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Abstract

In this paper, we present a correctness proof of the Intrusion-tolerant Enclaves proto-
col [10]. Enclaves is a group-membership protocol. It assumes a Byzantine failure model,
and has a maximum resiliency of one third. To carry out the proof, we adaptively combine
a number of techniques, namely model checking, theorem proving and analytical mathemat-
ics. We use the Murphi model checker to verify authentication, then the PVS theorem prover
to formally specify and prove proper Byzantine Agreement, Agreement Termination and In-
tegrity, and finally we mathematically prove the robustness and unpredictability of the group
key management module using the random oracle model.

Keywords : Intrusion-Tolerance, Group-Membership Protocols, Model Checking, Theorem
Proving, and Provable Security.
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1 Introduction

The explosive growth in the amount of electronic information that individuals and organizations
generate, and the ever-increasing value of that information, make its protection with assurance one
of today’s top priorities. A number of cryptographic protocols and techniques have been developed
over the last couple of decades to protect information transfer and processing. Nevertheless, it is
still widely recognized that cryptographic protocols are a tricky issue. Even seemingly simple
protocols like authentication and authorization protocols have often turned out, years later, to be
wrong. Therefore, it is indispensable to formally prove their security.

A substantial progress in the formal verification of cryptographic protocols has been achieved
during the last decade. A wide variety of techniques have been developed to verify a number
of key security properties ranging from confidentiality and authentication to atomic transactions
and non-repudiation [27, 25]. Nevertheless, all the focus was either on two-party protocols (i.e.,
involving only a pair of users) or, in the best cases, on group protocols with centralized leadership
(i.e., a presumably trusted fault-free server managing a group of users). In the present work, we
are concerned with the verification of the intrusion-tolerant Enclaves [10]: a group-membership
protocol with a distributed leadership architecture, where the authority of the traditional single
server is shared among a set of n independent elementary servers, of which at most f could fail at
the same time. The protocol has a maximum resilience of one third (i.e., f ≤ b n−1

3
c) and uses an

algorithm similar to the consistent broadcast of Bracha and Toueg [4].
The primary goal of Enclaves is to preserve an acceptable group-membership service of the

overall system despite intrusions at some of its sub-parts. For instance, an authorized user u who
requests to join an active group of users should be eventually accepted, despite the fact that faulty
leaders may coordinate their messages in such a way as to mislead non-faulty leaders (the majority)
into disagreement, and thus into rejecting user u. Moreover, in order to prevent malicious leaders
from leaking sensitive information (e.g., group keys) or providing clients with fake group keys,
Enclaves uses a verifiably secure secret sharing scheme.

To achieve its intrusion-tolerant capabilities, Enclaves relies on the combination of a crypto-
graphic authentication protocol, a Byzantine fault-tolerant leader agreement protocol and a secret
sharing scheme. Although we assume the underlying cryptographic primitives and fault-tolerant
components to be perfect, one cannot easily guarantee security of the whole protocol. In fact,
several protocols had been long thought to be secure until a simple attack was found (see [7] for
a survey). Therefore, the question of whether or not a protocol actually achieves its security goals
becomes paramount. To date, most of the research in protocol analysis has been devoted to finding
attacks on known, either two-party or centralized protocols. In this paper we are concerned with
the verification of a distributed multi-leader group communication protocol.

An important issue that arises in formal verification of Byzantine fault-tolerant protocols, is
the modeling of Byzantine behavior. How much power should be given to a Byzantine fault and
how general should the model be to capture the arbitrary nature of a Byzantine fault behavior?
These questions have been extensively studied [6, 18, 19] and continue to be a center of focus.
In this paper, faults are only limited by cryptographic constraints. For instance, faulty leaders can
arbitrarily send random messages, reset their local clocks and perform any action without satisfying
its precondition. They cannot, however, decrypt a message without having the appropriate key, or
impersonate other participants by forging cryptographic signatures. More details about our fault
assumptions are discussed in Section 2.

In this work, we discuss a formal analysis of the overall Byzantine fault-tolerant Enclaves pro-
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tocol. We experiment with an adaptive combination of techniques, chosen according to the nature
of the correctness arguments in each module, the environment assumptions, and the easiness of per-
forming verification. For instance, we found it more profitable to model-check the authentication
module by taking advantage of the reduction techniques available in Murphi [9]. The Byzantine
leaders agreement module, however, was a little trickier. In fact, the latter relies, to a large extent,
on the timing and the coordination of a set of distributed actions, possibly performed by Byzan-
tine faulty processes whose behavior is hard to represent in a model checker. Instead, we use the
interactive theorem prover PVS [23] and formalize the protocol in the style of Timed-Automata
[1]. This formalism makes it easy to express timing constraints on transitions. It also captures sev-
eral useful aspects of real-time systems such as liveness, periodicity and bounded timing delays.
Using this formalism, we specified the protocol for any number of leaders, and we proved safety
and liveness properties such as Proper Agreement, Agreement Termination and Integrity using the
interactive proof checker of PVS. Finally, the group-key management module is based on a secret
sharing scheme whose security relies fundamentally on the hardness of computing discrete log-
arithms in groups of large prime order. Due to the hardness of expressing the latter correctness
arguments in a formal language, we found it more convenient to give a manual proof of the mod-
ule’s robustness and unpredictability properties, using the Random Oracle model [5].

The remainder of this paper is organized as follows. In Section 2, we give an overview of the
architecture and design goals of Enclaves, and explicitly state our system model assumptions. In
Section 3, we describe the model checking of the authentication module in Murphi. In Section 4,
we present how we model the elementary components of the Byzantine leader agreement module in
PVS and how we build the final protocol model out of these ingredients. In Section 5, we formulate
and prove the Byzantine leader agreement correctness theorems. In Section 6, we briefly give
the mathematical proof of robustness and unpredictability of the group key management module.
In Section 7, we discuss some related work. Finally in Section 8, we conclude the paper by
commenting on our results and stating some perspectives for future work.

2 The Enclaves Protocol

Enclaves [10] is a protocol that enables users to share information and collaborate securely through
insecure networks such as the Internet. Enclaves provides services for building and managing
groups of users. Access to a given group is granted only to sets of users who have the right cre-
dentials to do so. Authorized users can dynamically, and at their will, join, leave, and rejoin, an
active group. The group communication service relies on a secure multicasting channel that en-
sures integrity and confidentiality of group communication. All messages sent by a group member
are encrypted and delivered to all other group members.

The group-management service consists of user authentication, access control, and group-key
distribution. Figure 1 shows the different phases of the protocol execution. Initially at time t0,
user u sends requests to join the group to a set of leaders. These leaders locally authenticate u

within time interval [t1, t2]. When done, the agreement procedure starts and terminates at time
t4 by reaching a consensus as whether or not to accept user u. Finally on acceptance, user u is
provided with the current group composition, as well as information to reconstruct the group-key.
Once in the group, each member is notified when a new user joins or a member leaves the group
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in such a way that all members are in possession of a consistent image of the current group-key
holders.

Leader1 Leader2 LeadernLeaderq

Leader1 Leader2
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Figure 1: Enclaves protocol execution

In summary, Enclaves should guarantee the following properties, even in the presence of up to
f corrupted leaders (f ≤ bn−1

3
c, where n is the number of leaders):

• Proper authentication and access control: Only authorized users can join the group and an
authorized user cannot be prevented from joining the group.

• Confidentiality of group communication: Messages from a member u can be read only by
the users who were in u’s image of the group at the time the message was sent.

The description of Enclaves in [10] assumes a reliable network where messages eventually
reach their destinations within an upper bound delivery time. In this paper we make the same
assumptions. Concerning the intruder, we adopt a standard model where an intruder fully mon-
itors the network, proactively augments its knowledge, and chooses to send, either adaptively or
randomly, messages on the network. The intruder, however, cannot block messages from reach-
ing their destination and is limited by cryptographic constraints. For instance, the intruder cannot
decrypt messages without having the right key, or impersonating other participants by forging cryp-
tographic signatures. For the leaders agreement module, in particular, we assume the cryptography
layer to be perfect (i.e., messages format is well chosen to prevent any leakage of sensitive infor-
mation), and we concentrate rather on the Byzantine fault-tolerance capabilities of the protocol.

Given the above assumptions, we prove that the Proper authentication and access control re-
quirement holds through (1) the model checking of the Proper Authentication invariant in Murphi
(cf. Section 3), and (2) the proofs of Proper Agreement, Agreement Termination and Agreement
Integrity theorems in PVS (cf. Sections 4 and 5)1. In addition, we prove the Confidentiality

1For more details about the Murphi model and specifications, as well as the PVS theories and proofs, we refer the
reader to the web page: http://hvg.ece.concordia.ca/Publications/TECH REP/PVS TR03/PVS TR03.html
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of group communication requirement via a mathematical analysis of the Robustness and Unpre-
dictability properties of the group key management module of Enclaves (cf. Section 6).

3 Model Checking Authentication in Murphi

Murphi [9] is a verification tool that has been successfully applied to several industrial protocols,
especially in the area of multiprocessor cache coherence protocols, multiprocessor memory mod-
els and also authentication protocols [14, 9, 16, 22, 24]. To use Murphi for verification, one has to
model the protocol in question in the Murphi language and then augment the model with a spec-
ification of the desired properties. Typically one would start with a small protocol configuration
and gradually increase the protocol size until the verification does not terminate anymore. In many
cases, errors in the general protocol (possibly infinite state) will also show up in down-scaled (fi-
nite state) versions of the protocol. The Murphi tool is based on explicit state enumeration and
supports a number of reduction techniques such as symmetry and data independency [15, 17]. The
desired properties of a protocol can be specified in Murphi by invariants. If a state is reached where
some invariant is violated, Murphi generates an error trace exhibiting the problem.

Our verification has been conducted as follows. First, we formulated the protocol by identifying
the protocol participants, the state variable and messages, and the key actions to be taken. Then we
added an intruder to the system. In our model, the intruder is a participant in the protocol, capable
of eavesdropping messages in transit, decrypting cipher-text when it has the appropriate keys, and
generating new messages using any combination of previously gained knowledge. Finally, we
stated the desired correctness conditions and ran the protocol for some specific size parameters.

3.1 System Model

The local authentication module (as shown in Figure 1) aims at mutual authentication between
users looking to join an active or a newly created group and the group leaders. Group leaders
need to be assured about the users identity in order to convince the rest of the leaders of accepting
them in the group, and the users in turn want to have a guarantee that they are not being fooled by
some imposter (e.g., a “man in the middle” that pretends a false identity, or title, for the purpose
of deception).

This module is designed to work in a malicious environment, in which messages can be over-
heard, replayed and created by an intruder. The protocol is, however, based on the “perfect”
cryptography assumption, i.e., when a message m is encrypted with some participant’s public key
K, then only this participant will be able to decrypt the encrypted message {m}K .

We study the following version of the local authentication module:

i. U −→ Li : AuthInitReq, U, Li, {U, Li, N1}PU,i

ii. Li −→ U : AuthKeyDist, Li, U, {Li, U, N1, N2, KU,i}PU,i

iii. U −→ Li : AuthAckKey, U, Li, {U, Li, N2, N3}KU,i

The user U sends a nonce N1 (i.e., a newly generated random number) along with its identifier to
Leader Li, both encrypted with the long term key PU,i shared by Li and U . Leader Li decrypts the
message and obtains knowledge of N1. It checks U ’s identity in a predefined database, and then
generates a nonce N2 and a session key KU,i and sends the whole encrypted with the shared key
PU,i. User U decrypts the message and concludes that it is indeed talking to Li, since only Li was
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able to decrypt U ’s initial message containing nonce N1 (Li is hence authenticated). Similarly U

is authenticated, in the third step of the protocol, after sending an acknowledgment including N2

and using KU,i.

3.1.1 Modeling Users and Leaders

First, we consider the users component, referred to as clients in our model. In Murphi the data
structure for the clients is as follows:

const
NumClients: 3; -- For example

type
ClientId: scalarset (NumClients);
ClientStates : enum {
C_SLEEP, -- Initial state
C_WAIT, -- Waiting for response from leader
C_ACK -- Acknowledging the session key

};
Client : record
state: ClientStates;
leader: AgentId; -- Leader with whom the client starts the

end; -- protocol
var
clnt: array[ClientId] of Client;

The number of clients is scalable and is defined by the constant NumClients. The type ClientId

is a scalarset of size NumClients, i.e., a Murphi construct used to denote a subrange like
1 . . .NumClients, and to enable automatic symmetry reduction on instances of that type. The
state of each client is stored in the array clnt. In the initialization statement of the model, the local
state (stored in field state) of each client is set to C SLEEP , indicating that no client has started
the protocol yet.

The behavior of a client is modeled with two Murphi rules. The first rule is used to start the
protocol by sending the initial message to some agent (supposedly a leader), and then changes its
local state from C SLEEP to C WAIT . The second rule models the reception and checking of
the reply from an agent, the commitment and the sending of the final message. The Murphi model
for the first rule is as follows:

ruleset i: ClientId do
ruleset j: AgentId do
rule "client starts protocol (step 1)"
clnt[i].state = C_SLEEP &
!ismember(j,ClientId) & -- only leaders and intruders
multisetcount (l:net, true) < NetworkSize

==>
var
outM: Message; -- outgoing message

begin
undefine outM;
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outM.psource := i;
outM.pdest := j;
outM.mType := M_AuthInitReq;
...
multisetadd (outM,net);
clnt[i].state := C_WAIT;
clnt[i].leader := j;

end;
end;

end;

The condition of the rule is that client i is in the local state C SLEEP , that agent j is not
trivially a client (and hence should be either a leader or an intruder), and that there is space in
the network for an additional message. The network is modeled by the shared variable net. Once
the rule is enabled, the outgoing message is constructed and added to the network. In addition,
the local state is updated and the identifier of the intended destination is stored in state variable
clnt[i].leader.

The second rule of the client is modeled in Murphi as follows:

ruleset i: ClientId do
choose j: net do
rule "client reacts to nonce received (steps 2/3)"
clnt[i].state = C_WAIT &
net[j].pdest = i &
ismember(net[j].psource,IntruderId)

==>
var
outM: Message; -- outgoing message
inM: Message; -- incoming message

begin
inM := net[j];
multisetremove (j,net);

if inM.key=i then -- message is encrypted with i’s key
if inM.mType= M_AuthKeyDist then -- correct message type
if (inM.nonce1=i & -- correct nonce and source

inM.csource=clnt[i].leader) then
undefine outM;
outM.psource := i;
outM.csource := i;
outM.pdest := clnt[i].leader;
outM.cdest := clnt[i].leader;
outM.key := inM.sessionKey;
outM.mType := M_AuthAckKey;
outM.nonce1 := inM.nonce2;

multisetadd (outM,net);
clnt[i].state := C_ACK;

else
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--error "Client received incorrect nonce"
end;

......
end;

The condition of the rule is that client i is in the local state C WAIT and that the destination of the
message in network cell net[j] is actually this client. Once enabled, the rule recovers the message
and frees the network. The client then checks if it can decrypt the message, if the message type
is correct, and if the message contains the correct nonce. If all three conditions hold, an outgoing
acknowledgment message M AuthAckKey is constructed and added to the network. The client
then changes its local state to C ACK.

The leader part of the model is quite similar to the client part. For instance, the leaders also
maintain a local state and store the identifier of the agent initiating the protocol in their state
variable lead[i].client. In addition, the behavior of the leaders is also modeled with two rules:
one that handles the initial authentication request of the client and another which commits to the
session after receipt of the final message of the protocol.

3.1.2 Modeling Intruders

The intruder maintains a set of overheard messages and an array representing all the nonces it
knows. The behavior of the intruder is modeled with three rules: one for eavesdropping and
intercepting messages, one for replaying messages, and one for generating messages using the
learned nonces and injecting them into the network. The model for the first rule is given in the
following.

ruleset i: IntruderId do
choose j: net do

rule "intruder overhearing messages"
!ismember (net[j].psource, IntruderId) -- not for intruder

==>
var
temp: Message;

begin
alias msg: net[j] do -- message to intercept
alias intruderknowledge: int[i].messages do
if multisetcount(f:intruderknowledge, true) < MaxKnowledge then
if msg.key=i then -- message is encrypted with i’s key
int[i].nonces[msg.nonce1] := true; -- learn nonces
if msg.mType= M_AuthKeyDist then
int[i].nonces[msg.nonce2] := true;

end;
else -- learn message
alias messages: int[i].messages do
temp := msg;
undefine temp.psource; -- delete useless information
undefine temp.pdest;
if multisetcount (l:messages, -- add only if not there
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messages[l].mType = temp.mType &
.....

(messages[l].mType = M_AuthKeyDist ->
messages[l].sessionKey = temp.sessionKey) ) = 0 then

multisetadd (temp, int[i].messages);
end;

........
end;

The enabling condition of the intruder’ message overhearing rule is that the network cell in ques-
tion, net[j], does not contain a message sent by the intruder itself (otherwise nothing will be
learned). We distinguish then two cases:

• The intercepted message is intended for the intruder (encrypted with a key known to the
intruder msg.key = i), then the action is simply to learn the nonces (c.f. Murphi model
above).

• The intruder intercepts a message that is intended to another participating agent and then
learns all useful message fields. The intruder can also be modeled to block and remove
messages from the network.

3.2 Properties Specification

The main property we are interested in is mutual authentication between a given pair of leader
and client, Li should be able to assert that it has been talking, indeed, to client U , and vice-versa.
The verification is done by means of invariant checking under the above assumptions. The client
proper authentication invariant is given below.

invariant "client proper authentication"
forall i: LeaderId do
lead[i].state = L_COMMIT &
ismember(lead[i].client, ClientId)
->
clnt[lead[i].client].leader = i &
clnt[lead[i].client].state = C_ACK

end;

It basically states that for each leader i, if it committed to a session with a client, then this client
(whose identifier is stored in lead[i].client), must have started the protocol with leader i, i.e., have
stored i in its field leader and be awaiting for acknowledgment (i.e., in state C ACK).

In addition to the above invariant, we have checked a similar one for leaders proper authen-
tication. The leaders proper authentication invariant asserts that for each client, if it commits to
a session with a leader Li, then Li is, in reality, the same leader with whom the client started the
session.

invariant "leaders proper authentication"
forall i: ClientId do
clnt[i].state = C_ACK &
ismember(clnt[i].leader, LeaderId)
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->
lead[clnt[i].leader].client = i &
( lead[clnt[i].leader].state = L_WAIT |
lead[clnt[i].leader].state = L_COMMIT )

end;

3.3 Experimental Results

Table 1 summarizes the experimental results obtained from the model checking of the first invari-
ant, clients proper authentication, including the number of reached states and CPU run times taken
on a six-440-MHz-processor Sun Enterprise Server with 6 GB of memory, for different sizes of
the protocol. The instances of the protocol that we have considered, were chosen in a way that
emphasizes the weight of each size parameter. Our approach is as follows. We start with an in-
stance of the protocol for which the model checking terminates (e.g., the first row in the table),
and from there we explore several instances, following a certain pattern, where we vary only one
size parameter and keep all others unchanged. The results roughly show that the number of leaders
is less significant, in terms of complexity, then other parameters such as the number of clients,
intruders or the network size (maximum number of messages allowed on the network at the same
time). This can be explained by the fact that the average load for each individual leader is reduced
when we increase their total number. Another parameter, of most importance, is the intruder’s
maximum knowledge (or memory size). For the purpose of this experiment, we have kept it equal
to “3” messages (enough for the three steps required in a single session of the protocol).

Besides, many of the rows in Table 1, show non-conclusive results, where Murphi ends up
running out of memory before reaching all possible states. This is a well known problem of model
checking in general. One way to improve this, is by deploying more computational resources, but
doing so will not bring a major change to the picture, as the number of states grows exponentially
with respect to the size parameters. Another efficient way is to adopt powerful model abstraction
and reduction techniques [8], which in our case would have to be done manually as Murphi does
not support such algorithms.

3.4 Discussion

The focus of this verification work, is on the mutual authentication property between any given
pair of client and leader. In the case of a client that concurrently runs several authentication re-
quests with different leaders, we consider each session (with a given leader) as independent. In
other words, we assume that the correctness of the concurrently running sessions results from the
correctness of each session running independently.

In Murphi, the specification can be expressed very intuitively; we simply list the rules of each
action the participants can perform in the protocol. Unlike belief-based logics, we do not need to
interpret the beliefs that each message would convey to protocol agents. Murphi also offers a lot
of freedom, compared to other tools (e.g., SMV [18]), especially when it comes to the definition
of the intruder model, often at the center of all security analysis.

On the other hand, efficiency is the main problem. In fact, only for a few number of small
instances of the protocol, the Murphi tool terminated the model checking in a reasonable amount
of time. Although we performed our experiments on a relatively powerful machine, and despite the
fact that Murphi was equipped with a few techniques to help reduce the state space, the execution
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Table 1: Model Checking Experimental Results

# Clients # Leaders # Intruders Network size States CPU time

2 2 1 1 274753 515 s
3 2 1 1 – –

2 3 1 1 1240550 3408 s
2 4 1 1 3723157 18383 s
2 5 1 1 – –

3 2 1 1 – –
3 1 1 1 1858746 3161 s

2 2 2 1 – –
2 2 1 2 – –

3 1 1 2 – –
3 1 2 1 – –

4 6 1 1 – –
...

...
...

...
...

...
4 2 3 6 – –

time increased dramatically as we started increasing the protocol size, and the model checker was
unable to terminate. This shows the serious limitations of model checking when dealing with
security protocols, generally exponential in the number of participants, the network size and the
maximum knowledge participants are allowed to remember. One possible way to improve this, is
by using rank functions in the context of a theorem prover [27].

4 Modeling Byzantine Agreement in PVS

Most group communication protocols, including Enclaves, can be modeled by an automaton whose
initial state is modified by the participants’ actions as the group mutates (new members join).
Because Enclaves depends also on time (participants timeout, timestamp group views, etc.), it was
convenient to model it as a timed automaton. In the current verification, timing is used only to
ensure actions progress. Timing, however, is essential to prove upper bounds on agreement delays
(e.g., a maximum join delay), but this is beyond the scope of this paper. Participants in a typical
run of Enclaves consist of a set of n leaders (f of which are faulty), a group of members, and one
or more users requiring to join the group.

In this section, we first present the timed automata model of Enclaves in terms of the higher-
order typed logic of the PVS specification and verification system. we explain the different com-
ponents and parameters of the model, then we describe the resulting overall protocol as well as the
adopted fault assumptions.
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4.1 Timed Automata

We present a general, protocol-independent, theory called T imedAutomata. Given a number of
parameters, it defines all possible executions of the protocol as a set of Runs. A run is a sequence
of the form s0

a0→ s1
a1→ s2

a2→ s3
a3→ . . . where the si are States, representing a snapshot of the

system during execution and the ai are the executed Actions. A particular protocol (an instance
of the timed automaton) is characterized by sets of possible States and Actions, a condition Init
on the initial state, the precondition Pre of each action, expressing in which states that action can
be executed, the effect Effect of each action, expressing the possible state changes by the action,
and a function now which gives the current time in each state. In a typical application, there is a
special delay action which models the passage of time and increases the value of now. All other
actions do not change time. In PVS, the theory and its parameters are defined as follows.

TimedAutomata [ States, Actions: TYPE+,
Init : pred[States],
Pre : [Actions -> pred[States]] ,
Effect : pred[[States, Actions, States]],
now : [States -> nonneg_real]
] : THEORY

To define Runs, let PreRuns be a record with two fields, states and events.

PreRuns : TYPE = [# states : sequence[States],
events : sequence[Actions] #]

A Run is a PreRun where the first state satisfies Init, the precondition and effect predicates of
all actions are satisfied, the current time never decreases and increases above any arbitrary bound
(avoiding Zeno-behaviour [12]). In PVS, this is formalized as follows.

PreEffectOK(pr) : bool = FORALL i :
Pre(events(pr)(i)) (states(pr)(i)) AND
Effect(states(pr)(i), events(pr)(i), states(pr)(i + 1))

NoTimeDecrease(pr) : bool =
FORALL i : now(states(pr)(i)) <= now(states(pr)(i + 1))

NonZeno(pr): bool =
FORALL t : EXISTS i : t < now(states(pr)(i))

Runs : TYPE =
{ pr: PreRuns | Init(states(pr)(0)) AND PreEffectOK(pr) AND

NoTimeDecrease(pr) AND NonZeno(pr) }

4.2 Leaders Actions

To define the actions of the leaders, we first state a few preliminary definitions. Let n be the
number of leaders and let f be such that 3f + 1 ≤ n (the maximum number of faulty leaders). For
simplicity, leaders are identified by an element of {0, 1, . . . , n−1}. Users are represented by some
uninterpreted non-empty type, and time is modeled by the set of non-negative real numbers.
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n : posnat
f : { k : nat | 3 * k + 1 <= n }

LeaderIds : TYPE = below[n]
UserIds : TYPE+
Time : TYPE+ = nonneg_real

The actions of the protocol are represented in PVS as a data type, which ensures, e.g., that all
actions are syntactically different. Thereafter, we define the following actions:

• A general delay action which occurs in all our timed models; it increases the current time
(now), and all other clocks that may be defined in the system, with the amount specified by
a delay parameter del.

• An announce action is used to send announcement messages of new locally authenticated
users to the other leaders of the protocol.

• A trypropagate action allows a user announcement to be further spread among leaders.
This action is executed periodically, but it only changes the state of the system if enough
announcements (f + 1) have been received for the considered user and it has not already
been announced or propagated by the leader in question before.

• An action tryaccept used to let leaders periodically check whether they have received enough
announcements and/or propagation messages for a given user. Once this condition is satis-
fied, the user is accepted to join the group.

• A receive action allows a leader to receive messages; it removes a received message from
the network and adds corresponding data to the local buffer of the leader.

• A crash action models the failure of a leader. After a crash, a leader may still perform all
the actions mentioned above, but in addition it may perform a misbehave action.

• An action misbehave models the Byzantine mode of failure and can only be performed by
a faulty (crashed) leader.

Besides, we define three time constants for the maximum delay of messages in the network, the
maximum delay between trypropagate actions and the maximum delay between tryaccept ac-
tions.

4.3 States

In order to properly capture the distributed nature of the network, it is suitable to model two kinds
of states: a local state for each leader, accessible only to the particular leader, and a global state to
represent global system behavior, which includes the local state of each leader, the representation
of the network and a global notion of time.

An important part of the local state is the group view, which is a set of users in the current
group. In fact, the ultimate goal of Enclaves is to assure consistency of the group views. Moreover,
we use a Boolean flag (faulty) marking the leader status as faulty or not, some local timers (clockp
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and clocka) to enforce upper bounds on the occurrence of trypropagate and tryaccept actions,
and finally a list (received) of the leaders from which the local leader received proposals for a
given user.

Views : TYPE = setof[UserIds]

LeaderStates : TYPE =
[# view : Views,

faulty : bool,
clockp : Time, % clock for the trypropagate action
clocka : Time, % clock for the tryaccept action
received : [UserIds -> list[LeaderIds]] #]

We model Messages as quadruples containing a source, a destination, a proposed user and a
timestamp indicating an upper bound on the delivery time, i.e., the message must be received
before the tmout value.

Messages : TYPE = [# src : LeaderIds,
tmout : Time,
proposal : UserIds,
dest : LeaderIds #]

In the global states, the network is modeled as a set of messages. Messages that are broadcast
by leaders are added to this set, with a particular time-out value, and they are eventually received,
possibly with different delays and at a different order at recipient ends. The global state also
contains the local state of each leader and a global notion of time, represented by now.

GlobalStates : TYPE = [# ls : [LeaderIds -> LeaderStates],
now : Time,
network : setof[Messages] #]

s, s0, s1 : VAR GlobalStates

Furthermore, we define a predicate Init, which expresses conditions on the initial state, requiring
that all views, received sets and the network are empty, and all clocks and now are set to zero.

4.4 Precondition and Effect

For each action A, we define its precondition, expressing when the action is enabled, and its effect.

Pre(A)(s) : bool =
CASES A OF
delay(t) : prenetwork(s,t) AND preclock(s,t),
announce(i,u) : true,
trypropagate(i) : true,
tryaccept(i) : true,
receive(i) : MessageExists(s,i),
crash(i) : NOT faulty(ls(s)(i)),
misbehave(i) : faulty(ls(s)(i))

ENDCASES
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An announce action, for instance, may always occur and hence has precondition true. Simi-
larly for trypropagate and tryaccept, which should occur periodically. Action receive(i) is only
allowed when there exists a message in the network with destination i. For simplicity, a crash

action is only allowed if the leader is not faulty (alternatively, we could take precondition true). A
misbehave action may only occur for faulty leaders.

Most interesting is the precondition of the delay(t) action. This action increases now and all
timers (clockp and clocka) by t. To ensure that messages are delivered before their time-out value,
we require that the condition prenetwork, defined below, holds in the state before any delay(t)
action is taken, which fits our informal assumptions about network reliability.

prenetwork(s, t) : bool = FORALL msg :
member(msg, network(s)) IMPLIES now(s) + t <= tmout(msg)

Similarly, there is a condition preclock which requires that all timers (clockp and clocka) are not
larger than MaxTryPropagate and MaxTryAccept, respectively. Since the trypropagate and
tryaccept actions reset their local timers to zero, this may enforce the occurrence of such an action
before a time delay is possible.

Next we define the effect of each action, relating a state s0 immediately before the action and
a state s1 immediately afterwards.

• delay(t) increments now and all local timers by t, as defined by s0 + t.

• announce(i, u) adds, for each leader j a message to the network, with source i, time-out
now(s0) + MaxMessageDelay, proposal u, and destination j.

• trypropagate(i) resets clockp to zero and adds to the network messages, to all leaders,
containing proposals for each user for which at least f + 1 messages have been received.

• tryaccept(i) resets clocka to zero and adds to its local view all users for which at least
(n − f) messages have been received.

• receive(i) removes a message with destination i from the network, say with source j and
proposal u, and adds j to the list of received leaders for u, provided it is not in this list
already.

• crash(i) sets the flag faulty of i to true.

• misbehave(i) may just reset the local timers clockp and clocka of i to zero, as expressed
by ResetClock(s0, i, s1), or it may add randomly as well as maliciously chosen messages
to the network (provided that timeouts are not violated). A misbehaving leader, however,
cannot impersonate other protocol participants, i.e., any message sent on the network has the
identifier of its actual sender.

This leads to a predicate of the form:

Effect(s0,A,s1) : bool =
CASES A OF
delay(t) : s1 = s0 + t,
announce(i,u) : AnnounceEffect(s0,i,u,s1),
...
misbehave(i) : ResetClock(s0,i,s1) OR SendMessage(s0,i,s1)

ENDCASES
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4.5 Protocol Runs and Fault Assumption

Runs of this timed automata model of Enclaves are obtained by importing the general timed au-
tomata theory. This leads to type Runs, with typical variable r. Let Faulty(r, i) be a predicate
expressing that leader i has a state in which it is faulty. It is easy to check in PVS that once a leader
becomes faulty, it remains faulty forever. Let FaultyNumber(r) be the number of faulty leaders
in run r (it can be defined recursively in PVS). Then we postulate by an axiom that the maximum
number of faults is f (MaxFaults : AXIOM FaultyNumber(r) <= f).

5 Proving Byzantine Agreement in PVS

We are interested in verifying the following properties of the Enclaves protocol:

• Termination: if user u wants to join an active group and has been announced by enough
non-faulty leaders, then eventually user u will be accepted by all non-faulty leaders and
becomes a member of the group.

• Integrity: a user that has been accepted in the group should have been announced by a
non-faulty leader earlier during the protocol execution.

• Proper Agreement: if a non-faulty leader decides to accept user u, then all non-faulty
leaders accept user u too.

In the remainder of this section, we formally enunciate the above theorems and briefly outline their
proofs.

Theorem 1 (Termination)
For all r and u, announced by many(r,u) implies accepted by all(r,u)

where

• announced by many(r,u) expresses that at least (f +1) non-faulty leaders announced
user u during run r;

• accepted by all(r, u) asserts that eventually all non-faulty leaders have user u in
their view during run r.

Proof

Assume announced by many(r,u), which implies that at least (f + 1) non-faulty leaders
broadcast a proposal for u. Because of the reliability of the network, eventually these messages
will be delivered to their destination, and in particular to the (n − f) non-faulty leaders of the
network. They all receive (f + 1) announcement messages for user u, which is enough to trig-
ger the propagation procedure (for u) for all non-faulty leaders who did not participate in the
announcement phase. Now because of the network reliability, we conclude that eventually all non-
faulty leaders will receive at least (n − f) approvals for user u, enough to make a majority, since
(n − f) > f follows from n > 3f . 2

Theorem 2 (Integrity)
For all r and u, accepted by one(r,u) implies announced by one(r,u)
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where

• accepted by one(r,u) holds if at least one leader eventually included u in its view
during run r.

• announced by one(r,u) expresses that at least one non-faulty leader announced user
u during run r;

Proof

We proceed by contrapositive and use the non-impersonation property. We assume that for all
non-faulty leaders no announcement for user u has been done during run r. Now because of non-
impersonation, faulty leaders cannot send more than f different announcements. This implies that
the leaders would receive no more than f announcements for user u, which is not enough to trigger
propagation actions. This yields that u will never be proposed by any of the non-faulty leaders,
and hence none of them will receive as much as (n − f) messages for u (recall (n − f) > f ). As
a result, user u will never be accepted by any of the non-faulty leaders. 2

Theorem 3 (Proper Agreement)
For all r and u, accepted by one(r,u) implies accepted by all(r,u)

Proof

accepted by one(r,u) implies that there exists a non-faulty leader that received at least (n−
f) approvals (i.e., announcements or propagation messages) for user u. Among these approvals, at
least (n − 2f) come from non-faulty leaders (by non-impersonation). Now because these leaders
are non-faulty, they broadcast the same approval to all the other leaders. In addition, because of
the network reliability, these messages are eventually delivered to destination. This implies that
all (n − f) non-faulty leaders receive eventually the above (n − 2f) approvals. Since (n − 2f) ≥
(f +1), all (n− f) non-faulty leaders have received at least (f +1) messages for u. Similar to the
proof of Termination, the latter implies the start of the propagation procedure, then the reception
of at least (n − f) approvals for user u, and finally the acceptance of u by all non-faulty leaders.

2

Concluding Remarks

In this section, we have verified the correctness of the Byzantine Agreement module of Enclaves
using the PVS theorem prover. Thanks to the high level of expressiveness of the Timed-Automata
formalism, as well as the rich datatype package of PVS, we have succeeded to formalize the module
for any number of leaders, in a way that thoroughly captures the many subtleties on which the
correctness arguments of the module rely.

In addition, the PVS theorem prover provides a collection of powerful primitive inference
procedures to help derive theorems. These procedures can be combined to yield higher-level proof
strategies making verification much easier. PVS also produces scripts that can be edited, attached
to additional formulas, and rerun. Such capabilities have been extremely helpful in this work;
they allowed many similar theorems to be proved efficiently, permitted many proofs to be easily
adjusted after modifications in the specification, and helped produce readable proofs.
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Using all these features, we have proved the module to satisfy its requirements of Termination,
Integrity and Proper Agreement. The proofs required over 40 intermediate lemmas. The Integrity
and Termination theorems were the most challenging to prove and they helped deduce Proper
Agreement.

6 Group Key Management : Mathematical Proof

In the previous sections we discussed authentication and leaders agreement. We saw also that once
the leaders agree on accepting a user U , they proceed with providing it with a group key. We
direct our focus here to Enclaves’ Group Key Management module [10]. This module is based on
a secret sharing scheme that guarantees (1) the f dishonest leaders cannot obtain the group key
even if they conspire and pool their shares together; (2) the group key is renewed every time the
group changes (new join or leave); and (3) the users are able to distinguish valid key shares from
invalid ones (possibly issued by malicious leaders).

The analysis of the group key management module involves arguments from number theory
and probability theory. Given the current state of the art in formal methods, expressing and ma-
nipulating notions from those theories is still not possible. As a consequence, we do not analyze
the group key management module with the techniques of the previous sections. For completeness
though, we give here an overview of the group key management module, as well as a sketch of the
manual proofs guaranteeing its security.

The group key management protocol of Enclaves has an architecture similar to that of Cachin
et al. [5]. The security of the protocol relies on the hardness of the discrete logarithms problem
in a group of large prime order. Such a group Gq can be obtained by selecting two large prime
numbers p and q such that p = 2q + 1. Gq is then chosen as the unique subgroup of order
q in Z

∗
p. The protocol works as follows. Initially, a dealer chooses a generator g of Gq and a

random secret integer x ∈ Zq. The dealer then generates n shares x1, · · · , xn ∈ Zq using an
(n, f) threshold2 Shamir secret sharing scheme [28]. The dealer secretly transmits the shares xi to
their corresponding leaders and makes public the values hi = gxi mod p, i ≤ n. We denote by
g̃ = H(G) the hash of the most recent set of users G, where H : {0, 1}∗ → Gq. The secret group
key to be reconstructed by the users is g̃x. The protocol parameters p, q and g, as well as H are all
known to the participating leaders. Given the above, the protocol works as follows:

1. Leader Li randomly picks s ∈ Zq, and computes (a, b) = (gs, g̃s) mod p.

2. Leader Li computes c = H ′(yi, g̃, a, b), where yi = g̃xi mod p, and H ′ : Gq
4 → Zq is a

public hash function.

3. Leader Li computes r = s + cxi mod q and sends each client the tuple (yi, a, b, r): the
share yi, and (a, b, r) a proof of its validity.

4. Now the client computes c′ = H ′(yi, g̃, a, b), and accepts the share yi if and only if the
following equations hold:

gr ?
= a hi

c′ mod p (1)

g̃r ?
= b yi

c′ mod p (2)

2The secret cannot be reconstructed unless (f + 1) valid shares are known.
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Let S be any set of f +1 (or more) shares yi that a given client has received. For simplicity, assume
S = {y1, y2, ..., yf+1}. We denote by (ai)1≤i≤f+1 the Lagrange interpolation coefficients3 leading
to x =

∑f+1
i=1 aixi. Given the set of shares S, the clients recover the secret group key as follows:

g̃x = g̃(
Pf+1

i=1
aixi) =

f+1∏

i=1

(g̃xi)ai =
f+1∏

i=1

yi
ai mod p

In the following, we present a sketch proof of the module’s two main properties, namely, robustness
and unpredictability.

Theorem 4 (Robustness) In the random oracle model, a dishonest leader cannot forge, with non-
negligible probability, a valid proof for a non valid share.

Proof sketch Let yi be the share provided by leader Li and (a, b, r) be the corresponding cor-
rectness proof. yi, a, b and r should then satisfy the following equations:

gr = a hi
c mod p (3)

g̃r = b yi
c mod p (4)

where c = H ′(yi, a, b, g̃). Equation (3) yields a ∈ Gq, since hi
c and gr are both in Gq (Closure

of Gq under multiplication). The latter implies that it exists γ ∈ Zq such that a = gγ mod p.
Equation (3) gives: gr = gγgcxi mod p, which implies: r = γ + cxi mod q. Now equation (4)
becomes:

g̃r = b yi
c mod p ⇐⇒ g̃(γ+cxi) = b yi

c mod p

⇐⇒ g̃γ b−1 = (g̃−xi yi)
c mod p

This yields two possible cases:

1. yi = g̃xi mod p. In this case, the share is correct. b = g̃γ mod p and for all c ∈ Zq the
verifier equations trivially hold.

2. yi 6= g̃xi mod p. In this case, we must have c = log(g̃−xi yi)
(g̃γ b−1) mod q.

Once the triplet (yi, a, b) is chosen, if yi is not a valid share, then there exists a unique c ∈ Zq that
satisfies the verifier equations. In the random oracle model, the hash function H′ is assumed to
be perfectly random. Therefore, the probability that H ′(yi, a, b, g̃) equals c, once (yi, a, b) fixed, is
1
q
. If an attacker adaptively queries an oracle N times, the probability he finds a triplet (yi, a, b),

such that c = H ′(yi, a, b, g̃), is PSuccess = 1 − (1 − 1
q
)
N

≈ N
q

for large q and N . If |q| = k, then

PSuccess ≤
N
2k , which is negligible assuming N polynomial in the security parameter k. 2

Theorem 5 (Unpredictability) An attacker that corrupts up to f leaders cannot, with a non-
negligible probability, learn the secret group key g̃x.

The proof of this theorem is similar to the previous one, but is outside the scope of this paper.
Its correctness relies on the security of the secret sharing scheme, and the hardness of the Decision
Diffie-Hellman problem.

3The ai’s depend only on the leaders indexes, and are hence public.
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7 Related Work

Much work has been done to formally verify fault-tolerance in distributed protocols. Some of these
verifications deal with the Byzantine failure model [6], while others remain limited to the benign
form [14]. A variety of automata formalisms has been adopted to specify such protocols.

Castro and Liskov [6] specified their Byzantine fault-tolerant replication algorithm using the
I/O automata of Tuttle and Lynch [20]. They have manually proved their algorithm’s safety, but
not its liveness, using invariant assertions and simulation relations. This work, although similar to
our Byzantine agreement module, has never been mechanized in any theorem prover.

Kwiatkowska and Norman [18] analyzed the Asynchronous Binary Byzantine Agreement [5]
(based on a concept similar to our key management module) using a combination of mechanical
inductive proofs (for non-probabilistic properties) and finite state checks (probabilistic properties)
plus one high-level manual proof. Our approach, too, takes advantage of the easiness and perfor-
mance of the different earlier mentioned techniques to prove the overall Enclaves protocol.

Timed automata were also used to model the fault-tolerant protocols PAXOS [26] and Ensem-
ble [13]. The authors assume a partially synchronous network and support only benign failures.
This bears some similarities with our Enclaves verification in the sense that we assume some
bounds on timing, but unlike the work in [26, 13] we are dealing with the more subtle Byzantine
kind of failure.

In [2], Archer et al. presented the formal verification of some distributed protocols using the
Timed Automata Modeling Environment (TAME). TAME provides a set of theory templates to
specify and prove I/O automata similar to those we use in our specification.

In [11], Paulson et al. extend their inductive approach [25] to cope with the so-called second-
level security protocols and illustrate their method on a two-layer certified email delivery protocol.
Our approach is similar to theirs in principle, except that we do not use Paulson’s induction, and
our protocols are more complex than theirs.

8 Conclusion and Future Work

This paper describes our results about the formal verification of an Intrusion-Tolerant group-
membership protocol. We experimented with a combination of techniques, namely model checking
with Murphi, theorem proving with PVS, and we manually conducted a mathematical using the
random oracle model. Our choice of the techniques was, adaptively, driven by the nature of the
correctness arguments in each module of the protocol, by the environment assumptions and the
easiness of performing verification.

Although we believe to have achieved a promising success in verifying a complex protocol such
as Enclaves, our results could be improved further. For instance, the feasibility of model checking
is always limited to instances with a finite number of states, which may, in some cases, prevent
from discovering security flaws in realistic implementations of the protocols. This can be improved
by the use of rank functions [27]. The role of a rank function will be to partition the message space
into messages that the intruder might be able to intercept or infer (positive rank), and messages that
will certainly remain out of his reach (non-positive rank). The verification consists then in finding
if some secret information, with a non-positive rank, can be leaked during the protocol execution
and results in a message with a non-positive rank in the intruder’s knowledge supposed to be of
positive rank. We believe that using rank functions is a very efficient way to mechanically prove
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authentication properties and we are considering it among our future work plans.
Thanks to the high level of expressiveness of the Timed-Automata formalism, as well as the

rich datatype package of PVS, we succeeded to formalize the Byzantine agreement module for
any number of leaders, in a way that thoroughly captures the many subtleties on which the cor-
rectness arguments of Enclaves rely. We have proved the protocol to satisfy its requirements of
Termination, Integrity and Proper Agreement. Yet, we have not proved the consistency of group
membership when members leave the group. This is also among our future work. Finally, one
promising direction for further development would be to perform the mathematical analysis of the
group key management module mechanically in PVS. This requires the elaboration of some gen-
eral purpose theories (e.g., probabilities) not yet available in PVS. The current specification can be
further extended by widening the Byzantine faults capabilities and by introducing the joint crypto-
graphic modules that have been abstracted away. Also results about an upper bound on Agreement
establishment delays can be further investigated.
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