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Abstract

The quality of an analog circuit can be determined by the quality of its output simulation trace(s).

Traditional assertion/statistical methods are an efficient quantitative approaches that can detect violation

during the simulation, but cannot address the quality of the verified circuit. To have a robust verification

framework, it is necessary to complement the quantitative approach with techniques that can perform

an automatic estimation of the circuit quality based on its output trace. This report relies on the

longest closest subsequence (LCSS), a variant of the longest common subsequence (LCS) to account

for process variation and mismatch in analog circuits. At circuit level, the effect of mismatch and

process variation that result in offsets (vertical and horizontal) are analyzed by performing parametric

and statistical techniques and then applying LCSS to estimate the probability of closest matching. The

acceptance/rejection of a circuit is done using bounded hypothesis testing. The approach is illustrated

on a Rambus Ring Oscillator circuits for a 90nm fabrication processes. Advantages of the proposed

methods are robustness and flexibility to account for wide range of variations.

1 Introduction

Over the last decade, advanced technologies have allowed designers to develop smaller, faster,
low power analog/digital/RF designs in a single system-on-a-chip (SoC). As SoC complexity
continuously escalate against the backdrop of aggressive time-to-market schedules, the joint
effects of physical (e.g., process variation) and environment (e.g., temperature) constraints
have been a major concern for analog designers, as it has left the circuit vulnerable to noise
and offsets [11]. The success of an analog circuit from concept to silicon is measured not only
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on “how fast it is been designed”, but also on “how reliable the design is”? which depends
heavily on the accuracy of the models used and the verification environment.

Traditionally, simulation by far is the standard technique to verify analog designs [3]. The
analog design flow starts with the schematic capture of the circuit with hand crafted models
for active/passive elements. This is followed by netlist extraction and manual verification
using a circuit simulator, usually SPICE [16]. Verification involves a number of repeated
simulation runs that are exercised by specific/random set of inputs to validate the expected
output. Unfortunately, the lack of sophistication in computer-aided design (CAD) tools
is starting to overwhelm designers as the verification may take weeks of labor intensive
simulation to validate the specification.

To address the issue of simulation run-time, designers have looked at modeling techniques
at higher level of abstraction using hardware description languages (HDLs), such that verifi-
cation can be automated and performed much faster [13]. Of course, this speed-up does not
come without a price. The first cost is the accuracy of the behavioral model against the ac-
tual transistor-level designs. Secondly, the model has to account for physical and functional
constraints [13]. Verification of analog designs are faced with immense challenges with the
uncertainties due to unwanted deviation either vertically (DC offset) or horizontally in a
signal trace because of component mismatch and process variations.

The DC offset is very prominent in differential amplifier circuit and in general, modeled by
a series/shunt input offset voltage/current source [6]. Since DC offset poses a major threat
to the resolution of the analog signal, effort to nullify the effect using the offset cancelation
circuit has remain popular among analog designers [18]. Though, the offset analysis is done
at circuit level, developing a methodology that could verify an analog circuit with offset
condition at a higher level of abstraction has not yet been addressed.

On the other hand, horizontal offset common in oscillators, can be considered to be a
complete drift in the time axis, called as start-up delay or a shift in the signal frequency,
referred as frequency offset [6]. As oscillators can be a part of a bigger system as in a phase
locked loop (PLL), predicting the start-up delay remains critical as it determines on how
fast the PLL stabilizes, meaning locks to the desired frequency [6]. While the designer can
establish constraints that ensure a stable (“good”) oscillation, the unpredictable nature of
the offset can make the oscillation to look “bad” or “ugly” and hence can make the PLL
fail to lock. Hence, given a range of constraints, to show how fast can a circuit settle to
oscillation (“start-up” delay) still remains an open research problem.

From a functional verification perspective, the popular verification approaches in the form
of assertion/statistical techniques can sometimes exhibit violation that may not be associated
with real design failures. For instance, if the output trace of a non-ideal circuit follow the
trace of an ideal circuit for say 99.9% and violates for just 0.1% of the simulation time due
to false spike in the simulator, then assertion/statistical methods will report a bug in the
design. In such cases, the quantification methods fall short to enumerate the method of
failure for the circuit behavior appropriately. This report addresses the above issues, by
automatically ensuring the correctness of analog circuits in the presence of offset conditions
using the concept of pattern matching.

The pattern matching techniques are commonly applied to the characterization and val-
idation of high-speed analog and digital circuits. Quite often they are associated with the
study of crosstalk, coupling, delays in the data transmission lines [8] during the post-layout
and board-level signal integrity (SI) analysis. CAD tools for SI analysis [15] provide a
unique waveform comparison capability that can ensure a reliable high-speed data trans-
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mission, achieved through interconnect characterization and lab measurements [2]. In the
current state-of-the-art, SI analysis can be performed only on the circuit-level simulation
traces and board-level design waveforms. In general, any SPICE based simulator can gener-
ate SI analysis models for an analog circuit which then could be ported to any standard CAD
tool to determine the quality of the simulation traces through waveform comparison. Such
a specific trace comparison method can assist the designers to examine the design failures
for validity.

To resolve the issue of false violation, the approach based on quantitative methods has
to be complemented with a more meaningful analysis of the circuit simulation trace. In
the current design/verification flow, the missing qualitative assessment of an AMS design at
a higher level of abstraction can be achieved by extending the pattern matching concepts
developed in SI analysis to the functional verification. As depicted in Figure 1, the verifica-
tion based on pattern matching will also help to address the question of “How to decide on
the acceptance/rejection of a circuit simulated with N different process conditions and by N
different designers?”

Ideal Design
Model

Designer 2

Designer 1

Time

V(t)
Design
Constraints

Analog Circuit
Simulation

Designer N

Fig. 1: Analog Verification.

As most of the SI based waveform comparison algorithms are propriety to the tool devel-
opers, the challenge is to develop an algorithm that is tailored towards the AMS verification.
This report takes a look at a popular pattern matching algorithm that is based on dynamic
programming [4]. The underlying idea of this algorithm is to find the subsequence simula-
tion trace between a set of analog signal traces and combine hypothesis testing to determine
the probability of failures. Hypothesis testing [12] is the use of statistics to determine the
probability that a given hypothesis is true. The statistical property, is expressed as a null
hypothesis and in the end, a circuit is accepted/rejected with a certain confidence level and
error margin.

The Longest Common Subsequence (LCS) is a pattern matching algorithm that finds its
applications in computational biology, chip layout design, and so on [17]. In DNA matching,
the idea is to find the longest subsequence common to all sequences in a set of sequences [4].
As opposed to the traditional approach of comparing the output of the design to its specifi-
cation value, we can extend the LCS algorithm to estimate in terms of percentage the exact
(100%) or “closely” matched simulated output relative to the ideal circuit output. By doing
so, instead of blindly rejecting the circuit that violates the specification, designers will have
more information during the evaluation and hence can make viable decisions. The main
advantage of the pattern matching based approach is that the whole verification process is
independent of the circuit models and can be applied to perform a qualitative assessment of
any black-box design. The LCSS algorithm that has been presented in [14] cannot handle
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offset conditions which is addressed in this report.
In analog designs, a “closely” matched relation can be defined in many different ways. Let

us consider V1 and V2 as the output sequences of an ideal and a non-ideal circuit, respectively.
First, we say that two output sequences of values V1 and V2 are similar if one is a subsequence
of the other [4]. Alternatively, another way to measure the similarity between V1 and V2

is by finding a third longest sequence of values V3 that appear in each of the sequences V1

and V2 [4]. In reality, it is difficult to find a one-to-one mapping between V1 and V2 and
hence, designers have to define an acceptable tolerance range for the output as a part of the
specification. Thereafter, the LCSS algorithm is defined to quantify the simulated output
relative to a specification template.

2 Proposed Methodology

Figure 2 shows the circuit-level simulation methodology that involves parametric and Mon-
teCarlo simulation for a specified technology process. First, we begin with an analog circuit
description as a schematic entry that is simulated for a specified process and for a specific
initial condition using a SPICE simulator [16]. Parametric analysis involves sweeping mul-
tiple parameters to help analyze the stability of a solution within the specified tolerance
zone. On the other hand, the basic idea behind the MonteCarlo method is to sample the
model of the true population of interest and then to determine the statistical outcome of the
simulation. The sampling and calculation procedure is repeated for “M” trials.
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Fig. 2: Circuit Level Simulation

For analog circuits, the MonteCarlo technique is used to study the effect of random
variations due to process and mismatch. Mismatch could be either “systematic” where values
are fixed and known or it could be “random”, where the values are generated randomly and
often unknown [16]. In general, there is no theory that governs the number of trials in a
MonteCarlo simulation. However, a trade-off exists between the number of trials and the
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simulation run times. The higher confidence can be gained by choosing a larger number of
samples, but at the cost of run-times [12]. The question that has to be answered now is:
“how to decide on the sequences that have offset conditions?”

As depicted in Figure 2, LCSS and hypothesis testing are combined to process variation
and parametric analysis for the circuit level simulation traces that have offset conditions to
determine the probability of acceptance/rejection.

2.1 Start-up Delay Time Detection

In general, the start-up delay time can be considered as one kind of horizontal offset. When
LCSS algorithm is applied, if the non-ideal trace does not find a match from its first values,
it is considered as a start-up delay time as shown in the example in Figure 3.
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Fig. 3: Start-up Delay Time

Algorithm 1 : Start-up Algorithm

Require: deleted values
1: d ← deleted values
2: l ← length(d)
3: for j ← 2 to l do
4: sp ← d(j)− d(j − 1)
5: end for
6: spacing ← eliminate(sp < dist)
7: ls ← length(spacement)
8: MeanSpacing ← ∑

(spacing)/ls
9: SMS ← MeanSpacing ∗ SecurityCoffiecient

10: ind ← 1
11: while d(ind + 1) < d(ind) + SMS do
12: ind ← ind + 1
13: end while
14: index ← d(ind)
15: startup ← time(index)
16: return startup

Values in the circled region are out of the interval defined by the tolerance level p [X −
p,X + p]. We determine the start-up delay time based on the number of deleted points that
fall inside the circle and are greater than the number of points in the other regions. For “M”
trials, each representing different circuits, rather than using a mathematical description to
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determine the start-up delay time, it would be more advantageous to determine it directly
and automatically from the output traces. The implementation of the start-up delay time
detection is given in Algorithm 1.

The algorithm calculates the distance between every two deleted points (lines 3-5). If this
distance is greater than a threshold as defined by the user (line 6), then this value will be
taken. Otherwise, it represents two successive deleted regions for which the arithmetic mean
to estimate the spacing (line 8) distance is done. The user also has to specify a security
coefficient usually (< 1) to be multiplied by this spacing distance (line 9). In all cases, it is
assumed that the start-up delay time to occur from the time 0s which is very natural (line
10). The spacing distance is then incremented (lines 11-13) to estimate the distance between
two deleted points when it is not a start-up time.

2.2 Horizontal Offset

A horizontal offset consists of a shift between two output traces in the time domain as
shown in Figure 4. This shift in time is represented as a shift in the index on the two sets
of sequences. As LCSS performs operations on a set by set basis rather than the value by
value, detecting or eliminating offsets will depend on the correlation between the ideal and
non-ideal sequences. The implementation of horizontal offset is described in Algorithm 2.
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Fig. 4: Horizontal Offset

The horizontal offset can be calculated using the MATLAB built-in correlation function
(xcorr). The correlation between two signals is maximal when they are aligned. The horizon-
tal offset time (line 3) is thus measured by detecting the index of the maximum of correlation
as described in Algorithm 2 (line 2).

Algorithm 2 : Horizontal Offset Algorithm

Require: X, Y,
1: [cc, lags] ← xcorr(X, Y )
2: offIndex ← max(cc)
3: offset ← time(offIndex)
4: return offset

2.3 Hypothesis Testing

Hypothesis testing [12] is the use of statistics to make decision about acceptance or rejection
of some statements based on the data from a random sample, meaning, to determine the
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Table 1: Statistical Estimation Error

H0 is True H1 is True
Accept H0 Correct Decision Wrong Decision - Type II Error
Reject H0 Wrong Decision - Type I Error Correct Decision

probability that a given hypothesis is true. Hypothesis testing in general has two parts:

1. Null hypothesis, denoted by H0, which is what we want to test (e.g., jitter period ≤
3.2 ns), and

2. Alternative hypothesis, denoted by H1, which is what we want to test against the null
hypothesis (e.g., jitter period > 3.2 ns).

If we reject H0, then the decision to accept H1 is made. The conclusion is drawn with
certain probability of error for a specific confidence interval as summarized in Table 1. The
error associated with such statistical estimate for a given confidence interval can be classified
to be [10]:

Type I or False positive - H0 is rejected when it is in fact true.

Type II or False negative - H0 is true when it is in fact false.

The quantification of error can be made by measuring the probability of accepting/rejecting
H0 when it is actually true/false, respectively. If α and β denote such probabilities then,
mathematically they can be represented as

α = Pr{ reject H0 | H0 is true }
β = Pr{ accept H0 | H0 is false } (1)

The choice to accept or reject is determined by the direction with which the null hypothesis
is proved to be true or false. This direction is decided based on a one-tailed test (upper or
lower) or a two-tailed test as shown in Figure 5.

−4 −2 0 2 4
0

0.1

0.2

0.3

0.4

D
en

si
ty

Confidence Intervale (α = 0.1)
−4 −2 0 2 4
0

0.1

0.2

0.3

0.4

D
en

si
ty

Confidence Intervale (α = 0.1)
−4 −2 0 2 4
0

0.1

0.2

0.3

0.4

D
en

si
ty

Confidence Intervale (α = 0.1)

Acceptance
Region

Lower Tail Test Upper Tail Test Two Tailed Test

Acceptance
Region

Acceptance
Region

Fig. 5: Accept/Reject Hypothesis Testing

The upper tail distribution represents the rejection region for the case where a large value
of the test statistic provide evidence for rejecting H0. On the other hand, a lower tail
distribution is used if only a small value of the test statistic show proof of H0 rejection [5].
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The bounded hypothesis testing [5] also called the two-tailed test is determined by a
bounded region [x1, x2], such that such that H0 satisfies the following:

H0 : P (x1 < X < x2) = P (X < x2)− P (X < x1) = 1− α (2)

For instance, α = 0.05 and α = 0.01 refer to the confidence level of 95% and 99%,
respectively. For the case, where the confidence interval is divided equally between the lower
and upper bounds, the probability can be determined as follows:




P (X < x1) =
α

2
= 0.05

P (X < x2) = 1− α

2
= 0.95

(3)

In any of the above hypothesis testing measures, if the observed sample data over a given
interval is within some critical region, then we reject the null hypothesis H0, else we accept
H0 as shown by the shaded region in Figure 5. In general, the steps in statistical hypothesis
testing can be summarized as follows:

1. State the null and alternative hypothesis.

2. Take a random sample from the population of interest.

3. Estimate the statistical measure related to the null hypothesis.

4. Interpret the results to make a decision about acceptance/rejection of the null hypoth-
esis using critical value or p-value approach with certain standard error.

The critical-value approach [5] determines a critical region in which the null hypothesis
will be rejected. It depends on the type of tail test (upper lower or two tailed), observed
value and the significant level α. The observed value Tobs is calculated based on the sample
mean x̄, the mean value under the null hypothesis and standard error σ̄ as described below,

Tobs =
x̄− µ0

σ̄
(4)

If the observed value Tobs is greater than the critical value, we reject the null hypothesis H0

otherwise, we retain H0. The P-value approach [5] involves defining the probability of the
test statistic to be in the direction of the alternative hypothesis, when the null hypothesis is
true. If the derived P-value tends to be smaller it is more likely to reject H0.

The accuracy of the hypothesis testing depends on how good the sample statistics (mean,
variances and percentiles) that determines the standard error are estimated. Sampling by far
is concerned with the selection of a subset of the observed data to make a desired statistical
inference. Based on the sampling method used one may be able to derive different standard
errors and hence the accuracy of the results may vary during hypothesis testing.

For a given analog circuit, every output simulation trace is considered to be a random
variable X. For a specified confidence level, a two-tailed test can be applied to decide on the
acceptance/rejection of the circuit. The detailed procedure for bounded hypothesis testing
is illustrated in Algorithm 3.

The first step is to determine the kind of distribution associated with the output simula-
tion trace. It is quite natural to assume a normal distribution for the outputs, however, the
variation due to technology and mismatch may sometimes lead to other distributions. Lines
(1-19) take into account different distributions and in turn deduce the cumulative distribu-
tion function (CDF (x)). This is followed by the search for “lower” and “upper” bounds
of the critical value that satisfy Equation (3) (lines 20-27). Both the “lower” and “upper”
bounds define the acceptance region (where H0 is accepted) for every random variable X.
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Algorithm 3 : Hypothesis Testing (Two-Tailed Test)

Require: Distribution, Parameters
1: if (Distribution = LogNormal) then
2: σ ← Parameters(1)
3: µ ← Parameters(2)
4: γ ← Parameters(3)

5: CDF (x) ← Φ
(

ln(x−γ)−µ
σ

)

6: else
7: if (Distribution = Normal) then
8: σ ← Parameters(1)
9: µ ← Parameters(2)

10: CDF (x) ← Φ
(x−µ

σ

)
11: else
12: if (Distribution = Weibull) then
13: α ← Parameters(1)
14: β ← Parameters(2)
15: γ ← Parameters(3)

16: CDF (x) ← 1− exp
(
−

(
x−γ

β

)α)

17: end if
18: end if
19: end if
20: lower ← Initial V alue Low
21: while CDF (Lower) ≤ 0.05 do
22: lower ← lower + Step
23: end while
24: upper ← Initial V alue Up
25: while CDF (Upper) ≤ 0.95 do
26: upper ← upper + Step
27: end while
28: return lower, upper
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3 Application - Rambus Ring Oscillator Circuit

Rambus Ring oscillator circuits [9] present a unique problem of lock-up. Unlike the tradi-
tional ring oscillator that has odd number of inverters, the Rambus ring oscillator consists
of an even number of stages (say “n”) , with a bridge (labeled cc) between each stage as
shown in Figure 6.

If the “forward” inverters (labeled fwd), are much larger than the “cross-coupling” invert-
ers (labeled cc), then the circuit acts like a ring of 2n inverters and will not oscillate. Same
problem occurs if the cc inverters are much larger than the fwd inverters. The oscillation
also depends on the circuit initial condition. While designers can establish conditions that
ensure a stable (“good”) oscillation, offset can sometimes make the oscillation look “bad” or
“ugly”. The challenge for the verification engineers is to answer the question “how to judge
the quality of oscillation?” and “how can we detect the offsets automatically?”

Fig. 6: Rambus Ring Oscillator Circuit.

To better answer the question, the output of the circuit is analyzed by sweeping the
transistors size (ratio r) and the initial condition (parametric analysis). Then, MonteCarlo
simulation for 100 trials is performed to study the impact of 90nm technology variation
and mismatch on the output behavior of the oscillator. In both cases, LCSS is applied to
the output sequence to determine the probability of matching and start-up delay time. In
general, transistor sizing ratio is defined as [7]:

r =
size of cc

size of fwd
(5)

Parametric Analysis:
Based on our simulation and results reported elsewhere [7], it is concluded that the oscillator
is unstable (so it oscillates) if r ∈ [0.52, 2.61] with the initial condition equal to the supply
voltage for 90nm technology. Though, the authors in [7] have demonstrated that the circuit
will enter an oscillation stage from any initial condition, the challenge would be to verify the
quality of oscillation in terms of offsets and start-up delay time. By doing so, the designers
will have the leverage to trade-off between the desired frequency range and the speed with
which the oscillator can start, meaning the delay time. This is needed as the ring oscillator
could be a part of a larger analog mixed signal (AMS) circuit such as PLL, where the start-up
delay time can be related to the lock time.

For parametric analysis, the idea is to sweep r for each initial condition and then compare
the output simulation trace with an ideal oscillator which have the same frequency using
pattern matching algorithm LCSS. The output traces are saved in a *.dat format and for
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p=2% tolerance, LCSS is applied to determine the percentage matching as summarized in
Table 2.

r Frequency Percentage Startup Horizontal
(MHz) of matching Delay Time Offset (ns)

0.52 89.28 71.392 7.3e-9 3.3
0.53 88.88 71.432 4.85e-9 5.15
0.54 89.28 71.682 3.75e-9 3.95
0.55 88.88 71.522 2.75e-9 4.7
0.6 87.71 70.682 5e-11 6.25
0.7 86.20 69.423 5e-11 7.55
0.8 84.03 68.183 5e-11 7
0.9 82.3 67.023 5e-11 7.9
1 80 66.033 5e-11 7.3

1.1 78.12 64.843 5e-11 8.25
1.2 75.47 63.923 5e-11 7.8
1.3 73.26 62.753 5e-11 5.55
1.4 70.92 62.013 5e-11 5.15
1.5 68.25 60.953 5e-11 9.35
1.7 65.35 59.884 5e-11 5.45
1.8 58.99 58.134 5e-11 6.85
1.9 55.55 57.174 5e-11 10.85
2 51.81 56.274 5e-11 11.7

2.1 47.61 55.174 5e-11 12.4
2.2 43.01 54.094 5e-11 9.3
2.3 37.59 52.604 5e-11 15.8
2.4 31.10 50.444 5e-11 12.8
2.5 22.52 45.655 5e-11 26.35
2.6 6.613 32.476 2.55e-9 82.2

Table 2: Parametric Analysis With Initial Value=1v

Finding the LCSS and Start-up Delay Time: Figure 7 shows the percentage of
matching as function of the transistor size ratio r. Moreover, when the initial condition
is equal to 0.5 volts and with r ' 0.8, it can be seen that the percentage of matching
(dotted line) compared with the other conditions is small. This significant drop is due to
long start-up delay time associated with these parametric values as seen in Figure 7.

As seen from the table the parametric analysis has little effect on the results due to hor-
izontal offset. This is true because at any given point, the components values are taken as
fixed, which in reality is not the case for analog circuits. Hence, this leads us to the need for a
statistical approach based on MonteCarlo simulation to study the impact of those variations
on the output voltage.

MonteCarlo Simulation:
For 90nm technology and based on the number of trials “M”, there are many outputs for the
same design. These outputs are the result of varying components values due to the process
and mismatch and follow certain probability distribution. The experiment for “M=‘100”
trials is conducted on a SUN UltraSPARC-III with 4GB memory.

Finding the LCSS: MonteCarlo simulation shows more variation in their final probabil-
ity distribution. From the simulation data through statistical analysis, it can be determined
that the percentage of matching fits different distributions for different values of r as sum-
marized in Table 3.

For process variation, it is quite natural to find Normal and Lognormal distributions [1]
(Figure 8). However, for certain values of r, the data fits Weibull distribution.
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Fig. 7: Percentage of Matching as Function of r

Distribution r value
Normal 1.25, 2.25

LogNormal 0.5, 1.75, 2, 2.5
Weibull 0.75, 1, 1.5

Table 3: Distributions of LCSS Percentage Matching

Weibull distribution is a general purpose distribution that can be used to represent nor-
mal, exponential and other distributions. For certain values of r, the distribution appears to
be skewed from its mean and hence for such cases it is better to represent them as Weibull
than as Normal and LogNormal distribution. Table 4 summarizes the MonteCarlo results
for finding the LCSS and fastest start-up delay time for an initial condition of 0.5 volts.

Start-up Delay Time Estimation: Figure 9 shows the statistical distribution of the
MonteCarlo simulation results for estimating the start-up delay time.

Unlike the LCSS percentage matching distribution, the findings are that for r =1.75, the
curve has different skew with respect to the mean value and does not fit neither a normal
nor a Lognormal distribution function. In that case, it falls into Weibull distribution as
summarized in Table 5.

From Table 4, it can be noted that the optimal value for the frequency is 82 MHz with
38 out of 100 circuits has maximum percentage matching. When sufficiently large number
of trials are used in MonteCarlo Simulations, as per the central limit theorem [12], the esti-
mation of the mean is fairly accurate.
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Decision Based on Hypothesis Testing:
Table 6 summarizes the experiment results for the Rambus Ring Oscillator circuit based
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r Maximum # of Percentage of Minimum Startup
Frequency (MHz) Matching1 Delay Time (ns)

0.5 92 19 (72.4%) 2.0
0.75 86 35 (69%) 0.2
1.0 82 38 (67%) 0.1
1.25 76 20 (63.8%) 1.6
1.5 70 19 (61.8%) 40.0
1.75 60 22 (59%) 2.8
2.0 52 26 (56.6%) 3.2
2.25 41 16 (54.2%) 4.0
2.5 24 24 (47%) 6.0

Table 4: Parametric Analysis With Initial Value=0.5volts

Distribution r value
Normal 1.5, 2, 2.25, 2.5

LogNormal 0.5, 0.75, 1, 1.25
Weibull 1.75

Table 5: Distributions of the Start-up Delay Time

on hypothesis testing. It can be seen that, the results for the frequency and percentage
matching are consistent with those results (Table 2) found during the parametric analysis,
meaning that the mean of the frequency and percentage matching decreases with increase
in r. However, compared to standard deviation associated with the frequency, percentage of
matching shows different standard deviation but still remains small for r=2.25.

r
Frequency (MHz) Percentage of Matching (%) Start-up Delay Time (ns)

Distribution Acceptance region Distribution Acceptance region Distribution Acceptance region
0.5 LogNormal [82.11 – 99.28] LogNormal [71.13 – 73.61] LogNormal [1.82 – 4.65]
0.75 LogNormal [78.28 – 94.15] Weibull [66.51 – 70.01] LogNormal [2.69 – 15.05]
1 LogNormal [73.97 – 88.31] Weibull [64.11 – 67.41] LogNormal [1.24 – 8.11]

1.25 LogNormal [68.93 – 81.78] Normal [62.84 – 64.63] LogNormal [1.16 – 3.37]
1.5 LogNormal [63.61 – 74.68] Weibull [60.48 – 62.37] Normal [0 – 2.85]
1.75 LogNormal [56.67 – 65.95] LogNormal [58.38 – 59.71] Weibull [0.79 – 3.21]
2 LogNormal [48.61 – 55.98] LogNormal [56.02 – 57.25] Normal [0.51 – 4.37]

2.25 LogNormal [37.88 – 43.93] Normal [53.21 – 54.68] Normal [0.408 – 5]
2.5 LogNormal [16.51 – 28.48] LogNormal [42.22 – 50.41] Normal [0.86 – 10.38]

Table 6: Hypothesis Testing Results

The results derived for the start-up delay time shows the adverse influence of process
variation and mismatch. The start-up time exhibits a larger acceptance region where r '
0.75 which confirms with the results found in the parametric analysis for the initial condition
0.5v. For r ' 0.80847 and for the initial condition 0.5v, the oscillator takes a huge time to
start in compared to other r values. In summary, the hypothesis test results can be different
for different confidence intervals and the accuracy would be compromised if the confidence
level is too high or too low. Higher confidence level would increase the error margin and
degrade the reliability; lower confidence level on the other hand would increase the rejection
region and cause low accuracy.
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4 Conclusion

This report describes a methodology based on pattern matching to account for process
variation and mismatch in analog circuits. The longest closest subsequence (LCSS) is used
at circuit level descriptions for the qualitative analysis on the simulation traces that have
offset (vertical, horizontal) conditions. The effect of mismatch and process variation at
circuit level is studied by performing parametric and statistical analysis to estimate in terms
of percentage the closest simulation trace that matches with the simulation trace of an ideal
circuit. The efficiency of our approach is illustrated on a Rambus Ring Oscillator circuits
for a 90nm fabrication process.

The conventional verification method may require major changes to the test-bench struc-
ture during scaling of analog designs, and still cannot answer the question: “How do we
choose the test set?” or “Can we retain the same test points?” This is because, the test
points are chosen in such a way that it represents the limit of operation of the design which
of course may or may not change when the designs are scaled. However, LCSS based tech-
niques work on the simulation trace in polynomial time and hence it will be well suited for
verifying “black-box” analog designs.

Other future plan is to develop techniques that could handle frequency offset conditions
and address the issue related to stability of analog circuits. Additionally, the algorithm has
to be optimized for speed and memory utilization. For instance, this can be done by using
threading techniques for LCSS implementation.
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