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Abstract

While model checking suffers from the state space explosion problem, theorem proving
is quite tedious and impractical for verifying complex designs. In this work, we present
a verification framework in which we attempt to strike the balance between the ex-
pressiveness of theorem proving and the efficiency and automation of state exploration
techniques. To this end, we propose to integrate a layer of checking algorithms based
on Multiway Decision Graphs (MDG) in the HOL theorem prover. We embedded the
MDG underlying logic in HOL and implemented a platform that provides a set of al-
gorithms allowing the user to develop his/her own state-exploration based application
inside HOL. While the verification problem is specified in HOL, the proof is derived by
tightly combining the MDG based computations and the theorem prover facilities. We
have been able to implement different state exploration techniques within HOL such
as MDG reachability analysis, equivalence and model checking.
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1 Introduction

Whenever an error creeps into a design, time and money must be spent to locate the problem
and correct it, and the longer a bug evades a detection, the harder and more expensive it
is to fix. As design complexity increases, simulation times become prohibitive and coverage
becomes poor, allowing numerous bugs to slip through to later stages of the design cycle.
What is needed, therefore, is a complement to simulation for determining the correctness of
a design. For this reason, there has been a surge of research interest in formal verification
techniques [15]. In general, formal verification problem consists of mathematically estab-
lishing that an implementation satisfies a specification. The implementation refers to the
system design that is to be verified and the specification refers to the property with respect
to which the correctness is to be determined.

Formal verification methods fall into two categories [13]: proof-based methods, mainly
theorem proving and state-exploration methods, mainly model checking and equivalence
checking. While theorem proving is a scalable technique that can handle large designs, model
checking suffers from the so-called state-explosion problem which prevents its application to
industrial systems [16]. On the other hand, while model checking is fully automatic, deriving
proofs is a user guided technique that requires a lot of expertise and hence can be tedious
and difficult.

Both techniques do not allow the automatic verification of large systems. So, various
compromises are being explored to combine the strengths of both. They can be summarized
as : (i) tools integration, (ii) adding deduction rules to a state of the art checking tool or
(iii) deeply embedding checking algorithms inside a theorem prover. For the first approach,
we start with two stand-alone tools, a theorem prover and a checking tool, where we link
the latter to the theorem prover using scripting languages to be able to automatically verify
small sub-goals generated by the theorem prover from a large system. The starting point of
the second approach is a state-of-the-art checker to which we add proving rules to hopefully
extend the verification to complete systems. Finally, the third approach, which is the one
we adopted in our work, consists of embedding algorithmic infrastructures inside a theorem
prover resulting in a hybrid system tightly combining checking algorithms and proving fa-
cilities. This approach differs from the first one in the way the verification is performed. In
fact, we do not use an external checking tool, instead we develop state-exploration algorithms
inside the theorem prover.

In this work, we developed a platform of state-exploration algorithms inside the HOL
proof system [10]. Our decision diagram data structure is the Multiway Decision Graphs
(MDGs) [5], which we integrate in HOL as a built-in datatype. The logic underlying MDGs
will be embedded as a theory that provides the tools to specify the verification problem in
the logic supported by the MDGs. The specification will consist of a set of HOL formulae
that can be represented by their correspondent MDGs. Operations over these formulae will
be viewed as MDG operations over their respective graphs. An MDG package will, then, be
used to build the graph representation of HOL formulae allowing the manipulation of graphs
rather than HOL terms. Once available inside the theorem prover, the MDG data structure
and operators can be used to automate parts of the verification problem or even to write
state enumeration algorithms like reachability analysis or model checking.

The organization of this paper is as follows: Section 2 gives some preliminaries on HOL
and MDG. Section 3 reviews some related work. Section 4 describes the embedding of the



logic underlying the MDGs in HOL. Section 5 shows how HOL is linked to the MDG package.
In Section 6, we describe the embedding of the reachability analysis procedure. Section 7 and
8 illustrate the use of the embedding in the implementation of state-exploration algorithms.
In Section 9 we present an application to illustrate our approach. Section 10 concludes the
paper and Section 11 gives some future research directions.

2 Preliminaries

2.1 The HOL Theorem Prover

The HOL system [10] is a general purpose theorem prover based on high-order logic. It
supports both forward and goal-directed backward proofs in a natural-deduction-style cal-
culus. The user interacts with HOL through the functional metalanguage ML. The system
is guided by applying tactics to proof obligations. A tactic corresponds to a high-level proof
step and automatically generates the sequence of elementary inferences necessary to justify
the step.

A notable aspect of the system is that user-defined tactics cannot compromise the sound-
ness of a proof because the basic inferences operate on proof states. The results are safe
and the user can have great confidence since the most primitive rules are used to prove a
theorem. HOL system also has automatic recursive type definitions, structural induction
tools and rewriting tools.

The set of types, type operators, constants, and axioms available in HOL are organized
in the form of theories. There are two built-in primitive theories, bool and ind, for Booleans
and individuals, respectively. Other important theories, which are arranged in a hierarchy,
have been added to axiomatize lists, products, sums, numbers, primitive recursion, and
arithmetic. On top of these, users are allowed to introduce application-dependent theories
by adding relevant types, constants, axioms, and definitions.

Verification tasks in the HOL system can be set in a number of different ways. The
most common one is to prove that an implementation, described structurally, implies or is
equivalent to, a behavioral specification. The application of the HOL system can be found in
hardware verification, reasoning about security, verification of fault-tolerant systems, reason-
ing about real-time systems, etc. It is also used in compiler verification, program refinement
calculus, software verification, modelling concurrency and automata theory. HOL allows the
use of hierarchical verification methodology wherein the modules are divided in sub-modules
and even the sub-modules are divided until the lowest implementation level is reached. Each
sub-module is verified, and its result is used to verify the other sub-modules as needed. To
complete a verification, however, a very deep understanding of the internal structure of the
design is required, as it is a white-box approach.

2.2 Multiway Decision Graphs

Binary Decision Diagrams are used to represent, canonically, Boolean functions. Consider a
BDD G with a root node labelled z and subgraphs G’ and G”. If G’ and G” represent the
formulae P’ and P”, respectively, then G is viewed as representing the formula P:

((5z) APV (z A PY) (1)
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However, it can also be viewed as representing the formula
(@=0)AP)V(&=1)AP" (2)

This suggests a generalization of the notion of decision graph: there is no need for x to
only range over the set {0,1}. Furthermore, there is no need for the labels of the edges
to exhaustively denote all the possible values of x. For example, z could range over {blue,
green, yellow, red}, and there could be, say, only three edges issuing from the root, as in the

following graph:
blu gréen red
G ) n

If G, G', and G" represent the formulae P, P', and P”, respectively, then this graph
could represent the formula

((z = blue) A P) V ((x = green) A P') V ((x = red) A P"). (3)

When z denotes yellow, this formula is simply a false sentence. Finally there is no need for
the edges to be mutually exclusive.

It is then possible to let nodes range over abstract sorts for which there is no enumerable
set, of edges, and to use non-mutually-exclusive first-order terms as edge labels. For example,
if x, u, and v are variables of abstract sort «, f is a function symbol of type o — «, and G,
G', and G" represent P, P', and P”, respectively, then the graph

(@=u) AP)V((z=0v) APV ((z=f(u)AP"). (4)

represents the formula

The above observations lead to the following preliminary definition:

A Multiway Decision Graph (MDG) is a finite directed acyclic graph G where the leaf
nodes are labelled by formulae, the internal nodes are labelled by terms, and the edges
issuing from an internal node N are labelled by terms of the same sort as the label of V.
Such a graph represents a formula defined inductively as follows: (i) if G consists of a single
node labelled by a formula P, then G represents P; (ii) if G has a root node labelled A with
edges labelled By, ..., B, leading to subgraphs G, ..., G}, and if each G} represents a formula
P; then G represents the formula Vi<,<,((A = B;) A B).

The above is of course too general, a set of well-formedness conditions [5] turns MDGs
into canonical representations that can be manipulated by efficient algorithms. More details
on MDG are described in the sections to follow.



3 Related Work

The quest for an efficient combination of theorem proving and model checking has long been
one of the major challenges in the field of formal verification. The work described here
has been strongly influenced by the HolBdd [7, 8] system developed by Gordon. HolBdd
consists of a platform allowing the programming of Binary Decision Diagram, (BDD) [3]
based symbolic algorithms in the Hol98 proof assistant. It provides intimate combinations
of deduction and algorithmic verification. They use a small kernel of ML [11] functions to
convert between BDDs, terms and theorems. Their work was applied to perform reachability
programming in Hol98.

A pioneering work in the area is the one of Joyce and Seger [12] combining HOL and
the symbolic trajectory evaluation (STE) tool VOSS. HOL-VOSS presents a mathematical
link between the specification language of the VOSS system and the specification language
of HOL. A tactic, VOSS_TAC, was implemented as a remote function. It calls the VOSS
system as a child process of the HOL system to check whether an assertion, expressed as a
term of higher-order logic, is true. If this is the case, the assertion will be turned to a HOL
theorem. The early experiment with HOL-VOSS suggested that a lighter theorem prover
component was sufficient, since all that was needed was a way of combining results obtained
from STE. A system based on this idea, called VossProver was developed. As a continuation
of HOL-VOSS, Aagaard et al. [1] developed the Voss-ThmTac system combining the ThmTac
theorem prover with the VOSS system. Its power comes from the very tight integration of
the two provers, using a single language, FL, as both the theorem prover’s meta-language
and its object language.

Rajan et al. [21] described an approach where a BDD based model checker for the proposi-
tional p-calculus has been used as a decision procedure within the framework of the PVS [19]
proof checker. They used p-calculus as a medium for communicating between PVS and the
model checker. It was formalized by using the higher-order logic of PVS. The temporal op-
erators are given the customary fixpoint definitions using the p-calculus. These expressions
were translated to the form required by the model checker. The latter was then used to
verify the subgoals generated within PVS.

Schneider and Hoffmann [22] linked the SMV model checker [17] to HOL using PROS-
PER. They embedded the linear time temporal logic (LTL) in HOL and translated LTL
formulae into equivalent w-Automata, a form that can be reasoned about within SMV. The
translation is completely implemented by means of HOL rules. On successful model check-
ing, the results are returned to HOL and turned to theorems. The deep embedding of the
SMYV specification language in HOL allows LTL specifications to be manipulated in HOL.

In [14], [20] and later [18] a hybrid tool and a methodology tailored to perform hier-
archical hardware verification have been developed by the Hardware Verification Group of
Concordia University. They integrate the HOL theorem prover to the MDG equivalence
checker and later to the MDG model checker. The work is done within the proof system but
using the specification style of the automated verification tool. The HOL-MDG tool is used
to verify that a structural specification of hardware implementation implies its behavioral
specification. They perform the equivalence checking within the MDG tool by applying a
HOL tactic MDG_EQ_TAC. This latter mainly generates the MDG required files and ensures
the interaction with the MDG equivalence checker. If the design is large enough to cause
state explosion, and since the description model is written in a hierarchical way, a tactic



HIER_VERIF_TAC is called to break the design into sub-blocks. The same procedure is
recursively applied if necessary. At any point, the goal proof can be done in HOL. Similarly,
they provide a way to express temporal properties inside the theorem prover and support
the full properties specification language of MDG by introducing abstract datatypes and
uninterpreted functions. A HOL tactic, called MDG_MC_TAC is used to perform model
checking. It supports hierarchical verification and model reduction.

While [14, 18, 20| describe systems integrating two stand-alone tools, namely, HOL and
an external MDG tool, the work described here is not intended to use an external tool to
verify subgoals. Instead MDGs are a built-in datatype of HOL and operators over MDGs are
available in the proof system which allows us to tightly combine HOL deduction and MDG
computations. Besides, state-exploration algorithms will be written inside HOL. Thereafter,
the main difference between our approach and the HOL-MDG tool is that our embedding
provides a secure and general programming infrastructure to allow the users to implement
their own MDG-based verification algorithms inside the HOL system.

The work in [1, 12, 22] use the same approach as the HOL-MDG hybrid tool in the way
they integrate the model checker to the theorem prover. The work in [21] uses the p-calculus
as a medium for communicating between the theorem prover and the model checker. It is
a shallow embedding of stand-alone tools language while ours is a deep embedding of the
decision diagram data structure and its operators are embedded inside the theorem prover.

Obviously, the most related work to ours is that of Gordon [7, 8]. Our work, however,
deals with embedding MDGs rather than BDDs. In fact, while BDDs are widely used in
state-exploration methods, they can only represent Boolean formulae. On the other hand,
MDGs represent a subset of first-order terms allowing the abstract representation of data
and hence raising the level of abstraction.

4 Embedding The MDG Logic in HOL

Multiway Decision Graphs are intended to represent Abstract State Machines (ASM) [5],
an abstract description of state machines based on a many-sorted first order logic with a
distinction between abstract and concrete sorts.

4.1 MDG Sorts

Concrete sorts have enumerations, while abstract sorts do not. An enumeration is a finite
set of constants. This is embedded in HOL as follows:

e Concrete_Sort = Concrete_Sort of string = string list;

It declares a constructor called Concrete_Sort that takes as arguments a sort name and its
enumeration to define a concrete sort. For example, if state is a concrete sort with [ stop,
run | as enumeration, then this is declared in HOL by:

val state = Define ‘state = Concrete_Sort ‘‘state’’ [ stop; run ]1°¢;

e Abstract_Sort = Abstract_Sort of ’a;



To define an abstract sort of type alpha (which means that the sort is actually abstract and
hence can represent any HOL type) we use the Abstract_Sort constructor as follows:

val alpha = Define ‘alpha = Abstract_Sort “alpha”;

To determine whether a sort is concrete or abstract, we use predicates over the sorts con-

“w»

structors called IsConcreteSort and IsAbstractSort, where “” means “don’t care”.

T) /\ (IsConcreteSort _ = F);
T) /\ (IsAbstractSort _ = F);

(IsConcreteSort (Concrete_Sort _ _)
(IsAbstractSort (Abstract_Sort _)

These predicates will be used for instance to determine the sort of a variable or a function
symbol.

The vocabulary consists of concrete and generic constants, variables and function symbols
(also called operators). The distinction between abstract and concrete sorts leads to a
distinction between three kinds of function symbols. Let f be a function symbol of type
a1 X ... X Qy — py1. If oy is an abstract sort then f is an abstract function symbol.
Abstract function symbols are used to denote data operations and are uninterpreted. If
all a;y...a,1 are concrete, f is a concrete function symbol. Concrete function symbols,
and concrete constants as a special case, can always be entirely interpreted and thus be
eliminated; for simplicity, we assume that they are not used. Finally, if o, is concrete
while at least one of «;...qy, is abstract, then we refer to f as a cross-operator.

4.2 MDG Variables

An abstract variable can be either primary or a secondary variable. A primary variable
labels a node in the graph while a secondary variable is an abstract variable occurring in
the argument list of a function symbol. It can also be an abstract variable labelling an
edge in the graph. In our embedding, a primary abstract variable will be declared using the
Abstract_Var constructor while a secondary variable will be declared using the Secondary_Var
constructor.

e Concrete_Var = Concrete_Var of string = Concrete_Sort;

A variable is specified by its name and sort. A concrete variable is a variable of concrete
sort. For example, If z is a variable of sort state, declared above, then this is written in HOL
as follows:

val x = Define ‘x

Concrete_Var ‘‘x’’ state‘;

e Abstract_Var = Abstract_Var of string = Abstract_Sort;

Wy

An abstract variable y with name “y” and sort alpha is declared using:

¢

val y = Define ‘y = Abstract_Var

<

y’’ alpha‘;

e Secondary_Var = Secondary_Var of string = Abstract_Sort;
The Secondary_Var constructor is similar to the Abstract_Var constructor. For example:
val yl1 = Define ‘yl1 = Secondary_Var ‘‘yl1’’ alpha‘.

In this case also, we use some predicates to determine whether a variable is concrete,
abstract or secondary. They are called, respectively, IsConcreteVar, IsAbstractVar and Is-
Secondary Var.



4.3 MDG Constants

A constant can be either an individual (concrete) constant or an abstract generic constant.
The latter is identified by its name and its abstract sort. The individual constants can have
multiple sorts depending on the enumeration of the sort in which they are. In HOL they are
declared as follows:

e Individual_Const = Individual_Const of string;

The enumeration of the concrete sort state is “[stop , run |”. stop and run are two individual
constants that have state as their sort. They must be defined in order to be able to declare
the sort state.

val stop = Define ‘stop = Individual_Const *°

val run = Define ‘run = Individual_Const ‘¢

<.

stop’’‘;
<.
run’’"‘;

e Generic_Const = Generic_Const of string = Abstract_Sort;

Having declared “alpha” as abstract sort, we can declare generic constants of that sort. Say
a is a generic constant of sort alpha.

(4 [4

val a = Define ‘a = Generic_Const ‘‘a’’ alpha‘;
To check whether a constant is an individual constant or an abstract generic constant, we

define two predicates, IsIndividualConstant and IsGenericConstant.

4.4 MDG Functions

MDG functions can be either concrete, abstract or cross-operators. As mentioned before,
concrete functions are not used since they can be eliminated by case splitting. Cross-functions
are those that have at least one abstract argument. But when we focus on terms that are
concretely reduced, all the sub-terms of a compound term (abstract/cross function) have to
be abstract. In addition they are secondary variables.

e Cross_Function = Cross_Function of string = Secondary_Var list
= Concrete_Sort;

In general, a function is identified by its name, the sorts of its arguments and its sort. In this
case, we specify the variables rather than sorts because we focus on cross-terms or abstract
terms instead of the correspondent symbols. If equal is a function that checks if two abstract
variables are equal, then, equal is a cross-function.

val bool = Define ‘bool = Concrete_Sort "bool" ["O";"1"]°‘;

val y1 = Define ‘yl1 = Secondary_Var ‘‘y1’’ alpha‘;
val y2 = Define ‘y2 = Secondary_Var ‘‘y2’’ alpha‘;
val equal = Define ‘equal = Cross_Function "equal" [y1l;y2] bool;

e Abstract_Function=Abstract_Function of string = Secondary_Var list
= Abstract_Sort;



If max is a function that takes two abstract variables as arguments and returns the greater
one, then max is an abstract function.

val max = Define ‘max = Abstract_Function ‘‘max’’ [yl;y2] alpha‘;

The predicates IsAbstractFunction and IsCrossFunction are used to determine the nature of
a compound term.

4.5 MDG Terms

MDG terms are either individual constants, generic constants, concrete or abstract variables,
cross-operators or abstract function symbols. We provide a constructor called MDG_Term
that is used every time a new term is declared. The single constructor is used so that terms
will have the same type and hence can be used in equalities. In fact if = is declared using
the Concrete_Var constructor and stop using the Individual_Const constructor, we will not
be able to write an equation of the form x = stop due to type mismatching. However, such
an equation is possible if both are declared using the same constructor.

Hol_datatype ‘MDG_Term =
Individual_Const of string => Concrete_Sort

| Generic_Const of string => ’a Abstract_Sort

| Concrete_Var of string => Concrete_Sort

| Abstract_Var of string => ’a Abstract_Sort

| Cross_Function of string=>(’a Secondary_Var)list=> Concrete_Sort
|

Abstract_Function of string=>(’a Secondary_Var)list=>’a Abstract_Sort°

4.6 Well-formed MDG Terms

For BDDs to be canonical, they have to be reduced and ordered. Similarly, MDG require
certain well-formedness conditions to represent canonically the MDG terms. The set of well-
formed terms that can be represented canonically by the MDGs is called the set of Directed
Formulae (DF). Given two disjoint sets of variables U and V', a DF of type U — V is a
formula in disjunctive normal form (DNF) such that

1. Each disjunct is a conjunction of equations of the form:
- A = a, where A is a cross-term of concrete sort a containing no variables other than
elements of U, and a is an individual constant in the enumeration of «, or
- u = a, where u € U is a variable of concrete sort o and a is an individual constant
in the enumeration of «, or
- v = a, where v € V is a variable of concrete sort o and a is an individual constant in
the enumeration of «, or
-v = A, where v € V is a variable of abstract sort a and A is a term of type «
containing no variables other than elements of U;

2. In each disjunct, the left hand sides of the equations are pairwise distinct; and
3. In each disjunct, every variable v € V should appear as the left hand side of an equation

v=A.
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Conditions 2 and 3 must be respected by the user when specifying the verification problem.
The condition 3 is less stringent than it seems. In practice, one can introduce an additional
dependant variable u and add an equation v = u to a disjunct where an abstract v is missing.

For example, condition 1 is embedded in HOL and checked using the function Well_formedTerm
that, recursively, calls Well_formedE() to check the well-formedness of an equation.

fun Well_formedEQ eq =
((IsConcreteVar lhs) /\ (IsConcreteConstant rhs)) \/
((IsCrossFunction 1lhs) /\ (IsConcreteConstant rhs)) \/
((IsAbstractVar lhs ) /\ (IsAbstractFunction rhs)) \/
((IsAbstractVar lhs ) /\ (IsAbstractVar rhs)) \/
((IsAbstractVar 1lhs ) /\ (IsGenericC rhs)) \/
(IsBool 1hs);

5 Linking HOL to The MDG Package

The MDG logic is embedded in HOL to make it possible to specify a verification problem in
HOL in terms of formulae that can be represented by canonical MDGs. The next step would
be to provide the tools to build and manipulate the graph representations of these formulae.
This platform will consist of ML functions that call an MDG package! as an external process.
The package is invoked using a script file, in which, the different manipulations to be done in
MDG are specified. For example, to perform the conjunction of a list of well-formed Terms,
we use the ML function Conj. This function calls an intermediate function to write the
script file corresponding to a conjunction, then calls the specific MDG functions to perform
the operation and eventually return the result to HOL. The ML functions pass the script file
to the MDG package using the system function [11]. The latter computes the result (MDG
graph) and then writes it in a file “mdghol.ch”. Using the function ReadMdgQOutput, the
result is retrieved.

5.1 Constructing MDGs in HOL

To construct the graph representation of a HOL term we use the function termToMdyg.
Well-formedness conditions are first checked using the predicate Well formedTerm. It either
raises an exception when this is not the case or begins gathering the information to call the
package.

The first step is to determine the sorts of all the sub-terms using the function ToMdgSorts.
If a sub-term is of concrete sort Sort, it is declared as “concrete_sort(Sort, Enum)”’, where
Enum is the enumeration of Sort. When an abstract sort, say alpha, is encountered, then
it is declared by “abs_sort(alpha)’. For example, if a term A includes a concrete variable of
sort bool and an abstract variable of sort alpha, then ToMdgSorts returns the following list:

[“conc_sort(bool,[0,1]).” )" abs_sort(alpha).”].

The second step is to declare all the variables, functions and generic constants used in
the term. A variable is declared by “signal(label,sort)’. A generic constant is declared

'We provide a lifted version of the MDG package with which we are able to call internal MDG functions.
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by “gen_const(label,sort)’. When a function is encountered, both the secondary variables
and the function symbol must be declared. The function symbol is declared as “func-
tion(f, [sorts],sort)”. sorts are the sorts of the secondary variables, arguments to the function
symbol f. sort is its target sort.

Thereafter, termToMdg writes the variables order list in the script file and then calls the
function header responsible for retrieving the list of the LHSs and RHSs of the equations in
the term which will be the parameters of the mdg function. The latter is then called and
the result is retrieved using the readMDGOutput function. Instead of returning the whole
graph structure, we return only its ID which will be used to map the term to its MDG
representation.

5.2 Embedding MDG Basic Operators

The MDG operators are embedded, as well, to allow the manipulation of graphs rather than
terms. we show below the basic MDG operators.

- Cony : performs the conjunction of a set of graphs;
- Dusj : performs the disjunction of a set of graphs;

- Relp (Relational Product) : used for image computation. It takes the conjunction of
a collection of MDGs, having pairwise disjoint sets of abstract primary variables, and,
existentially quantifies with respect to a set of variables, either abstract or concrete,
that have primary occurrences in at least one of the graphs. In addition, it can rename
some of the remaining primary variables according to a renaming substitution;

- PbyS (Pruning By Subsumption) : used to approximate the set difference operation.
Informally, it removes all the paths of a graph P from another graph Q.

6 Reachability Analysis in HOL

The reachability analysis is embedded using the MDG operators interfaced to HOL. We
show here the different steps to compute the set of the reachable states of an abstract state
machine.

6.1 Computing Next States

Let I, B and R be, respectively, a set of inputs, a set of initial states of a machine and
its transition relation. The ML function ComputeNext representing the set of next states,
computed from B with respect to R, is defined by:

ComputeNext(G; G Gr) = RelP(G; G Gr Q n).

where, G;,Gg and Gy are the MDG representations for I, B and R, respectively. (@ is
the set of input and state variables over which the MDG is quantified. 7 is the renaming
substitution. B can be the set of initial states as well as the set of states already reached by
the machine.

12



6.2 Computing Outputs

The set of outputs corresponding to a set of initial states and inputs, with respect to an
output relation O, is represented by the ML function ComputeQutputs below, where G is
the MDG representation of O.

ComputeOutputs(G; Gg Go) = RelP(Gr G Go Q) “.

For every state of the machine, and a set of data inputs, corresponds a set of output values.
These will be used to check an invariant.

6.3 Computing Frontier Set

The frontier set is the set of newly visited states. If V' represents the set of states already
visited, V,, = ComputeNezt(Gr V Gg) is the set of next states reached from V. In this case
the frontier set is V;, \ V which is represented by the ML function ComputeFrontier.

ComputeFrontier(V,, V') = PbyS(V, V).

The frontier set is used to check if all the states reachable by the machine are already reached.
If this is the case (the frontier set is empty), then the reachability analysis terminates and
the set of reachable states is returned. If the frontier set is not empty, then new states
were visited during the last iteration. In this case, the analysis continues until reaching the
fixpoint (set).

6.4 Computing Reachable States

The set of reachable states is the set of all the states of a machine, starting from an initial
state, for a certain set of inputs. For abstract state machines, the state space can be infinite.
Hence, the set of reachable states may not exist?. Using the solutions proposed in [2], the set
of reachable states is computed and represented by the function, ComputeReachable, defined
by3:

ComputeReachable Gy Gg G =
K=0,5S=Gpg
loop
K=K+1
N = ComputeNext GIK GB GR
if ComputeFrontier N S = F' then return success
Gp = ComputeFrontier N S
S=Disj N S
end loop
end;

ComputeReachable computes the set of reachable states S of a state machine described by its
transition relation, starting from an initial state and for a certain data input. S is initialized

2This is called the non-termination problem which was tackled in [2] using various heuristics.
3For the sake of clarity, this is just a simplified version of the algorithm
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to B (the initial state), and the sets of next-states are computed until reaching a fixpoint
characterized by an empty frontier set.

7 Invariant and Model Checking in HOL

7.1 Invariant Checking

Invariant checking is a direct application of the reachability analysis algorithm. It consists
of checking that a property or an invariant holds on the outputs of a state machine in every
reachable state. First, the invariant is checked in the initial state. This is done by computing
the outputs corresponding to that state and then using the MDG operators to check that
these outputs satisfy the invariant. After that, next-states are computed and for every state
reached, the invariant is checked on the outputs. In a given iteration, if the outputs of the
machine satisfy the invariant, then the procedure continues for the next-state. If, on the
other hand, the invariant does not hold, the analysis terminates and a failure is reported.
A counterexample can be generated to trace the error. The invariant checking algorithm is
implemented in HOL as an ML function InvariantChecking which takes as arguments:

e T%: the transition relation specified as a list of directed formulae;

e Ogp: the output relation specified by a directed formula;

Iy: the initial state specified by a directed formula;

Inputs: the input variables list;

States: the state variables list;

NzStates: the next-state variables list corresponding to States.
e Inv: the invariant to be checked specified as a directed formula.

The function InvariantChecking, first, builds the graphs of the transition relation, output re-
lation, the initial state and the invariant using the function termToMdg. Then, generates the
input graph. After that, the outputs are computed using NewQutputs and then the invariant
is checked. If the invariant holds, the next-state variables are computed using ComputeNext.
Checking the frontier set will cause the termination of the analysis or another iteration.

InvariantChecking Tr Og In Inputs States NxStates Inv =
// builds the MDG representations
// generates the renaming substitution function
K:O,S:G[N,R:G]N
loop
K=K+1
// generates the input graph Gk
Og = ComputeOutputs Gor R Gk
if (PbyS Os Gr,y) # F return failure
N = ComputeNext GIK R GTR
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if ComputeFrontier N S = F' then return success
R = ComputeFrontier N S
S=Disj N S
end loop
end InvariantChecking;

7.2 Model Checking

Similarly, MDG temporal operators can be implemented in HOL for model checking. In
the following we present how the operator AF on a first-order property formula P [23] is
embedded.

Check_AF Ty Iy Inputs States NzStates P =
// builds the MDG representations Grg, Gn, Gp
// generates the renaming substitution function
K=0,YX=F,C=Gy
// ¥ contains sets of states not satisfying P
loop
@ = ComputeFrontier C' Gp
// removes states satisfying P
if ) = F then return success
if ComputeFrontier ¥ () # X then return failure

¥ =Disj ¥ @

K=K-+1

C = ComputeNext G[N Q GTR
end loop

end Check_AF;

8 MDG as a Decision Procedure

The multiway decision graphs are a canonical representation of the directed formulae. Two
directed formulae are equivalent if and only if they are represented by the same graph for a
fixed order. This property can be used to prove automatically the equivalence of HOL terms
or to check that a formula is a tautology in case it is represented by the MDG true.

8.1 Combinational Equivalence Checking

We provide here a decision procedure that enables us to verify automatically the equivalence
of a certain subset of first-order HOL terms. This is performed using the ML function
EquivCheck.

fun EquivCheck order t1 t2 =
let val sl = termToMdg order ti
val s2 = termToMdg order t2
in
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Figure 1: The Island Tunnel Controller

(s1=s2)
end;

Using FquivCheck we write an oracle that builds a theorem stating the equivalence between
terms. The theorem is not derived from axioms and inference rules which will endanger the
security provided by the HOL reasoning style. Theorems created using the oracle are tagged
so that an error can be traced whenever it occurs. This kind of decision procedures are
widely used to introduce some automation to the theorem provers.

8.2 Tautology Checking

A formula is a tautology if it is represented by the MDG 7. This makes the check very
easy for the subset we consider which are the directed formulae. We use the ML function
Tautology.

fun Tautology order t =
let val s = termToMdg order t
in
isTrue s
end;

9 Application

In this section we illustrate our embedding with the case study of the Island Tunnel Con-
troller. The ITC was originally introduced by Fisler and Johnson [6]. It controls the vehicles
traffic in a one-lane tunnel connecting the mainland to a small island, as shown in Figure 1(a).

The ITC is specified using three communicating controllers and two counters as shown
in Figure 1(b). We list below some examples properties that we verified.

16



9.1 Properties
9.1.1 Property 1

Our ITC model must respect the safety property stating that the lights on the island side
and the mainland side cannot be green at the same time. This is specified by the following
invariant.

val P1 = ( (igl
( (igl
( (igl

true) /\ (mgl=false) ) \/
false) /\ (mgl=true) ) \/
false) /\ (mgl=false) );

9.1.2 Property 2

If the light in the mainland side is green, it stays green as long as the tunnel is not requested
from the island. This is a faulty behavior since the number of allowed cars on the island side
is limited. Checking this property returns false and a counter-example can be generated.

val P2
val initial

( (mgl=true) );
( (ms=green) /\ (my=false) );

9.1.3 Property 3

This property corrects property 2 by adding the island capacity constraint. If the light on
the mainland side is green, it stays green as long as the tunnel is not requested from the
island and the number of allowed cars (ic), which is an abstract variable, is not exceeded.

val P3
val initial

( (mgl=true) );
( (ms=green) /\ (my=false) /\ (lessn(ic)=true) );

9.2 Experimental Results

To verify the mentioned properties, we used the invariant checking procedure. For each
property we used only the transition relations and the variables involved in the property
(specified manually). This reduces the verification problem and promotes hierarchical verifi-
cation. In fact, every module of the design can be treated separately. Thus, enhancing a lot
the performance of the verification task by reducing the CPU time and the memory usage
compared to verifying the whole system. The CPU time represents the system time to per-
form the reachability analysis and also includes the time to translate the HOL specification
to MDG files. The verification results, run on an Ultra2 Sun workstation with 296Mhz CPU
and 768MB memory, are reported in Table 1. A “*” beside a property means that this latter
failed in the invariant checking.

10 Conclusions and Future Work

Expertise and user guidance need is a major problem for applying theorem proving on, even,
the most trivial systems. On the other hand, state-exploration techniques suffer from the
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Property | CPU, | Memory v gy |

Propertyl || 101.9 0.220
*Property2 | 52.8 0.013
Property3 54.9 0.077
Property4 44.3 0.020
Propertyb 72.0 0.058
Property6 44.8 0.035
Property7 63.9 0.039
Property8 64.2 0.039
Property9 45.4 0.035

Table 1: Property Checking Results using InvariantChecking

state space explosion problem, which limits their applications to industrial designs. An
alternative to these techniques would be to combine the advantages of both in a hybrid
approach that will lead to a hopefully, automatic or semi-automatic technique that can
handle large designs. In this paper we proposed an approach that allows certain verification
problems, specified in the HOL theorem prover, to be verified totally or in part using state-
exploration algorithms. Our approach consists of an infrastructure of decision diagrams data
structure and operators made available in HOL, which will allow the user to develop his own
state-exploration algorithms in the HOL proof system. The data structure we considered in
our work is the multiway decision graphs (MDG). MDG is an extension to the well-known
binary decision diagrams in that it eliminates the state explosion problem introduced by the
datapath.

The MDGs are embedded in HOL as a built-in datatype. Operations over the MDGs
are interfaced to HOL functions allowing the manipulation of graphs rather then their cor-
respondent HOL terms. Using the embedding of the logic underlying the multiway decision
graphs in HOL, the verification problem is specified as a set of well-formed directed formulae
that can be represented canonically by well-formed MDGs. This is made possible thanks to
the lifted MDG package that we provided and interfaced to HOL resulting in a platform of
functions to represent terms by their correspondent MDGs and manipulate them.

The platform, we provide, allowed us to develop state-exploration algorithms inside HOL
like the reachability analysis, model checking and the invariant checking procedures. The
transition and output relations are written as HOL terms. They are translated to their
corresponding MDGs and then reachability analysis is performed. The state machines we
consider are the abstract state machines which raises the level of abstraction of the prob-
lem specification. We also developed decision procedures based on the multiway decision
graphs allowing the equivalence checking and tautology checking of a certain subset of HOL
terms automatically. Finally we illustrated our approach by considering the Island Tunnel
Controller example for which we verified a number of safety properties.

The embedding of the MDGs in HOL opens the way to the development of a wide range
of new verification applications combining the advantages of state-exploration techniques
and theorem proving. There are many opportunities for further work on this embedding and
its use for formal verification. For instance, MDG canonicity can also be used in HOL for
term simplification. In fact, when built, MDGs are reduced by construction. Retrieving the
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term represented by this graph gives a simplification of the original term. The Embedding
can be used for the formal proof of the soundness of the MDG algorithms. A similar work
was done in [4] to verify a SPIN model checking algorithm. Finally, the embedding can
be enhanced by using the LCF style. In this case, an MDG representation for a HOL term
cannot be constructed by using the termToMdg function, instead, it is derived from inference
rules, corresponding to MDG operators, and the trivial MDGs representing simple equations.
This restricts the scope of soundness to single operators which are easy to get right [9].
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