
Formal Verification of Expectation and Variance for
Discrete Random Variables

Osman Hasan and Sofiène Tahar

Department of Electrical and Computer Engineering,

Concordia University, Montreal, Canada

Email: {o hasan, tahar}@ece.concordia.ca

Technical Report

June, 2007

Abstract

Statistical quantities, such as expectation (mean) and variance, play a vital role in
the present age probabilistic analysis. In this paper, we present some formalization of
expectation theory that can be used to verify the expectation and variance character-
istics of discrete random variables within the HOL theorem prover. The motivation
behind this is the ability to perform error free probabilistic analysis, which in turn can
be very useful for the performance and reliability analysis of systems used in safety-
critical domains, such as space travel, medicine and military. We first present a formal
definition of expectation of a function of a discrete random variable. Building upon
this definition, we formalize the mathematical concept of variance and verify some
classical properties of expectation and variance in HOL. We then utilize these for-
mal definitions to verify the expectation and variance characteristics of the Geometric
random variable. In order to demonstrate the practical effectiveness of the formaliza-
tion presented in this paper, we also present the probabilistic analysis of the Coupon
Collector’s problem in HOL.
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1 Introduction

Probability has become an essential component of performance and reliability analysis in
almost every field of science. The random and unpredictable elements are mathematically
modeled by appropriate random variables and the performance and reliability issues are
judged based on the corresponding statistical quantities such as mean and variance. Due to
the wide application domain of probability, many researchers around the world are trying to
improve the existing computer based probabilistic analysis approaches. The ultimate goal
is to come up with a probabilistic analysis framework that includes robust and accurate
analysis methods, has the ability to perform analysis for large-scale problems and is user
friendly.

Nowadays, probabilistic analysis is usually performed using simulation techniques [BFS87],
where the main idea is to approximately answer a query on a probability distribution by
analyzing a large number of samples. The simulation approach is quite user friendly as most
of the analysis can be automated and really shines in handling problems that cannot be
solved analytically. On the other hand, the results are usually inaccurate and large prob-
lems cannot be handled because of enormous CPU time requirements. The inaccuracy of
the results poses a serious problem when some safety-critical section of the system is being
analyzed. An alternative is to use probabilistic model checking [BHHK03, RKNP04], which
is a formal state-based approach. Due to the formal nature of the models and analysis tech-
niques, the results are always accurate but, like traditional model-checking, this approach
is limited by the state-space explosion problem [CGP00]. Another recently proposed formal
probabilistic analysis approach is to use higher-order-logic theorem proving to verify proba-
bilistic properties [Hur02]. Due to its inherent soundness and the high expressive nature of
the higher-order-logic, this approach not only allows us to acquire accurate results but is also
capable of handling any probabilistic problem that can be expressed mathematically. The
downside is the enormous amount of user guided formalization that is required to handle
various probabilistic analysis issues. Though, a positive aspect is that some foundational
formalization in this regard is already available in the open literature, such as the formaliza-
tion of probability theory and the commonly used discrete [Hur02] and continuous [HT07a]
random variables.

In this paper, we further strengthen the higher-order-logic probabilistic analysis approach
by presenting the formalization of some expectation theory for discrete random variables in
the HOL theorem prover [GM93]. We mainly develop a formal definition of expectation,
which is further utilized to formally define variance as well. In probabilistic analysis, expec-
tation and variance are the most useful characteristics of a random variable, which basically
present the average and the dispersion of a random variable, respectively. The paper also
includes the verification of some classical properties of expectation and variance in HOL.
These properties play a vital role in verifying expectation and variance quantities of discrete
probabilistic systems within the HOL theorem prover.

Computer science is one of the key application areas of probabilistic analysis. For ex-
ample, the average case analysis is usually considered more useful in characterizing an al-
gorithm’s performance rather than its worst case analysis. Therefore, in order to illustrate
the practical effectiveness of the formalization presented in this paper, we present the prob-
abilistic analysis of the Coupon Collector’s problem [MU05], a well known commercially
used algorithm. Some of the recent applications of the Coupon Collector’s problem in-
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clude its usage in packet delivery systems [MU05], load balancing in peer-to-peer networks
[AHKV03, DP05] and a coalescing particle model which is applicable to population biol-
ogy [AAKR03]. In this paper, We present a higher-order-logic formalization of the Coupon
Collector’s problem as a probabilistic algorithm using the summation of a list of Geometric
random variables. Then, the formally verified expectation and variance properties are used
to verify the expectation and a variance bound of the Coupon Collector’s problem in HOL.

The rest of the paper is organized as follows: Section 2 gives a review of the related
work. In Section 3, we provide some preliminaries including a brief introduction to the HOL
theorem prover and some technical background regarding probabilistic analysis in HOL.
Next, we present the HOL formalization of the expectation and variance functions for discrete
random variables along with the verification of some of their classical properties in Sections
4 and 5, respectively. We utilize these definitions and properties to verify the mean and
variance relations of the Geometric random variable in Section 6, which is followed by the
probabilistic analysis of the Coupon Collector’s problem in Section 7. Finally, Section 8
concludes the paper.

2 Related Work

Nȩdzusiak [Ned89] and Bialas [Bia90] were among the first ones to formalize some probability
theory in higher-order-logic. Hurd [Hur02] extended their work and developed a framework
for the verification of probabilistic algorithms in the HOL theorem prover. He demonstrated
the practical effectiveness of his formal framework by successfully verifying the sampling
algorithms for four discrete probability distributions, some optimal procedures for gener-
ating dice rolls from coin flips, the symmetric simple random walk and the Miller-Rabin
primality test based on the corresponding probability distribution properties. Hurd et. al
[HMM05] also formalized the probabilistic guarded-command language (pGCL) in HOL. The
pGCL contains both demonic and probabilistic nondeterminism and is thus quite suitable
for reasoning about distributed random algorithms. Celiku [Cel05] built upon the formal-
ization of the pGCL to mechanize the quantitative Temporal Logic (qtl) and demonstrated
the ability to verify temporal properties of probabilistic systems in HOL. An alternative
method for probabilistic verification in higher-order-logic has been presented by Audebaud
et. al [APM06]. Instead of using the measure theoretic concepts of probability space, as
is the case in Hurd’s approach, Audebaud et. al based their methodology on the monadic
interpretation of randomized programs as probabilistic distribution. This approach only
uses functional and algebraic properties of the unit interval and has been successfully used
to verify a sampling algorithm of the Bernoulli distribution and the termination of various
probabilistic programs in the Coq theorem prover.

Building upon Hurd’s formalization framework, we have been able to successfully verify
the sampling algorithms of a few continuous random variables [HT07a] and the classical
Cumulative Distribution Function (CDF) properties [HT07c], which play a vital role in ver-
ifying arbitrary probabilistic properties of both discrete and continuous random variables.
The sampling algorithms for discrete random variables are either guaranteed to terminate
or they satisfy probabilistic termination, meaning that the probability that the algorithm
terminates is 1. Thus, they can be expressed in HOL by either well formed recursive func-
tions or the probabilistic while loop [Hur02]. On the other hand, the implementation of
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continuous random variables requires non-terminating programs and hence calls for a differ-
ent approach. In [HT07a], we presented a methodology that can be used to formalize any
continuous random variable for which the inverse of the CDF can be expressed in a closed
mathematical form. The core components of our methodology are the Standard Uniform
random variable and the Inverse Transform method [Dev86], which is a well known nonuni-
form random generation technique for generating nonuniform random variates for continuous
probability distributions for which the inverse of the CDF can be represented in a closed
mathematical form. Using the formalized Standard Uniform random variable and the In-
verse Transform method, we were able to formalize continuous random variables, such as
Exponential, Rayleigh, etc. and verify their correctness by proving the corresponding CDF
properties in HOL.

The formalization, mentioned so far, allows us to express random behaviors as random
variables in a higher-order-logic theorem prover and verify the corresponding quantitative
probability distribution properties, which is a significant aspect of a probabilistic analysis
framework. With the probability distribution properties of a random variable, such as the
Probability Mass Function (PMF) and the CDF, we are able to completely characterize
the behavior of their respective random variables. Though for comparison purposes, it is
frequently desirable to summarize the characteristic of the distribution of a random variable
by a single number, such as its expectation or variance, rather than an entire function. For
example, it is more interesting to find out the expected value of the runtime of an algorithm
for an NP-hard problem, rather than the probability of the event that the algorithm succeeds
within a certain number of steps. In [HT07b], we tackled the verification of expectation
properties in HOL for the first time. We extended Hurd’s formalization framework with a
formal definition of expectation, which can be utilized to verify the expected values associated
with discrete random variables that attain values in positive integers only. In the current
paper, rather than restricting our higher-order-logic formalization to simply the expected
value of a random variable, we consider the formalization of the expected value of a function
of a discrete random variable, whereas the function accepts a positive integer and returns a
real value. This includes as a special case the identity function, which covers the formalization
of the expected value of a random variable that attains values in the positive integers only.
The main advantage of this new definition is that it allows us to formally specify and verify
variance properties of discrete random variables within a higher-order-logic theorem prover;
a novelty that has not been available so far.

Richter [Ric03] formalized a significant portion of the Lebesgue integration theory in
higher-order logic using Isabelle/Isar [Pau94]. He also linked the Lebesgue integration the-
ory to probabilistic algorithms, developing upon Hurd’s [Hur02] framework, and presented
the formalization of the first moment method. The formalization and verification of sta-
tistical characteristics regarding continuous random variables in a theorem prover requires
a higher-order-logic formalization of an integration function that can also handle functions
with domains other than real numbers. Lebesgue integration provides this feature and thus
Richter’s formalization [Ric03] can be built upon for formalizing the mathematical concepts
of expectation and variance for continuous random variables.

Statistical characteristics, such as expectation and variance, are one of the most useful
tools in probabilistic analysis and therefore their evaluation within a model checker is being
explored in the probabilistic model checking community [BHHK03, RKNP04]. Some prob-
abilistic model checkers, such as PRISM [KNP05] and VESTA [SVA05], offer the capability
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of verifying expected values in a semi-formal manner. For example, in the PRISM model
checker, the basic idea is to augment probabilistic models with cost or rewards: real values
associated with certain states or transitions of the model. This way, the expected value
properties, related to these rewards, can be analyzed by PRISM. It is important to note that
the meaning ascribed to the these properties is, of course, dependent on the definitions of the
rewards themselves and thus there is always some risk of verifying false properties. Similarly,
to the best of our knowledge, no model checking algorithm exists in the open literature so
far that allows us to verify variance properties. On the other hand, the proposed theorem
proving based probabilistic analysis can be used to precisely reason about both expectation
and variance characteristics due to the high expressivity of higher-order-logic.

Probabilistic model checking is capable of providing exact solutions to probabilistic prop-
erties in an automated way; however it is also limited to systems that can only be expressed
as a probabilistic finite state machine. In contrast, the theorem proving based probabilistic
verification is an interactive approach but is capable of handling all kinds of probabilistic
systems including the unbounded ones. Another major limitation of the probabilistic model
checking approach is the state space explosion [CGP00], which is not an issue with the
proposed theorem proving based probabilistic analysis approach.

3 Preliminaries

In this section, we provide a brief introduction to the HOL theorem prover and verification
of probabilistic algorithms in HOL. The intent is to introduce the main ideas along with
some notation that is going to be used in the next few sections.

3.1 HOL Theorem Prover

The HOL theorem prover is an interactive theorem prover that is capable of conducting
proofs in higher-order logic. It utilizes the simple type theory of Church [Chu40] along
with Hindley-Milner polymorphism [Mil77] to implement higher-order logic. HOL has been
successfully used as a verification framework for both software and hardware systems as well
as a platform for the formalization of pure mathematics. It supports the formalization of
various mathematical theories including sets, natural numbers, real numbers, measure and
probability. The HOL theorem prover includes many proof assistants and automatic proof
procedures. The user interacts with a proof editor and provides the necessary tactics to
prove goals while some of the proof steps are solved automatically by the automatic decision
procedures.

In order to ensure secure theorem proving, the logic in the HOL system is represented
in the strongly-typed functional programming language ML [Pau96]. The ML abstract data
types are then used to represent higher-order-logic theorems and the only way to interact
with the theorem prover is by executing ML procedures that operate on values of these
data types. Users can prove theorems using a natural deduction style by applying inference
rules to axioms or previously generated theorems. The HOL core consists of only basic 5
axioms and 8 primitive inference rules, which are implemented as ML functions. Soundness
is assured as every new theorem must be created from the 5 basic axioms and the 8 primitive
inference rules or any other pre-existing theorems/inference rules.
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Table 1: HOL Symbols and Functions
HOL Symbol Standard Symbol Meaning
∧ and Logical and
∨ or Logical or
¬ not Logical negation
:: cons Adds a new element to a list
el n L Ln nth element of list L
mem a L a ∈ L True if a is a member of list L
length L |L| Length of list L
(a, b) a x b A pair of two elements
fst fst (a, b) = a First component of a pair
snd snd (a, b) = b Second component of a pair
λx.t λx.t Function that maps x to t(x)
{x|P(x)} {λx.P (x)} Set of all x such that P (x)
num {0, 1, 2, . . .} Positive Integers data type
real All Real numbers Real data type

suminf(λn.f(n)) lim
k→∞

∑k
n=0 f(n) Infinite summation of f

summable(λn.f(n)) ∃x. lim
k→∞

∑k
n=0 f(n) = x Summation of f is convergent

We selected the HOL theorem prover for the proposed formalization mainly because of
its inherent soundness, ability to handle higher-order logic and in order to benefit from the
in-built mathematical theories for measure and probability. Table 1 summarizes some of the
HOL symbols used in this paper and their corresponding mathematical interpretations.

3.2 Verifying Probabilistic Algorithms in HOL

The foremost criterion for developing a higher-order-logic theorem-proving based probabilis-
tic analysis framework is to be able to formalize random variables in higher-order logic.
This section presents a methodology, initially proposed in [Hur02], for the formalization of
probabilistic algorithms, which in turn can be used to model random variables in HOL.

The probabilistic algorithms can be formalized in higher-order logic by thinking of them
as deterministic functions with access to an infinite Boolean sequence B∞; a source of infinite
random bits with data type (num → bool) [Hur02]. These deterministic functions make
random choices based on the result of popping the top most bit in the infinite Boolean
sequence and may pop as many random bits as they need for their computation. When the
algorithms terminate, they return the result along with the remaining portion of the infinite
Boolean sequence to be used by other programs. Thus, a probabilistic algorithm which takes
a parameter of type α and ranges over values of type β can be represented in HOL by the
function.

F : α → B∞ → β ×B∞

For example, a Bernoulli(1
2
) random variable that returns 1 or 0 with equal probability

1
2

can be modeled as follows
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` bit = λs. (if shd s then 1 else 0, stl s)

where s is the infinite Boolean sequence and shd and stl are the sequence equivalents of
the list operation ’head’ and ’tail’. The probabilistic programs can also be expressed in the
more general state-transforming monad where the states are the infinite Boolean sequences.

` ∀ a s. unit a s = (a,s)

` ∀ f g s. bind f g s = g (fst (f s)) (snd (f s))

The HOL functions fst and snd, used above, return the first and second components of a
pair, respectively. The unit operator is used to lift values to the monad, and the bind is
the monadic analogue of function application. All monad laws hold for this definition, and
the notation allows us to write functions without explicitly mentioning the sequence that is
passed around, e.g., function bit can be defined as

` bit monad = bind sdest (λb. if b then unit 1 else unit 0)

where sdest gives the head and tail of a sequence as a pair (shd s, stl s).
[Hur02] also presents some formalization of the mathematical measure theory in HOL,

which can be used to define a probability function P from sets of infinite Boolean sequences
to real numbers between 0 and 1. The domain of P is the set E of events of the probability.
Both P and E are defined using the Carathéodory’s Extension theorem, which ensures that
E is a σ-algebra: closed under complements and countable unions. The formalized P and E
can be used to prove probabilistic properties for probabilistic programs such as

` P {s | fst (bit s) = 1} = 1
2

where {x|C(x)} represents a set of all x that satisfy the condition C in HOL.
The measurability and independence of a probabilistic function are important concepts in

probability theory. A property indep fn, called strong function independence, is introduced
in [Hur02] such that if f ∈ indep fn, then f will be both measurable and independent. It has
been shown in [Hur02] that a function is guaranteed to preserve strong function independence,
if it accesses the infinite Boolean sequence using only the unit, bind and sdest primitives.
All reasonable probabilistic programs preserve strong function independence, and these extra
properties are a great aid to verification.

4 Expectation for Discrete Random Variables

In this section, we first present a higher-order-logic formalization of the expectation func-
tion for discrete random variables. We later utilize this definition to verify a few classical
expectation properties in HOL and some details about the proofs are also included.

4.1 Formalization of Expectation in HOL

Expectation basically provides the average of a random variable, where each of the possible
outcomes of this random variable is weighted according to its probability [Bil95]

Ex[X] =
∑

i

xiPr(X = xi) (1)
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where Pr and
∑

i denote the probability function and the summation carried over all the
possible values of the random variable X, respectively. The above definition only holds if the
summation is convergent, i.e.,

∑
i xiPr(X = xi) < ∞. Instead of formalizing this general

definition of expectation based on the principles of probability space, we concentrate on one
of its variants that deals with discrete random variables that take on values only in the
positive integers, i.e., {0, 1, 2, · · · }.

This choice has been made mainly because of two reasons. First of all, in most of the
engineering and scientific probabilistic analysis problems, we end up dealing with discrete
random variables that attain values in positive integers only. For example, consider the cases
of analyzing the performance of algorithms [MU05], cryptographic [Mao03] and communica-
tion protocols [LGW04], etc. Secondly, this simplification allows us to model the expectation
function using the summation of a real sequence, which has already been formalized in the
HOL theorem prover [Har98], and thus speed up the associated formalization and verification
process by a considerable extent.

The expectation for a function of a discrete random variable, which attains values in the
positive integers only, is defined as follows [Lev71]

Ex[f(R)] =
∞∑

n=0

f(n)Pr(R = n) (2)

where R is the discrete random variable and f represents a function of the random vari-
able R. The above definition only holds if the associated summation is convergent, i.e.,∑∞

n=0 f(n)Pr(R = n) < ∞.
Equation (2) can be formalized in HOL, for a discrete random variable R that attains

values in positive integers only and a function f that maps this random variable to a real
value, as follows

Definition 1: Expectation of Function of a Discrete Random Variable
` ∀ f R. expec fn f R = suminf (λn.(f n)P{s | fst(R s)=n})

where the mathematical notions of the probability function P and random variable R have
been inherited from [Hur02], as presented in Section 3.2. The HOL function suminf repre-
sents the infinite summation of a real sequence [Har98]. The function expec fn accepts two
parameters, the function f of type (num → real) and the positive integer valued random
variable R and returns a real number.

Next, we define the expected value of a discrete random variable that attains values
in positive integers only as a special case of the expected value of a function of a discrete
random variable.

Definition 2: Expectation of a Discrete Random Variable
` ∀ R. expec R = expec fn (λn. n) R

where the lambda abstraction function (λn. n) implements the identity function. The
function expec accepts a positive integer valued random variable R and returns its expec-
tation as a real number.
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4.2 Verification of Expectation Properties in HOL

In this section, we utilize the formal definitions of expectation, developed in the last section,
to prove some classical properties of the expectation [Sti03]. These properties not only
verify the correctness of our definitions but also play a vital role in verifying the expectation
characteristic of discrete random components of probabilistic systems, as will be seen in
Section 7 for the case of the Coupon’s Collector’s problem.

4.2.1 Expectation of a Constant

Ex[c] = c (3)

where c is a positive integer. The random variable in this case is the degenerate random
variable R ≡ c, where R(s) = c for every s ∈ sample space. It can be formally expressed
as unit c, where the monadic operator unit is described in Section 3.2. Using this repre-
sentation and the definition of expectation, given in Definition 2, the above property can be
expressed in HOL as follows.

Theorem 1: Expectation of a Constant
` ∀ c. expec (unit c) = c

Rewriting the proof goal of the above property with Definition 2, we get

lim
k→∞

(
k∑

n=0

n P{s | fst(unit c s) = n}) = c (4)

where according to the HOL definition of the summation of a real sequence, the expression∑b

n=a f means the summation of b subsequent terms of the real sequence f starting from
the term f(a). Thus, in this paper, the term

∑k

n=0 f represents f(0) + f(1) · · ·+ f(k− 1).
Now, the probability term on the left-and-side (LHS) of the above subgoal can be expressed
as follows

∀ n c. P{s | fst(unit c s) = n} = (if (c = n) then 1 else 0) (5)

and the proof is based on the basic probability theory laws and the functional independence
property of the random variable unit c. Using this property, the subgoal of Equation (4)
can be rewritten as follows

lim
k→∞

(
k∑

n=0

n (if (c = n) then 1 else 0)) = c (6)

The summation on the right-hand-side (RHS) of the above subgoal can be proved to be
convergent since its value remains the same for all values of n that are greater than c. Using
this fact and the summation properties of a real sequence the above subgoal can be verified
in HOL, which concludes the proof of Theorem 1.
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4.2.2 Linearity of Expectation for Discrete Random Variables

Ex[
n∑

i=1

Ri] =
n∑

i=1

Ex[Ri] (7)

where Ri represents a sequence of n discrete random variables. According to the linearity
of expectation property, the expectation of a sum of random variables equals the sum of
their individual expectations. It is one of the most important properties of expectation as it
allows us to verify the expectation properties of random behaviors involving multiple random
variables without going into the complex verification of their joint probability distribution
properties. Thus, its verification is a significant step towards using HOL as a successful
probabilistic analysis framework.

We split the verification of linearity of expectation property in two major steps. Firstly,
we verify the property for two discrete random variables and then extend the results by
induction to prove the general case. The linearity of expectation property can be defined for
any two discrete random variables X and Y as follows.

Ex[X + Y ] = Ex[X] + Ex[Y ] (8)

To prove the above relationship in HOL, we proceed by first defining a function that
models the summation of two random variables.

Definition 3: Summation of Two Random Variables
` ∀ X Y. sum two rv X Y =

bind X (λa. bind Y (λb. unit (a + b)))

The function, sum two rv, accepts two random variables and returns one random variable
that represents the sum of the two argument random variables. It is important to note that
the above definition implicitly ensures that the call of the random variable Y is independent
of the result of the random variable X. This is true because the infinite Boolean sequence
that is used for the computation of Y is the remaining portion of the infinite Boolean sequence
that has been used for the computation of X. This characteristic led us to prove that the
function sum two rv preserves strong function independence, which is the most significant
property in terms of verifying properties on probabilistic functions.

Lemma 1: sum two rv Preserves Strong Function Independence
` ∀ X Y. X ∈ indep fn ∧ Y ∈ indep fn

⇒ ((sum two rv X Y) ∈ indep fn)

The above property can be verified in HOL using the fact that the function sum two rv

accesses the infinite Boolean sequence using the unit and bind operators.
Now, the linearity of expectation property for two discrete random variables, which pre-

serve strong function independence, with well-defined expectation values, i.e., the summation
in their expectation definition is convergent, can be stated in HOL using the sum two rv

function as follows.

10



Lemma 2: Linearity of Expectation for Two Discrete Random Variables
` ∀ X Y. X ∈ indep fn ∧ Y ∈ indep fn ∧

summable(λn. n P{s | fst(X s) = n}) ∧
summable(λn. n P{s | fst(Y s) = n})

⇒ (expec (sum two rv X Y) = expec X + expec Y)

where summable accepts a real sequence and returns True if the infinite summation of this
sequence is convergent (i.e., summmable M = ∃x. lim

k→∞
(
∑k

n=0 M(n)) = x).

Rewriting the proof goal of Lemma 2 with the definitions of the functions expec, sum two rv

and summable, simplifying it with some infinite summation properties and removing the
monad notation, we reach the following subgoal in HOL.

( lim
k→∞

(
k∑

n=0

(n P {s | fst(X s) = n})) = p) ∧ ( lim
k→∞

(
k∑

n=0

(n P {s | fst(Y s) = n})) = q)

⇒ ( lim
k→∞

(
k∑

n=0

(n P{s | fst(X s) + fst(Y (snd (X s)) = n}))) = (p + q))

(9)

The set in the conclusion of the above implication can be proved to be equal to the countable
union of a sequence of events as follows

∀ X Y n. X ∈ indep fn ∧ Y ∈ indep fn

⇒ {s | fst(X s) + fst(Y (snd(X s))) = n}
=

⋃
i≤n
{s | (fst(X s) = i) ∧ (fst(Y(snd(X s))) = n− i)}

(10)

using the properties verified in the HOL theory of sets. All the events in the above sequence of
events are mutually exclusive. Thus, Equation (10) along with the additive law of probability,
given in the HOL theory of probability, can be used to simplify the subgoal, given in Equation
(9), as follows.

( lim
k→∞

(
k∑

n=0

(n P {s | fst(X s) = n})) = p) ∧ ( lim
k→∞

(
k∑

n=0

(n P {s | fst(Y s) = n})) = q)

⇒ lim
k→∞

(
k∑

n=0

(n
n+1∑
i=0

P{s | (fst(X s) = i) ∧ (fst(Y(snd(X s))) = n− i)})) = (p + q)

(11)

Next, we found a real sequence that is easier to handle and has the same limit value as the
real sequence given in the conclusion of the above implication.

( lim
k→∞

(
k∑

n=0

n(
n+1∑
i=0

P{s | (fst(X s) = i) ∧ (fst(Y (snd(X s))) = n− i)}))) =

( lim
k→∞

(
k∑

a=0

k∑
b=0

(a + b)(P{s | (fst(X s) = a) ∧ (fst(Y (snd(X s))) = b)})))
(12)
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Using this new real sequence and rearranging the terms based on summation properties given
in the HOL theories of real numbers, we can rewrite the subgoal, given in Equation (11), as
follows.

( lim
k→∞

(
k∑

n=0

(n P {s | fst(X s) = n})) = p) ∧ ( lim
k→∞

(
k∑

n=0

(n P {s | fst(Y s) = n})) = q)

⇒ ( lim
k→∞

(
k∑

a=0

k∑
b=0

a(P{s | (fst(X s) = a) ∧ (fst(Y (snd(X s))) = b)})) = p) ∧

( lim
k→∞

(
k∑

a=0

k∑
b=0

b(P{s | (fst(X s) = a) ∧ (fst(Y (snd(X s))) = b)})) = q)

(13)

The two limit expressions in the conclusion of the above implication can now be proved to
be True using some elementary properties in the HOL theories of probability, sets and real
numbers, which also concludes the proof for Lemma 2.

The next step is to generalize Lemma 2 to verify the linearity of expectation property,
given in Equation (7), using induction. For this purpose, we define a function that models
the summation of a list of discrete random variables.

Definition 4: Summation of n Random Variables
` (sum rv lst [] = unit 0) ∧

∀ h t. (sum rv lst (h::t) =

bind h (λa. bind (sum rv lst t) (λb. unit (a + b))))

The function, sum rv lst, accepts a list of random variables and returns their sum as
a single random variable. Just like the function, sum two rv, the function sum rv lst also
preserves strong function independence, if all random variables in the given list preserve it.
This property can be verified using the fact that it accesses the infinite Boolean sequence
using the unit and bind primitives only.

Lemma 3: sum rv lst Preserves Strong Function Independence
` ∀ L. (∀ R. (mem R L) ⇒ R ∈ indep fn)

⇒ ((sum rv lst L) ∈ indep fn)

where the predicate mem is defined in the HOL list theory and returns True if its first
argument is an element of the list that it accepts as the second argument.

Now, the linearity of expectation property for n discrete random variables, which pre-
serve strong function independence and for which the infinite summation in the expectation
definition converges, can be stated in HOL as follows

Theorem 2: Linearity of Expectation Property
` ∀ L. (∀ R. (mem R L) ⇒

(R ∈ indep fn) ∧ (summable (λn. n P{s | fst(R s) = n})))
⇒ (expec (sum rv lst L) =∑length L

n=0 (expec (el (length L - (n+1)) L)))

12



where the function length, defined in the HOL list theory, returns the length of its list
argument and the function el, also defined in the list theory, accepts a positive integer
number, say n, and a list and returns the nth element of the given list. Thus, the LHS of
Theorem 2 represents the expectation of the summation of a list L of random variables.
Whereas, the RHS represents the summation of the expectations of all elements in the same
list L. Theorem 2 can be proved by applying induction on the list argument of the function
sum rv lst, and simplifying the subgoals using Lemmas 2 and 3.

4.2.3 Expectation of a Discrete Random Variable Multiplied by a Constant

Ex[aR] = aEx[R] (14)

where R is a discrete random variable that attains values in the positive integers only and
a is a positive integer. This property can be expressed in HOL for a random variable R that
preserves strong function independence and has a well-defined expected value as follows.

Theorem 3: Expectation of a Discrete Random Variable Multiplied by a Constant
` ∀ R a. R ∈ indep fn ∧

summable(λn. n P{s | fst(R s) = n})
⇒ expec (bind R (λm. unit (a m))) = a (expec R)

The HOL proof proceeds by first performing case analysis on the variable a. For the
case when a is 0, the RHS of the proof goal becomes 0. Whereas, using the definition of
expectation, the LHS reduces to the expression

lim
k→∞

(
k∑

n=0

n P{s| 0 = n}) (15)

which is also equal to 0 as ∀n.n P{s | 0 = n} = 0, since ∀n. 0 < n ⇒ P {s | 0 =

n}=0. On the other hand, when a is not equal to 0, i.e., (0 < a), the proof goal may be
simplified as follows

lim
k→∞

(
k∑

n=0

n P{s| a fst(R s) = n}) = a lim
k→∞

(
k∑

n=0

n P{s| a fst(R s) = a n}) (16)

using the definition of expectation and the multiplication cancelation property of positive
integers. Next, we proved in HOL that

∀k.(
k∑

n=0

n P{s| a fst(R s) = n}) = a(

B(k)∑
n=0

n P{s| a fst(R s) = a n}) (17)

where B(k) = if (k MOD a = 0) then (k DIV a) else ((k DIV a) + 1) and MOD and DIV rep-
resent the modulo and division functions for positive integers in HOL. This allows us to
rewrite our proof goal as follows

lim
k→∞

a (

B(k)∑
n=0

n P{s| a fst(R s) = a n}) = a lim
k→∞

(
k∑

n=0

n P{s| a fst(R s) = a n}) (18)
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which can be proved using the properties of limit of a real sequence in HOL [Har98], since
both of the real sequences in the above equation converge to the same value as the value of
k becomes very very large. This concludes the proof of the expectation property given in
Theorem 3.

4.2.4 Expectation of a Discrete Random Variable Added and Multiplied by
Constants

Ex[a + bR] = a + bEx[R] (19)

This property allows us to express the expectation value of a positive integer valued random
variable R added and multiplied by two positive integers a and b, respectively, in terms of the
expectation of the random variable R. It can be expressed in HOL for a random variable R

that preserves strong function independence and has a well-defined expected value as follows.

Theorem 4: Expectation of a Random Variable Added and Multiplied by Constants
` ∀ R a b. R ∈ indep fn ∧
summable(λn. n P{s | fst(R s) = n})
⇒ expec (bind R (λm. unit (a + b m))) = a + b (expec R)

Theorem 4 can be proved in HOL using the expectation properties, given in Theorems 1, 2
and 3.

5 Variance for Discrete Random Variables

In this section, we utilize the formal definition of expectation of a function of a random
variable, developed in Section 4, to define a variance function for discrete random variables
that attain values in positive integers only. We later utilize this definition to verify a couple
of classical variance properties in HOL and some details about the proofs are also included.

5.1 Formalization of Variance in HOL

In the field of probabilistic analysis, it is often desirable to summarize the essential properties
of distribution of a random variable by certain suitably defined measures. In the previous
section, we formalized one such measure, i.e., the expectation, which yields the weighted
average of the possible values of a random variable. Quite frequently, along with the average
value, we are also interested in finding how typical is the average value or in other words
the chances of observing an event far from the average. One possible way to measure the
variation, or spread, of these values is to consider the quantity Ex[|R − Ex[R]|], where ||
denote the abs function. However, it turns out to be mathematically inconvenient to deal
with this quantity, so a more tractable quantity called variance is usually considered, which
returns the expectation of the square of the difference between R and its expectation [Bil95].

V ar[R] = Ex[(R− Ex[R])2] (20)
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Now, we formalize this definition of variance in HOL for the case of discrete random
variables that can attain values in the positive integers only. For this purpose, we utilize the
definitions of expectation, given in Definitions 1 and 2.

Definition 5: Variance of a Discrete Random Variable
` ∀ R. variance R = expec fn (λn. (n - expec R)2) R

The function, variance, accepts a discrete random variable R that attains values in the
positive integers only and returns its variance as a real number.

5.2 Verification of Variance Properties in HOL

In this section, we prove two of the most significant and widely used properties of the variance
function [MU05]. These properties not only verify the correctness of our definition but also
play a vital role in verifying the variance properties of discrete random variables as will be
seen in Sections 6 and 7 of this paper.

5.2.1 Variance in Terms of Moments

V ar[R] = Ex[R2]− (Ex[R])2 (21)

where R is a discrete random variable that can attain values in the positive integers only.
This alternative definition of variance is much easier to work with than the previous one
and thus aids significantly in the process of verifying variance properties for discrete random
variables. This property can be stated in HOL using the formal definition of variance and
expectation as follows.

Theorem 5: Variance in Terms of Moments
` ∀ R. R ∈ indep fn ∧

summable(λn. n P{s | fst(R s) = n}) ∧
summable(λn. n2 P{s | fst(R s) = n})

⇒ (variance R = expec fn (λn. n2) R - (expec R)2)

The assumption in Theorem 5 ensures that the random variable R preserves the strong
function independence and its expectation and second moment are well-defined. The theorem
can be proved by using the function definitions of expec fn, expec and variance along with
some arithmetic reasoning and properties from the HOL real number theories.

5.2.2 Linearity of Variance for Independent Discrete Random Variables

V ar[
n∑

i=1

Ri] =
n∑

i=1

V ar[Ri] (22)

where Ri represents a sequence of n independent discrete random variables. Like the linearity
of expectation property, the linearity of variance property also allows us to verify the variance
properties of probabilistic systems involving multiple random variables without going into
the complex verification of their joint probability distribution properties.
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The proof steps for the linearity of variance property are quite similar to the proof steps
for the linearity of expectation property. We split the verification task in two major steps.
Firstly, we verify the property for two discrete random variables and then extend the results
by induction to prove the general case. The linearity of variance property can be defined for
any two independent discrete random variables X and Y as follows

V ar[X + Y ] = V ar[X] + V ar[Y ] (23)

Using the function sum two rv, given in Definition 3, the linearity of variance property for
two independent discrete random variables, which attain values in the positive integers only,
preserve the strong function independence and have well-defined expectation and second
moment, can be stated in HOL as follows.

Lemma 4: Linearity of Variance for Two Discrete Random Variables
` ∀ X Y. X ∈ indep fn ∧ Y ∈ indep fn ∧

(summable(λn. n P{s | fst(X s) = n})) ∧
(summable(λn. n P{s | fst(Y s) = n})) ∧
(summable(λn. n2 P{s | fst(X s) = n})) ∧
(summable(λn. n2 P{s | fst(Y s) = n}))
⇒ (variance (sum two rv X Y) = variance X + variance Y)

Rewriting the above theorem with the definitions of the functions variance, expec fn,
expec and summable, simplifying it with some infinite summation properties and Theorem
2 and removing the monad notation, we reach the following subgoal.

( lim
k→∞

k∑
n=0

(n P {s | fst(X s) = n}) = p) ∧ ( lim
k→∞

k∑
n=0

(n P {s | fst(Y s) = n}) = q) ∧

( lim
k→∞

k∑
n=0

(n2 P {s | fst(X s) = n}) = r) ∧ ( lim
k→∞

k∑
n=0

(n2 P {s | fst(Y s) = n}) = t) ∧

( lim
k→∞

(
k∑

n=0

((n− expec X)2 P {s | fst(X s) = n})) = u) ∧

( lim
k→∞

(
k∑

n=0

((n− expec Y)2 P {s | fst(Y s) = n})) = v)

⇒ lim
k→∞

k∑
n=0

((n− (expec X + expec Y))2) P{s | fst(X s) + fst(Y (snd (X s))) = n}

= (u + v)

(24)

Using the uniqueness of the limit value of a real sequence, and some properties of summa-
tion of real sequences, it can be proved in a straight forward manner that u = r− p2 and
v = t− q2 under the given assumptions in the above subgoal. This allows us to rewrite the
above subgoal as follows.
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( lim
k→∞

k∑
n=0

(n P {s | fst(X s) = n}) = p) ∧ ( lim
k→∞

k∑
n=0

(n P {s | fst(Y s) = n}) = q)∧

( lim
k→∞

k∑
n=0

(n2 P {s | fst(X s) = n}) = r) ∧ ( lim
k→∞

k∑
n=0

(n2 P {s | fst(Y s) = n}) = t)

⇒ lim
k→∞

k∑
n=0

((n2 − 2(p + q)n + (p + q)2) P{s | fst(X s) + fst(Y (snd (X s))) = n})

= (r + t− (p2 + q2))

(25)

Next we split the real sequence of the conclusion, in the above subgoal, in a sum of three real
sequences, corresponding to the terms n2, −2(p + q)n and (p + q)2 found on the LHS. Now,
using the results of Theorem 2 along with some probability laws, it can be shown that the
second and third sequences out of these three converge to (−2(p + q)(p + q)) and (p + q)2,
respectively. This allows us to rewrite the subgoal of Equation (25) as follows.

( lim
k→∞

(
k∑

n=0

n P {s | fst(X s) = n}) = p) ∧ ( lim
k→∞

k∑
n=0

(n P {s | fst(Y s) = n}) = q)∧

( lim
k→∞

k∑
n=0

(n2 P {s | fst(X s) = n}) = r) ∧ ( lim
k→∞

k∑
n=0

(n2 P {s | fst(Y s) = n}) = t)

⇒ lim
k→∞

k∑
n=0

((n2) P{s | fst(X s) + fst(Y (snd (X s))) = n}) = (r + t + 2pq)

(26)

Just like the proof of the linearity of expectation property, we replace the real sequence in
the conclusion of the above subgoal by a real sequence that is simpler to handle and shares
the same limit value as this one, under the given assumptions.

( lim
k→∞

(
k∑

n=0

n2(P{s | fst(X s) +fst(Y (snd(X s))) = n}))) =

( lim
k→∞

(
k∑

a=0

k∑
b=0

(a2 + ab)(P{s | (fst(X s) = a) ∧ (fst(Y (snd(X s))) = b)} +

P{s | (fst(X s) = b) ∧ (fst(Y (snd(X s))) = a)})))

(27)

The subgoal given in Equation (26) can now be proved using the above result and some
arithmetic reasoning in HOL, which concludes the proof of Lemma 4.

The next step is to generalize Lemma 4 to verify the linearity of variance property for n
discrete random variables (Equation (22)), which can be stated in HOL as follows.

Theorem 6: Linearity of Variance Property
` ∀ L. (∀ R. (mem R L) ⇒ ((R ∈ indep fn) ∧

(summable (λn. n P{s | fst(R s) = n}))∧
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(summable (λn. n2 P{s | fst(R s) = n}))))
⇒ (variance (sum rv lst L) =∑length L

n=0 (variance (el (length L - (n+1)) L)))

Theorem 6 can be proved by applying induction on the list argument of the function
sum rv lst, and simplifying the subgoals using Lemmas 3 and 4.

6 Geometric Random Variable

In this section, we present the formalization and verification of expectation and variance
properties for the Geometric random variable in HOL. This exercise illustrates the usefulness
of the definitions that we developed in Sections 4 and 5 for the verification of expectation and
variance properties associated with discrete random variables, respectively. The theorems
developed in the current section, also play a central role in conducting the probabilistic
analysis of the Coupon Collector’s problem, which is modeled as a list of Geometric random
variables, given in Section 7.

6.1 Formalization of Geometric(p) Random Variable in HOL

Geometric(p) random variable can be modeled as a function that returns the index of the first
success in an infinite sequence of Bernoulli(p) trials [DeG89]. Therefore, we first need to have
a formal definition of the Bernoulli(p) random variable before we consider the formalization of
Geometric(p) random variable in HOL. For this purpose, we utilized a sampling algorithm of
the Bernoulli(p) random variable, presented in [Hur02], which returns True with probability
p and False otherwise. This sampling algorithm of Bernoulli(p) random variable was verified
to be correct by proving its PMF property in HOL [Hur02].

` ∀ p. 0 ≤ p ∧ p ≤ 1 ⇒ P {s | fst (prob bern p s)} = p

The Geometric(p) random variable can now be sampled by extracting random bits from
the function prob bern and stopping as soon as the first False is encountered and returning
the number of trials performed till this point. We modeled it using the probabilistic while
loop [Hur02] in HOL as follows.

Definition 6: A Sampling Algorithm for Geometric(p) Distribution
` ∀ p s. prob geom iter p n =

bind (prob bern (1-p)) (λb. unit (b, (snd n) + 1))

` ∀ p. prob geom loop p = prob while fst (prob geom iter p)

` ∀ p. prob geom p = bind (bind (unit (T, 1))

(prob geom loop p)) (λs. unit (snd s - 1))

In the above algorithm, the state is a pair with the first component containing the last
value of the Bernoulli random variable, and the second component containing the number
of Bernoulli trials performed so far. This pair is initialized to (True, 1) and updated by
the probabilistic while loop until the first component becomes False, at which point the
algorithm terminates and outputs the second component (subtracting one because we do
not count the final False).
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The function, prob geom, accepts a real number p, which represents the probability of
success for the Geometric(p) random variable, and returns the corresponding Geometric
random variable. It is important to note that p cannot be assigned a value equal to 0 as this
will lead to a non-terminating while loop.

We verify the PMF property of the Geometric(p) random variable using the fact that the
function prob geom preserves strong function independence along with some theorems from
probability and set theories in HOL.

Theorem 7: PMF of Geometric random variable
` ∀ n p. 0 < p ∧ p ≤ 1 ⇒

P {s | fst (prob geom p s) = (n + 1)} = p (1 - p)n

6.2 Verification of Expectation of Geometric(p) Random Variable

The expectation property of Geometric(p) random variable can be stated in terms of Defi-
nitions 2 and 6 as follows.

Theorem 8: Expectation of Geometric random variable
` ∀ p. 0 < p ∧ p ≤ 1 ⇒ expec (λs. prob geom p s) = 1

p

Rewriting the above proof goal with the definition of expectation and simplifying using the
PMF relation for the Geometric(p) random variable, given in Theorem 7, along with some
arithmetic reasoning, we reach the following subgoal.

lim
k→∞

(
k∑

n=0

((n + 1)p(1− p)n)) =
1

p
(28)

Substituting 1 − q for p and after some rearrangement of the terms, based on arithmetic
reasoning, the above subgoal can be rewritten as follows.

lim
k→∞

(
k∑

n=0

((n + 1)qn)) =
1

(1− q)2
(29)

Now, using the properties of summation of a real sequence in HOL, we proved the following
relationship

∀q k.
k∑

n=0

((n + 1)qn) =
k∑

n=0

(
k∑

i=0

qi −
n∑

i=0

qi) (30)

which allows us to rewrite the subgoal under consideration, given in Equation (29) as follows.

lim
k→∞

(
k∑

n=0

(
k∑

i=0

qi −
n∑

i=0

qi)) =
1

(1− q)2
(31)

The above subgoal can now be proved using the summation of a finite geometric series along
with some properties of summation and limit of real sequences available in the real number
theories in HOL. This also concludes the proof of Theorem 8 in HOL.

19



6.3 Verification of Variance of the Geometric(p) Random Variable

The variance property of Geometric(p) random variable can be stated in terms of Definitions
5 and 6 as follows.

Theorem 9: Variance of Geometric(p) Random Variable
` ∀ p. 0 < p ∧ p ≤ 1

⇒ (variance (λs. prob geom p s) = 1−p
p2

)

We utilize the variance property, given in Theorem 5, to verify Theorem 9. The foremost
step in this regard is to verify the second moment relationship for the Geometric(p) random
variable.

∀ p. 0 < p ∧ p ≤ 1 ⇒ (expec fn(λn. n2(λs. prob geom p s)) =
2

p2
− 1

p
) (32)

Rewriting the above proof goal with the definition of function expec fn and simplifying
using the PMF relation of the Geometric random variable along with some properties from
HOL real number theories, we reach the following subgoal.

lim
k→∞

(
k∑

n=0

((n + 1)2p(1− p)n)) =
2

p2
− 1

p
(33)

Now, substituting 1−q for p and after some rearrangement of the terms, based on arithmetic
reasoning, the above subgoal can be rewritten as follows.

lim
k→∞

(
k∑

n=0

((n + 1)2qn)) =
2

(1− q)3
− 1

(1− q)2
(34)

Using the properties of summation of a real sequence in HOL, we prove the following

∀q k.

k∑
n=0

((n + 1)2qn) =
k∑

n=0

((2n + 1)(
k∑

i=0

qi −
n∑

i=0

qi)) (35)

which allows us to rewrite the subgoal under consideration, given in Equation (34), as follows.

lim
k→∞

(
k∑

n=0

((2n + 1)(
k∑

i=0

qi −
n∑

i=0

qi))) =
2

(1− q)3
− 1

(1− q)2
(36)

The above subgoal can now be proved using the summation of a finite geometric series
along with some properties of summation and limit of real sequences available in the real
number theories in HOL. This concludes the proof of the second moment relation for the
Geometric(p) random variable, which can now be used along with Theorems 5 and 8 and
some arithmetic reasoning to prove Theorem 9 in HOL.
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7 Coupon Collector’s Problem

In this section, we utilize the HOL formalizations presented so far to verify the expectation
and variance properties of the Coupon Collector’s problem [MU05]. Firstly, we present a
brief overview of the algorithm and present its formalization in HOL. This is followed by the
details about the verification steps.

7.1 Formalization of Coupon Collector’s Problem in HOL

The Coupon Collector’s problem is motivated by “collect all n coupons and win” contests.
Assuming that a coupon is drawn independently and uniformly at random from n possi-
bilities, how many times do we need to draw new coupons until we find them all? This
simple problem arises in many different scenarios. For example, suppose that packets are
sent in a stream from source to destination host along a fixed path of routers. It is often
the case that the destination host would like to know all routers that the stream of data
has passed through. This may be done by appending the identification of each router to the
packet header but this is not a practical solution as usually we do not have this much room
available. An alternate way of meeting this requirement is to store the identification of only
one router, uniformly selected at random between all routers on the path, in each packet
header. Then, from the point of view of the destination host, determining all routers on the
path is like a Coupon Collector’s problem.

The Coupon Collector’s problem can be modeled as a probabilistic algorithm in higher-
order logic. Let X be the number of trials until at least one of every type of coupon is
obtained. Now, if Xi is the number of trials required to obtain the ith coupon, while we
had already acquired i − 1 distinct coupons, then clearly X =

∑n
i=1 Xi. The advantage

of breaking the random variable X into the sum of n random variables X1, X2 · · · , Xn is
that each Xi can be modeled as a Geometric random variable, which enables us to represent
the Coupon Collector’s problem as a sum of Geometric random variables. Furthermore,
the expectation and variance of this probabilistic algorithm can then be verified using the
linearity of expectation and variance properties, which we have already verified in Sections
4 and 5, respectively.

The first step in the formalization of the Coupon Collector’s problem is to define a list
of Geometric random variables in order to model the Xi’s mentioned above. It is important
to note that the probability of success for each one of these Geometric random variables
is different from one another and depends on the number of distinct coupons acquired so
far. Since, every coupon is drawn independently and uniformly at random from the n
possibilities, we can use the Uniform(n) random variable, which returns any positive integer
in the interval [0, n-1] with the same probability, to model the probability of acquiring a
new coupon or the probability of succuss for each one of the Xi’s mentioned above. For this
purpose, we identify distinct coupons in numerical order as they are acquired, i.e., the first
coupon acquired is identified by number 0, the second by 1 and so on. Now, the probability of
success for acquiring the kth coupon, in a Coupon Collector problem with n distinct coupons,
can be modeled as the probability of the event when the outcome of the Uniform(n) random
variable is greater than or equal to k − 1, where the Uniform(n) random variable is used to
represent the coupon identification numbers. Based on the above proposition, the following
higher-order-logic function generates the list of Geometric random variables that can be

21



added to model the Coupon Collecting process of n distinct coupons.

Definition 7: Geometric Variable List for Coupon Collector’s Problem
` ∀ n. (geom rv lst 0 n = []) ∧

∀ h t n. (geom rv lst (k+1) n =

(prob geom P{s | k ≤ fst (prob unif n s) }) ::

(geom rv lst k n))

In the above definition, the function prob unif represents the HOL definition of the Uniform(n)
random variable, which has been formalized in [Hur02]. The function geom rv lst accepts
two arguments; a positive integer n that represents the total number of distinct coupons and
a positive integer, say k, that represents the number of distinct coupons acquired by the
coupon collector out of the all possible n coupons at any particular instant. It returns, a list
of Geometric random variables that can be added to model the number of trials required to
collect k coupons in the Coupon Collector’s problem. The base case in the above recursive
definition corresponds to the condition when the coupon collector does not have any coupon
and thus the corresponding Geometric random variable list is empty. For the particular case
when the variable k is assigned a value of 1, i.e., the coupon collector has acquired a single
coupon out of the n possible distinct coupons, the function geom rv lst will return a list
with one Geometric random variable element with probability of success equal to 1, since
the probability that a Uniform(n) random variable would generate a number greater than
or equal to 0 is 1. This is obviously the intended behavior since we are always certain to
acquire a new coupon in the first trial of the Coupon Collector’s problem. In a similar way,
the function geom rv lst generates a list of k Geometric random variables which can be
added to find the number of trials to acquire the first k distinct coupons.

Using the above definition along with the function sum rv lst, given in Definition 4, the
Coupon Collector’s problem can be represented now by the following probabilistic algorithm
in HOL.

Definition 8: Probabilistic Algorithm for Coupon Collector’s Problem
` ∀ n. coupon collector n = (sum rv lst (geo rv lst n n))

The function, coupon collector, accepts a positive integer n that represents the total
number of distinct coupons that are required to be collected. It returns the total number of
trials required for collecting all the n coupons by adding the contents of the list of Geometric
random variables modeled by the function geo rv lst with both arguments equal to n.

7.2 Verification of Expectation for the Coupon Collector’s Prob-
lem

In this section, we verify that the expected value of acquiring all n distinct coupons in the
Coupon Collector’s problem can be represented by the following expression.

n

n∑
i=0

1

i + 1
(37)

Sometimes, the mathematical expression of Equation (37) is expressed in terms of the har-
monic number as nH(n), where H(n) =

∑n
i=0 1/(i + 1). The expectation property of the
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Coupon Collector’s problem, given in Equation (37), can be stated using the functions
coupon collector and expec as a higher-order-logic theorem as follows.

Theorem 10: Expectation of Coupon Collector’s Problem
` ∀ n. expec (coupon collector n) = n (

∑n

i=0
1

i+1
)

We proceed with the verification of the above theorem by simplifying it with the definition
of the function coupon collector, given in Definition 8, and splitting the subgoal into two
cases, i.e., when the value of n is 0 and when it is not 0.

expec(sum rv lst (geo rv lst 0 0)) = 0 (38)

expec (sum rv lst (geo rv lst (n + 1) (n + 1))) = (n + 1)
n+1∑
i=0

1

i + 1
(39)

The subgoal of Equation (38) can be simply proved by using the definitions of the func-
tions expec, sum rv lst and geo rv lst given in Definitions 2, 4 and 7, respectively, along
with some arithmetic and probabilistic reasoning. On the other hand, we utilize the linearity
of expectation property, given in Theorem 2, in order to rewrite the subgoal of Equation
(39) as follows

n+1∑
j=0

expec(el((n + 1)− (j + 1))(geo rv lst (n + 1) (n + 1))) = (n + 1)
n+1∑
i=0

1

i + 1
(40)

It is important to note that in order to use the linearity of expectation property, in the above
step, we had to prove that all elements in the list (geo rv lst (n + 1) (n + 1)) preserve strong
function independence and have well-defined expectations. Similarly, we also had to prove
that the length of the list (geo rv lst (n + 1) (n + 1)) is equal to n + 1.

Next, we verified in HOL that any element e of the list geo rv lst k n can be mathe-
matically expressed as follows.

∀ e n k. (0 < k) ∧ (k ≤ n) ∧ (e < k) ⇒ (el e (geo rv lst k n) = prob geom (
n− (k− (e + 1))

n
))

(41)
The above proof is based on the PMF property of the Uniform random variable, verified in
[Hur02], along with some arithmetic and probabilistic reasoning. Now, using the result of
Equation (41) along with some arithmetic reasoning, the subgoal of Equation (40) can be
expressed as follows

n+1∑
j=0

expec(prob geom (
(n− j + 1))

n + 1
))) = (n + 1)

n+1∑
i=0

1

i + 1
(42)

The expectation of the Geometric random variable in the above equation can be easily
verified to be equal to n+1

(n+1)−j , using the results of Theorem 8. The substitution of the

expectation value in the subgoal, given in Equation (42), gives us the following expression
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n+1∑
j=0

(n + 1)

(n + 1)− j
= (n + 1)

n+1∑
i=0

1

(i + 1)
(43)

which can be proved using properties of summation of a real sequence, given in the real
number theories in HOL. This also concludes the proof for Theorem 10.

7.3 Verification of Variance Bound for the Coupon Collector’s
Problem

In this section, we verify the following upper bound on the variance of acquiring all n coupons
in the Coupon Collector’s problem

n2

n∑
i=0

1

(i + 1)2
(44)

This property can be expressed, using the functions coupon collector and variance,
as a higher-order-logic theorem as follows.

Theorem 11: Variance Upper Bound of Coupon Collector’s Problem
` ∀ n. variance (coupon collector n) ≤ n2

∑n
i=0 ( 1

(i+1)2
)

The proof steps for the above theorem are quite similar to Theorem 10. The proof is
based on the definition of the function coupon collector, the linearity of variance property,
given in Theorem 6, the PMF relation for the Uniform random variable and the variance
relation of Geometric random variable, given in Theorem 9, along with some arithmetic and
probabilistic reasoning.

Thus, we have been able to verify the expectation and variance properties of the Coupon
Collector’s problem with 100% precision, which is something that cannot be achieved by any
existing computer based probabilistic analysis tool. It is also worth mentioning at this point
that it is due to the formally verified linearity of expectation and variance properties that
the complex task of verifying the expectation property and variance bound of the Coupon
Collector’s problem, which involves multiple random variables, was simply proved in HOL
using summation over the expectation or variance of a single Geometric(p) random variable.

8 Conclusions

This paper presents the formalization of some expectation theory in higher-order-logic using
the HOL theorem prover. The formalization can be utilized to verify statistical quantities,
such as mean and variance, for probabilistic systems that can be modeled using discrete ran-
dom variables in HOL. These statistical properties play a vital role in probabilistic analysis
and thus the ability of their verification in a theorem-proving environment can be regarded
as a significant step towards a complete theorem-proving based probabilistic analysis frame-
work. Due to its inherent soundness, the theorem-proving based probabilistic analysis can
prove to be quite useful for the performance and reliability optimization of safety critical
and highly sensitive engineering and scientific applications.
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In [HT07b], we presented the higher-order-logic definition of an expectation function for
discrete random variables that attain values in positive integers only and used this formaliza-
tion to verify the linearity of expectation property. The current paper extends that work by
first presenting a formal definition of expectation for a function of a discrete random variable
that can attain values in positive integers only. The main benefit of this new definition is that
it allows us to formalize the mathematical concept of variance. This paper provides the for-
malization of variance and the verification of four classical properties of expectation and two
classical properties of variance using the HOL theorem prover. The theorems corresponding
to the classical properties of expectation and variance not only verify the correctness of our
expectation and variance definitions but also play a vital role in conducting probabilistic
analysis in a higher-order-logic theorem prover. For illustration purposes, we first utilize the
formalization presented in this paper to verify the expectation and variance relations of the
Geometric(p) random variable. Then, we formalized the Coupon Collector’s problem as a
probabilistic algorithm in HOL and verified its expectation and variance properties as well.
To the best of our knowledge, this is the first time that an approach to verify both expec-
tation and variance properties of probabilistic systems within a higher-order-logic theorem
proving environment has been presented in the open literature.

The HOL formalization presented in this paper can be used to verify the expectation and
variance properties of a number of other discrete random variables, e.g., Uniform, Bernoulli,
Binomial and Poisson [Kha76] and commercial computation problems, such as the Chinese
appetizer and the Hat-Check problems [GS97]. As a potential case study for the formalization
presented in this paper, we plan to conduct the analysis of the two versions of Quicksort
algorithm [MU05] in HOL. This project will enable us to establish the distinction between
the analysis of randomized algorithms and probabilistic analysis of deterministic algorithms
within the HOL theorem prover.

An alternative approach that can be used to formalize the expectation of a random
variable in higher-order logic is based on the mathematical concept of probability space.
Since every random variable can be expressed as a real-valued function defined on the sample
space, S, we can formalize expectation in terms of the probability space (S, F, P ), where F

is the sigma field of subsets of S, and P is the probability measure. The main benefit of
this approach is that it leads to the formalization of the general definition of expectation,
given in Equation (1), for discrete random variables. On the other hand, in this approach
we require the formal definition of a summation function for functions with domain in the
sample space S. Such definition does not exist in the available HOL theories and thus needs
to be formalized from scratch. It would be an interesting future work to formalize this
summation and define a higher-order-logic definition of expectation based on the concept of
probability space. A formal link may then be established between this generalized definition
and the formal definition of expectation for discrete random variables with positive integers
as their co-domain, presented in this paper. Such a relationship would further increase the
confidence in our definitions.

Summarizing the experience of the work presented in this paper, we can say that formaliz-
ing mathematics in a mechanical system is a tedious work that requires deep understanding
of both mathematical concepts and mechanical theorem-proving. We often came across
proving subgoals that are commonly known to be true but their formal proofs could not be
found even after browsing quite a few mathematical texts on that specific topic and thus we
had to first develop a formal paper-pencil proof of these lemmas before translating them to

25



HOL. The HOL automated reasoners help somewhat in the proof process by automatically
verifying some of the first-order-logic goals but most of the times we had to guide the tool
by providing the appropriate rewriting and simplification rules. Thus, the HOL code for
the formalization presented in this paper consists of more than 6000 lines. On the other
hand, we found mechanical theorem-proving very efficient in book keeping. For example,
it is very common to get confused with different variables and mathematical notations and
make human errors when working with large paper-pencil proofs, which leads to the loss of a
lot of effort, whereas in the case of mechanical theorem provers such problems do not exist.
Another major advantage of mechanical theorem proving is that once the proof of a theorem
is established, due to the inherent soundness of the approach, it is guaranteed to be valid
and the proof can be readily accessed, contrary to the case of paper-pencil proofs where we
have to explore the enormous amount of mathematical literature to find proofs. Thus, it
can be concluded that mechanical theorem-proving is a tedious but promising field, which
can help mathematicians to cope with the explosion in mathematical knowledge and to save
mathematical concepts from corruption. Also, there are areas, such as security critical soft-
ware, in military or medicine applications for example, where mechanical theorem-proving
will soon become a dire need.
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