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Abstract

Markov chains are extensively used in modeling and analysis of engineering and
scientific problems. Usually, paper-and-pencil proofs, simulation or computer algebra
software are used to analyze Markovian models. However, these techniques either are
not scalable or do not guarantee accurate results, which are vital in safety-critical
systems. Probabilistic model checking has been recently proposed to formally ana-
lyze Markovian systems, but it suffers from the inherent state-explosion problem and
unacceptable long computation times. To overcome these limitations, in this paper,
we develop a framework to formally analyze discrete-time Markov models with finite
state-space using higher-order logic theorem proving. The core component of the pro-
posed framework is a higher-order-logic formalization of Discrete-Time Markov Chains
(DTMC) and classified DTMCs. The proposed framework is generic enough to be used
for extending the library of formal reasoning support for Markovian models and an-
alyzing many real-world stochastic problems. In order to demonstrate the usefulness
of our framework to formalize other Markov chain related concepts, we present the
formalization of a Discrete-time Birth-Death process and the discrete Independent and
Identically Distributed (IID) random process. Moreover, for illustrating the practical
utilization of our framework, we use it to formally analyze the performance of a pro-
gram, which controls a CPU and its connected devices through the system bus, as well
as the performance of a data structure in a program.
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1 Introduction

In probability theory, Markov chains are used to model time varying random phenomena
that exhibit the memoryless property [3]. In fact, most of the randomness that we encounter
in engineering and scientific domains has some sort of time-dependency. For example, noise
signals vary with time, the duration of a telephone call is somehow related to the time it
is made, population growth is time dependent and so is the case with chemical reactions.
Therefore, Markov chains have been extensively investigated and applied for designing sys-
tems in many branches of science and engineering, including hardware circuits [31], software
testing [49], Internet page ranking [12] and statistical mechanics [4].

Mathematically, a DTMC can be divided into two main categories. It may be time homo-
geneous, which refers to the case where the underlying Markov chains exhibit the constant
transition probabilities between the states, or time inhomogeneous, where the transition
probabilities between the states are not constant and are time dependent. Furthermore,
DTMCs are also classified in terms of the characteristics of their state-space. For example,
some states can be reached from all other states and some others once entered, cannot be
left. In practice, these reachable states are the most attractive states in the dynamic analy-
sis of Markovian systems. Regarding the features of the states in their state-space, DTMCs
are categorized into different classes, such as irreducible DTMC, aperiodic DTMC, absorbing
DTMC, etc. These classified Markov chains [46] are widely used to simplify the analysis of
long-term behaviors for most applications. Among them, Discrete-time Birth-Death process
is an important aperiodic and irreducible DTMC, which is mainly used in modeling and
analyzing software performance.

Traditionally, engineers have been using paper-and-pencil proof methods to perform prob-
abilistic and statistical analysis of Markov chain systems. Nowadays, real-world systems
have become considerably complex and the behaviors of some critical subsystems need to
be analyzed accurately. However, due to the increasing complexity, it becomes practically
impossible to analyze a complex system precisely by paper-and-pencil methods due to the
risk of human errors. Therefore a variety of computer-based techniques, such as simula-
tion, computer algebra systems and probabilistic model checking have been used to analyze
Markovian models.

The simulation based analysis is irreverently inaccurate due to the usage of pseudo ran-
dom number generators and the sampling based nature of the approach. To improve the
accuracy of the simulation results, Markov Chain Monte Carlo (MCMC) methods [39], which
involve sampling from desired probability distributions by constructing a Markov chain with
the desired distribution, are frequently applied. The major limitation of MCMC is that it
generally requires hundreds of thousands of simulations to evaluate the desired probabilistic
quantities and becomes impractical when each simulation step involves extensive computa-
tions.

Computer Algebra Systems (CAS) provide automated support for analyzing Markovian
models and symbolic representations of Markovian systems using software tools, such as
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Mathematica [42] and Maple [40]. However, the usage of huge symbolic manipulation algo-
rithms, which have not been verified, in the cores of CASs also makes the analysis results
untrustworthy. In addition, the computations in CAS cannot be completely trusted as well
since they are based on numerical methods.

Due to the extensive usage of Markov chains for safety-critical systems, and thus the
requirement of accurate analysis in these domains, probabilistic model checking has been
recently proposed for formally analyzing Markovian systems. However, some algorithms
implemented in these model checking tools are based on numerical methods too. For example,
the Power method [47], which is a well-known iterative method, is applied to compute
the steady-state probabilities (or limiting probabilities) of Markov chains in PRISM [50].
Moreover, model checking cannot be used to verify generic mathematical expressions with
universally quantified continuous variables for the properties of interest (i.e., variable values
have to be bounded and discretized to avoid endless computation time). Finally, model
checkers suffer from the state-exploration problems when the analyzed systems are complex.

Higher-order-logic interactive theorem proving [15] is a formal method that provides a
conceptually simple formalism with precise semantics. It allows to construct a computer
based mathematical model of the system and use mathematical reasoning to formally verify
systems properties of interest. The formal nature of analysis allows us to solve the inaccura-
cy problem mentioned above. Due to the highly expressive nature of higher-order logic and
the inherent soundness of theorem proving, this technique is capable of conducting the for-
mal analysis of various Markov chain models including hidden Markovian models [4], which,
to our best knowledge, probabilistic model checking cannot cater for. Moreover, interac-
tive theorem proving using higher-order logic is capable of verifying generic mathematical
expressions and it does not suffer from the state-exploration problem of model checking.

Leveraging upon the above-mentioned strengths of higher-order-logic theorem proving
and building upon a formalization of probability theory in HOL [44], we have formalized
the definitions of a DTMC [36][38] and classified DTMCs [34] in higher-order logic. These
definitions have then been used to formally verify classical properties of DTMCs, such as the
joint probability theorem, Chapman-Kolmogorov Equation and Absolute probability [38],
as well as Classified DTMCs, such as the stationary properties [34]. The above-mentioned
formalization has been successfully used to verify some real-world applications, such as a
binary communication channel [36], an Automatic Mail Quality Measurement protocol [38],
a generic LRU (least recently used) stack model [34] and a memory contention problem in a
Multiprocessor System [37], and to also formalize Hidden Markov Models (HMMs) [35].

These previous works clearly indicate the great potential and usefulness of higher-order-
logic theorem proving based formal analysis of Markovian models. In the current paper,
we utilize the core formalizations of DTMCs [38] and classified DTMCs [34] to propose
a generic framework for the formal analysis of Markovian models using higher-order-logic
theorem proving. The proposed framework, depicted in Figure 1, not only allows the formal
modeling of systems that exhibit the discrete time Markovian behaviors but also allows its
users to formalize more advanced discrete time random processes that are based on DTMCs
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Figure 1: DTMC Formalization Framework

and classified DTMCs. These advanced random processes, such as the discrete-time birth-
death and Independent and Identically Distributed (IID) processes, can in turn be used in
our framework to analyze the systems that exhibit the corresponding behaviors.

The first step in analyzing a system that exhibits the discrete-time Markovian behavior
in the proposed framework is to construct a formal system model of the given system as a
function in higher-order logic. This can be done using the blue-colored boxes that contain the
formal mathematical definitions of Markov chain foundations including discrete-time Markov
chain, classified states and the classified discrete-time Markov chain. The second step is to
formally express the system properties, which are given as a set of characteristics (system
behaviors), as higher-order logic goals utilizing the formal system model developed in the first
step. For the formal verification of system properties (proving these goals), the pre-verified
general Markov chain properties (shown in the boxes colored as light brown), including
the joint probability theorem, Chapman-Kolmogorov Equation, Absolute probability and
the stationary properties, play a vital role and tend to minimize the user guidance efforts
in the interactive proofs. Finally, the output of the theorem prover in this framework is
the formal proofs of system properties, which is represented by the rectangular box with

4



dashed edges. The output certifies that the given system specifications are valid for the
given Markovian system. In a similar way, the behavior of a discrete Markov chain can also
be expressed in terms of the DTMC and classified DTMC and then their properties can be
verified by building upon the existing properties of DTMCs, classified DTMCs or any other
existing DTMC extensions. Once a DTMC extension is verified, it becomes part of the core
formalization and can be used to formally analyze real-world systems.

In order to illustrate the usefulness of the proposed methodology, we first verify two
discrete-time random processes with discrete state-space, i.e., the discrete-time birth-death
process, which is the fundamental of a queue model applied in various telecommunication
systems and the classical result that a random walk [14] is an Independent and Identically
Distributed (IID) random process. Besides extending the capability of formal analysis of
Markovian models, these formalizations also demonstrate the integrity and completeness of
our formal definitions. Moreover, we utilize the proposed framework to analyze two software
engineering applications, i.e., a simple program and a data-structure.

The rest of this paper is organized as follows. Section 2 presents a brief overview about
existing related work. In Section 3, we provide some preliminary information about the
probability and Markov chain theories that are required to understand the formalization
described in the rest of the paper. We describe the formalization of discrete-time Markov
chain and classified DTMCs in Section 4. The formalizations of discrete-time Birth-Death
Chain model and the discrete IID random process are described in Section 5. The illustrative
applications are given in Section 6. Finally, Section 7 concludes the paper.

2 Related Work

Markov Analyzers, such as MARCA [41] and DNAmaca [28], which contain numerous ma-
trix manipulation and numerical solution procedures, are powerful autonomous tools for
analyzing large-scale Markovian models. Many reliability evaluation software tools, such as
Möbius [45] and SHARPE [53], integrate simulation and numerical analyzers for modeling
and analyzing the reliability, maintainability or safety of systems using Markov methods,
which offer simplistic modeling approaches and are more flexible compared to traditional
approaches, e.g., Fault Tree [26]. Some prevalent software tools for evaluating performance,
e.g., MACOM [51] and HYDRA [11], take the advantages of a popular Markovian algebra,
i.e., PEPA [48], to model systems and efficiently compute passage time densities and quan-
tities in large-scale Markov chains. Although these software packages can be successfully
applied to analyze large scale Markovian models, the results cannot be guaranteed to be
accurate because the underlying iterative methods [54] are not 100% precise.

Another technique, Stochastic Petri Nets (SPN ) [17], has been found as a powerful
method for modeling and analyzing Markovian systems because it allows local state modeling
instead of global modeling. SPNs are utilized to model the stochastic systems and offer the
capability of analyzing large and complex models. The Markov chain of a SPN is modeled
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by means of a reachability graph [30]. The prevailing software tools of stochastic petri nets
are SPNP [6] and GreatSPN [16]. These tools can model, validate, and evaluate distributed
systems and analyze the dynamic events of the models by means of embedded Markov chain
theory. For example, the quantitative analysis of Generalized Stochastic Petri Nets (GSPNs)
[18] mainly depends on a Markovian solution, in which the models are described as semi-
Markov processes in order to calculate the steady state distributions of stochastic systems.
The calculations are based on numerical methods, which is the main limiting factor of the
application of SPN for analyzing safety-critical system models. Another key limiting factor
of the application of SPN models using this approach is the complexity of their analysis.

Probabilistic model checking tools, such as PRISM [50], VESTA [52] and Ymer [59],
provide precise system analysis by modeling the stochastic behaviors, including its random
components, using probabilistic state machines and exhaustively verifying their probabilistic
properties. However, these tools use numerical methods for calculating probabilities and suf-
fer from the inherent state-space explosion problems. Moreover, model checking tools cannot
be used to verify generic expressions involving universally quantified continuous variables,
which are frequently encountered in Markovian systems.

Higher-order-logic theorem proving is capable of overcoming the above-mentioned in-
accuracy limitations. The foremost requirement of using theorem proving for analyzing
Markovian models is the higher-order-logic formalization of the probability theory. Hurd
[25] formalized a measure space as a pair (Σ, µ) in HOL. The sample space, on which this
pair is defined, is implied from the higher-order-logic definitions to be equal to the universal
set of the appropriate data-type. Building upon the formalization of measure space, the
probability space was also defined in HOL as a pair (E ,P), where the domain of P is the set
E , which is a set of subsets of infinite Boolean sequences B∞. Both P and E are defined using
the Carathéodory’s Extension theorem, which ensures that E is a σ-algebra: closed under
complements and countable unions. As a consequence, the space is implicitly a universal
set. This fact limits its scope considerably.

Later, Coble [7] formalized the measure space as the triple (X, Σ, µ), which allows to
define an arbitrary space X and overcomes the disadvantage of Hurd’s work. Coble’s prob-
ability theory is built upon finitely-valued (standard real numbers) measures and functions.
Specifically, the Borel sigma algebra cannot be defined on open sets and this constrains the
verification of some applications.

More recently, Mhamdi [43] improved the development based on the axiomatic definition
of probability proposed by Kolmogorov [29]. Mhamdi’s theory provides a mathematical
consistent for assigning and deducing probabilities of events. Hölzl [23] has also formalized
three chapters of measure theory in Isabelle/HOL. However, this progressing work lacks
Radon Nikodym derivative which is mainly used in analyzing expectation properties and it
does not support signed measures or functions taking negative values. Affeldt [1] formalized
some probability theory in Coq [9], with the main motivation of mechanizing the proof of
Shannon’s source coding and channel theorems.
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The first formalization of time-homogeneous DTMC with finite state-space [36] was based
on Hurd’s formalization of probability theory [25]. However, the definition of DTMC is not
general enough due to the above-mentioned limitations of the probability theory formaliza-
tion [25] and the verified theorems are not rich enough to deal with various DTMC models.
Our work, in this paper, mainly utilizes the most recent and general formalization of prob-
ability theory [44] and all the formalizations of discrete-time Markov chain are done using
the theorem prover HOL4 [15].

Recently, the Isabelle/HOL theorem prover has also been used for the formalization
of a time-homogeneous Markov chain [24] based on the corresponding probability theory
formalization [23]. The aim of this work was to verify Probabilistic Computation Tree Logic
(PCTL) in probabilistic model checkers, hence, to the best of our knowledge, a generalized
formalization of DTMC theory has not been provided. Furthermore, this work has not been
used for formalizing time-inhomogeneous Markov chains, which we tackle in the current
paper.

3 Probability Theory in HOL4

In this section, we present an overview of the probability theory and the higher-order-logic
formalizations of probability theory in HOL. Our formalization of DTMC is based on this
work so it is a prerequisite to understand some of its technical details.

Mathematically, a measure space is defined as a triple (Ω,Σ, µ), where Ω is a set, called
the sample space, Σ represents a σ-algebra of subsets of Ω, where the subsets are usually
referred to as measurable sets, and µ is a measure with domain Σ. A probability space is a
measure space (Ω,Σ,Pr) such that the measure, referred to as the probability and denoted
by Pr, of the sample space is 1.

In probability and statistical theory, an essential concept is random variable, which is a
function from a probability to a measurable space. A measurable space refers to a pair (S,Σ),
where S denotes a set and Σ represents a nonempty collection of subsets of S. Especially, if
the set S is a discrete set, which contains only isolated elements, then this random variable
is called a discrete random variable. The probability that a discrete random variable X is
exactly equal to some value i is defined as the probability mass function (PMF) and it is
mathematically expressed as Pr(X = i).

Random process, which denotes a collection of random variables Xt (t ∈ T ), is another
widely used concept in probability theory. If the indices (t) of the random variables Xt are
real numbers, then this random process is a continuous-time random process. If the indices
(t) of the random variables Xt are natural numbers, then it is a discrete-time random process.

One of the crucial concepts in the random process study is the conditional probability,
which basically reflects the dependency between the events which happen at different times
in a process. The formal definition of conditional probability in HOL can be found in [22],
which is based on Hurd’s work [25]. In order to make use of the most advanced probability
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theory in our work, we improved the formalization of conditional probability as:

Definition 3.1 (Conditional Probability)

The conditional probability of the event A given the occurrence of the event B, when the
probability of the occurrence of the event B is greater than 0, is

Pr(A|B) = Pr(A ∩B)/Pr(B)

` ∀ A B. cond prob p A B = prob p (A ∩ B) / prob p B

where cond prob represents the conditional probability, and prob denotes the probability.
They are different functions of probability space p in HOL. In this paper, we utilize the
symbol P to denote both the HOL function cond prob p and the function prob p in HOL
code and the argument of P would clarify if we want to use it in the context of cond prob

or prob.
In order to facilitate the formalization of DTMC, we verified various classical properties

of conditional probability based on Definition 3.1. Some of the prominent ones are listed
below:

Pr(A ∩B) = Pr(A|B)Pr(B) (1a)

Pr(A) =
∑
i∈Ω

Pr(Bi)P(A|Bi) (1b)

Pr(A) =
∑
i∈Ω

Pr(A)Pr(Bi|A) (1c)∑
i∈Ω

Pr(Bi|A) = 1 (1d)

where A, B and C are events in an event space, and the finite events set {Bi}i∈Ω contains
mutually exclusive and exhaustive events. The first theorem is based on Definition 3.1. The
second one is the Total Probability Theorem (1b) and the third one is a lemma of the Total
Probability Theorem. The last theorem is the Additivity Theorem.

A random variable is formally defined (formalized) as a measurable function X between
a probability space p and a measurable space s. It is written as random variable X p s

in HOL. The definition of random variables is general enough to formalize both discrete
and continuous random variables. Now, utilizing the formalization of random variables, the
random process {Xt}t≥0 can be easily written in HOL as ∀t.random variable (X t) p s.

4 Formalization of DTMCs and Classified DTMCs

In this section, we describe the formalization of discrete-time Markov chain and the formal
verification of some of its most important properties.
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4.1 Formalization of DTMCs

Given a probability space, a stochastic process {Xt : Ω → S} is a sequence of random
variables X, where t represents the time that can be discrete (represented by non-negative
integers) or continuous (represented by real numbers) [3]. The set of values taken by each
Xt, commonly called states, is referred to as the state-space. The sample space Ω of the
process consists of all the possible state sequences based on a given state-space S. Now,
based on these definitions, a Markov process can be defined as a stochastic process with
Markov property [5]. If a Markov process has finite or countably infinite state-space Ω, then
it is called a Markov chain and satisfies the following Markov property: For 0 ≤ t0 ≤ · · · ≤
tn and f0, · · · , fn+1 in the state-space, then:

Pr{Xtn+1 = fn+1|Xtn = fn, . . . , Xt0 = f0} = Pr{Xtn+1 = fn+1|Xtn = fn} (2)

where fn+1 represents the future state, fn denotes the current state and f0 refers to the initial
state. t0 · · · tn indicates a consecutive time sequence, which can have values like t0 = 0,
t1 = 1, · · · , tn = n or t0 = 1, t1 = 3, · · · , tn = n+ 2. This equation describes the important
property of a discrete-time Markov chain (DTMC): the future state only depends on the
current state and is independent of all the other past states.

In a DTMC, the space of its states f0, · · · , fn+1 can be finite or infinite. In this paper,
we mainly focus on the DTMC with a finite state-space, which is the fundamental of Markov
chain theory. A DTMC with finite state- space is usually expressed by specifying: an initial
distribution p0 which gives the probability of initial occurrence Pr(X0 = s) = p0(s) for every
state; and transition probabilities pij(t) which give the probability of going from i to j for
every pair of states i, j in the state-space [46], at time t.

For states i, j and a time t, the transition probability pij(t) is defined as Pr{Xt+1 =
j|Xt = i}, which can be easily generalized to n-step transition probability.

p
(n)
ij (t) =


{

0 if i 6= j

1 if i = j
n = 0

Pr{Xt+n = j|Xt = i} n > 0

(3)

In analyzing the stationary behaviors of Markovian models, it is quite common to cat-
egorize Markov chains into different classes depending on the properties exhibited by their
states [3]. Some commonly used classes include reducible, irreducible, periodic, aperiodic,
regular and absorbing Markov chains. Classified Markov chains are very useful for the dy-
namic analysis of systems as their properties allow us to judge long-term characteristics of
Markovain systems, such as if a system will re-visit a particular state or to determine the
time of the first visit to a state. Some of the widely used application areas of classified
Markov chains are reliability analysis, performance analysis and validation of models.

Now the Markov property, given in Equation (2), can be formalized as follows:
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Definition 4.1 (Markov Property)

` ∀ X p s. mc property X p s =

(∀ t. random variable (X t) p s) ∧
∀ f t n. increasing seq t ∧

P(
⋂

k∈ [0,n−1]{x | X tk x = f k}) 6= 0 ⇒
(P({x|X tn+1 x = f (n + 1)}|{x|X tn x = f n} ∩⋂

k∈ [0,n−1]{x|X tk x = f k}) =

P({x|X tn+1 x = f (n + 1)}|{x|X tn x = f n}))

where increasing seq t is defined as ∀ i j. i < j ⇒ t i < t j, thus formalizing the
notion of increasing sequence, which denotes the time indices. The first conjunct indicates
that the Markov property is based on a random process {Xt : Ω → S}. The quantified
variable X represents a function of the random variables associated with time t which has
the type num. This ensures that the process is a discrete time random process. The random
variables in this process are the functions built on the probability space p and a measurable
space s.

We also have to explicitly mention all the usually implicit assumptions stating that the
states belong to the considered space. The assumption P(

⋂
k∈ ts{x | X k x = f k}) 6= 0

ensures that the corresponding conditional probabilities are well-defined, where f k returns
the kth element of the state sequence. In fact, the assumption P(

⋂
k∈ [0,n−1]{x | X tk x =

f k}) 6= 0 ensures that the corresponding conditional probabilities are well-defined, i.e.,

prob p (
⋂

k∈ [0,n−1]{x | X tk x = f k}) 6= 0

The term x ∈ p space p ensures that x is in the samples space in the considered prob-
ability space p space p.

Another important concept in DTMC is the transition probability corresponding to the
expression in Equation (3). The transition probability is formalized as a predicate in HOL
as follows:

Definition 4.2 (Transition Probability)

` ∀ X p s t n i j. Trans X p s t n i j =

if i ∈ space s ∧ j ∈ space s then

if n = 0 then

if (i = j) then 1

else 0

else

P({x | X (t + n) x = j}|{x | X t x = i})
else 0

It is easy to understand that the probability of an event is zero, when this event is not in
the event space. For instance, i is not in the state-space implies that event {Xt = i} = ∅.
In this case, the conditional probability related to an empty set is zero.

Now, the discrete-time Markov chain (DTMC) can be formalized as follows:

10



Definition 4.3 (Discrete-Time Markov Chain)

` ∀ X p s p0 pij. dtmc X p s p0 =

mc property X p s ∧ (∀i. i ∈ space s ⇒{i} ∈ subsets s) ∧
(∀i. i ∈ space s ⇒ (p0 i = P{x | X 0 x = i})) ∧
(∀t i j. P{x | X t x = i} 6= 0 ⇒ (pij t i j = Trans X p s t 1 i j))

where the first three variables are inherited from Definition 4.1, p0 and pij refer to the func-
tions expressing the given initial status and transition matrix associated with this random
process, respectively. The first condition in this definition describes the Markov property
presented in Definition 4.1 and the second one ensures the events associated with the state-
space (space s) are discrete in the event space (subsets s), which is a discrete space. The
last two conditions assign the functions p0 and pij to initial distributions and transition
probabilities.

It is important to note that X is polymorphic, i.e., it is not assigned to a particular data
type, which is a very useful feature of our definition.

In Definition 4.3, if the function pij depends on t, then this discrete-time Markov chain
is referred to as the time-inhomogeneous Markov chain. However, most of the applications
actually make use of time-homogenous DTMCs, i.e., DTMCs with finite state-space and
time-independent transition probabilities [2]. The time-homogenous property refers to the
time invariant feature of a random process. Thus, the one-step transition probability of the
random process can be simplified as pij = Pr{Xt+1 = j|Xt = i} = pij(t), based on Equation
(3). Now, the time-homogenous DTMC with finite state-space can be formalized as:

Definition 4.4 (Time homogeneous DTMC)

` ∀ X p s p0 pij. th dtmc X p s p0 pij =

dtmc X p s p0 pij ∧ FINITE (space s) ∧
∀ t i j. P{x | X t x = i} 6= 0 ∧ P{x | X (t + 1) x = i} 6= 0 ⇒

(Trans X p s (t + 1) 1 i j = Trans X p s t 1 i j)

where the first and second conjuncts constraint this time-homogeneous DTMC to be a
discrete-time Markov chain with the finite state-space, the last condition expresses the time-
homogeneous property: ∀ t t′. pij(t) = pij(t

′) and thus pij(t) is simply written as pij in the
rest of this paper.

It is often the case that we are interested in the probability of some specific states as time
tends to infinity under certain conditions. This is the main reason why stationary behaviors
of stochastic processes are frequently analyzed in engineering and scientific domains. There
is no exception for DTMCs.

Let {Xt}t≥0 be a Markov chain having state-space Ω and transition probabilities {pij}i,j∈Ω.
If π(i), i ∈ Ω, are nonnegative numbers summing to one, then for all j, j ∈ Ω, π(j) =∑

i∈Ω π(i)pij is called a stationary distribution. The corresponding HOL definition is as
follows.
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Definition 4.5 (Stationary Distribution)

` ∀f X p s. stationary dist f X p s =

(SIGMA (λk. f k) (space s) = 1) ∧
∀i. i ∈ space s ⇒

0≤f i ∧ (∀t. f i = SIGMA (λk. f k * Trans X p s t 1 k i) (space s))

4.2 Verification of DTMC Properties

The joint probability distribution of a DTMC is the probability of a chain of states to occur.
It is very useful in analyzing multi-stage experiments. In addition, this concept is the basis
for the frequently used joint probability generating functions.

Theorem 4.1 (Joint Probability Distribution)

A joint probability distribution of n discrete random variables X0, . . . Xn in a finite
DTMC {Xt}t≥0 satisfies:

Pr(Xt = L0, · · · , Xt+n = Ln) =
∏n−1

k=0 Pr(Xt+k+1 = Lk+1|Xt+k = Lk)Pr(Xt = L0)

` ∀ X p s p L p0 pij n. dtmc X p s p0 pij ⇒
P(
⋂n
k=0{x | X (t + k) x = EL k L}) =

PROD (0, n - 1) (λk. P({x | X (t + k + 1) x = EL (k + 1) L}|
{x|X (t + k) x = EL k L})

P{x | X t x = EL 0 L})

The proof of Theorem 4.1 is based on induction on the variable n, Definition 4.3 and some
arithmetic reasoning.

The Chapman-Kolmogorov equation [3] is a widely used property of time homogeneous
DTMCs. It basically gives the probability of going from state i to j in m+n steps. Assuming
the first m steps take the system from state i to some intermediate state k and the remaining
n steps then take the system from state k to j, we can obtain the desired probability by
adding the probabilities associated with all the intermediate steps.

Theorem 4.2 (Chapman-Kolmogorov Equation)

For a finite time homogeneous DTMC {Xt}t≥0, its transition probabilities satisfy the
Chapman-Kolmogorov Equation

p
(m+n)
ij =

∑
k∈Ω p

(m)
ik p

(n)
kj

` ∀ X p s i j t m n p0 pij. th dtmc X p s p0 pij ⇒
Trans X p s t (m + n) i j =

SIGMA (λk. Trans X p s t m i k * Trans X p s t n k j) (space s)
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The proof of Theorem 4.2 again involves induction on the variables m and n and both of
the base and step cases are discharged using the following lemma:

Lemma 4.1 (Multistep Transition Probability)

` ∀ X p s i j t m p0 pij. th dtmc X p s p0 pij ⇒
Trans X p s t (m + 1) i j =

SIGMA (λk. Trans X p s t 1 k j * Trans X p s t m i k) (space s)

The proof of Lemma 4.1 is primarily based on Definitions 4.3 and 4.4 and the additivity
property of probabilities.

The unconditional probabilities associated with a Markov chain are called absolute prob-
abilities, which can be computed by applying the initial distributions and n-step transition
probabilities. From now on, we write p

(n)
j for the probability Pr(Xn = j). We then have the

following result:

Theorem 4.3 (Absolute Probability)

In a finite time homogeneous DTMC,the absolute probabilities p
(n)
j satisfy

p
(n)
j = Pr(Xn = j) =

∑
k∈ΩPr(X0 = k)Pr(Xn = j|X0 = k)

` ∀ X p s j n p0 pij. th dtmc X p s p0 pij ⇒
P{x | X n x = j} =

SIGMA (λk. P{x|X 0 x = k}P({x|X n x = j}|{x|X 0 s = k})) (space s)

The proof of Theorem 4.3 is based on the Total Probability theorem (in Equation 1) along
with some basic arithmetic and probability theoretic reasoning.

The main challenge of the work in this section is to describe the property of a DTMC
using the predicates in higher-order logic.

4.3 Formalization of Classified DTMCs

In this section, the formalization of classified DTMCs will be introduced. We first formalize
some foundational notions of classified states, which are categorized based on reachability,
periodicity or absorbing features. Then, these results along with our formal definition of
a DTMC are used to formalize classified Markov chains, such as aperiodic and irreducible
DTMCs.

The foremost concept of states classification is the first passage time τj, or the first hitting
time, which is defined as the minimum time required to reach a state j from the initial state
i:

τj = min{t > 0 : Xt = j}.

The first passage time can be defined in HOL as:

13



Definition 4.6 (First Passage Time)

` ∀ X x j. FPT X x j = MINSET {t | 0 < t ∧ (X t x = j)}

where X is a random process and x is a sample in the probability space associated with the
random variable Xt. Note that the first passage time is also a random variable.

The conditional distribution of τj defined as the probability of the events starting from

state i and visiting state j at time n is expressed as f
(n)
ij = Pr{τj = n|X0 = i}. This

definition can be formalized in HOL as follows:

Definition 4.7 (Probability of First Passage Events)

` ∀ X p i j n. f X p i j n = P({x | FPT X x j = n}|{x | X 0 x = i})

Another important notion, denoted as fij, is the probability of the events starting from state

i and visiting state j at all times n, is expressed as fij =
∑∞

n=1 f
(n)
ij . It can be expressed in

HOL as (λn. f X p i j n) sums fij. Thus fjj provides the probability of events starting
from state j and eventually returning back to j. If fjj = 1, then the mean return time of

state j is defined as µj =
∑∞

n=1 nf
(n)
jj . The existence of this infinite summation can be

specified as summmable (λn. n ∗ f X p j j n) in HOL.
A state j in a DTMC {Xt}t≥0 is called a transient state if fjj < 1, and a persistent state

if fjj = 1. If the mean return time µj of a persistent state j is finite, then j is said to be
the persistent nonnull state (or positive persistent state). Similarly, if µj is infinite, then j
is termed as the persistent null state.

The Greatest Common Divisor (GCD) of a set is a frequently used mathematical concept
in defining classified states. We formalize the GCD of a set as follows:

Definition 4.8 (The GCD of a Set)

` ∀ A. GCD SET A = MAXSET {r|∀x. x ∈ A ⇒ divides r x}

where MAXSET is a function in the Set Theory of HOL4 such that MAXSET s defines the
maximum element in the set s. A period of a state j is any n such that p

(n)
jj is greater than

0 and we write dj = GCD {n : p
(n)
jj > 0} as the GCD of the set of all periods. If the period

of a state is 1, then this state is called aperiodic state.
A state i is said to be accessible from a state j (written i → j), if there exists a nonzero

n-step transition probability of the events from state i to j. Two states i and j are called
communicating states (written i ↔ j) if they are mutually accessible. A state j is an
absorbing state if the one-step transition probability pjj = 1. The formalization of some
other foundational notions of the classified states is given in Table 1.

We build upon the above mentioned definitions to formalize classified DTMCs. Usually,
a DTMC is said to be irreducible if every state in its state-space can be reached from any
other state including itself in finite steps.
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Table 1: Formalization of Classified States

Definition Condition HOL Formalization

Transient State fjj < 1 ` ∀ X p j. Transient state X p j =

∀ x. {t | 0 < t ∧ (X t x = j)} 6= ∅ ∧
(∃ s. s < 1 ∧ (λ n. f X p j j n) sums s)

Persistent State fjj = 1 ` ∀ X p j. Persistent state X p j =

∀ x. {t | 0 < t ∧ (X t x = j)} 6= ∅ ∧
(λn. f X p j j n) sums 1

Persistent Nonnull State
fjj = 1
µj < ∞ ` ∀ X p j. Nonnull state X p j =

Persistent state X p j ∧
summable (λn. n * f X p j j n)

Persistent Null State
fjj = 1
µj = ∞ ` ∀ X p j. Null state X p j =

Persistent state X p j ∧
∼summable (λn. n*f X p j j n)

Periods of a State
0 < n
0 < pnjj

` ∀ X p s j. Period set X p s j =

{n | 0 < n ∧ ∀t. 0 < Trans X p s t n j j}

GCD of a Period Set
dj ` ∀ X p s j. Period X p s j =

GCD SET (Period set X p s j)

Periodic State dj > 1 ` ∀ X p s j. Periodic state X p s j =

(1 < Period X p s j) ∧
(Period set X p s j 6= ∅)

Aperiodic State dj = 1
` ∀ X p s j. Aperiodic state X p s j =

(Period X p s j = 1) ∧
Period set X p s j 6= ∅)

Accessibility i → j
` ∀ X p s i j. Accessibility X p s i j =

∀ t. ∃ n. 0 < n ∧ 0 < Trans X p s t n i j

Communicating State i ↔ j
` ∀ X p s i j. Communicating states X p s i j =

(Accessibility X p s i j) ∧
(Accessibility X p s j i)

Absorbing State pjj = 1
` ∀ X p s j. Absorbing states X p s j =

(Trans X p s t 1 j j = 1)
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Definition 4.9 (Irreducible DTMC)

` ∀ X p s p0 pij. Irreducible mc X p s p0 pij =

th dtmc X p s p0 pij ∧
(∀i j. i ∈ space s ∧ j ∈ space s ⇒ Communicating states X p s i j)

where th dtmc represents the time-homogeneous Markov chain, defined in Definition 4.4,
and the second conjunct expresses that all the states in the state-space can communicate
with each other.

If there exists a state in the state-space of a DTMC, which cannot reach some other
states, then this DTMC is called reducible.

Definition 4.10 (Reducible DTMC)

` ∀ X p s p0 pij. Reducible mc X p s p0 pij =

th dtmc X p s p0 pij ∧
∃i j. i ∈ space s ∧ j ∈ space s ∧ ∼Communicating states X p s i j

A DTMC is considered as aperiodic if every state in its state-space is an aperiodic state;
otherwise it is a periodic DTMC.

Definition 4.11 (Aperiodic DTMC)

` ∀ X p s p0 pij. Aperiodic mc X p s p0 pij =

th dtmc X p s p0 pij ∧ (∀i. i ∈ space s ⇒ Aperiodic state X p s i)

Definition 4.12 (Periodic DTMC)

` ∀ X p s p0 pij. Periodic mc X p s p0 pij =

th dtmc X p s p0 pij ∧ (∃ i. i ∈ space s ∧ Periodic state X p s i)

If at least one absorbing state exists in a DTMC and it is possible to go to the absorbing
state from every non-absorbing state, then such a DTMC is named as an absorbing DTMC.

Definition 4.13 (Absorbing DTMC)

` ∀ X p s p0 pij.

Absorbing mc X p s p0 pij =

th dtmc X p s p0 pij ∧
∃ i. i ∈ space s ∧ Absorbing state X p s i ∧

(∀ j. j ∈ space s ⇒ Communicating state X p s i j)

Finally, if there exists some n such that p
(n)
ij > 0 for all states i and j in a DTMC, then this

DTMC is defined as a regular DTMC.
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Definition 4.14 (Regular DTMC)

` ∀ X p s p0 pij.

Regular mc X p s p0 pij =

th dtmc X p s p0 pij ∧ ∃n. ∀i j. i ∈ space s ∧ j ∈ space s ⇒
Trans X p s t n i j > 0

The main utility of the higher-order logic formalization of the classified Markov chains men-
tioned above is to formally specify and analyze the dynamic features of Markovian systems
within the sound environment of a theorem prover as will be demonstrated in Section 6 of
this paper.

4.4 Verification of Classified DTMC Properties

Among the classified DTMCs formalized in the previous section, aperiodic and irreducible
DTMCs are considered to be the most widely used ones in analyzing Markovian systems
because of their attractive stationary properties, i.e., their limit probability distributions are
independent of the initial distributions. For this reason, we now focus on the verification of
some key properties of aperiodic and irreducible DTMCs [19].

Theorem 4.4 (Closed Period Set)
In an aperiodic DTMC, the set of the times when state i has a non-null probability of being
visited is closed under addition.

` ∀ X p s p0 pij i.

Aperiodic DTMC X p s p0 pij ∧ i ∈ space s ⇒
∀a b. a ∈ Period set X p s i ∧ b ∈ Period set X p s i ⇒

(a + b) ∈ Period set X p s i

We verified the above theorem by using Theorem 4.2 and some arithmetic and set theoretic
reasoning.

Another key property of an aperiodic DTMC states that the transition probability p
(n)
ij

is greater than zero, for all states i and j in its state-space, after n steps. It is very useful in
analyzing the stability or reliability of many real-world systems.

Theorem 4.5 (Positive Return Probability)
For any state i in the finite state-space S of an aperiodic DTMC, there exists an N < ∞
such that 0 < p

(n)
ii , for all n ≥ N .

` ∀ X p s p0 pii i t.

Aperiodic DTMC X p s p0 pii ∧ i ∈ space s ⇒
∃N. ∀n. N ≤ n ⇒ 0 < Trans X p s t n i i
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The formal reasoning about the correctness of the above theorems involves Theorems 4.2
and 4.4 and the following lemmas, along with some arithmetic reasoning and set theoretic
reasoning.

Lemma 4.2 (Positive Element in a Closed Set)
If an integer set S contains at least one nonzero element and S is closed under addition
and subtraction, then S = {kc; k ∈ Z}, where c is the least positive element of S.

` ∀ s:int → bool.

s 6= ∅ ∧ (∀ a b. a ∈ s ∧ b ∈ s ⇒ (a + b) ∈ s ∧ (a - b) ∈ s) ⇒
0 < MINSET {r|0<r ∧ r∈s} ∧ (s = {r|∃k. r = k*MINSET {r | 0<r ∧ r∈s}})

Lemma 4.3 (Linearity of Two Integer Sequences)
For a positive integer sequence a0, a1, a2, · · · , ak, there exists an integer sequence n0, n1,
n2, · · · , nk, such that d =

∑k
i=0niai, where d is the GCD of sequence a0, a1, a2, · · · , ak.

` ∀ a k.

0 < k ∧ (∀ i. i ≤ k ⇒ 0 < a i) ⇒
(∃n. GCD SET {a i | i ∈ [0, k]} = SIGMA (λn. n i * a i) [0, k])

Lemma 4.4 (Least Number)
If a set of positive integers A is nonlattice, i.e., its GCD is 1, and closed under addition,
then there exists an integer N < ∞ such that n ∈ A for all N ≤ n.

` ∀ (A:int → bool) a.

(A = {a i | 0 < a i ∧ i ∈ UNIV(:num)}) ∧ (GCD SET A = 1) ∧
(∀a b. a∈A ∧ b∈A ⇒ (a + b) ∈ s) ⇒ (∃N. {n | N ≤ n} ⊂ A)

The proofs of Lemmas 4.2, 4.3 and 4.4 are based upon various summation properties of
integer sets. These properties are not available in the HOL libraries and thus had to be
verified as part of our development.

Theorem 4.6 (Existence of Positive Transition Probabilities)
For any aperiodic and irreducible DTMC with finite state-space S, there exists an N , for all
n ≥ N , such that the n-step transition probability p

(n)
ij is non-zero, for all states i and j∈S.

` ∀ X p s p0 pij i j t.

Aperiodic DTMC X p s p0 pij ∧ Irreducible DTMC X p s p0 pij ∧
i ∈ space s ∧ j ∈ space s ⇒
∃N. ∀n. N ≤ n ⇒ 0 < Trans X p s t n i j

We proceed with the proof of Theorem 4.6 by performing case analysis on the equality of i
and j. The rest of the proof is primarily based on Theorems 4.2 and 4.5, Definition 4.1 and
Lemmas 4.3 and 4.4.
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Theorem 4.7 (Existence of Long-run Transition Probabilities)
For any aperiodic and irreducible DTMC with finite state-space S and transition
probabilities pij, there exists lim

n→∞
p

(n)
ij , for all states i and j ∈ S.

` ∀ X p s p0 pij i j t.

Aperiodic DTMC X p s p0 pij ∧ Irreducible DTMC X p s p0 pij ⇒
∃u. (λn. Trans X p s t n i j) → u

We first prove the monotonic properties of Mn
j and mn

j , which are the maximum and min-

imum values of the set {n ≤ 1: p
(n)
ij >0}, respectively. Then, the proof is completed by

verifying the convergence of the sequence (Mn
j - mn

j ) for all n by applying Theorem 4.2 and
some properties of real sequences. It is important to note that we do not need to use the
assumption j ∈ space s here, like all other theorems, as ∀ n j. j /∈ space s ⇒ (p

(n)
j = 0),

which in turn implies lim
n→∞

p
(n)
j = 0 and lim

n→∞
p

(n)
ij = 0. The long-run probability distributions

are often considered in the convergence analysis of random variables in stochastic systems.
It is not very easy to verify that the limit probability distribution of a certain state exists
in a generic non-trivial DTMC, because the computations required in such an analysis are
often tremendous. However, in the aperiodic and irreducible DTMCs, we can prove that all
states possess a limiting probability distribution, by the following two theorems.

Theorem 4.8 (Existence of Long-run Probability Distributions)

For any aperiodic and irreducible DTMC with finite state-space S, there exists lim
n→∞

p
(n)
i ,

for any state i ∈ S.

` ∀ X p s p0 pij i.

Aperiodic DTMC X p s p0 pij ∧ Irreducible DTMC X p s p0 pij ⇒
∃ u. (λ n. P{x | X n x = i}) → u

We used Theorems 4.3 and 4.7, along with some properties of the limit of a sequence, to
prove this theorem in HOL.

Theorem 4.9 (Existence of Steady State Probability)

For every state i in an aperiodic and irreducible DTMC, lim
n→∞

p
(n)
i is a stationary

distribution.

` ∀ X p s p0 pij.

Aperiodic DTMC X p s p0 pij ∧ Irreducible DTMC X p s p0 pij ⇒
(stationary dist (λi. lim (λn. P{x | X n x = i})) X p s)

The proof of Theorem 4.9 involves rewriting with Definition 4.5 and then splitting it into
the following three subgoals:
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Figure 2: The State Diagram of Birth-Death Process

• 0 ≤ lim
n→∞

p
(n)
j

•
∑

i∈Ω lim
n→∞

p
(n)
i = 1

• lim
n→∞

p
(n)
j =

∑
i∈Ω lim

n→∞
p

(n)
i pij

Utilizing the probability bounds theorem, we can prove the first subgoal. The proof of the
second subgoal is primarily based on the additivity property of conditional probability [22].
Then the last subgoal can be proved by applying the linearity of limit of a sequence and the
linearity of real summation.

The major challenge of the work presented in this section, is to find a way to formally
verify the theorems in HOL4. Many detailed proof steps are not available in textbooks. The
proof scripts of all the theorems, presented in this section, contain about 8000 lines of HOL4
code and are available at [33]. These formally verified theorems facilitate the formal reasoning
about DTMC system properties that can be modeled using classified Markov chains. For
illustration purposes, we present a formalization of the Discrete-time Birth-Death process
and the Independent and Identical Distribution Process in the next section.

5 DTMC Extensions

In this section, we show how we can apply the DTMC and classified DTMC properties to
verify the discrete-time Birth-Death Process stationary features (such as limit probabilities
and stationary distributions) and how to use the formal definition of DTMC to validate that
a discrete-time IID random process with discrete state-space is a DTMC.

5.1 Discrete-time Birth-Death Process

Discrete-time Birth-Death process [56] is an important sub-class of Markov chains as it
involves a state-space with nonnegative integers. Its remarkable feature is that all one-step
transitions lead only to the nearest neighbor state. The discrete-time Birth-Death Processes
are mainly used in analyzing software stability, for example, verifying if a data structure will
have overflow problems.

The discrete-time Birth-Death Process, in which the states refer to the population, can
be described as a state diagram depicted in Figure 2.
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In this diagram, the states 0, 1, · · · , i, · · · are associated with the population. The
transition probabilities bi represent the probability of a birth when the population is i, di
denotes the probability of a death when the population becomes i, and ai refers to the
probability of the population in the state i. Considering 0 ≤ ai ≤ 1, 0 < bi < 1 and 0 < di
< 1 (for all i, 1 ≤ i ≤ n), the Birth-Death process described here is not a pure birth or pure
death process as the population is finite. Thus, the Birth-Death process can be modeled
as an aperiodic and irreducible DTMC [56]. In this DTMC model, ai, bi and di should
satisfy the additivity of probability axiom [49]. Then, in this DTMC model, the amount of
population is greater than 1. Also, ai, bi and di should satisfy the additivity of probability
axiom. Now, the discrete-time Birth-Death process can be formalized as:

Definition 5.1 (Transition Probability of Discrete-Time Birth Death Process)

` ∀ a b d t i j.

DBLt a b d t i j =

if (i = 0) ∧ (j = 0) then a 0

else if (i = 0) ∧ (j = 1) then b 0

else if (0 < i) ∧ (i-j=1) then d i

else if (0 < i) ∧ (i = j) then a i

else if (0 < i) ∧ (j-i=1) then b i

else 0;

This definition leads to the following formalization of the discrete-time Birth-Death process:

Definition 5.2 (Birth Death Process Model)

` ∀ X p a b c d n p0.

DB MODEL X p a b d n p0 =

Aperiodic MC X p ([0,n], POW [0,n]) p0 (DBLt a b d) ∧
Irreducible MC X p ([0,n],POW [0,n])p0 (DBLt a b d) ∧
1 < n ∧ (a 0 + b 0 = 1) ∧
(∀j. 0 < j ∧ j < n ⇒ (a j + b j + d j = 1)) ∧
(∀j. j < n ⇒ 0 < a j ∧ 0 < b j ∧ 0 < d j)

In this definition, this process is formally described as an aperiodic and irreducible DTM-
C, in which the state-space is expressed as a pair ([0, n], POW [0,n]). The set [0, n]

represents the population and POW [0,n] is the sigma-algebra of the set [0, n]. Since the
aperiodic and irreducible DTMC is independent of initial distribution, the parameter p0 in
this model is a general function. The other conjunctions shown in Definition 5.2 are the re-
quirements described in the specification of the discrete-time Birth-Death process mentioned
above.

Now, we can prove that this discrete-time Birth-Death process has the limiting proba-
bilities.
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Theorem 5.1 (Birth-Death Process Exists Limit Probability)

` ∀ X p a b d n p0.

DB MODEL X p a b d n p0 ⇒ (∃ u. P{x | X t x = i} → u)

This theorem can be verified by rewriting the goal with Definition 5.2 and then applying
Theorem 4.8.

Now, we can prove that the limit probabilities are the stationary distributions and are
independent of the initial probability vector as the following theorem.

Theorem 5.2 (Birth-Death Process Exists Stationary Distribution)

` ∀ X p a b d n p0.

DB MODEL X p a b d n p0 ⇒ (∃ f. stationary dist p X f s)

We proved this theorem by first instantiating f to be the limiting probabilities, lim (λt.
P{x | X t x = i}, and then by applying Theorem 5.1.

The last two theorems verify that the Birth-Death process holds the steady-state proba-
bility vector Vi = lim

t→∞
P{Xt = i}. The computation of the steady-state probability vector Vi

is mainly based on the following two Equations (4a) and (4b):

v0 = a0v0 + d1v1 (4a)

vi = bi−1vi−1 + aivi + di+1vi+1 (4b)

Now, these two equations can be formally verified by the following two theorems.

Theorem 5.3 (First Steady-state Probability)

` ∀ X p a b d n p0.

DB MODEL X p a b d n p0 ⇒
(lim (λt. P{x | X t x = 0}) =

a 0 * lim (λt. P{x | X t x = 0}) + d 1 * lim (λt. P{x | X t x = 1}))

The proof steps use Theorems 4.3 and 5.2 to simplify the main goal and the resulting subgoal
can be verified by applying the conditional probability additivity theorem, along with some
arithmetic reasoning.

Theorem 5.4 (General Steady-state Probability)

` ∀ X p a b d n i p0.

DB MODEL X p a b d n p0 ∧ i + 1 ∈ [0, n] ∧ i - 1 ∈ [0, n] ⇒
(lim (λt. P{x | X t x = i}) = b (i-1) * lim (λt. P{x|X t x = i-1}) +

a i * lim (λt. P{x|X t x = i}) +

d (i+1) * lim (λt. P{x|X t x = i+1}))
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We proceed with the proof of this theorem by applying Theorems 4.3, 5.2, 5.3 and the total
probability theorem along with some arithmetic reasoning.

The general solution of the linear Equations (4a) and (4b) are expressed as:

vi+1 =
i+1∏
j=1

bj−1

dj
v0 (5a)

v0 =
1∑n

i=0

∏i+1
j=1

b (j−1)
d j

(5b)

These two equations are the major targets of the long-term behavior analysis and can be
verified in HOL as the following two theorems:

Theorem 5.5 (Equation (5a))

` ∀ X p a b d n i Linit.

DB MODEL X p a b d n Linit ∧ i + 1 ∈ [0, n] ⇒
(lim (λt. P{x | X t x = i + 1}) = lim (λt. P{x | X t x = 0}) *

PROD (1, i + 1) (λj. b (j−1)
d j

))

The proof of this theorem starts by induction on the variable n. The base case can be verified
by Theorem 5.3 and some arithmetic reasoning. The proof of the step case is then completed
by applying a lemma that proves the following Equation (6) based on the DB MODEL, which
describes the discrete-time Birth-Death process model, of Definition 5.2:

vi+1 =
bi
di+1

vi+1 (6)

The formal proof of Equation (6) is mainly done by induction on the variable i. The base
case is proved by applying Theorems 4.3, 5.2 and 5.3 as well as some arithmetic reasoning.
The proof of the step case is completed by using Theorem 5.4 along with some arithmetic
reasoning.

Theorem 5.6 (Equation (5b))

` ∀ X p a b d n i Linit.

DB MODEL X p a b d n Linit ∧ i + 1 ∈ [0, n] ⇒
(lim (λ t. P{x | X t x = 0}) = 1

SIGMA (λi. PROD (1, i+1) (λj.
b (j−1)

d j
) (0, n+1)

)

The proof of this theorem begins by rewriting the goal as lim (λ t. P{x | X t x = 0})
* SIGMA (λi. PROD (1, i + 1) (λj.

bj−1

dj
)) (0, n + 1) = 1.
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Then we split the summation into two terms: b0
d1

and SIGMA (1, n + 1) (λi. PROD (1,

i + 1) (λj.
bj−1

dj
)) (0, n + 1). The proof is then concluded by applying Theorems 5.3

and 5.5 and the probability additivity theorem and some real arithmetic reasoning.
After these theorems are verified, the limit probabilities of any state in this model can be

calculated by instantiating the parameter n and transition probabilities a, b and d. Thus, it
becomes unnecessary for the potential users to employ any numerical arithmetic to analyze
the long-term behaviors of this model. The solution, shown in Equations (5a) and (5b),
is mainly used to predict safety properties in the development of the population in a long
period, in various domains, such as statistics and biological.

Furthermore, when the birth-death coefficients are bi = λ and di = µ (λ and µ are
constants) for all the i’s in the state-space, the model described in Definition 5.2 represents
a classical M/M/1 queueing system [27] (in this case, the average inter arrival time becomes
1
λ

and the average service time is 1
µ
). For this particular case, our formally verified theorems

can be directly applied for analyzing the ergodicity of M/M/1 queueing.

5.2 IID Random Process

In this section, we formally validate that an Independent and Identically Distributed (IID)
random process (model) is a DTMC.

In probability theory, a collection of random variables is called independent and identi-
cally distributed if all of the random variables have the same probability distribution and are
mutually independent [10]. The IID random process plays an important role in modelling
the repeated independent trials, such as Bernouli trails. In HOL, the IID random process
can be formally defined as:

Definition 5.3 (IID Random Process)

` p X s. iid rp p X s =

∀ i. random variable (X i) p s ∧ FINITE (space s) ∧
(∀i. x ∈ space s ⇒{x} ∈ subsets s) ∧
(∀i. i ∈ space s ⇒ (p0 i = P{x | X 0 x = i})) ∧
∀ B st. (st ⊆ {(i, j)|i ∈ univ(:num) ∧ {B j} ∈ subset s}) ⇒

(P
⋂

(i,j) ∈ st {x|X i x = B j} = PROD (λ(i, j). P{x|X i x = B j} st) ∧
∀ a i j. P{x|X i x = a} = P{x|X j x = a}

where the first conjunction defines this random process as a collection of random variables
{Xi} (i is a natural number), the second condition defines this random process on a finite
state-space, the third condition ensures the events associated with the state-space (space s)
are in the event space (subsets s), which is a discrete space, the next conjunction ∀i. i ∈
space s ⇒ (p0 i = P{x | X 0 x = i}) defines a general initial distribution p0 for all the
states in the state-space space s. The last two conditions define the mutual independence
and identical distribution properties.
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It is important to note that the notion of mutual independence, also called stochastic
mutual independence, is different from mutually exclusive and pairwise independence [14].
It refers to the case when the random variables are measurable functions from the set of
possible outcomes x to an event set subsets s, where events are represented by Eik and the
random variables satisfy

Pr(Ei1 , · · · , Eik) =
∏n−1

k=0 Pr(Ei1) · · · Pr(Eik).

Note that the events Ei1 · · · Eik do not have to be successive. Thus, in Definition 5.3,
a set st is defined as a subset of a pair set (i, j), {(i, j) | i ∈ univ(:num) ∧ {B j}
∈ subset s}, in which the index of a random variable i can be any natural number, while
the event {B j} is in the event set subsets s.

The last condition P{x|X i x = a} = P{x|X j x = a} refers to the property that the
random variables in the process have an identical distribution for any event in the event set.

Now, we can prove that a discrete IID random process with finite space is a DTMC using
Definitions 4.3 and 5.3 as follows.

Theorem 5.7 (A Finite Discrete IID Random Process is a DTMC)

` ∀ X p s p0.

iid rp X p s p0 ⇒
dtmc X p s p0 (λt i j. P({x | X (t + 1) x = j}|{x | X t x = i})

To prove that a finite discrete IID random process is a DTMC, we first have to prove

P({x | X (t+1) x = j}|{x | X t x = i}) =

if i ∈ space s ∧ j ∈ space s then

P({x | X (t+1) x = j}|{x | X t x = i})
else 0

and then have to prove the second condition in Markov Property (Definition 4.1). This step
can be executed for two cases: n = 0 and n > 0. The first case is to prove

P({x|X (t+1) x = f j}|{x|X t x = f i}) = P({x|X (t+1) x = f j})

which can be verified by applying the mutual independence property of Definition 5.3.
The second case can be verified by using some properties of product and the mutual inde-
pendence.

The verification of the above theorem is one of the prerequisites to formalize random walk
and gambler’s ruins, which are frequently applied in modelling many interesting systems,
such as behavioral ecology[8], financial status prediction (modelling the price of a fluctuating
stock as a random walk)[13], etc. The proof of above theorem also means that our formal
definition of DTMC can be applied to validate DTMC models.
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Figure 3: Basic Computer Architecture

6 Applications

In order to illustrate the usefulness of the developed Markov Chain formalization framework,
we present in this section the formal performance analysis of two software applications,
namely the formal analysis of a program performance and a data structure.

6.1 Formal Analysis of Program Performance

The basic architecture of a modern multi-processor based computer system can be illustrated
by Figure 3. Each processor in such a system is usually connected with a memory module
and several input/output (I/O) ports. Usually, a main program is designed to control the
requests from the devices connected to these I/O ports. Requests from various devices at
the end of a CPU burst are independent from the past behavior.

Consider a program that manages a CPU with n I/O devices. It is assumed that the
program will finish the execution phase at the end of a CPU burst with probability q0 and
the probability of requests from the device connected with the ith I/O is qi. Moreover, all
devices are assumed to be available, i.e., 0 < qi < 1 (for i = 0, 1, · · · , n) and

∑n
i=0 qi = 1,

where n is the number of the I/Os or the devices connected to the CPU. In [56], the behavior
of this program can be modeled as an aperiodic and irreducible discrete-time Markov chain,
which is shown in Figure 4.

From this diagram, we can obtain the transition probability matrix and formally express
it as a function in HOL as:

P =


q0 q1 q2 · · · qn
1 0 0 · · · 0

1 0
... · · ... 0

1 0 · · · 0 0

 ; (7)
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Figure 4: A Discrete-Time Markov Chain Model of a Program

Definition 6.1 (Program Behavior Transition Probabilities)

` ∀ q t i j. pmatrix q t i j =

if (i = 0) then q j else if (j = 0) then 1 else 0

In order to evaluate the performance of this program, we can prove some interesting
properties of this system. First of all, we verify that there exists a steady-state probability
for every state in the state-space. Then, we can prove that the steady-state vector satisfies
vj = v0qj (for all j = 1, 2, · · · , m). Furthermore, the following two equations, which are
usually used to analyze the long-term behaviors of a multi-processor, can be verified:

v0 =
1

2− q0

(8)

vj =
qj

2− q0

(9)

which are the steady-state probabilities of visiting the CPU (corresponding to Equation (8))
and different devices (corresponding to Equation (9)) in the system.

Now, we first define this model as a predicate in higher-order logic:

Definition 6.2 (Program Behavior Model)

` ∀ X p q n p0. PROGRAM MODEL X p q n p0 =

Aperiodic MC X p ([0,n], POW [0,n]) p0 (pmatrix q) ∧
Irreducible MC X p ([0,n],POW [0,n]) p0 (pmatrix q) ∧
(∀i. i∈[0,n]⇒0 < q i ∧ q i < 1) ∧ (SIGMA (λi. q i) [0, n] = 1)

where the first and second assumptions describe that the program’s behavior can be modeled
as an aperiodic and irreducible DTMC and the last two conjuncts constraint the probabilities.

Then, we prove that there exists steady-state probabilities for all states in the state-

space:
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Theorem 6.1 (Existence of Steady-state Probabilities of All States)

` ∀ X p q n p0. PROGRAM MODEL X p q n p0 ∧ 0<n ⇒
(∀j. ∃u. (λt. P{x|X t x = j}) → u)

The properties expressed using Equations (8) and (9) can be verified as the following two
theorems:

Theorem 6.2 (Steady-state Probabilities of Visiting the CPU)

` ∀ X p q n p0. PROGRAM MODEL X p q n p0 ∧ 0<n ⇒
(lim (λt. P{x|X t x = 0}) = 1

2 − q 0
)

Theorem 6.3 (Steady-state Probabilities of Visiting the jth Devices)

` ∀ X p q n p0. PROGRAM MODEL X p q n p0 ∧ 0<n ∧ j ∈ [1, n] ⇒
(lim (λt. P{x|X t x = j}) = q j

2 − q 0
)

If we use probabilistic model checking to analyze the performance of this system, then
the steady-state probabilities of visiting each device can only be obtained by solving a group
of linear equations. Thus, if the system involves n devices, then the computations would
increase linearly. In the case of using simulation for analyzing this model, the final results
will be obtained as a vector including many zeroes, which are not accurate enough (an event
with very low probability will never be an impossible event). This is because if some qi (i
∈ [0, n]) becomes very small (as the number of the devices increases) during the simulation
process, the accuracy of the calculations is constrained by the underlying algorithms and the
available computation resources.

As shown in Theorems 17 and 18, we were able to provide generic results. The HOL
code for the above verification comprises of only around 300 lines and the reasoning was
based on our foundational results, presented in the previous sections. Moreover, the verified
generic results largely reduce the computation time for obtaining steady-state probabilities
for the aperiodic and irreducible DTMCs. In fact, the steady-state probabilities computed
based on the previous two theorems can also be used to interpret the average visiting time,
for example, if the real-time interval is T , then the average number of visits to device j will
be vjT [56] in the long run.

6.2 Formal Analysis of a Data Structure

In software engineering, resource usage is one of the major quality attributes of a software.
For example, the amount of memory consumptions by certain data structures, e.g., a linear
list, being manipulated in a program is usually of interest in evaluating the performance of
this program. The amount of the occupied memory units can be regarded as the population
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Figure 5: The State Diagram of Data Structure Behavior

in a discrete-time Birth-Death process, where the insertion of a data corresponds to the birth
transmission, the release of a memory unit can be considered as the death transmission and
the access of a memory unit represents that the system stays in a state. Assuming that
this data structure in a program has a stable transition probability, which is independent of
time, then the state diagram for this data structure can be depicted as Figure 5, where the
transition probabilities are described as:

bi = P(“next operation is an insert” | “current i units of memory is occupied”)
di = P(“next operation is a delete” | “current i units of memory is occupied”)

With the assumed stable transition probabilities, we have bi = b (i ≥ 0) and di = d
(i ≥ 1) in the process. We are interested in learning the probabilities of an overflow and
underflow in a long run, which can be obtained by computing the steady state probabilities
of the full-size of the accessible memory units. Also, we can predict the probability that all
the usable memory units are released in a long-run. In order to formally reason about this
steady-state probability, we proceed by first formally describing the data structure behaviors
by instantiating the discrete-time birth-death process in higher-order logic.

Definition 6.3 (Transition Probability Functions)

` ∀d. ra d = λn. if n=0 then d else 0;

` ∀b. rb b = λn. b;

` ∀d. rd d = λn. d

Then the following model can be used to describe the behavior of this data structure:

Definition 6.4 (Data Structure Model)

` ∀ X p b d m p0. Data Struc MODEL X p b d m p0 =

DB MODEL X p (ra d) (rb b) (rd d) m p0

as a discrete-time birth-death process where b and d are the birth and death transition
probabilities, m denotes the amount of useable memory size, p0 is a general initial distribution.
Assuming that the potential number of the memory units (m) is very large (m > 0) for

allocation in this model and the parameters satisfy b < d, we can prove the existence of
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steady-state probabilities (vi, 1 < i) of this system by applying Theorem 5.1. Then, using
Theorem 5.6, it is easy to verify the steady-state probability that all the memories are
released in the long-run, i.e, v0 = limt→∞ Pr (Xt = 0) is given by:

v0 =
1− b

d

1− ( b
d
)m

and it is verified as the following theorem in HOL:

Theorem 6.4 (Steady-state Probability of All Memories Released)

` ∀ X p d b m p0. Data Struc MODEL X p b d m p0 ∧ b < d ∧ 0 < m ⇒
(lim (λ t. P{x | X t x = 0}) =

1− b
d

1−( b
d

)m
)

The steady-state probability of i memory units required in such a model is

vi = (
b

d
)iv0

which can be proved as the following theorem in HOL.

Theorem 6.5 (Steady-state Probability of i Memory Units Required)

` ∀ X p d b m p0. Data Struc MODEL X p b d m p0 ∧ b < d ∧ 0 < m ⇒
(lim (λt. P{x | X t x = i}) = ( b

d
)i * lim (λt. P{x | X t x = 0}))

Then, the probability of an overflow is given by

bvm = b(
b

d
)m

1− b
d

1− ( b
d
)m+1

=
dm+1 ∗ (d− b)
dm+1 − bm+1

which means that all memory units available for allocation are used and the probability of

a further insertion occurring in a long-run is dm+1∗(d−b)
b∗(dm+1−bm+1)

. This property can be proved in
a theorem as follows:

Theorem 6.6 (Overflow Probability)

` ∀ X p d b m p0. Data Struc MODEL X p b d m p0 ∧ b < d ∧ 0 < m ⇒
(b * lim (λt. P{x | X t x = m}) =

dm+1∗(d−b)
dm+1−bm+1)

Similarly, the probability of underflow represents the probability that a delete operation
will occur when all available memory units are occupied and it is proved as:
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Theorem 6.7 (Underflow Probability)

` ∀ X p d b m p0. Data Struc MODEL X p b d m p0 ∧ b < d ∧ 0 < m ⇒
(lim (λ t. P{x | X t x = 0}) =

bm−1∗(d−b)
dm−bm )

Using simulation or probabilistic model checking to analyze this kind of data structure
model would involve an enormous amount of computation time and memory. It is also
obvious (from Theorem 6.7) that the computation may encounter some errors, like dividing
by zero with an increase in the value of m (d and b are both between 0 and 1 and the
power of such a small positive number tends to zero). These features are unacceptable while
analyzing safety-critical systems. The proposed approach shows quite promising results in
this context as it is capable of overcoming the above mentioned limitations, with around 500
lines of HOL code to verify these interesting properties about the given data structure.

7 Conclusions

This paper presents a methodology to formally analyze Markovian systems based on the
formalization of DTMCs and classified DTMCs with finite state-space. Due to the inherent
soundness of theorem proving, our work guarantees to provide accurate results, which is a
very useful feature while analyzing stationary or long-run behaviors of a system associated
with safety or mission-critical systems. In order to illustrate the usefulness of the proposed
approach, we formalize the Discrete-time Birth-Death process and validate that a discrete
IID random process with finite state-space is a DTMC. Moreover, we use the definitions and
verified properties of classified DTMCs in analyzing the performance of a couple of software
applications, i.e., a program controlling the CPU interactions with its connected devices and
a data structure used in a program.

The paper provides a new method to formally analyze DTMCs with finite-state-space
and avoid the state-explosion problem or the unacceptable computation time issue which
are commonly encountered problems of model checking and simulation, respectively, for
analysing the stationary properties of a safety-critical system with a large number of states.
Hence, the presented work opens the door to a new and very promising research direction, i.e.,
integrating HOL theorem proving in the domain of analyzing DTMC systems and validating
DTMC models.

Our formalization of DTMCs can be built upon for formally verifying the properties
of time-inhomogeneous discrete-time Markov chains and Markov Decision Process (MDP),
which will enable us to formally analyze a wider range of systems. We also plan to build
upon the formalization of continuous random variables [21] and statistical properties [20]
to formalize Continuous-Time Markov Chains (CTMC) to be able to formally reason about
statistical characteristics of more complex Markovian models. Furthermore, our work can be
applied to validate/formalize various interesting random processes, such as random walk and
gambler’s ruins, which are widely used in diverse domains, i.e., biology[58], chemistry[57],
computer science[55], ecology[8], economics[13], physics[57], psychology[32], etc..
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Lévy Flight, Markov Process, Integer, Pascal’s Triangle, Stirling’s Approximation, Fac-
torial, Law of the Iterated Logarithm, Central Limit Theorem, Markov Chain. Betascript
Publishing, 2010.

[56] K. S. Trivedi. Probability and Statistics with Reliability, Queuing, and Computer Science
Applications. John Wiley & Sons, 2002.

[57] N.G. Van Kampen. Stochastic Processes in Physics and Chemistry. North-Holland
Personal Library. Elsevier Science, 2011.

[58] D.J. Wilkinson. Stochastic Modelling for Systems Biology. Chapman & Hall/CRC
Mathematical and Computational Biology. CRC Press, 2011.

[59] YMER. http://www.tempastic.org/ymer/, 2015.

35


	Introduction
	Related Work
	Probability Theory in HOL4
	Formalization of DTMCs and Classified DTMCs
	Formalization of DTMCs
	Verification of DTMC Properties
	Formalization of Classified DTMCs
	Verification of Classified DTMC Properties

	DTMC Extensions
	Discrete-time Birth-Death Process
	IID Random Process

	Applications
	Formal Analysis of Program Performance
	Formal Analysis of a Data Structure

	Conclusions

