND (D INCLUSIVE BEFORE A C)

(D INCLUSIVE BEFORE B C)

(A.B) E C = (AE C).(B E C)

` ∀ A B C.

D INCLUSIVE BEFORE (D SIMULT A B) C =

D AND (D SIMULT A B)

(D INCLUSIVE BEFORE A C)

(A∆B) E C = (A∆B).(AE C)

` ∀ A B C.

D INCLUSIVE BEFORE (D SIMULT A B) C =

D AND (D SIMULT A B)

(D INCLUSIVE BEFORE B C)

(A∆B) E C = (A∆B).(B E C)

` ∀ A B C.

D INCLUSIVE BEFORE (D SIMULT A B) C =

D SIMULT (D INCLUSIVE BEFORE A C)

(D INCLUSIVE BEFORE B C)

(A∆B) E C = (AE C)

∆(B E C)

19

HOL Theorems DFT Algebra Theorems
` ∀ A B C.

D INCLUSIVE BEFORE (D BEFORE A B) C =

D AND (D BEFORE A B)

(D INCLUSIVE BEFORE A C)

(ACB) E C = (ACB).(AE C)

` ∀ A B.

D OR A (D INCLUSIVE BEFORE A B) = A
A + (AEB) = A

` ∀ A B.

D OR B (D INCLUSIVE BEFORE A B) = D OR A B
B + (AEB) = A + B

` ∀ A B.

D AND A (D INCLUSIVE BEFORE A B) =

D INCLUSIVE BEFORE A B

A.(AEB) = AEB

` ∀ A B.

D OR (D INCLUSIVE BEFORE A B)

(D INCLUSIVE BEFORE B A) = D OR A B

(AEB) + (B E A) = A + B

` ∀ A B.

D OR (D AND A (D INCLUSIVE BEFORE A B))

(D AND B (D INCLUSIVE BEFORE B A)) =

D AND A B

(A.(B E A)) + (B.(AEB))

= A.B

` ∀ A B.

D OR (D INCLUSIVE BEFORE A B)

(D AND A (D INCLUSIVE BEFORE B A)) = A

(AEB) + (A.(B EB)) = A

` ∀ A B C.

D AND (D AND (D INCLUSIVE BEFORE A B)

(D INCLUSIVE BEFORE B C))

(D INCLUSIVE BEFORE A C)) =

D AND (D INCLUSIVE BEFORE A B)

(D INCLUSIVE BEFORE B C)

(AEB).(B E C).(AE C)

= (AEB).(B E C)

5.5 Simplification Theorems for Combinations of Operators

Table 5 shows our formalization in HOL for some simplification theorems from [3],
which can be used to simplify expressions involving combinations of operators.

Table 5: Simplification Theorems for Combinations of Operators

HOL Theorems DFT Algebra Theorems
` ∀ A B.

D OR (D INCLUSIVE BEFORE A B)

(D BEFORE A B) = D INCLUSIVE BEFORE A B

(AEB) + (ACB) = AEB

20

HOL Theorems DFT Algebra Theorems
` ∀ A B.

D OR (D INCLUSIVE BEFORE A B)

(D SIMULT A B) = D INCLUSIVE BEFORE A B

(AEB) + (A∆B) = AEB

` ∀ A B.

D AND (D BEFORE A B)(D SIMULT A B) = NEVER
(ACB).(A∆B) = NEV ER

` ∀ A B C.

D AND (D BEFORE A B)(D SIMULT B C)=

D AND (D BEFORE A C)(D SIMULT B C)

(ACB).(B∆C) =

(AC C).(B∆C)

` ∀ A B.

D AND (D INCLUSIVE BEFORE A B)

(D BEFORE A B)) = D BEFORE A B

(AEB).(ACB) = ACB

` ∀ A B.

D AND (D BEFORE A B)

(D INCLUSIVE BEFORE B A) = NEVER

(ACB).(B E A) = NEV ER

` ∀ A B.

D AND (D INCLUSIVE BEFORE A B)

(D SIMULT A B) = D SIMULT A B

(AEB).(A∆B) = A∆B

` ∀ A B.

D OR (D OR (D BEFORE A B)

(D SIMULT A B))(D BEFORE B A) = D OR A B

(ACB) + (A∆B) + (B C A)

= A + B

` ∀ A B.

D OR (D OR(D AND A (D BEFORE B A))

(D SIMULT A B))(D AND B (D BEFORE A B)

= D AND A B

(A.(B C A)) + (A∆B)+

(B.(ACB)) = A.B

` ∀ A B.

D OR (D OR (D BEFORE A B)(D SIMULT A B))

(D AND A (D BEFORE B A)) = A

(ACB) + (A∆B)

+(A.(B C A)) = A

` ∀ A B C.

D AND (D AND (D BEFORE A B)

(D BEFORE B C))(D INCLUSIVE BEFORE A C)

= D AND (D BEFORE A B)(D BEFORE B C)

(ACB).(B C C).(AE C) =

(ACB).(B C C)

6 Experimental Results

In order to illustrate the effectiveness of the proposed methodology, we utilize it to
conduct the formal DFT analysis of five benchmarks. The first benchmark, depicted in
Figure 4, is a scaled version of the original cascaded PAND fault tree [7,8] with repeated
events. In this work, we consider a scaled version of this DFT, i.e., two similar DFTs

21

Figure 4: Scaled Cascaded PAND DFT

Figure 5: AHRS DFT

with different basic events and a top event that fails whenever one of these DFTs fails.
The second DFT is a modified and abstracted version of the Active Heat Rejection

System (AHRS) [10], which consists of two thermal rejection units A and B. The
failure of any of these two units leads to the failure of the whole system. Each main
input (A1 or B1) has two spare parts, and the unit will fail with the failure of the main
input and the spare inputs. All the inputs are functionally dependent on the power
supply.

The third benchmark represents a Multiprocessor Computer System (MCS) [7, 9]
with two redundant computers, having a processor, a disk and a memory unit. Each
disk has its own spare and the two memory units share the same spare. The two
processors are functionally dependent on the power supply.

The fourth benchmark is a Hypotheical Example Computer System (HECS) [2]
consisting of two processors with a cold spare, five memory units, which are function-
ally dependent on two memory interface units and two system buses. The failure of
the system also depends on the application subsystem, which in turn depends on the
software, the hardware and the human operator.

22

Figure 6: MCS DFT

Figure 7: HECS DFT

23

Figure 8: HCAS DFT

The last benchmark is a Hypothetical Cardiac Assist System (HCAS) [3, 7], which
consists of two bumps (P1 and P2) with a shared spare (BP), two motors and a CPU
(P) with a spare (B). Both CPUs are functionally dependent on a trigger, which
represents the crossbar switch (CS) and the system supervisor (SS).

In the next section, the verification of the reduction will be introduced for each
benchmark along with the reduced cut sets and sequences, then the quantitative anal-
ysis for the five benchmarks will be described in the subsequent section.

6.1 Verifying the Reduced DFTs

The first step in the proposed methodology is to create a formal model for both the
original DFT and the reduced one. Then, these DFTs are checked if they are equal or
not. After the equivalence verification, the cut sets and sequences can be determined.

6.1.1 Verifying the Reduced Cascaded PAND DFT (CPAND)

The top event (Q1) of the system, shown in Figure 4, is reduced using the simplification
theorems as follows:

Q1 = (I1 + J1 + K1 + L1).(A1 C (I1 + J1 + K1 + L1).

((B1C1.D1.E1.W1.G1.H1) C ((I1 + J1 + K1 + L1)

+(I2 + J2 + K2 + L2).(A2 C (I2 + J2 + K2 + L2).

((B2C2.D2.E2.W2.G2.H2) C ((I2 + J2 + K2 + L2)

(15)

We verify this simplification in HOL as follows:

Theorem 5. ` ∀ A1 B1 C1 D1 E1 W1 G1 H1 I1 J1 K1 L1 N1 O1 P1 A2 B2 C2 D2 E2 W2 G2 H2

I2 J2 K2 L2 N2 O2 P2.

24

ALL DISTINCT [A1;B1;C1;D1;E1;W1;G1;H1;I1;J1;K1;L1;N1;O1;P1;A2;B2;C2;D2;E2;W2;G2;H2;I2;

J2;K2;L2;N2;O2;P2] ⇒
(D OR (PAND (D OR (A1)(D OR(D OR N1 O1) P1))(PAND (D AND A1 (D AND (D AND (D AND (D AND

(D AND (D AND B1 C1) D1) E1) W1) G1) H1))(D OR (D OR (D OR I1 J1) K1) L1)))(PAND (D OR

A2 (D OR(D OR N2 O2) P2))(PAND (D AND A2 (D AND (D AND (D AND (D AND (D AND

(D AND B2 C2) D2) E2) W2) G2) H2)) (D OR (D OR (D OR I2 J2) K2) L2)))=

D OR (D AND (D OR (D OR (D OR I1 J1) K1) L1)(D AND (D BEFORE A1 (D OR (D OR (D OR I1 J1)

K1) L1)) (D BEFORE (D AND (D AND (D AND (D AND (D AND (D AND B1 C1) D1)E1) W1) G1) H1)

(D OR (D OR (D OR I1 J1) K1) L1))))(D AND (D OR (D OR (D OR I2 J2) K2) L2) (D AND

(D BEFORE A2 (D OR (D OR (D OR I2 J2) K2) L2))(D BEFORE (D AND (D AND (D AND (D AND

(D AND (D AND B2 C2) D2) E2) W2) G2) H2) (D OR (D OR (D OR I2 J2) K2) L2)))))

The predicate ALL DISTINCT ensures that the basic events cannot occur at the same
time. This condition was found to be a prerequisite for the above-mentioned conse-
quence. From this reduction, it can be noticed that the basic events (N1, O1, P1, N2,
O2, P2) have no effect on the failure of the top event since they are eliminated in the
reduction. Considering the cut sets and sequences, the top event can fail in two cases.
The first case corresponds to the first product in the structure function, which implies
that the output event occurs if any one of the basic events (I1, J1, K1, L1) occurs
and A1 occurs before all of them and the inputs (B1, C1, D1, E1, W1, G1, H1) occur
before the inputs (I1, J1, K1, L1). The second case represents the second product of
the second subtree, which is similar to the first product but with different basic events.
Since the Galileo format (which is used to model a DFT in STORM) supports only
DFT gates and not operators, it is required that the reduced form is represented using
DFT gates only. This representation is verified in HOL as follows:

Theorem 6. ` ∀ A1 B1 C1 D1 E1 W1 G1 H1 I1 J1 K1 L1 N1 O1 P1 A2 B2 C2 D2 E2 W2 G2 H2

I2 J2 K2 L2 N2 O2 P2.

ALL DISTINCT [A1;B1;C1;D1;E1;W1;G1;H1;I1;J1;K1;L1;N1;O1;P1;A2;B2;C2;D2;E2;W2;G2;H2;I2;

J2;K2;L2;N2;O2;P2] ⇒
(D OR (PAND (D OR (A1)(D OR(D OR N1 O1) P1))(PAND (D AND A1 (D AND (D AND (D AND (D AND

(D AND (D AND B1 C1) D1) E1) W1) G1) H1))(D OR (D OR (D OR I1 J1) K1) L1)))(PAND (D OR

A2 (D OR(D OR N2 O2) P2))(PAND (D AND A2 (D AND (D AND (D AND (D AND (D AND

(D AND B2 C2) D2) E2) W2) G2) H2)) (D OR (D OR (D OR I2 J2) K2) L2)))=

D OR (D AND (PAND A1 (D OR (D OR (D OR I1 J1) K1) L1))(PAND (D AND (D AND (D AND (D AND

(D AND (D AND B1 C1) D1)E1) W1) G1) H1)(D OR (D OR (D OR I1 J1) K1) L1))) (D AND (PAND

A2 (D OR (D OR (D OR I2 J2) K2) L2)(PAND (D AND (D AND (D AND (D AND (D AND (D AND B2

C2) D2) E2) W2) G2) H2)(D OR (D OR (D OR I2 J2) K2) L2)))

6.1.2 Verifying the Reduced AHRS DFT

The top event (Q2) of the system shown in Figure 5 is reduced using the algebraic
simplification theorems, assuming that the spares are cold spares:

Q2 = Tr + A3a.(A1 C A2a).(A2a C A3a) + B3a.(B1 CB2a).(B2a CB3a) (16)

We verify this in HOL as:

25

Theorem 7. ` ∀ A1 A2 a A2 d A3 a A3 d Tr B1 B2 a B2 d B3 a B3 d.

ALL DISTINCT [A1; A2 a; A2 d; A3 a; A3 d; Tr; B1; B2 a; B2 d; B3 a; B3 d] ∧
COLD SPARE A2 d ∧ COLD SPARE A3 d ∧ COLD SPARE B2 d ∧ COLD SPARE B3 d ⇒
(D OR (WSP (FDEP Tr A1)(WSP (FDEP A2 a Tr) (FDEP A3 a Tr) (FDEP Tr A3 d))

(WSP (FDEP Tr A2 d) (FDEP A3 a Tr) (FDEP A3 d Tr))) (WSP (FDEP Tr A1)

(WSP (FDEP A2 a Tr)(FDEP A3 a Tr) (FDEP Tr A3 d)) (WSP(FDEP Tr A2 d) (FDEP A3 a Tr)

(FDEP A3 d Tr))) =

D OR Tr (D OR (D AND (D AND A3 a (D BEFORE A1 A2 a))(D BEFORE A2 a A3 a))

(D AND (D AND B3 a (D BEFORE B1 B2 a))(D BEFORE B2 a B3 a))))

This system has three sources of failure; the trigger, the sequence of failure of (A1

then A2 then A3) and finally the sequence (B1 then B2 then B3)

6.1.3 Verifying the Reduced MCS DFT

The top event (Q3) of the system shown in Figure 6 is reduced using the algebraic
simplification theorems to:

Q3 = N + PS + (P1 + D11.(D12d CD11) + D12a.(D11 CD12a

+M1.(M3d CM1) + M3a.(M1 CM3a) + M1.(M2 CM1)

.(P2 + D21.(D22d CD21) + D22a.(D21 CD22a + M2.

(M3d CM2) + M3a.(M2 CM3a) + M2.(M1 CM2)

(17)

We verify this in HOL as:

Theorem 8. ` ∀ M1 M2 M3 a M3 d D11 D12 a D12 d D21 D22 a D22 d P1 P2 PS N.

ALL DISTINCT [M1; M2; M3 a; M3 d; D11; D12 a; D12 d; D21; D22 a; D22 d; P1; P2; PS; N]

⇒
(D OR N (D AND (D OR (D OR (WSP D11 D12 a D12 d) (FDEP PS P1))

(shared spare M1 M2 M3 a M3 d)) (D OR (D OR (WSP D21 D22 a D22 d)(FDEP PS P2))

(shared spare M2 M1 M3 a M3 d))) =

D OR (D OR N PS)(D AND (D OR (D OR P1 (WSP D11 D12 a D12 d))

(shared spare M1 M2 M3 a M3 d)) (D OR (D OR P2 (WSP D21 D22 a D22 d))

(shared spare M2 M1 M3 a M3 d))))

From this verified reduced function, the sources of failure are: N , PS or the failure
of both computers by the failure of any element in each one.

6.1.4 Verifying the Reduced HECS DFT

The top event (Q4) of the system shown in Figure 7 is reduced using the algebraic
simplification theorems to [3]:

26

Q4 = Aa.A2.(A1 C Aa).(A1 C A2) + Aa.A1.(A2 C Aa).(A2 C A1)

+MIU1.MIU2 + MIU1.M3 + MIU1.M4 + MIU1.M5

+MIU2.M1 + MIU2.M2 + MIU2.M3 + M1.M2.M3

+M1.M2.M4 + M1.M2.M5 + M1.M3.M4 + M1.M3.M5

+M1.M4.M5 + M2.M3.M4 + M2.M3.M5+

M2.M4.M5 + M3.M4.M5 + BUS1.BUS2 + HW + SW + OP

(18)

We verify this in HOL as:

Theorem 9. ` ∀ A1 A2 A a A d M1 M2 M3 M4 M5 MIU1

MIU2 OP HW SW BUS1 BUS2. NEVER events A a A d ∧ COLD SPARE A d ∧
ALL DISTINCT[A1; A2 ;A a; A d; M1 ;M2; M3; M4; M5; MIU1; MIU2; OP; HW; SW; BUS1;

BUS2]⇒
(D OR (D OR (D OR (D AND (shared spare A1 A2 A a A d) (shared spare A2 A1 A a A d))

(D3of5 (FDEP M5 MIU2) (FDEP M4 MIU2) (FDEP M3 (D AND MIU2 MIU1)) (FDEP M2 MIU1)

(FDEP M1 MIU1))) (D AND BUS1 BUS2)) (D OR (D OR SW HW) OP) =

D OR (D OR (D OR (D OR (D AND (D AND (D AND A a A2) (D BEFORE A1 A a))

(D BEFORE A1 A2)) (D AND (D AND (D AND A a A1) (D BEFORE A2 A a)) (D BEFORE A2 A1)))

(D OR (D OR (D OR (D OR (D OR (D OR (D OR (D OR (D OR (D OR (D OR (D OR (D OR (D OR

(D OR (D OR (D AND MIU1 MIU2) (D AND MIU1 M3)) (D AND MIU1 M4)) (D AND MIU1 M5))

(D AND MIU2 M1)) (D AND MIU2 M2)) (D AND MIU2 M3)) (D AND (D AND M1 M2) M3))

(D AND (D AND M1 M2) M4)) (D AND (D AND M1 M2) M5)) (D AND (D AND M1 M3) M4))

(D AND (D AND M1 M3) M5)) (D AND (D AND M1 M4) M5)) (D AND (D AND M2 M3) M4))

(D AND (D AND M2 M3) M5)) (D AND (D AND M2 M4) M5)) (D AND (D AND M3 M4) M5)))

(D AND BUS1 BUS2)) (D OR (D OR SW HW) OP))

where D3of5 is a combination of AND and OR operators to create the voting 3 out of 5
gate. The cut sets and sequences of this function can be easily obtained from Equation
18. To be able to model this function in STORM, it was verified in HOL in terms of
the dynamic gates as:

Theorem 10. ` ∀ A1 A2 A a A d M1 M2 M3 M4 M5 MIU1 MIU2 OP HW SW BUS1 BUS2.

NEVER events A a A d ∧ COLD SPARE A d ∧
ALL DISTINCT[A1; A2 ;A a; A d; M1 ;M2; M3; M4; M5; MIU1; MIU2; OP; HW; SW; BUS1;

BUS2]⇒
(D OR (D OR (D OR (D AND (shared spare A1 A2 A a A d) (shared spare A2 A1 A a A d))

(D3of5 (FDEP M5 MIU2) (FDEP M4 MIU2) (FDEP M3 (D AND MIU2 MIU1)) (FDEP M2 MIU1)

(FDEP M1 MIU1))) (D AND BUS1 BUS2)) (D OR (D OR SW HW) OP) =

D OR (D OR (D OR (D OR (D AND (shared spare A1 A2 A a A d)

(shared spare A2 A1 A a A d)) (D OR (D OR (D OR (D OR (D OR (D OR (D OR (D OR (D OR

(D OR (D OR (D OR (D OR (D OR (D OR (D OR (D AND MIU1 MIU2) (D AND MIU1 M3))

(D AND MIU1 M4)) (D AND MIU1 M5)) (D AND MIU2 M1)) (D AND MIU2 M2)) (D AND MIU2 M3))

(D AND (D AND M1 M2) M3)) (D AND (D AND M1 M2) M4)) (D AND (D AND M1 M2) M5))

(D AND (D AND M1 M3) M4)) (D AND (D AND M1 M3) M5)) (D AND (D AND M1 M4) M5))

(D AND (D AND M2 M3) M4)) (D AND (D AND M2 M3) M5)) (D AND (D AND M2 M4) M5))

(D AND (D AND M3 M4) M5))) (D AND BUS1 BUS2)) (D OR (D OR SW HW) OP))

27

6.1.5 Verifying the Reduced HCAS DFT

The top event (Q5) of the system shown in Figure 8 is reduced using the algebraic
simplification theorems to [3]:

Q5 = CS + SS + MOTOR.MOTORC + P.(Bd C P) + Ba.(P CBa)

+BPa.(P2 C P1).(P1 CBPa) + P2.(P1 CBPa).(BPa C P2)
(19)

We verify this in HOL as:

Theorem 11. ` ∀ CS SS MOTOR MOTORC P B d B a BP a BP d P1 P2. NEVER events B a B d ∧
ALL DISTINCT [P1; P2; BP a; BP d; P; B a; B d; CS; SS; MOTOR; MOTORC]∧
(D BEFORE B a P = NEVER) ∧ (D AND (D BEFORE BP a P1) (D BEFORE P1 P2) = NEVER) ∧
(D AND (D BEFORE BP a P2) (D BEFORE P2 P1) = NEVER) ∧
NEVER events BP a BP d ∧ COLD SPARE BP d ⇒
(D OR (D OR (WSP (FDEP P (D OR CS SS)) (FDEP B a (D OR CS SS))

(FDEP B d (D OR CS SS))) (D AND MOTOR MOTORC)) (PAND (shared spare P1 P2 BP a BP d)

(shared spare P2 P1 BP a BP d)) =

D OR (D OR (D OR (D OR (D OR (D OR CS SS) (D AND MOTOR MOTORC))

(D AND P (D BEFORE B d P))) (D AND B a (D BEFORE P B a))) (D AND (D AND BP a

(D BEFORE P2 P1)) (D BEFORE P1 BP a))) (D AND (D AND P2 (D BEFORE P1 BP a))

(D BEFORE BP a P2)))

The cut sets and sequences for Q5 can be obtained from the verified reduced func-
tion. To model this function in STORM, it was verified using the dynamic gates,
assuming that B is a cold spare:

Theorem 12. ` ∀ CS SS MOTOR MOTORC P B d B a BP a BP d P1 P2. NEVER events B a B d ∧
ALL DISTINCT [P1; P2; BP a; BP d; P; B a; B d; CS; SS; MOTOR; MOTORC]∧
(D BEFORE B a P = NEVER) ∧ (D AND (D BEFORE BP a P1) (D BEFORE P1 P2) = NEVER) ∧
(D AND (D BEFORE BP a P2) (D BEFORE P2 P1) = NEVER) ∧
NEVER events BP a BP d ∧ COLD SPARE BP d ⇒
(D OR (D OR (WSP (FDEP P (D OR CS SS)) (FDEP B a (D OR CS SS))

(FDEP B d (D OR CS SS))) (D AND MOTOR MOTORC)) (PAND (shared spare P1 P2 BP a BP d)

(shared spare P2 P1 BP a BP d)) =

D OR (D OR (D OR (D OR CS SS) (D AND MOTOR MOTORC)) (D AND B a (D BEFORE P B a)))

(PAND (shared spare P1 P2 BP a BP d) (shared spare P2 P1 BP a BP d)))

6.2 Probabilistic Analysis Results using STORM

The quantitative analysis for the five benchmarks was conducted using STORM on a
Linux machine with i7 2.4 GHZ quad core CPU and 4 GB of RAM. The efficiency of the
proposed methodology is highlighted by analyzing the original DFTs and the reduced
ones. In addition, the probability of failure for each DFT is evaluated for different time
bounds, e.g. the probability of failure after 100 working time units. A summary of the
analysis results are given in Table 6. It can be noticed that the number of states is
reduced as well as the total analysis time. For the first benchmark, the analysis time
is reduced due to the huge reduction in the number of states. As mentioned earlier,
many basic events are eliminated using the algebraic reduction theorems, which in
turn reduced the total analysis time as well as the number of states. For the rest of
the benchmarks, the analysis time is significantly reduced when the reduced DFT is

28

used in the analysis. This is mainly because of two reasons, firstly, the number of
states is reduced, and secondly, the original DFT is modeled as a Markov Automata
(MA) as there is a non-deterministic behavior, while the reduced DFT is modeled as
a Continuous Time Markov Chain (CTMC). This means that in the reduced DFT
the non-deterministic behavior caused by the failure dependency does not exist any
more, as the reduction process depends on the time of failure of the gates. We used
the STORM command (firstdep) [16] to resolve the non-deterministic behavior in the
original DFT to generate a CTMC instead of a MA, and the results in Table 7 show
that the number of states for the reduced DFTs is generally smaller than that of the
original DFT with resolved dependencies, which emphasizes on the importance of the
proposed methodology not only in providing a formal qualitative analysis but also in
reducing the quantitative analysis cost in terms of time and memory, i.e., number of
states.

Table 6: STORM Analysis Results (Before and After Reduction)

DFT Time Before Reduction After Reduction

Bound #States Analysis Probability #States Analysis Probability
T ime(sec) ofFailure T ime(sec) ofFailure

CPAND 1000 148226 (CTMC) 7.488 1.464103531e-4 66050 (CTMC) 3.032 1.464103348e-4

ARHS
10 74 (MA) 169.81 0.00995049462 10 (CTMC) 0.067 0.009950461197
100 74 (MA) * ** 10 (CTMC) 0.067 0.954423939

MCS
10 89 (MA) 139.7 0.01196434683 29 (CTMC) 0.061 0.01196434516
100 89 (MA) * ** 29 (CTMC) 0.060 0.1166464887

HECS
10 1051 (MA) 16359.83 0.01710278909 505 (CMTC) 0.123 0.01710276373
100 1051 (MA) * ** 505 (CMTC) 0.123 0.1762782397

HCAS
10 181 (MA) 275.31 2.000104327e-5 37 (CTMC) 0.070 2.99929683e-5
100 181 (MA) * ** 37 (CTMC) 0.071 0.000300083976

* The analysis did not finish within 4 hours
** No probabilities are recorded (analysis did not finish)

Table 7: STORM Analysis Results with Resolved Dependencies

DFT Time Dependency resolved in STORM Algebraic Reduction

Bound #States Analysis Probability #States Analysis Probility
T ime(sec) ofFailure T ime(sec) ofFailure

ARHS
10 10(CTMC) 0.068 0.009960461197 10 (CTMC) 0.067 0.009950461197
100 10 (CTMC) 0.1 0.09544239393 10 (CTMC) 0.067 0.954423939

MCS
10 45 (CMTC) 0.064 0.01196434516 29 (CTMC) 0.061 0.01196434516
100 45(CMTC) 0.064 0.1166464887 29 (CTMC) 0.060 0.1166464887

HECS
10 379 (CTMC) 0.118 0.01710276373 505 (CMTC) 0.123 0.01710276373
100 379 (CTMC) 0.121 0.1762782397 505 (CMTC) 0.123 0.1762782397

HCAS

10 73 (CTMC) 0.076 1.999530855e-5 37 (CTMC) 0.070 2.99929683e-5
100 73 (CTMC) 0.076 0.0002001091927 37 (CTMC) 0.071 0.000300083976
100000 73 (CTMC) 0.077 0.2772192934* 37 (CTMC) 0.074 0.3460009685*

* The reported probability for the reduced DFT is closer to the probability reported in [3] for the same input failure
distribution

29

7 Conclusion

In this work, we proposed a formal dynamic fault tree analysis methodology integrating
theorem proving and model checking. We formalized the dynamic fault tree gates and
operators in higher-order logic based on the time of failure of each gate. Using our
formalization of the gates and the extreal library in HOL4, we proved over eighty
simplification theorems that can be used to verify the reduction of any DFT. We
used these theorems to verify the equivalence of the original and reduced DFT using
theorem proving. In addition, we provided a formally verified qualitative analysis of the
structure function in the form of reduced cut sets and sequences, which, to the best
of our knowledge, is a novel contribution. The quantitative analysis of the reduced
structure function is performed using model checking. This ensures that the model
checking results correspond to the original DFT, since we use the formally verified
reduced DFT in the quantitative analysis. Both the qualitative and the quantitative
analyses were conducted on five benchmark DFTs, and the analysis results show that
our proposed integrated methodology provides a formally verified reduced cut sets and
sequences. In addition, the model checking results indicate that using the reduced DFT
in the analysis has a positive impact on its cost in terms of both time and number of
states. As a future work, we plan to provide the quantitative analysis of DFTs within
the HOL theorem prover, which will allow us to have a complete framework for formal
DFT analyses using theorem proving.

30

References

[1] E. Ruijters and M. Stoelinga, “Fault Tree Analysis: A Survey of the State-of-the-
art in Modeling, Analysis and Tools,” Computer Science Review, vol. 15-16, pp.
29 – 62, 2015.

[2] M. Stamatelatos, W. Vesely, J. Dugan, J. Fragola, J. Minarick, and J. Railsback,
Fault Tree Handbook with Aerospace Applications. NASA Office of Safety and
Mission Assurance, 2002.

[3] G. Merle, “Algebraic Modelling of Dynamic Fault Trees, Contribution to Quali-
tative and Quantitative Analysis,” Ph.D. dissertation, ENS, France, 2010.

[4] C. Dehnert, S. Junges, J.-P. Katoen, and M. Volk, “A Storm is Coming: A Modern
Probabilistic Model Checker,” in Computer Aided Verification. Springer, 2017,
pp. 592–600.

[5] M. Volk, S. Junges, and J.-P. Katoen, “Fast Dynamic Fault Tree Analysis by
Model Checking Techniques,” IEEE Transactions on Industrial Informatics, doi:
10.1109/TII.2017.2710316, 2017.

[6] W. Ahmad and O. Hasan, “Formalization of Fault Trees in Higher-order Logic:
A Deep Embedding Approach,” in Dependable Software Engineering: Theories,
Tools, and Applications, ser. LNCS, vol. 9984. Springer, 2016, pp. 264–279.

[7] H. Boudali, P. Crouzen, and M. Stoelinga, “A Compositional Semantics for Dy-
namic Fault Trees in terms of Interactive Markov Chains,” in Automated Tech-
nology for Verification and Analysis, ser. LNCS, vol. 4762. Springer, 2007, pp.
441–456.

[8] G. Merle, J. M. Roussel, J. J. Lesage, and A. Bobbio, “Probabilistic Algebraic
Analysis of Fault Trees with Priority Dynamic Gates and Repeated Events,” IEEE
Transactions on Reliability, vol. 59, no. 1, pp. 250–261, 2010.

[9] M. Malhotra and K. S. Trivedi, “Dependability Modeling using Petri-nets,” IEEE
Transactions on Reliability, vol. 44, no. 3, pp. 428–440, 1995.

[10] H. Boudali and J. Dugan, “A New Bayesian Network Approach to Solve Dynamic
Fault Trees,” in IEEE Reliability and Maintainability Symposium., 2005, pp. 451–
456.

[11] L. Pullum and J. Dugan, “Fault Tree Models for the Analysis of Complex
Computer-based Systems,” in IEEE Reliability and Maintainability Symposium,
1996, pp. 200–207.

[12] Galileo, “www.cse.msu.edu/∼cse870/materials/faulttolerant/manual-
galileo.htm.”

31

[13] F. Arnold, A. Belinfante, F. Van der Berg, D. Guck, and M. Stoelinga, “Dftcalc:
A Tool for Efficient Fault Tree Analysis,” in Computer Safety, Reliability, and
Security, ser. LNCS, vol. 8153. Springer, 2013, pp. 293–301.

[14] M. Ghadhab, S. Junges, J.-P. Katoen, M. Kuntz, and M. Volk, “Model-based
Safety Analysis for Vehicle Guidance Systems,” in Computer Safety, Reliability,
and Security, ser. LNCS, vol. 10488. Springer, 2017, pp. 3–19.

[15] W. Ahmad and O. Hasan, “Towards Formal Fault Tree Analysis using Theorem
Proving,” in Intelligent Computer Mathematics, ser. LNCS, vol. 9150. Springer,
2015, pp. 39–54.

[16] STORM, “www.stormchecker.org/index.html,” 2017.

32

