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Abstract

The correctness of group key protocols in communication systems remains a great chal-
lenge because of dynamic characteristics of group key construction as we deal with an open
number of group members. In this paper, we propose a solution to model group key proto-
cols and to verify their required properties, in particular secrecy property, using the event-B
method. Event-B deals with tools allowing invariant checking, and can be used to verify
group key secrecy property. We define a well-formed formal link between the group pro-
tocol model and the event-B counterpart model. Our approach is applied on a tree-based
group Diffie-Hellman protocol that dynamically outputs group keys using the logical struc-

ture of a balanced binary tree.

1 Introduction and Motivation

Security protocols are used to establish secure channels between communicating systems. Great
care needs to be taken in developing and implementing robust protocols. The complexity of
security-protocol interactions can hide security weaknesses that normal analysis methods can-
not reveal.

Security properties that are well defined in normal two-party protocols have different mean-
ings and different interpretations in group key protocols. Therefore they require a more precise
definition before we look at how to verify them. An example of such properties is secrecy,
which deals with the fact that secret data should remain secret and not compromised. However,
for group key protocols, this property has a further dimension since there are long-term secret
keys, short-term secret keys, in addition to present, future, and past keys; where a principal who
just joined the group and learned the present key should not be able to have enough information
to deduce any previous keys, or similarly a principal who just left the group should not have
enough information to deduce any future keys. Therefore, systems designed for two-party pro-
tocols may not be able to model a group key protocol, or its intended security properties because
such systems require an abstraction to a group of fixed size to be made before the automated
analysis takes place. This can eliminate chances of finding attacks on these protocols.

In [14] we introduced a rank functions based inference system for verification of secrecy in
group key protocols that is implemented in higher-order logic theorem proving. Implementing
the inference system in higher order logic theorem proving required a lot of effort and time, in
addition, verifying properties is achieved interactively with the theorem proving tool because of
the decidability problem on higher-order logic. This paper complements our previous work, by

providing an event-B based automatic invariant checking for a similar class of properties. This



allows us to avoid user interaction with the theorem proving tool, and reduce the time required
to verify such property.

Event-B [17] was introduced by extending B [1] without changing it to model operations that
could be guarded in the process algebraic sense. The event-B method uses the set-theoretical
and logical notations of the B method and provides new notations for expressing abstract models
based on events. It provides invariants proofs based on a state-based system that is updated by
guarded events. A strong point of event-B is the availability of tools that support automatic
invariant checking such as Click’n’Prove [3], B4free [8], and RODIN [17]. Most theoretical
aspects of the method, such as the formulation of proof obligations, are done automatically
by the tool. Provers are also designed to run automatically and reference a large library of
mathematical rules, provided with the system.

The B method has been used to verify semi-formal specifications. Several works were
elaborated in this context such as the translation from UML to B [16], state-charts to B abstract
machine notation [19] and UML activity diagrams to event-B [22]. In this context, we propose a
solution mapping group protocol models presented in [14] in event-B to verify required secrecy
properties.

In order to model a group key protocol in event-B first order logic, the semantics of the
event-B language should be formally related to the protocol model. In this paper, we define well-
formed conditions to guarantee that the event-B invariant is equivalent to the security property in
the group key protocol model. These conditions are particular to the group key protocol model,
and are essential to establish the equivalent event-B model. We show how an event-B model
can be structured from group key protocols model and then used to give a formal semantics to
protocols which support proofs of their correctness.

The Diffie-Hellman basic protocol [12] has been used extensively to design several group
key protocols. Kim et al. [15] designed a static group key exchange protocol (tree based Group
Diffie-Hellman (TGDH)) that outputs group keys using the logical structure of a balanced binary
tree. The TGDH protocol design is based on an extension of the basic DH protocol by [20] e?
al.. The designers of the protocol provide an informal and non-intuitive simple proof for the
secrecy property in their work. We apply our approach on the TGDH protocol and use invariant
checking to formally verify secrecy property that ensures the correctness of key construction.
We provide an automatic proof based on a sound semantical link between group key protocols
and event-B models.

In the proposed approach, we model protocol events and traces as events and messages as
sets in event-B. Secrecy property is defined as an event-B invariant. We then use the event-B
first-order logic prover tool, Click’n’Prove, to perform invariant checking under the assumption

that basic DH key is correct. The dynamic case was also considered by applying events such as



join and leave and verify the correctness of key construction for bounded tree size and bounded
number of events. We assume perfect cryptography conditions in our approach. In addition, the
group key protocol is analyzed in the presence of passive adversaries.

The contributions of this paper include the formal link between event-B semantic and se-
curity protocols, the use of event-B first-order prover to verify secrecy property as an event-B
invariant, which is not a straightforward task, since we have to define a correct semantical link
between the two models. Finally, applying the method on a group key protocol with join/ leave
events, in order to verify secrecy property using first-order automatic theorem proving in event-
B. To achieve this, certain distributive features in the protocol were abstracted away, focusing
on key construction problems.

The rest of the paper is organized as follows. Section II discusses related work to ours.
In Section III, we overview preliminary definitions and notations we use. In Section IV, we
present our methodology and define a sound formal link between the protocol model and event-
B semantics. In Section V, we apply our approach on a TGDH protocol. Finally, Section VI
concludes the paper with future work hints.

2 Related Work

The last years have seen the emergence of successful applications of formal approaches to rea-
soning about security protocols. Earlier methods were concerned with reasoning about the
events that a security protocol can perform, and make use of a causal dependency that exists
between protocol events. Methods like strand spaces [13] and the inductive method of Paul-
son [18] have been designed to support an intensional, event-based, style of reasoning. These
methods have successfully tackled a number of protocols though in an ad hoc fashion. They
make an informal spring from a protocol to its representation and do not address how to build
up protocol representations in a compositional fashion [10].

Events-based verification of security protocols was used by Crazzolara [9, 10] using map-
pings between process algebra, Petri nets, strand spaces and inductive models. The authors es-
tablished precise relationships between the Petri nets semantics and transition semantics, strand
spaces, inductive rules, trace languages, and event structures. They show how event-based mod-
els can be structured in a compositional way and so used to give a formal semantics to security
protocols which support proofs of the correctness of these protocols. They demonstrated the
usefulness of their Petri nets semantics in deriving proof principles for security protocols and
apply them to prove an authentication property.

Cremers [11] proposed an operational semantics for security protocols. The work provides

a generic description of the interpretation of such security protocols and what it means for a pro-
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tocol to ensure some security property. This work imposes explicit static requirements for valid
protocols, and verifies that the model is parametric with respect to the matching function and
intruder network capabilities. Other related work that treats group key protocols verification,
specifically DH based protocols, are discussed in more details in [14].

Stouls and Potet [21] proposed a method to automatically enforce an abstract security policy
on a network. They used the B refinement process to build a formal link between concrete and
abstract terms, which is dynamically computed from the environment data. They applied their
method on a case study modeling a network monitor. A different approach to achieve a similar
objective was proposed in [5], where the authors addressed the proof-based development of
system models satisfying a security policy. They used OrBAC models to express the security
policies in order to state permissions and prohibitions on actions. An abstract B model is derived
from the OrBAC specification of the security policy and then the model is refined to introduce
properties that can be expressed in OrBAC. The refinement guarantees that the resulting B
model satisfies the security policy.

Bert et al. [6] presented a tool to build symbolic labeled transition systems from B specifi-
cations. The resulting symbolic transition system represents all behaviors of the initial B event
system. The tool, called GeneSyst, was illustrated on a security property for a model of a smart
card purchase transaction protocol. Butler [7] combined CSP and B method refinement in or-
der to verify authentication property. The work does not present a new theoretical framework,
instead, it describes the use of the above methods to treat refinement of secure communication
systems.

Compared to the above, we address, in this paper, security property for group oriented
protocols, which has special features that cannot be modeled in any of these approaches, such
as the concept of group secrecy and dynamic group events. In addition, we consider events
that are specific for group key protocols, something that was not treated by the B method based
work of Butler [7]. This paper tackles the verification problem by using event-B as the target
first-order logic model. In this context, we propose a solution translating group protocol models

presented in [14] into event-B to verify required secrecy properties.

3 Preliminaries

In this section we follow the protocol model and its notations used throughout this paper and
the formal semantics of event-B.



3.1 Group Key Protocols

We follow the formal definition for group key protocols presented in [14]. Let G be a group
key protocol model, and let M be a set of all possible messages (messages space). We choose
S to represent the secret messages space, the set of all secret messages, S C M. Thereafter, we
define E to be the set of all events, or dynamic operations, i.e., join, leave, merge, and split. An
event is a term from the message space to the message space, [E : Ml — M. It represents an
action the user can perform on the system to update his/her own set of knowledge.

Let K, be the set of initial knowledge of the intruder, where Ky C M. The initial knowledge
of the information is collected before executing the protocol events. This information is usually
publicly known, Vm € M : m € S = m ¢ K. We then define K as the set of knowledge of the
intruder that is updated by executing events. The system starts with the initial set of knowledge
and the set of events, then, by executing a sequence of events, it updates this set. Ky C K and
K C M.

Finally, we define a safety property ¢ for a given group key protocol model M. This property
states that the system cannot execute an event in [E in order to generate a message in S, and is
formally modeled as follows: ¢ =Ve € E - m’ = e(m) = m ¢ S. If this property is correct for
the protocol G, then we can write G = ¢.

3.2 Event-B

Event-B [2] is a variant of the B method introduced by Abrial [1] to deal with reactive systems.
An event consists of a guard and an action. The guard is a predicate built on state variables
and the action is a generalized substitution which defines a state transition. An event may be
activated once its guard evaluates to true and a single event may be evaluated at once. The
system is assumed to be closed and it means that every possible change over state variables is
defined by transitions; transitions correspond to events defined in the model. The B method is
based on the concept of machines (or systems) [1]. A machine is composed of descriptive and
operational specifications:



SYSTEM < name >

SETS < sets >

VARIABLES < variables >

INVARIANT < invariants >
INITTALISATION <
initialization of variables >

EVENTS < events >

END

A descriptive specification describes what the system does by using a set of variables, con-
stants, properties over constants and invariants which specify properties that the machine’s state
verify. This constitutes the static definition of the model. Operational specification describes
the way the system operates. It is composed of a set of atomic events described by generalized
substitutions. An event has a guard and an action, and it may occur only when its guard evalu-
ates to true. An event has one of the general forms where the SELFECT form is just a particular
case of the ANY form. SELECT takes the form

Name event =
ANY P WHERE
G
THEN
R

and similarly a SELECT statement takes the form

Name event =
SELECT
G
THEN
R

The consistency of an event-B model is established by proof obligations which guarantee
that the initialization verify the invariant and that each event should preserve the invariant. The
guard and the action of an event define a before-after predicate for this event. It describes a
relation between variables before the event holds and after this. Proof obligations are produced
from events in order to state that the invariant condition is preserved. Let M be an event-B
model with v being variables, carrier sets or constants. The properties of constants are denoted
by P(v), which are predicates over constants, and the invariant by I(v). Let E be an event of M
with guard G(v) and before-after predicate R(v,v’) that indeed yields at least one after value

v'. The initialization event is a generalized substitution of the form v : init(v). Initial proof



obligation guarantees that the initialization of the machine must satisfy its invariant: Init(v) =
I(v).
Each event I, if it holds, has to preserve its invariant. The feasibility statement is illustrated

in Lemma 3.1 and the invariant preservation is given in Lemma 3.2 [17].
Lemma 3.1. /(v) A G(v) A P(v) = 3 .R(v, v)
Lemma 3.2. /(v) A G(v) A P(v) A R(v,v") = 1(v)

An event-B model M with invariant [ is well-formed, dented by M |= I, only if M satisfies
all proof obligations. The B syntax for generalized substitutions defines three predicates: a rela-
tion R, the subsets of the pre-states where G is true of the states in domain(R), and the subset
of the pre-state where P is true. Let S be restricted to evaluations that satisfy the invariant,
S £ {v|I(v)}. Each event can be represented by a binary relation rel. rel is formally defined
asrel 2 {v v | I(v) A G(v) A R(v, v')}. The fact that the invariant /(v) is preserved by
event rel is simply formalized by saying that rel is a binary relation built on S: rel C S x S. It
is shown that this binary relation yields to both Lemmas 3.1 and 3.2 above [17].

Lemma 3.1 guarantees that the active part of the relation is a total relation, i.e., when all
predicates I, P, and G hold, formally, G(v) A P(v) C domain(R(v, v')), while Lemma
3.2 guarantees that the postcondition of any operation must satisfy the machine invariant. The
initial proof obligation guarantees that the initialization of a machine must satisfy its invariant.

We distinguish special rules for the initialization events. We use R;(v,v) to denote the
predicate of the generalized substitution associated with this event. Then we obtain the follow-

ing initialization statements [17]:
Lemma 3.3. P(v) = Jv . R;(v,v)
Lemma 34. P(v) A Ri(v, V') = I(v)

Most theoretical aspects of the event-B formal method, such as the formulation of proof
obligations, are done automatically by tools such as Click’n’Prove and B-Toolkit [3]. Provers
are also designed to run automatically and reference a large library of mathematical rules, pro-
vided with the system. This makes B well adapted for large scale and wide range of systems
[4].

It is a practical solution to verify a security property using model checking tools, when ap-
plicable. However, it is inconvenient because of two reasons: the state space explosion problem
of model checking, and the limited expressiveness of proposition logic based-tools. Treating
the problem at the first-order logic level requires applying a valid abstraction on the protocol in

order to fit to the proving system. This abstraction should be based on a correct semantical link
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between the protocol model and the target model. We tackle this problem by using event-B as
the target first-order logic model benefiting from the automation and the expressiveness of the
logic and the availability of supporting tools.

Group Protocol

l

Formal Protocol Model

!

Formal Specifications

{Initial KnowledgeH Protocol Events M Conditions }

[Secrecy PropertyHSecret MessagesM Messages }

!

Map into
Event-B

!

Event-B Model

{ Events Mlnitializations} {Constants“lnvariant“ Sets ]

Click'n'Prove
Invariant Check

Verified Invariant for
Protocol Model

Figure 1: Verification Methodology

The proposed verification methodology consists of a number of steps as shown in Figure 1.
In the first step, the group key protocol is specified formally using the model proposed in [14]
in order to obtain precise protocol specifications. In addition, the secrecy property expected to
be checked by the system is described informally. In the second step, the obtained specification
is translated into event-B specification using mapping relations presented in Figure 2. From this
mapping we obtain an event-B model that captures the features of the group protocol mode.
Next, the secrecy property ¢ is specified as an invariant of the resulting event-B model /. Mes-
sages can be defined as a set with an enumeration of all possible secret and known messages.
The intruder initial knowledge, K, is directly defined as variable or set in the event-B initial-
ization list. Secret messages are defined similarly. Protocol initial constraints, such as Ky C M
and S C M, are defined as properties that will be included in the invariant. Protocol join or
leave events are defined as event-B operations that update the intruder’s knowledge and the set
of secret messages, including the new generated key. Finally, the property is checked from the
obtained global system specification using the event-B invariant checking tool Click’n’Prove.



In Figure 2, protocol events and execution traces are mapped into event-B events, messages
generation conditions are mapped into events guards, and messages sets are used to generate
event-B model constants properties. The initial knowledge is defined as event-B initializations,
messages are mapped directly into sets, and finally the secrecy property is defined as an invariant
for the event-B model. The generation of the target event-B model requires treating three parts:
the static part which includes initializations and the constant properties of the protocol, the
dynamic part that represents events of the protocol, and finally, enriching the resulting model

with invariants describing the required secrecy properties.

Execution Traces and Events H Event-B Events

Messages Generation Conditions H Events Guards

Messages and Secret Messages H Event-B Sets

Initial Knowledge H Initializations

Security Property H Invariant

Messages Properties H Constants Properties

{ J
{ J
{ J
{ J
{ J
{ J

Figure 2: Mapping protocol primitives into event-B

The event-B semantics is close to the protocol model semantics. This relationship is demon-
strated by establishing a well-formed link between the semantics of both models. To achieve this
link, we are interested in showing that if the invariant / holds for event-B machine M, then the
safety property ¢ must hold for the group protocol model G. Formally, (M = 1) = (G E ¢).
In terms of equivalence between the two models, we can say that a protocol model G is equiv-
alent to an event-B model M, with regards to the security property, if the property ¢ holds in
the model G, and the invariant / holds in the model M. To illustrate this equivalence, we need
to show that I = ¢. Therefore, it is enough to show that the invariant /, with regards to M,
implies the safety property ¢, with regard to G.

To show that I = ¢, we need to establish a well-formed link between event-B invariant and
the safety property. We split this formal link into two parts: the first deals with the initialization,
and the second deals with executing the events. For this, we need to relate messages in G to
variables in M. From Figure 2, there is a map from public messages and secret messages to
event-B sets and a map from messages sets to event-B constants properties. This map relates
the variable m over the set of messages M directly to the variable v over event-B carrier sets and
constants. The semantical correspondence between the variable m and the variable v is defined
by this map.

We define the invariant [ as [ = [;,;; N\ I, where [;,,;; is the invariant predicate under the
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initial conditions, and [ is the invariant predicate under executed events. Similarly, we define

the safety property ¢ = @i N\ Op.

We define the well-formed conditions that guarantee the correctness of this lemma in two
steps, we first show that (1;,,;s = ¢ini). We identify the initial events and initial set of messages
in G under which the formula (/;,,;; = ®;ini¢) holds. Then we define the predicates P, I, G, and
R presented in Lemmas 3.1 and 3.2 for the protocol model G such that Lemma 3.5 holds.

The definition of the group key protocol must satisfy the initial soundness conditions: Ky N
S = (0 and Ve; € E;.m’ := e;(m) = m’ ¢ S, where e; is an initial event that can be applied
on the intruder’s initial set of messages. We choose R; = [y to be the set of events that can be
executed on K.

In following, we define the constants property P and the initialization predicate R; for the
model G that will satisfy Lemmas 3.3 and 3.4. Then we define the relation R, the predicate
guards G, and the invariant I for the model G that will satisfy Lemmas 3.1 and 3.2.

Case 1 (1;nit = Oinit)
o P(m) = (Ko # 0) A (Ko € M) A (K = Kp)
o Ri=(e; €E)A(3(m € M,m € Ko) -/ := e;(m))
e Im)=meKy=m¢S

The message generation event m’ := ¢;(m) is equivalent to the transition relation R;(v,v").
This yields the formula P(m) = Je; € E; - m’ := e;(m) which is exactly Lemma 3.3 consid-
ering that R; = e;.

The invariant definition for the model G is I(m) = m € K = m ¢ S. We need to show
that the invariant / holds for both 7(m) and I(m’). Since the protocol is initially sound, then
both I(m) and I(m') hold by the fact that Ko N'S = () and that the initial events cannot generate

/

secret messages in S. If m’ := e;(m) then m’ ¢ S. Therefore we can write (P(m) A (m' :=

ei(m))) = I(m'), which corresponds to Lemma 3.3 considering that R; = e;.
Case2 (Ig = ¢g)
e P(m)=(KcM)
e /m)=(meK=m¢S)
o G(m) = (({m}r :=encr(m,k) = k € K) A (m := decr({m}, k) = m € K))

11



e R=(ecE)yA(BmeK,m' e M-m'=e(m))

This message generation event is equivalent to the transition relation R(v,v"). Therefore,
applying the predicates P, I, and GG will lead to the relation R. We can write the formula
P(m) A I(m) A G(m) = Je € E-m' = e;(m) which is equivalent to Lemma 3.1 considering
that the relation R is equivalent to an existing event e € E.

The validity of the invariant /(m') for the model G is expressed by the validity of the
predicates P, I, R, and G, where m’ := e(m). This can be written as I(m) A P(m) A G(m) A
R = I(m’), which corresponds to Lemma 3.2.

Under these conditions, we guarantee that when the invariant holds in the event-B model,
the secrecy property definition holds for the group key protocol model. These predicates should
be considered carefully when providing the event-B implementation. Properties that can be

expressed as invariants are verified using the translation process and particular event-B tool.

4 Application: Secrecy in TGDH Protocol

In this Section, we apply the approach proposed in this paper on a group key protocol that
generates a key in a distrusted group. We show how the conditions defined for the correctness
of the above model can be concretely applied on a real protocol. The intended secrecy property,
along with its conditions, are efficiently defined and checked as event-B invariant.

We first introduce the basic Tree-based Group Diffie-Hellman protocol (TGDH) as it is
designed in [15]. All TGDH protocols have the following features:

e Each group member contributes an equal share to the group key, and the key is a function

of all current group members shares.
e The share of each member is secret and is never revealed.

e When a new member joins the group, one of the old members changes its share, and new
members’ shares are factored into the group key.

e When an existing member leaves the group, its’ share is removed from the new group

key, and at least one remaining member changes its key share.

e All protocol messages are signed, time-stamped, sequence-numbered, and type-identified
by the sender [15].

After every membership change, all remaining members independently update the key tree

structure and recompute identical key trees after any membership event. A group key can be
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Figure 3: Tree-based GDH protocol binary tree structure

computed from any members secret share and all blind keys on the co-path to the root, these
are the siblings of the nodes on the key-path. The members own secret share and all sibling
blind keys on the path to the root enable a member to compute all intermediate keys on its
key-path, including the root group key. Figure 3 shows a binary tree structure that represents
the group members, their own secret shares, and the secret sub-keys on every node up to the
root. As part of the protocol, a group member can take on a special sponsor role, which involves
computing intermediate keys and broadcasting to the group. Each broadcasted message contains
the senders view of the key tree, which contains each blind key known to the sender [15].

The group key is calculated by each member based on his/her key-path and blind keys. For
instance, for a member Mj3 at node n3, the key-path is the set of messages {ns, g"2", g9 " }.
}. The

n6gn4n5

The set of blind keys, ordered as the keys appear up to the root, is { ¢"2, g™, ¢9
group key at the root is calculated directly using the two sets:

nlgn2n3 n69n4n5

GroupKey = ¢9 g

The protocol designers presented four types of security properties: group key secrecy, which
guarantees that it is computationally infeasible for a passive adversary to discover any group
key, intuitively, that the attacker should not be able to obtain a key that honest users think to
be safe; forward secrecy guarantees that a passive adversary who knows a contiguous subset of
old group keys cannot discover any subsequent group key; backward secrecy, which guarantees
that a passive adversary who knows a contiguous subset group keys cannot discover preceding
group key, and finally, key independence, which guarantees that a passive adversary who knows
a proper subset of group keys cannot discover any other group key. The authors of [15] pro-

vided an informal proof that their protocol satisfies these security property. In this work, we
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provide a formal proof for group secrecy property under certain conditions. This property can
be described as a correct key construction property, which guarantees that only group members,
who are of knowledge to their own private shares, can calculate the group key at root. On the
other hand, an adversary, who has knowledge to all blind sub-keys cannot find a full path to
calculate the root key.

NNy N3Ny

Figure 4: Join event in TGDH protocol

We illustrate our method on a group protocol composed of three members, then we apply a
join event for a forth member. Figure 4 shows the modification on the tree structure when a new
member joins the group, we define the group protocol components before and after this event
takes place. Assuming that a passive adversary is monitoring the group activity, the knowledge
set is built based on the blind keys interchanged between members. Based on this configuration,
we show all group protocol components, including secrecy property, and the equivalent event-B
model including the invariant, before the join event takes place:

M = {ny, na, ng, g™, "2, ", g™, g9, g™}

S = {nh na2, N3, gn1n27 gn3g”1”2}

KO = {nia gm}

K= {n;, g™, g™, g™, g™, 9"}

GroupKey = g™9™™

Then, we show the same components after the join event of a new member with a new se-

cret contribution n,. Note that group key secrecy has the same definition and should be valid
always, before and after a join (or leave) event takes place.

14



ninz n3ng
) )

_ n n n. n.
M = {n1, ne, ns, na, g™, g™, 9", g™, g g

gnin2 ggn3n4 ggn1"29n3n4 }
Y Y

ninz  ,N3ng g9”1"29"3"4}
) )

S = {nh N2, N3, Ny, g g

. n; n n n n. TL17L2 7L3TL4
K_{ni7917917927g37g4vgg ’gg }

nin2 gnS n4

GroupKey = ¢9
¢ = GroupKey ¢ KAKUS =0

Figure 5 shows event-B model for the protocol components. We first define the event-B
sets for blind keys (BLIN DK EY S), the general set of messages (/.S), the intruder’s set of
messages (K), and the set of secret keys (S). Then we define a number of variables over the
above sets of messages. We describe the current status of the group by initializations where
each of the above sets is concretely defined. The secrecy property is defined as an invariant that
combines a set of conditions to be satisfied at the initialization and after executing the event:
K NS = (). Some of the protocol characterizes can also be encoded within this invariant, such
as K C MS NS C M. We also define an event to represent the protocol action (join/leave).

In the event-B model, the sets of messages M S, K, and S, are directly defined from the
above sets M, K, and S, respectively. The group key has basically the same definition, and
secrecy property is defined as an event-B invariant that contains, in addition to group key se-
crecy, certain conditions on messages sets to insure the consistency of the map, (K NS =
0) N\GKey ¢ K NK C MSAS C MS. To be consistent with the group structure, we also
defined the set of blind keys in event-B as follow:

BLINDKEYS = {g™, g2, gNs g9™1™

Figure 6 represents an event-B definition that captures the behavioral semantics of a basic
message update performed by the protocol. This event will result in updating the intruder’s set
of knowledge. New blind keys will be generated and added to that set. The new secret group
key is calculated based on the new contribution of the joining member, 7.

GKey — ggn1”2gn3n4
To translate our initial protocol, we first consider the static case of key construction under
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SYSTEM TGDHProtocol
SETS
BLINDKEFEY S /* set of Blind keys */
M S; /* set of messages */
K /% Intruder’s set of knowledge™*/
S /* Set of secret messages */
VARIABLES
intruder K ey, msgBe fore,msgA fter, bk, Gkey
INVARIANT
/* malicious participant cannot evaluate to GK */
KNS=0ANGKey¢ KAKCMSASCMS

INITIALISATION
BLINDKEYS := {gN1, gN2 gNa g9™ ™
MS := Ny, gNt Ny, g™z, .. )

K :=gN gN ...

S :={Ny, N, g""2, g9 }
EVENTS eventB_tgdh £ ... /*for a protocol
event*/
END

Figure 5: Event-B Model of the Protocol Components.

the assumption that basic DH key construction (on tree leaf nodes) is correct. We then consider
the dynamic case by applying events such as join and leave and verify the correctness of key
construction for a bounded tree size and bounded number of events. The event-B invariant has
been proven totally. The number of generated proof obligations are three, all proof obligations
are proven automatically, and then the initial model of the group key protocol is validated.
The event-B invariant, /, defined in Figure 5, implies the group protocol secrecy semantically,
I = ¢. The event-B tool guarantees that M | I. We have shown in the previous section
that the group protocol GG is mapped into an event-B model M. Therefore we can conclude the
correctness of the secrecy property ¢ for the protocol model G, G = ¢.

The proposed solution allows us to verify the required property, however, one limitation
of our approach is related to the fact that event-B operations are defined only over finite sets.
Therefore, a bounded number of participants and protocol events should be applied. Another
limitation is due to the fact that we verify the property under the execution of a single event.
However, this approach is sufficient for the target property, where key distribution is abstracted

away because we are concerned only with modeling key construction but not key distribution
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eventB_tgdh £ /* for any message m */
ANY msgBefore,msgAfter, bk, ... WHERE
msgBefore € K AN msgAfter = ggNsN4 A
THEN
/* update intruder’s set of messages after executing
the event */
GKey = ggN1 M2g™5 N e calculate group key */
K .= K NnmsgAfter
/* update the set of secret messages */
S := SU{Gkey, Ny, g™sNe ...}
END

Figure 6: Event-B model capturing the semantics of the protocol join event

or authentication property.

In addition, to modeling the relationship between the secret keys and blind keys an expo-
nent operator is needed, therefore, the set of possible blinded keys is directly related to the
number of participants represented by the tree level, i.e, the model size in event-B is directly
related to the number of participants. Hence, a huge set of keys should be modeled, where the
automatic generation of these keys is infeasible because no exponent operator is supported by
event-B. Therefore, applying invariant checking becomes limited by the issue of generating this
set manually. Even though there are some limitations for the approach, event-B can be used in
modeling specific protocols behaviors, like key construction, and tree-based protocol primitives

can be modeled directly in event-B for safety properties verification.

5 Conclusion

The correctness of group key protocols in communication systems remains a great challenge
because of the sensitivity of the services provided. In this paper, we illustrated the need for a
verification methodology for secrecy property in group key protocols. While many approaches
in the literature target cryptographic properties for two parties protocols, the verification prob-
lem for group key protocols is more challenging because properties for these protocols are not
trivial extensions of the two-parties models. For example, the fact that a group member com-
putes a bad key can remain undiscovered by the group, specially for a large group.

In this paper, we provide an approach for modeling and verification of group key protocols
by using event-B first-order logic invariant checking. The method is based on a formal link
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between the semantics of group key protocols model and event-B. The contributions of this
paper include defining a well-formed connection between event-B invariant and the group key
protocol model including its secrecy property. These conditions guarantee that the invariant
verified in event-B is equivalent to the secrecy property. In addition, we provide a mechanized
approach using first-order logic proving system in the context of group key protocols verifica-
tion. We applied this approach on a group key protocol, the tree based Group Diffie-Hellman
protocol [15] and provided invariant checking for secrecy under the static and the dynamic case
by applying a single event (join/leave). We also considered the limitation of tree size that can
fit into first-order logic model. We found that, under certain assumptions, only group members
can generate the correct key. The results we achieved are very promising and we believe that
our method can be applied efficiently on protocols of similar complexity level. We provided a
formal link from the group key protocol model to event-B in order to use specific features in
event-B to describe protocol actions and verify the required secrecy property. The authors of
the protocol we use (TGDH) provided an informal, non-intuitive and simple proof for secrecy
property in their work. In this paper we provided a formal, tool supported, and automatic proof
based on a sound method.

As a limitation of the approach, only invariant properties can be modeled and verified. This
is due to the target model and verification tool, namely, event-B and Click’n’Prove [3]. How-
ever, invariant checking is adequate to model properties that describe secrecy. In addition, we
were able to conduct invariant checking for a limited number of tree levels due to the lack of
an exponent operator in the prover. As future work, we intend to extend the event-B based
model to be able to check for parameterized number of participants. In addition, it will be more
interesting to consider more dynamic properties: forward and backward secrecy, and the most
interesting case is key independence. However, in order to achieve this, major modifications of
the approach are required using refinement in event-B.
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