
Formalization of Continuous Probability Distributions

Osman Hasan and Sofiène Tahar

Department of Electrical and Computer Engineering,

Concordia University, Montreal, Canada

Email: {o hasan, tahar}@ece.concordia.ca

Technical Report

February, 2007

Abstract

In order to overcome the limitations of state-of-the-art simulation based probabilis-
tic analysis, we propose to perform probabilistic analysis within the environment of
a higher-order-logic theorem prover. The foremost requirement for conducting such
analysis is the formalization of probability distributions. In this report, we present a
methodology for the formalization of continuous probability distributions for which the
inverse of the cumulative distribution function can be expressed in a closed mathemat-
ical form. Our methodology is primarily based on the formalization of the Standard
Uniform random variable, cumulative distribution function properties and the Inverse
Transform method. The report presents all this formalization using the HOL theo-
rem prover. In order to illustrate the practical effectiveness of our methodology, the
formalization of a few continuous probability distributions has also been included.
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1 Introduction

Probabilistic analysis has become a tool of fundamental importance to virtually all scientists
and engineers as they often have to deal with systems that exhibit significant random or
unpredictable elements. The main idea behind probabilistic analysis is to model these un-
certainties by random variables and then judge the performance and reliability issues based
on the corresponding probabilistic properties.

Random variables are basically functions that map random events to numbers. Every
random variable gives rise to a probability distribution, which contains most of the important
information about this random variable. The probability distribution of a random variable
can be uniquely described by its cumulative distribution function (CDF) which is sometimes
also referred to as the probability distribution function. The CDF of a random variable R,
FR(x), represents the probability that the random variable R takes on a value that is less
than or equal to a real number x

FR(x) = Pr(R ≤ x) (1)

where Pr represents the probability. A distribution is called discrete if its CDF consists
of a sequence of finite jumps, which means that it belongs to a random variable that can
only attain values from a certain finite or countable set. Similarly, a distribution is called
continuous if its CDF is continuous, which means that it belongs to a random variable that
ranges over a continuous set of numbers. A continuous set of numbers, sometimes referred to
as an interval, contains all real numbers between two limits. An interval can be open (a,b)
corresponding to the set {x|a < x < b}, closed [a,b] which represents the set {x|a ≤ x ≤ b},
or half-open (a,b], [a,b).

Today, simulation is the most commonly used computer based probabilistic analysis tech-
nique. Most simulation softwares provide a programming environment for defining functions
that approximate random variables for probability distributions. The random elements in
a given system are modeled by these functions and the system is analyzed using computer
simulation techniques [4], such as the Monte Carlo Method [21], where the main idea is to
approximately answer a query on a probability distribution by analyzing a large number of
samples. Due to these approximations the results can be quite unreliable at times. An-
other major limitation of simulation based probabilistic analysis is the enormous amount of
CPU time requirement for attaining meaningful estimates. This approach generally requires
hundreds of thousands of simulations to calculate the probabilistic quantities and becomes
impractical when each simulation step involves extensive computations.

As an alternative to simulation techniques, we propose to use higher-order logic in-
teractive theorem proving [9] for probabilistic analysis. Higher-order logic is a system of
deduction with a precise semantics and can be used for the development of almost all clas-
sical mathematics theories. Interactive theorem proving is the field of computer science and
mathematical logic concerned with computer based formal proof tools that require some sort
of human assistance. We believe that probabilistic analysis can be performed by specifying
the behavior of systems which exhibit randomness in higher-order logic and formally prov-
ing the intended probabilistic properties within the environment of an interactive theorem
prover. Due to the inherent soundness of this approach, the probabilistic analysis carried
out in this way will be precisely accurate.
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The foremost criteria for implementing a formalized probabilistic analysis framework is
to be able to formalize random variables in higher-order logic. Hurd’s PhD thesis [15] can be
considered a pioneering work in this regard as it presents a methodology for the formalization
of probabilistic algorithms in the higher-order-logic (HOL) theorem prover [10]. Random
variables are basically probabilistic algorithms and Hurd formalized some discrete random
variables in [15]. On the other hand, Hurd’s methodology cannot be used, as is, to formalize
continuous random variables. In fact, to the best of our knowledge, no higher-order-logic
formalization of continuous random variables exists in the literature so far.

1.1 Proposed Methodology

In this report, we propose a methodology for the formalization of continuous random vari-
ables based on Hurd’s formalization framework and nonuniform random number generation
methods [7]. The process of obtaining random variates with arbitrary distributions using a
uniform random number generator (RNG) is termed as nonuniform random number genera-
tion. All computer based RNGs generate uniformly distributed numbers [18] and nonuniform
random generation methods are quite commonly used in applications which call for other
kinds of distributions. Random number generation has intrigued scientists for a few decades,
and a lot of effort has been spent in order to obtain efficient and accurate algorithms for
various continuous random variables. The proposed methodology is based on the fact that
this enormous amount of research can be utilized for the formalization of continuous prob-
ability distributions in a higher-order logic theorem prover. The main advantage of this
approach is that we only need to formalize one continuous random variable from scratch; i.e.
the Standard Uniform random variable. The other continuous random variables can then be
formalized by using the formalized Standard Uniform random variable and formalizing the
corresponding nonuniform random number generation method.

Next, we utilize the above methodology to construct a framework, illustrated in Figure 1,
for the formalization of continuous probability distributions for which the inverse of the CDF
can be represented in a closed mathematical form. The first step is to formally specify the
Standard Uniform random variable and verify its correctness by proving the corresponding
CDF, probability mass function (PMF) and measurability properties. The next step is the
formalization of the CDF and the verification of the corresponding properties. Then, we
propose to formally specify the inverse function of a CDF in the HOL theorem prover.
This formal specification, along with the formalization of the Standard Unform random
variable and the CDF properties, can be used to formally verify the correctness of the
Inverse Transform Method (ITM) [7], which is a well known nonuniform random generation
technique for generating nonuniform random variates for continuous probability distributions
for which the inverse of the CDF can be represented in a closed mathematical form. Now
any continuous random variable, for which the inverse of the CDF can be represented in a
closed form, can be formally specified in terms of the formalized Standard Uniform random
variable and its corresponding CDF can be verified using the correctness proof of the ITM.

1.2 Report Outline

The report is organized as follows: In Section 2, we provide an overview of the HOL theorem
prover and Hurd’s methodology for the formalization of probabilistic algorithms in HOL.
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Figure 1: Proposed Formalization Framework

The next four sections of this report present the HOL formalization of the four major steps
given in Figure 1, i.e, the Standard Uniform random variable, CDF, ITM and continuous
probability distributions, for which the inverse of the CDF can be represented in a closed
mathematical form, respectively. In Section 7, we mention some of the potential engineering
applications that can be formally analyzed using our formalized continuous probability dis-
tributions. A review of the related work in the literature is given in Section 8 and we finally
conclude the report in Section 9.

2 Preliminaries

In this section, we provide an overview of the HOL theorem prover and Hurd’s methodology
[15] for the formalization of probabilistic algorithms in HOL. The intent is to provide a brief
introduction to these topics along with some notation that is going to be used in the next
sections.

2.1 HOL Theorem Prover

The HOL theorem prover is an interactive theorem prover which is capable of conducting
proofs in higher-order logic. It utilizes the simple type theory of Church [5] along with
Hindley-Milner polymorphism [22] to implement higher-order logic. HOL has been success-
fully used as a verification framework for both software and hardware as well as a platform
for the formalization of pure mathematics. It supports the formalization of various math-
ematical theories including sets, natural numbers, real numbers, measure and probability.
HOL is an interactive theorem prover with access to many proof assistants and automatic
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proof procedures. The user interacts with a proof editor and provides it with the necessary
tactics to prove goals while some of the proof steps are solved automatically by the automatic
proof procedures.

In order to ensure secure theorem proving, the logic in the HOL system is represented
in the strongly-typed functional programming language ML [25]. The ML abstract data
types are then used to represent higher-order-logic theorems and the only way to interact
with the theorem prover is by executing ML procedures that operate on values of these data
types. Users can prove theorems using a natural deduction style by applying inference rules
to axioms or previously generated theorems. The HOL core consists of only 5 axioms and 8
primitive inference rules, which are implemented as ML functions. Soundness is assured as
every new theorem must eventually be created from the 5 axioms or any other pre-existing
theorems and the 8 primitive inference rules.

We selected HOL theorem prover for the proposed formalization mainly because of its
inherent soundness and ability to handle higher-order logic and in order to benefit from the in-
built mathematical theories for measure and probability. Table 1 summarizes some frequently
used HOL symbols in this report and their corresponding mathematical interpretation [10].

HOL Symbol Standard Symbol Meaning
bool {>,⊥} Boolean data type
num {0, 1, 2, . . .} Natural data type
real All Real numbers Real data type
λx.t λx.t Function that maps x to t(x)
∼ t ¬t Logical and Mathematical Negation
∧ and Logical and
∨ or Logical or

SUC n n + 1 Successor of a num
m ∗ ∗ n mn num m raised to num exponent n

& (none) Maps type num to real
x pow n xn real x raised to num power n
inv x x−1 Multiplicative inverse of a real x

lim(λn.f(n)) lim
n→∞

f(n) Limit of a real sequence f

{x|P (x)} {λx.P (x)} Set of all x that satisfy the condition P
(a, b) a x b A mathematical pair of two elements

Table 1: HOL Symbols

2.2 Verifying Probabilistic Algorithms in HOL

Hurd [15] proposed to formalize the probabilistic algorithms in higher-order logic by thinking
of them as deterministic functions with access to an infinite Boolean sequence B∞; a source of
infinite random bits. These deterministic functions make random choices based on the result
of popping the top most bit in the infinite Boolean sequence and may pop as many random
bits as they need for their computation. When the algorithms terminate, they return the
result along with the remaining portion of the infinite Boolean sequence to be used by other
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programs. Thus, a probabilistic algorithm which takes a parameter of type α and ranges
over values of type β can be represented in HOL by the function

F : α → B∞ → β ×B∞

For example, a Bernoulli(1
2
) random variable that returns 1 or 0 with equal probability

1
2

can be modeled as follows

` bit = λs. (if shd s then 1 else 0, stl s)

where s is the infinite Boolean sequence and shd and stl are the sequence equivalents of
the list operation ’head’ and ’tail’. The function bit accepts the infinite Boolean sequence
and returns a random number, which is either 0 or 1 together with a sequence of unused
Boolean sequence, which in this case is the tail of the sequence. The above methodology can
be used to model most probabilistic algorithms. All probabilistic algorithms that compute
a finite number of values equal to 2n, each having a probability of the form m

2n : where m
represents the hol data type nat and is always less than 2n, can be modeled using well-
founded recursion. The probabilistic algorithms that do not satisfy the above conditions but
are sure to terminate can be modeled by the probabilistic while loop proposed in [15].

The probabilistic programs can also be expressed in the more general state-transforming
monad where the states are the infinite Boolean sequences.

` ∀ a,s. unit a s = (a,s)

` ∀ f,g,s. bind f g s = let (x,s’)← f(s) in g x s’

The unit operator is used to lift values to the monad, and the bind is the monadic analogue
of function application. All the monad laws hold for this definition, and the notation allows
us to write functions without explicitly mentioning the sequence that is passed around, e.g.,
function bit can be defined as

` bit monad =

bind sdest (λb. if b then unit 1 else unit 0)

where sdest gives the head and tail of a sequence as a pair (shd s, stl s).
Hurd [15] also formalized some mathematical measure theory in HOL in order to define

a probability function P from sets of infinite Boolean sequences to real numbers between 0
and 1. The domain of P is the set E of events of the probability. Both P and E are defined
using the Carathéodory’s Extension theorem, which ensures that E is a σ-algebra: closed
under complements and countable unions. The formalized P and E can be used to derive
the basic laws of probability in the HOL prover, e,g., the additive law, which represents the
probability of two disjoint events as the sum of their probabilities:

` ∀ A B. A ∈ E ∧ B ∈ E ∧ A ∩ B = ∅ ⇒
P(A ∪ B) = P(A) + P(B)

The formalized P and E can also be used to prove probabilistic properties for probabilistic
programs such as

` P {s | fst (bit s) = 1} = 1
2
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where the function fst selects the first component of a pair.
The measurability of a function is an important concept in probability theory and also

a useful practical tool for proving that sets are measurable [3]. In Hurd’s formalization of
probability theory, a set of infinite Boolean sequences, S, is said to be measurable if and
only if it is in E , i.e., S ∈ E . Since the probability measure P is only defined on sets in E , it is
very important to prove that sets that arise in verification are measurable. Hurd [15] showed
that a function is guaranteed to be measurable if it accesses the infinite boolean sequence
using only the unit, bind and sdest primitives and thus leads to only measurable sets.

Hurd formalized a few discrete random variables and proved their correctness by proving
the corresponding PMF properties [15]. Because of their discrete nature, all these random
variables either compute a finite number of values or are sure to terminate. Thus, they
can be expressed using Hurd’s methodology by either well formed recursive functions or
the probabilistic while loop [15]. On the other hand, continuous random variables always
compute an infinite number of values and therefore would require all the random bits in
the infinite Boolean sequence if they are to be represented using Hurd’s methodology. The
corresponding deterministic functions cannot be expressed by either recursive functions or
the probabilistic while loop and it is mainly for this reason that the specification of continuous
random variables needs to be handled differently than their discrete counterparts.

3 Formalization of the Standard Uniform Distribution

In this section, we present the formalization of the Standard Uniform distribution that is
the first step in the proposed methodology for the formalization of continuous probability
distributions as shown in Figure 1. The Standard Uniform random variable is a continuous
random variable for which the probability that it will belong to a subinterval of [0,1] is
proportional to the length of that subinterval. It can be characterized by the CDF as
follows:

Pr(X ≤ x) =





0 if x < 0;
x if 0 ≤ x < 1;
1 if 1 ≤ x.

(2)

3.1 Formal Specification of Standard Uniform random variable

The Standard Uniform random variable can be formally expressed in terms of an infinite
sequence of random bits as follows [13]

lim
n→∞

(λn.

n−1∑

k=0

(
1

2
)k+1Xk) (3)

where, Xk denotes the outcome of the kth random bit; true or false represented as 1
or 0 respectively. The mathematical relation of Equation (3) can be formalized in the HOL
theorem prover in two steps. The first step is to formalize a discrete Standard Uniform
random variable that produces any one of the equally spaced 2n dyadic rationals in the
interval [0, 1− (1

2
)n] with the same probability (1

2
)n. This random variable can be formalized

by a recursive function using Hurd’s methodology as it consumes a finite number of random
bits, i.e., n.
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` (std unif disc 0 = unit 0) ∧
∀ n. (std unif disc (suc n) =

bind (std unif disc n) (λm. bind sdest

(λb. unit (if b then ((1
2
)n+1 + m) else m))))

The function std unif disc allows us to formalize the real sequence of Equation (3) in the
HOL theorem prover. Now, the formalization of the mathematical concept of limit of a real
sequence in HOL [12] can be used to formally specify the Standard Uniform random variable
of Equation (3) as follows

` ∀ s. std unif cont s = lim (λn. fst(std unif disc n s))

where lim is the HOL function for the limit of a real sequence [12].

3.2 Formal Verification of Standard Uniform random variable

The formalized Standard Uniform random variable, std unif cont, can be verified to be cor-
rect by proving its CDF to be equal to the theoretical value given in Equation 2 and its
PMF to be equal to 0, which is an intrinsic characteristic of all continuous random varaibles.
For this purpose, it is very important to prove that sets, {s | std unif cont s ≤ x} and
{s | std unif cont s = x}, that arise in this verification are measurable, i.e., they are in E .
It has been shown in [15] that if a function accesses the infinite boolean sequence using only
the unit, bind and sdest primitives then the function is guaranteed to be measurable and
thus leads to measurable sets. The function std unif disc satisfies this condition and thus
Hurd’s formalization framework can be used to prove

Lemma 3.1:

` ∀ x,n. {s | FST (std unif disc n s) ≤ x} ∈ E ∧
{s | FST (std unif disc n s) = x} ∈ E

On the other hand, the definition of the function std unif cont involves the lim function
and thus the corresponding sets can not be proved to be measurable in a very straight forward
manner. Therefore, in order to prove this, we leveraged the fact that each set in the sequence
of sets (λn.{s | FST (std unif disc n s) ≤ x}) is a subset of the set before it, in other words,
this sequence of sets is a monotonically decreasing sequence. Thus, the countable intersection
of all sets in this sequence can be proved to be equal to the set {s | std unif cont s ≤ x}

Lemma 3.2:

` ∀ x. {s | std unif cont s ≤ x} =⋂
n (λ n. {s | FST (std unif disc n s) ≤ x})

Now the set {s | std unif cont s ≤ x} can be proved to be measurable since E is closed
under countable intersections [15] and all the sets in the sequence (λn.{s | FST (std unif disc n s) ≤
x}) are measurable according to Lemma 1. Using a similar reasoning, the set {s | std unif cont s =
x} can also be proved to be measurable.

Theorem 3.1:

` ∀ x. {s | std unif cont s ≤ x} ∈ E ∧
{s | std unif cont s = x} ∈ E
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It is important to note that, because of the closed under complements and count-
able unions property of E , Theorem 3.1 can be used to prove any set that involves a
relational property of the function std unif cont, e.g. {s | std unif cont s < x} and
{s | std unif cont s ≥ x} e.t.c, to be measurable.

Theorem 3.1 and some real analysis formalization can be used to verify the correctness of
the function std unif cont in the HOL theorem prover by proving its CDF to be the same
as Equation (2) and its PMF to be equal to 0 [13]. The HOL theory corresponding to this
verification is given in Appendix A.

Theorem 3.2:

` ∀ x. P{s | std unif cont s ≤ x} =

if (x < 0) then 0 else (if (x < 1) then x else 1)

Theorem 3.3:

` ∀ x. P{s | std unif cont s = x} = 0

4 Formalization of the Cumulative Distribution Func-

tion

In this section, we present the formal specification of the CDF and the verification of CDF
properties in the HOL theorem prover. It is the second step in the proposed methodology
for the formalization of continuous probability distributions as shown in Figure 1.

4.1 Formal Specification of CDF

It follows from Equation (1) that the CDF for any random variable, R, is a function, FR,
defined on the real line. Therefore, the CDF can be formally specified in HOL by a higher-
order-logic function that accepts a random variable and a real argument and returns the
probability of the event when the given random variable is less than or equal to the value
of the given real number. Hurd’s formalization of the probability function P, which maps
sets of infinite Boolean sequences to real numbers between 0 and 1, can be used to formally
specify the CDF as follows:

` ∀ R x. CDF R x = P {s | R s ≤ x}

4.2 Formal Verification of CDF Properties

In this section, we present the formal verification of the CDF properties [17] within the
HOL theorem prover. These formalized properties not only ensure the correctness of our
CDF specification but also play a vital role in proving the correctness of the ITM in Section
5 and determining probabilities associated with various events while analyzing probabilistic
systems. All the following properties are verified using the HOL set, measure and probability
theories [15] along with the HOL formalization of real analysis [12] and under the assumption
that the sets {s | R s ≤ x} and {s | R s = x} are measurable, that is, they belong to the
set E . The HOL theory corresponding to this verification is given in Appendix A.
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4.2.1 CDF Bounds

For any real number x, 0 ≤ FR(x) ≤ 1.

Theorem 4.1:

` ∀ R x. (0 ≤ CDF R x) ∧ (CDF R x ≤ 1)

4.2.2 CDF is Monotonically Increasing

For any two real numbers a and b, if a < b, then FR(a) ≤ FR(b).

Theorem 4.2:

` ∀ R a b. a < b ⇒ (CDF R a ≤ CDF R b)

4.2.3 Interval Probability

For any two real numbers a and b, if a < b then Pr(a < R ≤ b) = FR(b)− FR(a)

Theorem 4.3:

` ∀ R a b. a < b ⇒
(P {s | (a < R s) ∧ (R s ≤ b) } = CDF R b - CDF R a)

4.2.4 CDF at Positive Infinity

lim
x→∞

FR(x) = 1; that is, FR(∞) = 1

Theorem 4.4:

` ∀ R. lim (λ n. CDF R (&n)) = 1

where, lim M represents the HOL formalization of the limit of a real sequence [12], such
that lim M is the limit value of the real sequence M (i.e., lim

n→∞
M(n) = lim M).

4.2.5 CDF at Negative Infinity

lim
x→−∞

FR(x) = 0; that is, FR(−∞) = 0

Theorem 4.5:

` ∀ R. lim (λ n. CDF R (-&n)) = 0

4.2.6 CDF is Continuous from the Right

For every real number a, lim
x→a+

FR(x) = FR(a), where lim
x→a+

FR(x) is defined as the limit of

FR(x) as x tends to a through values greater than a. Since FR is monotone and bounded,
this limit always exists.

Theorem 4.6:

` ∀ R a. lim (λ n. CDF R (a + 1
&(n+1)

)) = CDF R a
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4.2.7 CDF Limit from the Left

For every real number a, lim
x→a−

FR(x) = Pr(R < a), where lim
x→a−

FR(x) is defined as the limit

of FR(x) as x tends to a through values less than a.

Theorem 4.7:

` ∀ R a. lim (λ n. CDF R (a - 1
&(n+1)

)) = P {s | (R s < a})

4.3 Determining Interval Probabilities

The CDF of a random variable, R, can be used to determine the probability that R
will lie in any specified interval of the real line. In this section, we show how this can
be done in the HOL theorem prover by splitting the real line in three disjoint intervals;
(−∞, a], (a, b], (b,∞). We also consider the special case of using CDF to determine the
PMF of a given random variable.

The CDF with a real argument a can be used directly to find the probability that the
corresponding random variable lies in the interval (−∞, a]. Whereas, the probability that a
random variable lies in the interval (a, b] can be determined by its CDF values for the real
arguments a and b as has been proved in Theorem 4.3. The probability of a random variable
lying in the third interval can also be expressed in terms of the CDF by using the set and
probability theories

Theorem 4.8:

` ∀ R b. P {s | b < R s} = 1 - (CDF R b)

The PMF of a random variable can also be expressed in terms of the CDF function by
using the fact that for any real value a the set of infinite Boolean sequences {s | R s ≤ a}
is equal to the union of the sets {s | R s < a} and {s | R s = a}. Now, using the additive
law of the probability function P, given in Section 2.2, and Theorems 4.6 and 4.7, we were
able to prove

Theorem 4.9:

` ∀ R a. P {s | R s = a} =

lim (λ n. CDF R (a + 1
&(n+1)

)) - lim (λ n. CDF R (a - 1
&(n+1)

))

A unique characteristic for all continuous random variables is that their PMF is equal to
0. Theorem 4.9 along with the formalization of continuous functions [12] allowed us prove
this property in the HOL theorem prover.

Theorem 4.10:

` ∀ R a. (∀x. (λx. CDF R x) contl x) ⇒
(P {s | R s = a} = 0)

where, (∀ x.f contl x) represents the HOL function definition for a continuous function
[12] such that the function f is continuous for all x.
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5 Formalization of the Inverse Transform Method

In this section, we present the formal specification of the inverse function for a CDF and
the verification of the ITM in the HOL theorem prover. It is the third step in the proposed
methodology for the formalization of continuous probability distributions as shown in Figure
1.

The ITM is based on the following proposition [7].

Let U be a Standard Uniform random variable. For any continuous CDF F, the
random variable X defined by X = F−1(U) has CDF F, where F−1(U) is defined
to be the value of x such that F (x) = U .

Mathematically,

Pr(F−1(U) ≤ x) = F (x) (4)

5.1 Formal Specification of the Inverse Transform method

We formalized the mathematical concept of inverse function for a CDF in HOL as a predicate
inv cdf fn which accepts two functions, f and g, of type (real → real) and returns true if
and only if the function f is the inverse of the CDF g according to the above proposition.

` ∀ f g. inv cdf fn f g =

(∀x. (0 < g x ∧ g x < 1) ⇒ (f (g x) = x) ∧
(∀x. 0 < x ∧ x < 1 ⇒ (g (f x) = x))) ∧

(∀x. (g x = 0) ⇒ (x ≤ f (0))) ∧
(∀x. (g x = 1) ⇒ (f (1) ≤ x))

The predicate inv cdf fn considers three separate cases, the first one corresponds to the
strictly monotonic region of the CDF, i.e., when the value of the CDF is between 0 and 1
and the next two correspond to the flat regions of the CDF, i.e, when the value of the CDF
is either equal to 0 or 1 respectively. These three cases cover all the possible values of a CDF
as according to Theorem 4.1 the value of CDF can never be less than 0 or greater than 1.

The inverse of a function f , f−1(u), is defined to be the value of x such that f(x) = u.
More formally, if f is a one-to-one function with domain X and range Y, its inverse function
f−1 has domain Y and range X and is defined by f−1(y) = x ⇔ f(x) = y, for any y in Y.
The composition of inverse functions yields some very interesting results.

f−1(f(x)) = x for all x ∈ X, f(f−1(x)) = x for all x ∈ Y (5)

We used the above characteristic of inverse functions in the predicate inv cdf fn for the
strictly monotonic region of the CDF as the CDF in this region is a one-to-one function.

One the other hand, in the flat regions of the CDF, i.e., when the CDF is either 0 or 1,
the CDF is not injective. Consider the example of some CDF, F , which returns 0 for a real
argument a. From Theorems 4.1 and 4.2, we know that the CDF F will also return 0 for
all real arguments that are less than a as well, i.e., ∀x.x ≤ a ⇒ F (x) = 0. Therefore, no
inverse function satisfies the conditions of Equation (5) for the CDF in the flat regions. This
issue is usually resolved in the texts of nonuniform random number generation methods by
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defining the inverse function of a CDF in such a way that it returns the infimum (inf) or the
supremum (sup) of all the possible values of the real argument for which the CDF is equal
to a given value, i.e., f−1(u) = inf{x|f(x) = u} or f−1(u) = sup{x|f(x) = u} [7], where f
represents the CDF. Even though this approach has been shown to analytically verify the
correctness of the ITM in many text books [7], it was not found to be sufficient enough for
a formal definition in the HOL theorem prover. If inf function is used to define the inverse
function then the problem arises for the case when the value of the CDF is equal to 0. For
this case, the set {x|f(x) = 0} becomes unbounded at the lower end because of the CDF
property given in Theorem 4.5 and thus the value of the inverse function becomes undefined.
Similarly, if the sup function is used to define the inverse function, the value of the inverse
function becomes undefined for the case when the value of the CDF is equal to 1. In order to
overcome this problem, we defined the inverse function of a CDF in the predicate inv cdf fn
separately for the two flat regions, i.e., it returns the maximum value of all the arguments
for which the CDF is equal to 0 and the minimum value of all the arguments for which the
CDF is equal to 1.

5.2 Formal Verification of the Inverse Transform method

The correctness theorem for the ITM can be expressed in the HOL theorem prover as follows:

Theorem 5.1:

` ∀ f g x. (is cont cdf fn g) ∧ (inv cdf fn f g) ⇒
(P {s | f (std unif cont s) ≤ x} = g x)

The antecedent of the above implication checks if the function f is a valid inverse function
of a continuous CDF g. The predicate inv cdf fn has been described in the last section and
it ensures that the function f is a valid inverse of the CDF g. The predicate is cont cdf fn
accepts a real valued function, g, of type (real → real) and returns true if and only if it
represents a continuous CDF. A real-valued function can be characterized as a continuous
CDF if it is a continuous function and satisfies the CDF properties given in Theorems 4.2,
4.4 and 4.5. Therefore, the predicate is cont cdf fn is defined in the HOL theorem prover
as follows:

` ∀ g. is cont cdf fn g = (lim (λ n. g (&n)) = 1) ∧
(lim (λ n. g (-&n)) = 0) ∧
(∀ a b. a < b ⇒ g a ≤ g b) ∧
(∀ x. (λx. g x) contl x)

Where contl represents the HOL function definition for a continuous function formalized
in [12].

The conclusion of the implication in Theorem 5.1 represents the correctness proof of
the ITM given in Equation (4). The function std unif cont in this theorem is the formal
definition of the Standard Uniform random variable, described in Section 3. Theorem 3.2
can be used to simplify the proof goal of Theorem 5.1 to the following subgoal:

Lemma 5.1:

` ∀ f g x. (is cont cdf fn g) ∧ (inv cdf fn f g) ⇒
(P {s | f (std unif cont s) ≤ x} = P {s | std unif cont s ≤ g x})
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Next, we use the theorems of Section 3 and 4 along with the formalized measure and
probability theories [15] to prove that the sets that arise in this verification are measurable,
i.e., they are in E .

Lemma 5.2:

` ∀ f g x. (is cont cdf fn g) ∧ (inv cdf fn f g) ⇒
({s | f (std unif cont s) ≤ x} ∈ E) ∧
({s | std unif cont ) ≤ g x} ∈ E) ∧
({s | f (std unif cont s) = x} ∈ E)

The subgoal of Lemma 5.1 can now be proved using Lemma 5.2, the theorems from Sec-
tion 3 and 4 and the formalization of probability theory [15]. The HOL theory corresponding
to this verification is given in Appendix A. The main advantage of the formally verified ITM
(i.e. Theorem 5.1) is that the complex proof goal of verifying the CDF property of a random
variable, which involves reasoning based on the measure and probability theories, formal-
ization of the Standard Uniform random variable and some real analysis, can be broken
down in two simpler sub goals which only involve reasoning based on real analysis; i.e, (1)
Verifying that a function g, of type (real → real), represents a valid CDF and (2) Verifying
that another function f , of type (real → real), is a valid inverse of the CDF g.

6 Formalization of Continuous Probability Distribu-

tions

In this section, we present the formal specification of four continuous random variables;
Uniform, Exponential, Rayleigh and Triangular and verify the correctness of these random
variables by proving their corresponding CDF properties in the HOL theorem prover.

6.1 Formal Specification of Continuous Random Variables

All continuous random variables, for which the inverse of the CDF exists in a closed mathe-
matical form, can be expressed in terms of the Standard Uniform random variable according
to the ITM proposition given in Section 5 [7]. We selected four such commonly used random
variables which are formally expressed in terms of the formalized Standard Uniform random
variable (std unif cont) in Table 2. The functions ln, exp, sqrt and pow in the formalized
definitions are the HOL functions for logarithm, exponential, square root and power respec-
tively [12] and the symbols l and sig in the formalized definitions have been used for the
constants λ and σ.

6.2 Formal Verification of Continuous Random Variables

In this section, we illustrate the process of using the correctness theorem of the ITM, formal-
ized in Section 5, to verify the CDF and measurability properties of a continuous random
variable for which the inverse of the CDF exists in a closed mathematical form. The first
step in this regard is to express the given continuous random variable as F−1(U s), where,
F−1 is a function of type (real → real) and U represents the formalized Standard Uniform

14



Distribution CDF Formalized Random Variable

Exponential(λ)
0 if x ≤ 0;
1− exp−λx if 0 < x.

` ∀s l. exp rv l s =
−1

l
∗ ln(1− std unif cont s)

Uniform(a, b)
0 if x ≤ a;
x−a
b−a

if a < x ≤ b;

1 if b < x.

` ∀s l. uniform rv a b s =
(b− a) ∗ (std unif cont s) + a

Rayleigh(σ)
0 if x ≤ 0;

1− exp
−x2

2σ2 if 0 < x.

` ∀s l. rayleigh rv sig s =
sig ∗ sqrt(−2 ∗ ln(1− std unif cont s))

Triangular(0, a)

0 if x ≤ 0;

( 2
a
(x− x2

2a
)) if x < a;

1 if a ≤ x.

` ∀s a . triangular rv l s =
a ∗ (1− sqrt(1− std unif cont s))

Table 2: Continuous Random Variables (CDF−1 exists)

random variable. For example, the Exponential random variable given in Table 2 can be
expressed as ((λx.− 1

l
∗ ln(1− x))(std unif cont s)). Similarly, we can express the CDF of

the given random variable as F (x), where F is a function of type (real → real) and x is a
real data type value. For example, the CDF of the Exponential random variable given in
Table 2 can be expressed as ((λx.(if x ≤ 0 then 0 else 1− exp−λx)) x).

The next step is to prove that the function F represents a valid continuous CDF and
the function F−1 is a valid inverse function of the CDF F . The predicates is cont cdf fn
and inv cdf fn, defined in Section 5, can be used for this verification and the corresponding
theorems for the Exponential random variable are given below

Lemma 6.1:

` is cont cdf fn (λx. if x ≤ 0 then 0 else (1 - exp (-l * x)))

Lemma 6.2:

` inv cdf fn (λ x. -1
l
* ln (1 - x))

(λx. if x ≤ 0 then 0 else (1 - exp (-l * x)))

Now, Theorem 5.1 and Lemma 5.2 can be used to verify the CDF and the measurability of
the sets corresponding to the given continuous random variable respectively. These theorems
for the Exponential random variable are given below

Theorem 6.1:

` l x. (0 < l) ⇒
(P {s | exp rv r s ≤ x} =

(if x ≤ 0 then 0 else (1 - exp (-l * x))))

Theorem 6.2:

` l x. (0 < l) ⇒
({s | exp rv r s ≤ x} ∈ E ∧ ({s | exp rv r s = x} ∈ E

The above results allow us to formally reason about interesting probabilistic properties of
continuous random variables within a higher-order-logic theorem prover. The measurability
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of the sets {s| F−1(U s) ≤ x} and {s| F−1(U s) = x} can be used to prove that any set that
involves a relational property with the random variable (F−1(U s)), e.g. {s | F−1(U s) <
x} and {s | F−1(U s) ≥ x}, is measurable because of the closed under complements
and countable unions property of E . The CDF properties can then be used to determine
probabilistic quantities associated with these sets as has been shown in Section 4.

The CDF and measurability properties of the rest of the continuous random variables
given in Table 2 can also be proved in a similar way and the HOL theory corresponding to
this verification is given in Appendix A. For illustration purposes, the final theorems which
are proved using the real number theories in HOL [12] are given below:

Theorem 6.3:

` a b x. (a < b) ⇒
P {s | uniform rv a b s ≤ x} =

if x ≤ a then 0 else (if x < b then (x - a) / (b - a) else 1)

Theorem 6.4:

` x sig. (0 < sig) ⇒
P {s | rayleigh rv sig s ≤ x} =

(if x ≤ 0 then 0 else (1 -
exp(x2)
(2∗sig2)

))

Theorem 6.5:

` a x. (0 < a) ⇒
P {s | triangular rv a s ≤ x} =

(if (x ≤ 0) then 0 else (if (x < a) then

( 2
a
* (x - x2

2∗a)) else 1))

7 Potential Applications

In this section, we present some of the electrical engineering and computer science applica-
tions which can be formally expressed and reasoned about using the formalized continuous
random variables of Section 6.

A distinguishing characteristic of the proposed probabilistic analysis approach is the
ability to perform precise quantitative analysis of probabilistic systems. In this section, we
first illustrate this statement by considering a simple probabilistic analysis example. Then,
we present some probabilistic systems which can be formally analyzed using the formalized
continuous random variables.

Consider the problem of determining the probability of the event when there is no incom-
ing request for 10 seconds in a Web server. Assume that the interarrival time of incoming
requests is known, from statistical analysis, and is exponentially distributed with an average
rate of requests λ = 0.1 jobs per second. The given problem can be solved in the HOL theo-
rem prover by finding the probability of the event when the value of the Exponential random
variable, with parameter 0.1 (i.e., λ = 0.1), lies in the interval [10,∞). The probability for
this event can be expressed in terms of the CDF of the Exponential random variable by
using the measurability property proved in Theorem 6.2 and the set and probability theories
in HOL.
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` P {s | 10 < exp rv 0.1 s} = 1 - (cdf (λs. exp rv 0.1 s) 10)

The CDF of the Exponential random variable given in Theorem 6.1 can now be used
to simplify the right hand side of the above equation to be equal to exp(−1). Thus, we
were able to determine the unknown probability with 100% precision; a novelty which is not
available in the simulation based approaches. The higher-order-logic theorem proving based
probabilistic analysis can be applied to a variety of different domains and some of these
potential application areas have been mentioned below.

The sources of error in computer arithmetic operations are basically quantization opera-
tions and are modeled as uniformly distributed continuous random variables [29]. A number
of successful attempts have been made to perform the statistical analysis of computer arith-
metic analytically or by simulation, e.g., [16]. These kind of analysis form a very useful
case study for our formalized continuous Uniform distribution as the formalization of both
floating point and fixed point numbers already exists in the HOL theorem prover [1].

Exponential distribution is often used in queuing theory applications because of its memo-
ryless property [28]. We can utilize the formalized Exponential random variable along with a
formalized Poisson random variable to formalize the Birth-Death process which is a special
kind of Continuous-Time Markov Chain used in modeling queuing systems. The higher-
order-logic formalization of the Birth-Death process may open the door for the formalized
probabilistic analysis of a wide range of telecommunication and computer network protocols,
e.g., the CSMA/CD protocol [8], the IEEE 802.11 wireless LAN protocol [19] e.t.c.

The formalized continuous random variables can also be used to compare the efficiency
of various algorithms for NP-complete problems [23] in the HOL theorem prover.

The Rayleigh distribution usually arises when a two dimensional vector has its two or-
thogonal components normally and independently distributed. The formalized Rayleigh
distribution can be used to perform the formalized probabilistic analysis of the commonly
encountered scenario of scattered signals reaching a telecommunication receiver by multiple
paths.

8 Related Work

Due to the vast application domain of continuous random variables, many researchers around
the world are trying to improve the modeling techniques for continuous probability distribu-
tions in computer based environments. The ultimate goal is to come up with a probabilistic
analysis framework that includes robust and accurate analysis methods, has the ability to
perform analysis for large-scale problems and is easy to use. In this section, we provide a
brief account of the state-of-the-art and some related work in this field.

A number of probabilistic languages, e.g., Probabilistic cc [11], λo [24] and IBAL [26],
have been proposed that are capable of modeling random variables. Probabilistic languages
treat probability distributions as primitive data types and abstract from their representation
schemes. Therefore, they allow programmers to perform probabilistic computations at the
level of probability distributions rather than representation schemes. These probabilistic
languages are quite expressive and have been shown to express most continuous probabil-
ity distributions but they have their own limitations. For example, either they require a
special treatment such as the lazy list evaluation strategy in IBAL and the limiting process
in Probabilistic cc or they do not support precise reasoning as in the case of λo. The
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proposed theorem proving based approach, on the other hand, is not only capable of formally
expressing most continuous probability distributions but also to precisely reason about them.

It is interesting to note that the probabilistic language, λo, [24] is based on sampling
functions. A sampling function is defined as a mapping from the unit interval [0,1] to a
probability domain D. Given a random number drawn from a Standard Uniform distribu-
tion, it returns a sample in D, and thus specifies a unique probability distribution. Thus,
this approach is very similar to what we have proposed in this paper, as it also utilizes the
Standard Uniform random variable to obtain other continuous random variables. [24] con-
tains sampling algorithms for various continuous random variables which can be utilized to
formalize the respective random variables in the HOL theorem prover using our formalized
Standard Uniform random variable.

Another alternative for formal probabilistic verification is to use probabilistic model
checking techniques, e.g., [2], [27]. Like the traditional model checking, it involves the con-
struction of a precise mathematical model of the probabilistic system which is then subjected
to exhaustive analysis to verify if it satisfies a set of formal properties. This approach is ca-
pable of providing precise solutions in an automated way; however it is limited for systems
that can only be expressed as a probabilistic finite state machine. Our proposed theorem
proving based approach, in contrast, is capable of handling all kinds of probabilistic systems
including the unbounded ones, as demonstrated by the example in Section 7. Another major
limitation of the probabilistic model checking approach is the state space explosion [6], which
is not an issue with our approach.

9 Conclusions

In this report, we have proposed to use higher-order-logic theorem proving for probabilistic
analysis as an alternative to the state-of-the-art simulation based techniques. We believe
that because of the formal nature of the models the analysis will be free of approximation
errors, which makes the proposed approach very useful for the performance and reliability
optimization of safety critical and highly sensitive engineering and scientific applications.

We presented a methodology for the formalization of continuous probability distributions
which is a significant step towards the development of a formal probabilistic analysis frame-
work. Based on this methodology, we described the construction details of a framework
for the formalization of all continuous probability distributions for which the inverse of the
CDF can be expressed in a closed mathematical form. We demonstrated the practical effec-
tiveness of our framework by formalizing four continuous probability distributions; Uniform,
Exponential, Rayleigh and Triangular. To the best of our knowledge, this is the first time
that a successful attempt has been made to formalize continuous probability distributions
in a higher-order-logic theorem prover.

For our verification, we utilized the HOL theories of Boolean Algebra, Sets, Natural
Numbers, Real Numbers, Measure and Probability. Our results can therefore be used as an
evidence for the soundness of the existing HOL libraries and usefulness of theorem provers
in proving pure mathematical concepts. The presented formalization can be utilized for the
formalization of a number of other mathematical concepts as well. For example, the formal-
ized CDF properties can be used along with the formalization of the mathematical concept
of a derivative [12] to formalize the Probability Density Function, which is a very significant
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characteristic of continuous random variables and can be used to formalize the corresponding
statistical quantities. Similarly, the formalization of the Standard Uniform random variable
can also be transformed to formalize other continuous probability distributions, for which
the inverse CDF is not available in a closed mathematical form, by exploring the formal-
ization of other nonuniform random number generation techniques such as Box-Muller and
acceptance/rejection [7].
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10 Appendix A

In this appendix, we present the HOL implementation of the methodology, illustrated in
Figure 1, for the formalization of continuous probability distributions.

We implemented the four major steps illustrated in Figure 1, i.e., the formalization of
the Standard Uniform random variable, the Cumulative distribution function (CDF), the
Inverse Transform Method (ITM) and Continuous random variables in four different HOL
theories. Figure 2 presents the logical dependency of these HOL theories among themselves
and to the main existing HOL-4 theories (represented as rectangles) on which they depend.

Figure 2: Logical Dependency Graph of the Continuous Probability Distribution Theories

10.1 std unifTheory

This theory contains the formal definition of the Standard Uniform random variable, std unif
cont, along with the formal proofs of its CDF, Probability Mass Function (PMF) and mea-

surability properties.

10.1.1 Signature

Functions Type
ceiling real → num
std unif disc num → (num → bool) → (real x (num → bool))
unif two pow num → (num → bool) → (num x (num → bool))
std unif cont (num → bool) → real
all std unif disc le real → ((num → bool) → bool)
all std unif disc eq real → ((num → bool) → bool)

10.1.2 Definitions

ceiling def

`def ∀ x n. ceiling x = LEAST n. x ≤ &n
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std unif disc def

`def ∀ s. (std_unif_disc (0:num) s = (0,s)) ∧
∀ s n. (std_unif_disc (SUC n) s =

((if shd (SND (std_unif_disc n s)) then
((1/2) pow (SUC n) + FST (std_unif_disc n s)) else

FST (std_unif_disc n s),
stl (SND (std_unif_disc n s)))))

unif two pow def

`def ∀ s. (unif_two_pow (0:num) s = (0,s)) ∧
∀ s n. (unif_two_pow (SUC n) s =

((if shd (SND (unif_two_pow n s)) then
(2 * FST (unif_two_pow n s) + 1) else

2 * FST (unif_two_pow n s ),
stl (SND (unif_two_pow n s)))))

std unif cont def

`def ∀ s. std_unif_cont s =
lim (λn. FST (std_unif_disc n s))

all std unif disc le def

`def ∀ x. all_std_unif_disc_le x =
IMAGE (λn. {s | FST (std_unif_disc n s) ≤ x}) UNIV

all std unif disc eq def

`def ∀ x. all_std_unif_disc_eq x =
IMAGE (λn. {s | (FST (std_unif_disc n s) =

& (ceiling (2 pow n * x)) * 1/2 pow n) ∨
(FST (std_unif_disc n s) = (& (ceiling

(2 pow n * x)) − 1) * 1/2 pow n)}) UNIV

10.1.3 Theorems

LAMBDA LET

∀ p f. (λ(m,x). f m x) p = (let (a,b) = p in (f a b))

LAMBDA PAIR

∀ m x p f. (λ(m,x). f m x) p = f (FST p) (SND p)

REAL SUB ASSOC

∀ (a: real) b c. a − b − c = a − (b + c)

REAL SUB ASSOC2

∀ (a: real) b c. a − b + c = a + (c − b)

LT SUC LTE
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∀ m n. m < (SUC n) = (m < n) ∨ (m = n)

HALF POW SUC LE HALF POW N

∀ n. (1 / 2) pow SUC n ≤ (1 / 2) pow n

HALF POW SUC PLUS SUCSUC LE HALF POW

∀ n. (1 / 2) pow SUC n + (1 / 2) pow SUC (SUC n) ≤ (1 / 2) pow n

REAL NE LT GT

∀ (a:real) (b:real). ¬(a = b) = (a < b) ∨ (b < a)

SUM HALF POW SUC

∀ n. sum (0,n) (λn. (1/2) pow SUC n) = 1 − (1/2) pow n

REAL SEQ LE EXISTS EQ

∀ (a:num −> real) (b:real) (c:num −> real) (n:num).
∃x. (a x = c x) ∧ (a n ≤ b) ∧ (b ≤ c n) =⇒ (b = a x)

SIMP REAL ARCH

∀ x. ∃n. x ≤ &n‘

NUM LT IMP ABS GT PLUS1 GT

∀ (x:real) (n:num).
(∀m. m < n =⇒ (&m < (abs x))) = (&n < (abs x) + 1 )

NUM LT IMP ABS NLE PLUS1 GT

∀ (x:real) (n:num).
(∀m. m < n =⇒ ¬(abs x ≤ & m)) = (&n < (abs x) + 1 )

HALF POW TWO POW

∀ n. (1 / 2) pow n * 2 pow n = 1

HALF POW TENDSTO ZERO

(λn. (1/2) pow n) −−> 0

TWO HALF POW TENDSTO ZERO

(λn. 2 * (1 / 2) pow n) −−> 0

REAL SUB 2

∀ m n. & m − & n = (if n ≤ m then & (m − n) else ¬& (n − m))

LB CEILING

∀ x. x ≤ &(ceiling x)
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ABS PLUS1 GT CEILING ABS

∀ x. &(ceiling(abs x)) < (abs x) + 1

UB CEILING

∀ x. (0 ≤ x) =⇒ &(ceiling(x)) < x + 1

CEILING NUM

∀ n. ceiling (&n) = n

CEILING ABS POS

∀ x. 0 ≤ &(ceiling (abs x))

CEIL MONO

∀ m n. (0 ≤ m) ∧ (0 ≤ n) ∧ (m ≤ n) =⇒ (ceiling m) ≤ (ceiling n)

TWO POWNX LE CEILING 2POWNX

∀ (x:real) (n:num).
((λn. ((2 pow n) * x) * ((1/2) pow n)) n ≤
(λn. &(ceiling ((2 pow n) * x)) * ((1/2) pow n)) n)

TWO POWNX LE CEILING 2POWNX

∀ (x:real) (n:num).
((λn. ((2 pow n) * x) * ((1/2) pow n)) n ≤
(λn. &(ceiling ((2 pow n) * x)) * ((1/2) pow n)) n)

CEILING 2POWNX LE 2POWNX PLUS1

∀ (x:real) (n:num). (0 ≤ x) =⇒
(λn. (&(ceiling ((2 pow n) * x)) * ((1/2) pow n))) n ≤
(λn. (((2 pow n) * x) + 1) * ((1/2) pow n)) n

TWO POW X CEIL HALF POW TENDS

∀ (x:real). ((λn. ((2 pow n) * x) * ((1/2) pow n)) −−> x)

TWO POW X PLUS1 HALF POW TENDS

∀ (x:real). ((λn. ((2 pow n) * x + 1) * ((1/2) pow n)) −−> x)

UNIQ NUM IN REAL RANGE ONE

∀ x m n. (x ≤ &n) ∧ (&n < x + 1) ∧
(x ≤ &m) ∧ (&m < x + 1) =⇒ (&n = &m)

CEILING TWO POWNX MONO SUC HELPER

∀ x m n. (x ≤ &n) ∧ (&n < x + 1) ∧ (x ≤ &m) =⇒ &n ≤ &m

CEILING TWO POWNX MONO SUC
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∀ n x. (0 ≤ x) =⇒
(λn. (&(ceiling ((2 pow n) * x)) * 1/2 pow n)) SUC n ≤
(λn. (&(ceiling ((2 pow n) * x)) * 1/2 pow n)) n

CEILING TWO POWNX MONO

∀ x. (0 ≤ x) =⇒
mono (λn. (&(ceiling ((2 pow n) * x)) * ((1/2) pow n)))

CEILING TWO POWNX BOUNDED

∀ x. (0 ≤ x) =⇒
bounded(mr1, $≥)

(λn. (&(ceiling ((2 pow n) * x)) * (1/2 pow n)))

CEILING TWO POWNX CONVERGES

∀ (x:real). (0 ≤ x) =⇒
(λn. (&(ceiling ((2 pow n) * x)) *

((1/2) pow n))) −−>
lim (λn. (&(ceiling ((2 pow n) * x)) *

((1/2) pow n)))

CEILING TWO POWNX CONVERGENT

∀ (x:real). (0 ≤ x) =⇒
(convergent (λn. & (ceiling (2 pow n * x)) *

(1 / 2) pow n))

UB LIM CEILING TWO POWNX

∀ (x:real). (0 ≤ x) =⇒
lim (λn. & (ceiling (2 pow n * x)) *

(1 / 2) pow n) ≤ x

LB LIM CEILING TWO POWNX

∀ (x:real) . (0 ≤ x) =⇒
x ≤ lim (λn. & (ceiling (2 pow n * x)) *

(1 / 2) pow n)

LIM CEILING TWO POWNX

∀ (x:real). (0 ≤ x) =⇒
(lim (λn. & (ceiling (2 pow n * x)) *

(1 / 2) pow n) = x)

CEILING TWO POWNX TENDSTO X

∀ (x:real). (0 ≤ x) =⇒
(λn. & (ceiling (2 pow n * x)) *

(1 / 2) pow n) −−> x

CEIL TW0 POW GE 1

∀ x n. (0 < x) =⇒ 1 ≤ ceiling ((2 pow n) * x)
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CEILING TWO POWNX MINUS ONE TENDSTO X

∀ (x:real). (0 ≤ x) =⇒
(λn. &(ceiling (2 pow n * x) − 1) *

(1 / 2) pow n) −−> x

CEILING TWO POWNX PLUS ONE TENDSTO X

∀ (x:real). (0 ≤ x) =⇒
(λn. &(ceiling (2 pow n * x) + 1) *

(1 / 2) pow n) −−> x

CEILING 2POWNX MINUS1 LT XHALF POW

∀ n x. (0 ≤ x) =⇒
(& (ceiling (2 pow n * x)) − 1) * (1/ 2) pow n < x

XHALF POW LE CEILING 2POWNX

∀ n x. (0 ≤ x) =⇒ x ≤ & (ceiling (2 pow n * x)) * (1 / 2) pow n

SND STD UNIF EQ UNIF TWO POW

∀ m n s. (SND (std_unif_disc n s)) = (SND (unif_two_pow n s))

TWO POW STD UNIF DISC EQ UNIF TWO POW

∀ s n. (2 pow n) * (FST (std_unif_disc n s)) =
& (FST (unif_two_pow n s))

UNIF TWO POW MONAD

(unif_two_pow 0 = UNIT (0: num)) ∧
(∀ n. ((unif_two_pow (SUC n)) =

BIND (unif_two_pow n)
(λm. BIND sdest (λb. UNIT

(if b then (2 * m + 1) else 2 * m)))))

UNIF TWO POW INDEP

∀ n. unif_two_pow n IN indep_fn

STD UNIF DISC MONAD

(std_unif_disc 0 = UNIT (0: real)) ∧
(∀ n. ((std_unif_disc (SUC n)) =

BIND (std_unif_disc n)
(λm. BIND sdest (λb. UNIT
(if b then ((1/2) pow (SUC n) + m) else m)))))

STD UNIF DISC INDEP

∀ n. std_unif_disc n IN indep_fn

UB STD UNIF DISC

∀ n s. ((λn. FST (std_unif_disc n s)) n) ≤ 1 − (1/2) pow n
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STD UNIF DISC LT1

∀ n s. ((λn. FST (std_unif_disc n s)) n) < (1: real)

LB STD UNIF DISC

∀ n s. 0 ≤ ((λn. FST (std_unif_disc n s)) n)

STD UNIF DISC BOUNDED

∀ s. bounded(mr1, $≥) (λn. FST (std_unif_disc n s))

STD UNIF DISC MONO

∀ m n. m ≤ n =⇒ (((λn. FST (std_unif_disc n s)) m ≤
(λn. FST (std_unif_disc n s)) n))

STD UNIF DISC CONVERGENT

∀ s. convergent (λn. FST (std_unif_disc n s))

STD UNIF DISC SUCN N HALF POW

∀ s n. (λn. FST (std_unif_disc n s)) (SUC n) ≤
(λn. FST (std_unif_disc n s)) n + (1/2) pow (SUC n)

STD UNIF DISC M N SUM HALF POW

∀ n s m. n < m =⇒
(λn. FST (std_unif_disc n s)) m ≤
(λn. FST (std_unif_disc n s)) n +

sum (n, m − n) (λn. (1/2) pow (SUC n))

STD UNIF DISC DIFFERENCE

∀ n s m. n < m =⇒
(λn. FST (std_unif_disc n s)) m <
(λn. FST (std_unif_disc n s)) n + (1 / 2) pow n

STD UNIF DISC EQ EVENTS

∀ n x. {s | FST (std_unif_disc n s) = x} IN events bern

STD UNIF DISC LE EVENTS

∀ n x. {s | FST (std_unif_disc n s) ≤ x} IN events bern

STD UNIF DISC EQ EVENTS

∀ n x. {s | FST (std_unif_disc n s) = x} IN events bern

LB STD UNIF CONT

∀ s. 0 ≤ std_unif_cont s

UB STD UNIF CONT
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∀ s. std_unif_cont s ≤ 1

STD UNIF CONT LE STD UNIF DISC HALF POW

∀ (s:num −> bool) n.
std_unif_cont s ≤

(λn. FST (std_unif_disc n s))n + (1/2) pow n

STD UNIF CONT GE STD UNIF DISC

∀ (s:num −> bool) n.
(λn. FST (std_unif_disc n s))n ≤ std_unif_cont s

UNIF DISC CEIL SUBSET CONT

∀ x n. (0 ≤ x) =⇒
{s | FST (std_unif_disc n s) ≤

(& (ceiling (2 pow n * x)) − 2) * (1/2) pow n}
SUBSET {s | std_unif_cont s ≤ x}

CONT SUBSET UNIF DISC CEIL

∀ x n. (0 ≤ x) =⇒
{s | std_unif_cont s ≤ x}
SUBSET {s | FST (std_unif_disc n s) ≤

(& (ceiling (2 pow n * x)) * (1/2) pow n)}

CONT SUBSET UNIF DISC LE

∀ x n. {s | std_unif_cont s ≤ x}
SUBSET {s | FST (std_unif_disc n s) ≤ x}

CONT EQX SUBSET UNIF DISC CEIL CEIL SUB1

∀ x n. (0 ≤ x) =⇒
{s | std_unif_cont s = x} SUBSET
{s | (FST (std_unif_disc n s) =

& (ceiling (2 pow n * x)) * (1/2) pow n) ∨
(FST (std_unif_disc n s) =

(& (ceiling (2 pow n * x)) − 1) *
(1/2) pow n)}

IN ALL STD UNIF DISC LE

∀ x n. {s | FST (std_unif_disc n s) ≤ x} IN
all_std_unif_disc_le x

ALL STD UNIF DISC LE ELEMENTS

∀ a x. a IN (all_std_unif_disc_le x) =⇒
∃n. a = {s | FST (std_unif_disc n s) ≤ x}

ALL STD UNIF DISC LE COUNTABLE

∀ x. countable (all_std_unif_disc_le x)

BIGINTER ALL STD UNIF DISC LE EVENTS BERN
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∀ (x:real). BIGINTER (all_std_unif_disc_le x) IN events bern

STD UNIF CONT BIGINTER ALL STD UNIF LE

∀ x. {s | std_unif_cont s ≤ x} =
BIGINTER (all_std_unif_disc_le x)

STD UNIF CONT EVENTS BERN

∀ x. {s | std_unif_cont s ≤ x} IN events bern

ALL STD UNIF DISC EQ ELEMENTS

∀ a x. a IN (all_std_unif_disc_eq x) =⇒
∃n. a = {s | (FST (std_unif_disc n s) =

& (ceiling (2 pow n * x)) * (1/2) pow n) ∨
(FST (std_unif_disc n s) =
(& (ceiling (2 pow n * x)) − 1) *

(1/2) pow n)}

ALL STD UNIF DISC EQ COUNTABLE

∀ x. countable (all_std_unif_disc_eq x)

BIGINTER ALL STD UNIF DISC EQ EVENTS BERN

∀ (x:real). BIGINTER (all_std_unif_disc_eq x) IN events bern

STD UNIF CONT BIGINTER ALL STD UNIF EQ GE0

∀ x. 0 ≤ x =⇒
(s | std_unif_cont s = x =

BIGINTER (all_std_unif_disc_eq x))

STD UNIF CONT EQ EVENTS BERN GE0

∀ x. 0 ≤ x =⇒
(s | std_unif_cont s = x IN events bern)

STD UNIF CONT EQ EVENTS BERN LT1

∀ x. x < 0 =⇒
(s | std_unif_cont s = x IN events bern)

STD UNIF CONT EQ EVENTS BERN

∀ x. (s | std_unif_cont s = x IN events bern)

STD UNIF CONT LT EVENTS BERN

∀ x. (s | std_unif_cont s < x IN events bern)

PROB UNIF DISC CEIL LE PROB CONT
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∀ x n. (0 ≤ x) =⇒
(prob bern {s | FST (std_unif_disc n s) ≤

(& (ceiling (2 pow n * x)) − 2) * (1 / 2) pow n}
≤ prob bern {s | std_unif_cont s ≤ x})

PROB CONT LE PROB UNIF DISC CEIL

∀ x n. (0 ≤ x) =⇒
prob bern {s | std_unif_cont s ≤ x} ≤
prob bern {s | FST (std_unif_disc n s) ≤

(& (ceiling (2 pow n * x)) * (1 / 2) pow n)}

PROB CONT EQX LE PROB DISC CEIL SUB1

∀ x n. (0 ≤ x) =⇒
prob bern {s | std_unif_cont s = x}
≤ prob bern {s | (FST (std_unif_disc n s) =

& (ceiling (2 pow n * x)) * (1 / 2) pow n) ∨
(FST (std_unif_disc n s) =

(& (ceiling (2 pow n * x)) − 1) * (1 / 2) pow n)}

CDF UNIF DISC LT0

∀ n x. x < 0 =⇒
(prob bern {s | FST (std_unif_disc n s) ≤ x} = 0)

PMF UNIF DISC LT0

∀ n x. x < 0 =⇒
(prob bern {s | FST (std_unif_disc n s) = x} = 0)

CDF UNIF DISC GE1

∀ n x. 1 ≤ x =⇒
(prob bern {s | FST (std_unif_disc n s) ≤ x} = 1)

PMF UNIF DISC GE1

∀ n x. 1 ≤ x =⇒
(prob bern {s | FST (std_unif_disc n s) = x} = 0)

PMF STD UNIF DISC GE0 LT1

∀ n m. (m < (2 ** n)) =⇒
(prob bern {s | FST (std_unif_disc n s) =

&m / & (2 ** n)} = 1 / & (2 ** n))

CDF UNIF DISC GE0 LT1

∀ n m. (m < (2 ** n)) =⇒
(prob bern {s | FST (std_unif_disc n s) ≤

&m / & (2 ** n)} = &(SUC m) / & (2 ** n))

PROB UNIF DISC CEIL TWO POW BY TWO POW
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∀ x n. (0 ≤ x) ∧ (x < 1) =⇒
(prob bern {s | FST (std_unif_disc n s) =

& (ceiling (2 pow n * x)) / 2 pow n}
≤ (1 / 2) pow n)

PROB DISC UNIF EQ CEIL2POW OR CEIL2POW MINUS1

∀ x n. (0 ≤ x) ∧ (x ≤ 1) =⇒
(prob bern {s | (FST (std_unif_disc n s) =

& (ceiling (2 pow n * x)) * (1/2) pow n) ∨
(FST (std_unif_disc n s) =

(& (ceiling (2 pow n * x)) − 1) * (1/2) pow n)}
≤ 2 * (1/2) pow n)

PMF STD UNIF CONT LE TWICE HALF POW

∀ x n. (0 ≤ x) ∧ (x ≤ 1) =⇒
prob bern {s | std_unif_cont s = x} ≤ 2 * (1 / 2) pow n

PMF STD UNIF CONT LE0

∀ x. (0 ≤ x) ∧ (x ≤ 1) =⇒
prob bern {s | std_unif_cont s = x} ≤ 0

PROB LB UB STD UNIF CONT RANGE EQ0

∀ x. (0 ≤ x) ∧ (x ≤ 1) =⇒
(prob bern {s | std_unif_cont s = x} = 0)

PMF STD UNIF CONT

∀ x. (prob bern {s | std_unif_cont s = x} = 0)

PROB UNIF DISC LE CEIL TWO POW MINUS2

∀ x n. (0 ≤ x) ∧ (x < 1) =⇒
(prob bern {s | FST (std_unif_disc n s) ≤

(& (ceiling (2 pow n * x)) − 2) * (1 / 2) pow n} =
&(ceiling (2 pow n * x) − 1) * (1 / 2) pow n)

PROB STD UNIF LE CEIL SUC 2POW

∀ x n. (0 ≤ x) ∧ (x < 1) =⇒
(prob bern {s | FST (std_unif_disc n s) ≤

(& (ceiling (2 pow n * x)) * (1/2) pow n)}
≤ & (ceiling (2 pow n * x) + 1) * (1/2) pow n)

PROB CONT LE CEIL SUC 2POW

∀ x n. (0 ≤ x) ∧ (x < 1) =⇒
prob bern {s | std_unif_cont s ≤ x}

≤ & (ceiling (2 pow n * x) + 1) * (1 / 2) pow n

CEIL TWO POW MINUS2 LE PROB CONT
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∀ x n. (0 ≤ x) ∧ (x < 1) =⇒
(&(ceiling (2 pow n * x) − 1) * (1 / 2) pow n

≤ prob bern {s | std_unif_cont s ≤ x})

CDF UNIF CONT LT0

∀ x. (x < 0) =⇒
(prob bern {s | std_unif_cont s ≤ x} = 0)

CDF UNIF CONT GE1

∀ n x. 1 ≤ x =⇒
(prob bern {s | std_unif_cont s ≤ x} = 1)

CDF UNIF CONT GE0 LT1

∀ x. (0 ≤ x) ∧ (x < 1) =⇒
(prob bern {s | std_unif_cont s ≤ x} = x)

CDF UNIF CONT

∀ x. (prob bern {s | std_unif_cont s ≤ x} =
(if (x < 0) then 0 else

(if (x < 1) then x else 1)))

CDF UNIF CONT CONTL

∀ x. (0 ≤ x) ∧ (x < 1) =⇒
((λx. prob bern {s | std_unif_cont s ≤ x}) contl x)

10.2 cdfTheory

This theory contains the formal specification of the CDF along with the formal proofs of its
properties mentioned in [14].

10.2.1 Signature

Functions Type
CDF ((num → bool) → real) → real → real
CDF in events bern ((num → bool) → real) → real → bool

10.2.2 Definitions

CDF def

`def ∀ f x. CDF f x = prob bern {s | f s ≤ x}

CDF in events bern def

`def ∀ f x. CDF_in_events_bern f x = {s | f s ≤ x} IN events bern
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10.2.3 Theorems

REAL SUB ASSOC

∀ (a: real) b c. a − b − c = a − (b + c)

PROB COUNTABLE DECREASING

∀ s (f:num −> (num −> bool) −> bool) p.
(prob_space p) ∧
(f IN (UNIV −> events p)) ∧
(f 0 = UNIV) ∧
(∀n. f (SUC n) SUBSET f n) ∧
(s = BIGINTER (IMAGE f UNIV)) =⇒

prob p o f −−> prob p s

PROB DECREASING INTER

∀ s (f:num −> (num −> bool) −> bool).
(f IN (UNIV −> events bern)) ∧
(∀n. f (SUC n) SUBSET f n) ∧
(s = BIGINTER (IMAGE f UNIV)) =⇒

prob bern o f −−> prob bern s

CDF RANGE

∀ f x. CDF_in_events_bern f x =⇒
(0 ≤ CDF f x ∧ CDF f x ≤ 1)

CDF NON DECREASING

∀ f a b. a < b ∧
(∀x. CDF_in_events_bern f x) =⇒ (CDF f a ≤ CDF f b)

CDF INTERVAL PROB

∀ f a b. a < b ∧
(∀x. CDF_in_events_bern f x) =⇒

(prob bern {s | (a < f s) ∧ (f s ≤ b)} =
CDF f b − CDF f a)

CDF AT POSITIVE INFINITY

∀ f. (∀x. CDF_in_events_bern f x) =⇒
(λn. CDF f ((λn. &n) n)) −−> 1

CDF AT NEGETIVE INFINITY

∀ f. (∀x. CDF_in_events_bern f x) =⇒
(λn. CDF f ((λn. ¬&n) n)) −−> 0

CDF CONT RIGHT

∀ f a. (∀x. CDF_in_events_bern f x) =⇒
(λn. CDF f ((λn. a +
(inv (& (SUC n)))) n)) −−> CDF f a
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CDF LIMIT FROM LEFT

∀ f a. (∀x. CDF_in_events_bern f x) =⇒
((λn. CDF f ((λn. a −
(inv (& (SUC n)))) n)) −−>

(prob bern {s | f s < a}))
PROB EQ SUBSET

∀ f a. {s | f s = a} SUBSET
{s | ((a − inv (& (SUC n))) < f s) ∧ (f s ≤ a)}

CONT CDF CONT LEFT

∀ f a. (∀x. CDF_in_events_bern f x) ∧
(∀x. (λx. CDF f x) contl x) =⇒
((λn. CDF f (a − (inv (& (SUC n))))) −−> (CDF f a))

CONT CDF EQ PROB BERN LT

∀ f a.(∀x. CDF_in_events_bern f x) ∧
(∀x. (λx. CDF f x) contl x) =⇒

(CDF f a = prob bern {s | f s < a})
CONT PROB BERN EQ 0

∀ f a.(∀x. CDF_in_events_bern f x) ∧
(∀x. {s | f s = x} IN events bern) ∧
(∀x. (λx. CDF f x) contl x) =⇒

(prob bern {s | f s = a} = 0)

10.3 itmTheory

This theory contains the formal specification of the inverse function of a CDF, INV CDF
FN , and the formal proof of correctness for the ITM.

10.3.1 Signature

Functions Type
INV CDF FN (real → real) → (real → real) → bool
IS CONT CDF FN (real → real) → bool

10.3.2 Definitions

INV CDF FN def

`def ∀ (f: real −> real) (g: real −> real). INV_CDF_FN f g =
(∀ x. (g x = 0) =⇒ (x ≤ f (g x))) ∧
(∀ x. (g x = 1) =⇒ (f (g x) ≤ x)) ∧
(∀ x. (0 < g x ∧ g x < 1) =⇒

(f (g x) = x) ∧
(∀x. 0 < x ∧ x < 1 =⇒

(g (f x) = x)))
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IS CONT CDF FN def

`def ∀ (g: real −> real). IS_CONT_CDF_FN g =
(∀ a b. a < b =⇒ g a ≤ g b) ∧
((λn. g ((λn. &n) n)) −−> 1) ∧
((λn. g ((λn. −&n) n)) −−> 0) ∧
(∀ x. g contl x)

10.3.3 Theorems

CDF UNIF CONT GT0 LT1

∀ x. (0 < x) ∧ (x < 1) =⇒
(prob bern {s | std_unif_cont s ≤ x} = x)

CDF UNIF CONT GE0 LE1

∀ x. (0 ≤ x) ∧ (x ≤ 1) =⇒
(prob bern {s | std_unif_cont s ≤ x} = x)

STD UNIF CONT NEQ 0 1

∀ (a:num −> bool).
¬(std_unif_cont a = 1) ∧
¬(std_unif_cont a = 0) =⇒

((std_unif_cont a < 1) ∧
(0 < std_unif_cont a))

FN MONO INV FN STRICT MONO

∀ f g a b. (∀a b. a < b =⇒ g a ≤ g b) ∧
(∀x. ((0 < x) ∧ (x < 1)) =⇒ (g (f x) = x)) ∧
(0 < a) ∧ (a < 1) ∧ (0 < b) ∧ (b < 1) =⇒

((f a < f b) = (a < b))

SET DIFF STD UNIF CONT 0 1

∀ (f:real −> real) x.
{s | f (std_unif_cont s) ≤ x} IN events bern =⇒

(prob bern {s | f (std_unif_cont s) ≤ x} =
prob bern (({s | f (std_unif_cont s) ≤ x} DIFF

{s | std_unif_cont s = 1}) DIFF
{s | std_unif_cont s = 0}))

LIM POS1 NEG0 IMP GE0 LE1

∀ g. IS_CONT_CDF_FN g =⇒
(∀x. 0 ≤ g x ∧ g x ≤ 1)

CONT CDF EXISTS GT0 LT1

∀ g. IS_CONT_CDF_FN g =⇒
(∃y. 0 < g y ∧ g y < 1)

FN STD UNIF CONT EQ EVENTS BERN
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∀ f g x. IS_CONT_CDF_FN g ∧ (INV_CDF_FN f g) =⇒
{s | f (std_unif_cont s) = x} IN events bern

FN STD UNIF CONT EVENTS BERN

∀ f g x. IS_CONT_CDF_FN g ∧ (INV_CDF_FN f g) =⇒
{s | f (std_unif_cont s) ≤ x} IN events bern

ITM HELPER

∀ f g x. IS_CONT_CDF_FN g ∧ (INV_CDF_FN f g) =⇒
(prob bern {s | f (std_unif_cont s) ≤ x} =

prob bern {s | std_unif_cont s ≤ g x})

ITM

∀ f g x. IS_CONT_CDF_FN g ∧ (INV_CDF_FN f g) =⇒
(prob bern {s | f (std_unif_cont s) ≤ x} = g x)

10.4 cont distTheory

This theory contains the formal proofs of CDF, PMF and measurability properties of four
continuous random variables; Uniform, Exponential, Rayleigh and Triangular.

10.4.1 Signature

Functions Type
uniform rv def real → real → (num → bool) → real
exp rv def real → (num → bool) → real
rayleigh rv def real → (num → bool) → real
triangular rv def real → (num → bool) → real

10.4.2 Definitions

uniform rv def

`def ∀ a b s. uniform_rv a b s = (b − a) * (std_unif_cont s) + a

exp rv def

`def ∀ l s. exp_rv l s = ¬1/l * ln (1 − (std_unif_cont s))

rayleigh rv def

`def ∀ sig s. rayleigh_rv sig s =
sig * sqrt ¬2 * ln (1 − (std_unif_cont s)))

triangular rv def

`def ∀ a s. triangular_rv a s =
a * (1 − sqrt (1 − (std_unif_cont s)))
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10.4.3 Theorems

INV CDF FN UNIF

∀ a b. (a < b) =⇒
(INV_CDF_FN (λx. (b − a) * x + a)

(λx. (if x ≤ a then 0 else
(if x < b then (x − a) / (b − a)

else 1))))

UNIF CDF MONO

∀ a b. (a < b) =⇒ (∀c d. (c < d) =⇒
((λx. (if x ≤ a then 0 else

(if x < b then (x − a) / (b − a) else 1))) c ≤
(λx. (if x ≤ a then 0 else

(if x < b then (x − a) / (b − a) else 1))) d))

UNIF CONT HELPER

∀ x a b. (a < b) =⇒ ((λx. (x − a) / (b − a)) contl x)

UNIF CDF CONT

∀ x a b. (a < b) =⇒
((λx. if x ≤ a then 0 else

if x < b then (x − a) / (b − a) else 1)) contl x

UNIF CDF AT POSINF

∀ a b. (a < b) =⇒
(((λn.(λx. (if x ≤ a then 0 else

(if x < b then (x − a) / (b − a) else 1)))
((λn. &n) n)) −−> 1))

UNIF CDF AT NEGINF

∀ a b. (a < b) =⇒
(((λn.(λx. (if x ≤ a then 0 else

(if x < b then (x − a) / (b − a) else 1)))
((λn. ¬&n) n)) −−> 0))

UNIF CDF IS CONT CDF FN

∀ a b. (a < b) =⇒
(IS_CONT_CDF_FN (λx. (if x ≤ a then 0 else

(if x < b then (x − a) / (b − a)
else 1))))

UNIF RV LE IN EVENTS BERN

∀ x a b. (a < b) =⇒
(s | uniform_rv a b s ≤ x IN events bern)

UNIF RV EQ IN EVENTS BERN
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∀ x a b. (a < b) =⇒
(s | uniform_rv a b s = x IN events bern)

CDF UNIF

∀ x a b. (a < b) =⇒
(prob bern {s | uniform_rv a b s ≤ x} =

(if x ≤ a then 0 else
(if x < b then (x − a) / (b − a)
else 1)))

PMF UNIF

∀ x a b. (a < b) =⇒
(prob bern {s | uniform_rv a b s = x} = 0)

INV CDF FN EXP

∀ l. (0 < l) =⇒
(INV_CDF_FN (λx. ¬1/l) * ln (1 − x))

(λx. if x ≤ 0 then 0 else
(1 − exp ¬l * x))))

EXP CDF MONO

∀ l. (0 < l) =⇒ (∀c d. (c < d) =⇒
((λx. if x ≤ 0 then 0 else (1 − exp ¬l * x))) c ≤
(λx. if x ≤ 0 then 0 else (1 − exp ¬l * x))) d))

EXP DIFF COMPOSITE

∀ g m x. ((g diffl m) x =⇒
((λx. exp (g x)) diffl (exp (g x) * m)) x)

ONE MINUS EXP CONT

∀ x l. (0 < l) =⇒
(λx. 1 − exp ¬l * x)) contl x

EXP CDF CONT

∀ x l. (0 < l) =⇒
((λx. (if x ≤ 0 then 0 else

1 − exp ¬l * x))) contl x)

EXP CDF AT POSINF

∀ l. (0 < l) =⇒
(((λn.(λx. if x ≤ 0 then 0 else

(1 − exp ¬l * x))) ((λn. &n) n)) −−> 1))

EXP CDF AT NEGINF

∀ l. (0 < l) =⇒
(((λn.(λx. if x ≤ 0 then 0 else

(1 − exp ¬l * x))) ((λn. ¬&n) n)) −−> 0))
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EXP CDF IS CONT CDF FN

∀ l. (0 < l) =⇒
(IS_CONT_CDF_FN (λx. if x ≤ 0 then 0 else

(1 − exp ¬l * x))))

EXP RV LE IN EVENTS BERN

∀ x l. (0 < l) =⇒
(s | exp_rv l s ≤ x IN events bern)

EXP RV EQ IN EVENTS BERN

∀ x l. (0 < l) =⇒
(s | exp_rv l s = x IN events bern)

CDF EXP

∀ x l. (0 < l) =⇒
(prob bern {s | exp_rv l s ≤ x} =

(if x ≤ 0 then 0 else
(1 − exp ¬l * x))))

PMF EXP

∀ x l. (0 < l) =⇒
(prob bern {s | exp_rv l s = x} = 0)

INV CDF FN RAYLEIGH

∀ sig. (0 < sig) =⇒
(INV_CDF_FN (λx. sig * sqrt ¬2 * ln (1 − x)))

(λx. (if x ≤ 0 then 0 else
(1 − exp

¬(x pow 2)/ (2 * (sig pow 2)))))))

RAYLEIGH CDF MONO

∀ sig. (0 < sig) =⇒ (∀c d. (c < d) =⇒
((λx. (if x ≤ 0 then 0 else

(1 − exp ¬(x pow 2)/ (2 * (sig pow 2)))))) c ≤
(λx. (if x ≤ 0 then 0 else

(1 − exp ¬(x pow 2)/ (2 * (sig pow 2)))))) d))

ONE MINUS RAYLEIGH CONT

∀ x sig. (0 < sig) =⇒
((λx. 1 − exp

¬(x pow 2)/ (2 * (sig pow 2)))) contl x)

RAYLEIGH CDF CONT

∀ x sig. (0 < sig) =⇒
((λx. (if x ≤ 0 then 0 else

(1 − exp
¬(x pow 2)/ (2 * (sig pow 2)))))) contl x)
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POWPOW PLUS1

∀ e. 0 < e =⇒
(∀n. 1 + & n * e ≤ (1 + e) pow (n * n))

SEQ POWPOW

∀ c. 0 < c ∧ c < 1 =⇒
((λn. c pow (n*n)) −−> &0)

RAYLEIGH CDF AT POSINF

∀ sig. (0 < sig) =⇒
(((λn.(λx. (if x ≤ 0 then 0 else

(1 − exp ¬(x pow 2)/ (2 * (sig pow 2))))))
((λn. &n) n)) −−> 1))

RAYLEIGH CDF AT NEGINF

∀ sig. (0 < sig) =⇒
(((λn.(λx. (if x ≤ 0 then 0 else

(1 − exp ¬(x pow 2)/ (2 * (sig pow 2))))))
((λn. ¬&n) n)) −−> 0))

RAYLEIGH CDF IS CONT CDF FN

∀ sig. (0 < sig) =⇒
(IS_CONT_CDF_FN (λx. (if x ≤ 0 then 0 else

(1 − exp
¬(x pow 2)/ (2 * (sig pow 2)))))))

RAYLEIGH RV LE IN EVENTS BERN

∀ x sig. (0 < sig) =⇒
(s | rayleigh_rv sig s ≤ x IN events bern)

RAYLEIGH RV EQ IN EVENTS BERN

∀ x sig. (0 < sig) =⇒
(s | rayleigh_rv sig s = x IN events bern)

CDF RAYLEIGH

∀ x sig. (0 < sig) =⇒
(prob bern {s | rayleigh_rv sig s ≤ x} =

(if x ≤ 0 then 0 else
(1 − exp

¬(x pow 2)/ (2 * (sig pow 2))))))

PMF RAYLEIGH

∀ x sig. (0 < sig) =⇒
(prob bern {s | rayleigh_rv sig s = x} = 0)

INV CDF FN TRIANGULAR
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∀ x a.(0 < a) =⇒
(INV_CDF_FN (λx. a * (1 − sqrt (1 − x))))

(λx. if (x ≤ 0) then 0 else
(if (x < a) then

(2/a * (x − (x pow 2)/(2 * a))) else 1))

TRIANGULAR CDF MONO

∀ a . (0 < a) =⇒
(∀c d. (c < d) =⇒

((λx. if (x ≤ 0) then 0 else
(if (x < a) then

(2/a * (x − (x pow 2)/(2 * a))) else 1)) c ≤
(λx. if (x ≤ 0) then 0 else

(if (x < a) then
(2/a * (x − (x pow 2)/(2 * a))) else 1)) d))

TRIANGULAR CDF AT POSINF

∀ a. (0 < a) =⇒
(((λn.(λx. if (x ≤ 0) then 0 else

(if (x < a) then
(2/a * (x − (x pow 2)/(2 * a))) else 1))

((λn. &n) n)) −−> 1))

TRIANGULAR CDF AT NEGINF

∀ a. (0 < a) =⇒
(((λn.(λx. if (x ≤ 0) then 0 else

(if (x < a) then
(2/a * (x − (x pow 2)/(2 * a))) else 1))

((λn. ¬&n) n)) −−> 0))

TRIANGULAR CONT HELPER

∀ x a. (0 < a) =⇒
(λx. (2/a * (x − (x pow 2)/(2 * a)))) contl x

TRIANGULAR CDF CONT

∀ x a. (0 < a) =⇒
(λx. if (x ≤ 0) then 0 else

(if (x < a) then
(2/a * (x − (x pow 2)/(2 * a))) else 1))

contl x

TRIANGULAR CDF IS CONT CDF FN

∀ a. (0 < a) =⇒
(IS_CONT_CDF_FN (λx. if (x ≤ 0) then 0 else

(if (x < a) then
(2/a * (x − (x pow 2)/(2 * a))) else 1)))

TRIANGULAR RV LE IN EVENTS BERN

∀ x a. (0 < a) =⇒
(s | triangular_rv a s ≤ x IN events bern)
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TRIANGULAR RV EQ IN EVENTS BERN

∀ x a. (0 < a) =⇒
(s | triangular_rv a s = x IN events bern)

CDF TRIANGULAR

∀ x a. (0 < a) =⇒
(prob bern s | triangular_rv a s ≤ x =

(if (x ≤ 0) then 0 else
(if (x < a) then

(2/a * (x − (x pow 2)/(2 * a))) else 1)))

PMF TRIANGULAR

∀ x a. (0 < a) =⇒
(prob bern s | triangular_rv a s = x = 0)
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