
Generation of Evenly Distributed Input Stimuli By
Domain Clustering

Jomu George Mani Paret and Otmane Ait Mohamed

Department of Electrical and Computer Engineering,
Concordia University, Montreal, Canada
{jo pare,ait}@ece.concordia.ca

Technical Report

July, 2014

Abstract

Constrained Random Verification (CRV) is becoming the mainstream methodology for the functional

verification of complex System on Chip (SoC) designs. In order to achieve verification closure, CRV

tools have to produce a large number of solutions, evenly distributed, in the search space. To attain this

requirement, we propose a technique which analyzes the solution space by using consistency algorithm

and splits the domain of variables into clusters. The proposed technique helps us to generate input

stimuli which are evenly distributed in search space. Unlike other techniques, the proposed technique

does not remove solutions with low probability from the search space. The experimental results show

that the proposed technique helps to improve the evenness of input stimuli distribution, of a state-of-art

CRV tool.

1

1 Introduction

As semiconductor technology improves, System on Chip (SoC) designs are becoming popular.
SoC platforms usually consist of various design components dedicated to specified application
domains. In order to ensure the functional correctness of a SoC, finding and fixing the design
errors at early design phases is important.

Functional verification is the process used to ensure, whether the design satisfies the re-
quirements specified in the specification. It is widely recognized as the bottleneck of the
hardware design cycle because of the growing demand for better performance and shorter
time to market. In current industrial practice, simulation based verification techniques play
a major role in the functional verification of hardware designs. The functional verifica-
tion starts with a verification plan that enumerates the verification scenarios. Verification
engineers then convert the verification scenarios into constraints. The constraint solver as-
sociated with the verification tool generate solutions for the constraints. These solutions
are then used as input stimuli for the verification of the design. This method is known as
Constraint Random Verification (CRV).

Experience shows that, as design complexity increases, many bugs remain undetected even
though considerable resources and time have been devoted to design verification. Because
of the elusive nature of hardware bugs, we need a large number of input stimuli to cover
the scenarios specified in the verification plan. Generating a large number of input stimuli
which are evenly distributed is a big problem [10]. In this paper, we propose a technique
based on clustering of variable domain to generate evenly distributed solutions that helps to
attain higher coverage.

2 Related works

In order to ensure verification closure, the distribution of the generated stimuli should be
even. That is, the generated input stimuli should be uniformly distributed in the search
space. Also the input stimuli generation must be fast. In this section, we will address some
of the existing constraint solving techniques which focus on the above two objectives and
point out their disadvantages.

The acceptance and rejection (A&R) technique [4] applies random samples to produce
feasible input stimuli. It ensures uniform or user-specified distribution. But the input stimuli
generation speed would be slow when constraints cannot be easily solved. Formal solution
generators [12] like SAT solvers can solve general constraints very fast. But they sacrifice
the evenness of distribution. Another approach to increase the success ratio for the A&R
technique, called RACE [5], is to apply interval propagation to reduce ranges of variables
before sampling. The interval propagation procedure requires a large number of iterations
for complete range-reduction on complicated constraints. Such runtime overheads cannot be
neglected since it re-computes ranges while generating each solution.

In order to increase the evenness of distribution and the speed of solution generation,
the weighted Binary Decision Diagram (BDD) technique [11] converts the constraints into
a single BDD structure. The probability information is annotated on the BDD edges. By
biased top-down traversal on the diagram, this approach guarantees the evenness of bit-level
signal distributions and fast production of random input stimuli. However, it suffers from
memory explosions for complex constraints during BDD constructions.

Monte Carlo Markov Chain (MCMC) based methods [9], reach the desired distribution
after a large number of state transitions. It is hard and inefficient to determine the prob-

2

Fig. 1: Proposed framework

abilities required to move from current state to the next state, for non-continuous solution
space. As a result, it converges to the target distribution slowly.

Range-Splitting heuristic and Solution-Density Estimation technique (RSSDE) [10] can
be used to partition the search space in order to have even distribution of input stimuli.
The range-splitting heuristic prunes subspaces which have very low probability to contain
a solution. By removing subspace with low solution density, the solution densities in other
subspaces are substantially enhanced.

All the above mentioned techniques except RSSDE, focus either to improve the solution
generation speed or to improve the evenness of solution distribution, but not both. In
RSSDE, both speed and distribution of solution generation are given focus. But in RSSDE,
the eliminated sub space may contain solutions which can trigger corner cases in verification.
In this paper we propose a new technique in which we focus on the above two objectives and
will only remove subspaces with no solutions.

3 Proposed Preprocessing Framework

Most of the hardware manufacturers use the CRV methodology to produce input stimuli for
verification. One of the important component of CRV tools is the constraint solver. Since
CSPs arising from CRV are different from typical CSPs [3] general purpose constraint solvers
are not suitable for CRV. Hence EDA tools use internally developed constraint solvers.
Our main objective is to enhance the solution generation capability of constraint solvers
associated with EDA tools.

In most of the stimuli generation scenarios, large number of solution has to be generated.
In a CSP, the solutions are clustered together in the search space [8]. Hence partitioning
the search space into clusters and generating solutions from the partitions can improve the
evenness of the solutions generated by the solver. In this paper we propose a search space
partitioning technique based on consistency search. Our proposed framework is presented
in Fig.1.

The CSP problem and the domain of the input variables are given to the domain clus-
tering block. This block then generate partition tuples (A tuple is an ordered list which
contains values for all the variables in the constraint and a partition tuple is a tuple which
contains values for all the variables in the CSP) based on the tuples returned by consistency
search block. The consistency search block uses the consistency algorithm [7] to generate

3

tuples. Then the partition tuples are used to cluster the variable domain. The generation
of partition tuples and domain clusters are explained in detail in Section5. The clustered
variable domain and the CSP constraints are given to the constraint solver and the input
stimuli are generated. These input stimuli are used as inputs for the verification of the DUV.
The simulation report is then generated by the simulator.

4 Background Information:Consistency Search

Consistency techniques [7] are constraint solving algorithms that reduce the search space by
removing, variable values that cannot be part of any solution. For each constraint(Ci) in
the CSP, for each variable (vj) in the constraint Ci, for each domain value of the variable vj ,
the algorithm will try to find a tuple which satisfies the constraint. If there is a tuple which
satisfies the constraint, then that tuple will be returned by consistency search. If there is
a tuple which satisfies the domain value assignment and the constraint, then that domain
value can be part of solution. Hence for each domain value, the algorithm needs to find only
one tuple which satisfies the constraint.

To illustrate the idea discussed above, let us consider the following CSP network N with 3
constraints C1 (a+b+c=5), C2 (b+d+e=6) and C3 (e+f+g+h=6) over the variables a, b, c,
d, e, f, g and h. Each of the variable may hold a value between 1 and 3 inclusive, except for
variable d. It is between 1 and 4 inclusive. The algorithm will first select the constraint C1,
then the variable a in the constraint C1 and assign the first value 1 to the variable a. Once
the algorithm finds a tuple which satisfies the constraint C1 where variable a = 1, then that
tuple is returned by the algorithm. For example, the tuple (1,1,3) satisfies the constraint
C1 with the variable assignment a = 1. This process is repeated for all the domain values,
variables and constraints in the CSP.

5 Domain Clustering

5.1 Preliminaries & Notations

1. A tuple τ on an ordered set of variables is an ordered list which contains values for all
the variables. V ar(τ) represents the ordered set of variables in the tuple τ .

2. A constraint Ci on an ordered set of variables gives the list of allowed tuples for the
set of variables. V ar(Ci) represents the set of variables in the constraint Ci. τCi represents
a tuple which satisfies the constraint Ci. τCi[m] represent m tuples which satisfies the
constraint Ci.

3. A constraint network is defined as a triple CN = 〈V ar, C, Dom〉 where:
V ar is a set of variables {x1,. . ., xj};
C is a set of constraints between variables {C1,. . .,Ck};
Dom is a finite set of domain values for the variables {Dom(x1),. . ., Dom(xj)}.
4. Γ[m] is the list of m tuples which satisfies the highest arity (number of variable in a

constraint) constraint, generated by consistency search.
5. CH represents the highest arity constraint from the CSP.
6. τCH represents tuple which satisfies the constraint CH .
7. τCHN [n] represent first n tuples which satisfies the constraint CH from the list of tuples

Γ[m] (m > n).
One way to cluster search space is to generate all possible solutions and find n solutions

which are far apart. These n solutions are the center of the clusters and are used for

4

partitioning. Even though this method gives best results, it is computationally expensive.
In this paper we propose a methodology to cluster the search space using the tuples generated
by consistency search. We will also prove that the proposed partition technique is equivalent
to partitioning of solutions.

The clustering of variable domain into n groups (where n is a number defined by the user
based on the verification scenario and time for simulation) can be divided into the following
three steps:

5.2 Step 1: Selection of n tuples

Algorithm 1 : Selection of n tuples

1: Selection of n tuples (in:n=4, in:Γ[m]): τCHN [n]
2: find CH , τCH and τCHN [n]
3: for i=0 to n-1 do
4: for j=0 to n-1 do
5: if i 6= j then
6: if j > i then
7: HAM[i][j] = hamming distance between τCHN [i] and τCHN [j]
8: else
9: HAM[i][j] = HAM[j][i]

10: end if
11: end if
12: end for
13: HAM[i][n] =

∑n−1
j=0 HAM [i][j]

14: end for
15: HAMT =

∑n
i=0HAM [i][n]

16: while tuple in τCH which is not yet considered 6= nil do
17: τnew = tuple in τCH which is not yet considered
18: τlow = tuple with the lowest HAM[i][n] value
19: HAMnew = sum of hamming distances between τnew and tuples in τCHN except τlow
20: if HAMnew > HAMT then
21: replace τlow with τnew
22: end if
23: end while

Table 1: Tuple after Consistency Search
Constraint e f g h

1 1 1 3
2 1 1 2
3 1 1 1

C3 1 2 1 2
1 3 1 1
1 1 2 2
1 1 3 1

Initially, constraint with the highest arity is selected. For each variable (v) in the con-
straint CH , for each domain value b of the variable v, the algorithm will try to find a tuple
which satisfies the constraint where the variable v is assigned the value b. Then n tuples

5

Table 2: 4 tuples selected from Sclast for C3
Group e f g h

1 2 1 1 2
2 3 1 1 1
3 1 2 1 2
4 1 3 1 1

which satisfies the highest arity constraint has to be selected from the generated tuples. The
selected n tuples should be far way (different) from each other. Selection of n values which
are far away from each other is a hard problem to solve [2]. There are several heuristics
developed for the above. We used hamming distance heuristics, to find tuples which are far
away from each other. The pseudo code for the selection of n tuples in shown in Algorithm 1.

For the example discussed in Section 4, constraint C3 is the highest arity constraint and
the tuple generated for the constraint C3 is shown in the TABLE 1. If n is set to 4 we need
to select 4 tuples which satisfies C3 from the list and are faraway from each other. The
selected tuples are shown in the TABLE 2.

5.3 Step 2: Generation of n partition tuples

Algorithm 2 : Generation of n partition tuples

1: Generation of n partition tuples (inτCHN [n], in:list of constraints - CH , in:Γ[m]):
τCHN [n]

2: while constraints to be considered 6= nil do
3: Cl2 = highest arity constraint which is not yet considered and has the highest number

of variables in common with τCHN [n]
4: for i=1 to n do
5: Update V ar(τCHN [i]) such that V ar(τCHN [i]) = V ar(τCHN [i])

⋃
V ar(Cl2)

6: comvar = V ar(τCHN [i])
⋂
V ar(Cl2)

7: comval = value of variable(s) comvar in tuple τCHN [i]
8: τCl2 = tuple returned by consistency search that satisfies the constraint Cl2 and

domain value of variable(s) comvar is equal to comval
9: if τCl2 = nil then

10: comval = next lexicographic higher value
11: Go to step 8
12: else
13: Update the domain value of variables V ar(tauCl2) in τCHN [i] with the domain

values in τCl2
14: end if
15: end for
16: end while

Partition tuples are tuples which contain all the variables in the CSP. In order to make
partition tuples, the highest arity constraint, which is not yet considered and has the highest
number of variables in common with n tuples (τCHN [n]) generated earlier, is selected.

Then the n tuples are modified as follows. For each tuple, the domain value of variables
which are present in both the selected constraint Cl2 and τCHN [n] are determined. This
domain value(s), variable(s) and the constraint is given to the consistency search block. If

6

the consistency search does not return a tuple, then the next higher lexicographic value for
domain value is chosen and used for consistency search. If the consistency search returns
a tuple, then that tuple is used to update the domain value of variables in the constraint
Cl2. For example in the above CSP, C2 is the next highest arity constraint and variable
common to C2 and τCHN [n] is e. In the first tuple (2,1,1,2) variable e is equal to 2. So we
do consistency search for the constraint C2 with e = 2. The tuple (3,1,2) which satisfies the
constraint C2 and assignment e = 2, is returned by the consistency search. This tuple is
then used to update the values of variables b, d and e.

If variables present in both the tuple has different values then the highest domain value
among them is assigned to the variable. Inorder to understand why the largest value is
chosen, consider a variable vm, which is assigned values di and dj in the tuple returned by
consistency search for constraint ci and cj resply. Also assume di < dj . In the partition tuple
variable vm is assigned the value dj . This is because, during consistency search, tuples are
generated in lexicographic order starting from the lowest value. So if for constraint cj the
variable vm is assigned the value dj that means the value di was found to be inconsistent.
Hence v1 = di cannot satisfy the constraint cj . If a variable value is inconsistent with a
constraint, then it cannot be part of the solution for the CSP. The objective of the algorithm
is to find clusters of solutions in the search space and partitions the search space based on
the clusters. Hence for the partition tuple variable vm is assigned the value dj .

This process is repeated until all the constraints in the CSP are considered. The pseudo
code for the generation of n partition tuples in shown in Algorithm 2. After this process,
the n partition tuples generated for the above CSP are as shown in the TABLE 3.

5.4 Step 3: Partitioning of variable domain

In this step, initially the partition tuples generated (in step 2) are arranged in lexicographic
order. Then for each tuple, the domain values will be compared with their neighboring
tuples, starting from the left most variable in the tuples. The leftmost variable which has a
different value when compared with neighboring tuples is the partition point. If more than
one tuple has the same variable value at partition point, then for those tuples we continue
comparing towards the right until the variable has different values in neighboring tuples.
This will be the partition point for those tuples.

The intuitive idea behind the algorithm is that partitioning of the tuples is equivalent
to partitioning of the solutions of the CSP. If the arity of the largest arity constraint is
nearly equal to the number of variables in the CSP, then the tuples generated by consistency
search are approximately equal to the solutions of the CSP. So partitioning of the tuples is
equivalent to partitioning of the solutions of the CSP. Another possibility is that the arity
of the highest arity constraint is smaller than the number of variables in the CSP. Then the
algorithm updates the other variable values. While updating, if a variable is having different
values for different tuples, then the resultant partition tuples are different from each other.
This results in good partition of the domain values. While updating, a variable can have
same value for different tuples. The algorithm is using partial solutions to update variable
values. Hence in actual solution those variable values may remain the same. Then those
variables don’t have much impact on the evenness of the solution. We can consider those
variables as constant. The resultant tuples, ignoring the variables with constant values, will
be different from each other and leads to good partitioning.

In TABLE 3 the first leftmost variable which is different in the partition tuple is b. So
this is the first point of domain partition. There are two partition tuple which has the same

7

Table 3: 4 partition tuples
Group a b c d e f g h

1 1 3 1 1 2 1 1 2
2 1 2 2 1 3 1 1 1
3 1 1 3 4 1 2 1 2
4 1 1 3 4 1 3 1 1

Table 4: Variable domain for n clusters
Group a b c d e f g h

1 1-3 1 1-3 1-4 1-3 1-2 1-3 1-3
2 1-3 1 1-3 1-4 1-3 3 1-3 1-3
3 1-3 2 1-3 1-4 1-3 1-3 1-3 1-3
4 1-3 3 1-3 1-4 1-3 1-3 1-3 1-3

value for variable b. Hence for those two partition tuples we continue comparing the domain
values. For the above two tuples variable f has different values. Hence the domain of variable
f is divided into two groups. Fig. 2 shows the partition points.

For all other variables which are not part of the partition point, the domain values will
be the values specified in the CSP. TABLE 4 gives the domain values of all the variables of
the 4 groups used for solution generation. This partitioned domain values along with the
CSP constraints are then given to the constraint solver.

Lemma 1 For a set S euclidian points, if T is the solution returned by the proposed algo-
rithm and Top be the optimal solution, then Cost(T) ≤ 2 ∗Cost(Top) (lower the value of cost
implies better distribution).

Proof. Let a is the maximum distance between a point x (xεS) and T . Then cost of T ≈ a.
Let x0 be the point in S which replaces a point in T in the optimized solution. Then T

⋃
x0

consists of n+ 1 points which are all distance ≤ a apart. Two of the points must be having
the same closest representative in Top since the cardinality of Top is n. In order to have
both the point in the same cluster, the representative point must be at a distance ≤ a/2.
Similarly, considering all other points in Top, the cost of Top is ≤ a/2.

Lemma 2 For a set of S euclidian points with m attributes, the time complexity of the
algorithm to return n points which are far apart form each other is l times faster than k-
means clustering.

Proof. In the proposed algorithm, initially n points are taken from the set S. Then hamming
distance between the S points are calculated. The proposed algorithm generates the n

b[1-3]

b[2] b[1] b[3] f[1-3]

f[1,2] f[3]

Fig. 2: Partitioning points

8

Inconsistent values

Solution
space

Search Space with generated
solutions and inconsistent

values

Search Space after
removing inconsistent
values and clustering

(n=4)

Group 1 Group 4

Group 2 Group 3

Clusters with
generated solutions

Search Space with
generated solutions

using proposed method

Fig. 3: Search space with generated solutions

Table 5: Evenness Evaluation on Random Cases

#vars #cons
σDNP δDNP δKM (k=100) δKM (k=1000) Differentsoln

M1 M2[10] M3 M1 M2[10] M3 M1 M2[10] M3 M1 M2[10] M3 M1 M3
31 9 95.8 97.7 94.8 0.07 0.07 0.06 1396 1382 1407 1162 1187 1200 5351 27232
34 24 100.0 99.3 97.5 0.08 0.07 0.06 1372 1400 1422 1167 1191 1209 4987 29497
36 16 103.7 101.1 100.6 0.07 0.07 0.08 1446 1456 1460 1237 1249 1255 6323 32943
38 13 105.0 104.5 100.7 0.07 0.07 0.06 1565 1484 1499 1360 1378 1419 7208 37268
40 20 97.2 104.8 96.5 0.07 0.07 0.06 1446 1487 1519 1208 1277 1332 6766 31919

points in a single iteration. Hence the time complexity is O(Smn). In k-means algorithm,
the algorithm first divides the S points into n clusters. Time complexity for clustering is
same as the proposed algorithm (O(Smn)). But this process is repeated l times to find the
optimal cluster. Hence the proposed algorithm is l times faster than k-means clustering. If
the size of S is large, the value of l is also large.

6 Distribution Evaluation

Due to the unknown characteristics of solution space, it is difficult to prove evenness of the
generated solutions. But, statistical analysis can give persuasive profiles about the evenness
of the generated solutions. Therefore, we used three different statistical analysis to evaluate
the distribution of solutions generated.

6.1 Evaluation Metric: Differentsoln

As mentioned earlier, our intention is to generate a large number of different solutions dis-
tributed evenly in search space. But using existing CRV tools, constraint random generation
does not guarantee even distribution of solutions. In existing CRV tools, the randomization
process does not give high solution generation productivity. For example, consider a sim-
ple constraint 0 ≤ X ≤ 10, which is randomized 5 times and the solution generated are
3, 0, 0, 3, 0. The solutions meet the constraint, but out of 11 possible solutions only 2 is
generated. The generated solutions are not evenly distributed in search space. So we define
a metric called differentsoln to determine the quality of the solutions generated. Differ-
entsoln is defined as the number of different solutions generated by the solver. High value
for differentsoln implies that the evenness of solution generation is higher.

9

6.2 Distance of Nearest Neighbor

The k-nearest neighbor algorithm is amongst the simplest of all machine learning algorithms.
If pj is a point near to the point pi, the shortest Euclidean distance between them is denoted
as dmin(pi). If the standard deviation of dmin(pi) is smaller for a given data set, then those
data set are evenly distributed. Standard deviation σDNP is defined by

σDNP =

√∑Np
i=1(dmin(pi)−dmin)2

Np where

dmin= the average of all shortest distances
Np=number of points (solutions)

If the ratio between σDNP and dmin is smaller for a given data set, it implies that the
distribution is more even. The above ratio is defined as a parameter called δDNP where
δDNP = σDNP

dmin

6.3 K-Means Clustering

K-means is one of the simplest unsupervised learning algorithms. Given a set of n-dimensional
data points, k-means clustering analysis, partition them into k clusters with the nearest
mean. k-means defines a cost function to measure whether the data set is well clustered or
not. Higher the value of cost function, more even will be the distribution. The cost function
δKM is defined as

δKM =

√∑k
j=1

∑
xεcj
||x−zj ||2

Np

where cj denotes the jth cluster and zj represents the centroid of the jth cluster.
K-Means and Distance of Nearest Neighbor analysis consider the correlation and distri-

bution of data points while the discrete Fourier transform and Shannon’s entropy only care
the frequency of data points. Therefore, these measures give more persuasive distribution
analysis [6].

7 Experimental Results

We used Weka[1], which is a data mining tool, for K-Means Clustering and Distance of
Nearest Neighbor analysis. We used our framework with a state-of-the-art commercial tool,
Synopsys VCS 2009.06. VCS 2009.06 is run on the SUN SPARC Enterprise M3000 server.
It has a SPARC64 VII quad-core with 2.75 GHz and a memory of 8GB. The CSPs used
has both arithmetic and logical constraints. The outputs of the CSPs were analyzed by the
metrics defined in section 6.

To ensure the evenness of generated solutions, we used K-Means Clustering and Distance
of Nearest Neighbor analysis. In TABLE 5, we list five cases shown in [10]. Columns 1 and
2 indicate the number of variables and constraints respectively. The domain of each variable
contains 1024 values (0 to 1023). M2 represents the result obtained using the technique
RSSDE [10]. M1 represents the result obtained using the CRV tool VCS for input stimuli
generation and M3 represents the result obtained using domain clustering as a preprocessing
step with VCS. The columns 9-11 are the results obtained when the number of centroids (k)
is set to 100. Similarly columns 12-14 are the results obtained when k is set to 1000. The
number of different solutions generated is shown in columns 15 and 16. 106 solutions were
generated. We can see that the number of different solutions generated by the proposed
methodology is nearly 8 times than the random generation method.

10

Ideally, if solutions are evenly distributed in search space, all the shortest distances with
the corresponding nearest point should be identical. The difference between the distances
should be very small. Hence lower the value of σDNP , better the distribution. δDNP is
the ratio between σDNP and dmin. If the solutions are far apart from each other, then the
value of dmin should be larger. Hence, when the value δDNP is smaller, the distribution
of solutions is more even. In the case of K-Means Clustering, higher the cost, better the
solution distribution.

From TABLE 5 we can see that the values of σDNP and δDNP are smaller and the value
of δKM is higher for the proposed method when compared to the other two techniques. Our
technique helps to generate more evenly distributed solution with VCS.

Table 6: Coverage
Scenarios Time Coverage

M1 M2 M1 M2
1 210 190 24.2 31.3
2 240 200 34.6 40.6
3 230 200 23.5 34.3
4 240 210 78.3 84.1
5 220 200 67.5 79.2

8 Case Study: CORTEX M0

In order to show the effect of the consistency search and domain clustering on coverage we
used an ARM Cortex-M0. The Cortex-M0 processor is based on the ARMv6-M architecture.
It has only 56 instructions. We chose the following 5 requirement of ARMv6-M core for our
purpose:

1. Most 16-bit instructions can only access eight of the general purpose registers, R0-R7
known as the low registers.

2. A small number of 16-bit instructions can access the high registers, R8-R15.

3. Conditionally executed means that the instruction only has its normal effect on the
programmers model operation and memory if the N, Z, C and V flags satisfy a condition
specified in the instruction. If the flags do not satisfy this condition, the instruction
acts as a NOP.

4. Most of the instructions set the condition code flags, according to the result of the
operation. If an instruction does not set a flag, the existing value of that flag, from a
previous instruction, is preserved.

5. Shift and rotate instructions move each bit of a bitstring left or right by a specified
number of bits.

These requirements are converted into various verification scenarios. The verification sce-
narios are then modeled using SystemVerilog constraints. These constraints are then used to
generate the input stimuli required for verification. We run the experiment with and without
domain clustering. For each scenario about 1200 instructions were generated. The TABLE 6
shows the coverage obtained. M1 represents the results obtained by constraint random test

11

generation and M2 represents the results obtained by using the proposed domain clustering
technique. From the experimental results we can see that using domain clustering we were
able to attain higher coverage in almost the same time. In some cases the improvement in
coverage is about 15%. This is because by dividing the search space into sub search space
and generating solutions from the sub search space, increases the probability to generate
solutions which are different from each other. The results show that by using the proposed
methodology, the evenness of solution distribution can be increased.

9 Conclusion and Future works

In this paper, we presented a framework based on consistency search and domain cluster-
ing to improve the distribution of input stimulus generated by existing verification tools.
Consistency search on the CSPs was able to reduce the domain of input variables. Domain
clustering based on the results of consistency search helped to improve the distribution of
generated input stimuli. Experiments showed that the proposed preprocessing stage helped
to improve the distribution of input stimuli generated by VCS. Another remarkable advan-
tage is that the proposed methodology can be easily integrated with other constraint random
verification tools. In the proposed methodology the number of cluster is considered as an
input parameter. In future, by analysis of the search space, we would like to determine
number of clusters in the search space.

References

[1] WEKA. http://www.cs.waikato.ac.nz/ml/weka/. Accessed: 16/6/2014.

[2] P. Baldi. Autoencoders, unsupervised learning, and deep architectures. Journal of
Machine Learning Research, pages 37–50, 2012.

[3] E. Bin, R. Emek, G. Shurek, and A. Ziv. Using a constraint satisfaction formulation
and solution techniques for random test program generation. IBM Systems Journal,
41(3):386 –402, 2002.

[4] L. Devroye. Random variate generation for unimodal and monotone densities. Comput-
ing, 32(1):43–68, 1984.

[5] M. Iyer. Race a word-level atpg-based constraints solver system for smart random
simulation. In Proceedings of International Test Conference, volume 1, pages 299–308,
2003.

[6] Z. Kong, S. Deng, J. Bian, and Y. Zhao. Even distribution evaluation in random stimulus
generation. In In Proceedings of 11th Joint Conference on Information Sciences, 2008.

[7] J.G.M. Paret and O. Ait Mohamed. Coverage driven test generation and consistency
algorithm. In Declarative Programming and Knowledge Management, Lecture Notes in
Computer Science. 2014.

[8] A. J. Parkes. Clustering at the phase transition. In Artificial Intelligence and Ninth
Conference on Innovative Applications of Artificial Intelligence, 1997.

[9] W. Wei, J. Erenrich, and B. Selman. Towards efficient sampling: exploiting random
walk strategies. In Proceedings of the 19th national conference on Artifical intelligence,
pages 670–676. AAAI Press, 2004.

12

http://www.cs.waikato.ac.nz/ml/weka/

[10] B. Wu and C. Huang. A robust general constrained random pattern generator for con-
straints with variable ordering. In IEEE/ACM International Conference on Computer-
Aided Design (ICCAD), pages 109–114, 2012.

[11] J. Yuan, K. Shultz, C. Pixley, H. Miller, and A. Aziz. Modeling design constraints and
biasing in simulation using bdds. In IEEE/ACM International Conference on Computer-
Aided Design, 1999.

[12] Y. Zhao, J. Bian, S. Deng, and Z. Kong. Random stimulus generation with self-tuning.
In 13th International Conference on Computer Supported Cooperative Work in Design,
2009.

13

	Introduction
	Related works
	Proposed Preprocessing Framework
	Background Information:Consistency Search
	Domain Clustering
	Preliminaries & Notations
	Step 1: Selection of n tuples
	Step 2: Generation of n partition tuples
	Step 3: Partitioning of variable domain

	Distribution Evaluation
	Evaluation Metric: Differentsoln
	Distance of Nearest Neighbor
	K-Means Clustering

	Experimental Results
	Case Study: CORTEX M0
	Conclusion and Future works

