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Abstract

Lebesgue integration is a fundamental concept in many mathematical theories, such as real
analysis, probability and information theories. Reported higher-order-logic formalizations of
the Lebesgue integral either do not include, or have a limited support for the Borel algebra,
which is the canonical sigma algebra used on any metric space over which the Lebesgue integral
is defined. In this report, we overcome this limitation by presenting a formalization of the
Borel sigma algebra that can be used on any metric space, such as the complex numbers or
the n-dimensional Euclidean space. Building on top of this framework, we have been able
to prove some key Lebesgue integral properties, like its linearity and monotone convergence.
Furthermore, we present the formalization of the “almost everywhere” relation and prove that
the Lebesgue integral does not distinguish between functions which differ on a null set as well
as other important results based on this concept. As applications, we present the verification

of Markov and Chebyshev inequalities and the Weak Law of Large Numbers theorem.
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1 Introduction

Formal modeling of physical systems or devices is not a very straightforward task due
to the presence of many continuous and unpredictable components. For example, em-
bedded systems are operating in a concrete physical environment with continuous dy-
namics; cryptography heavily relies upon information theoretic concepts; a broad area
of chemistry and biology (and biophysics) worries about stochastic effects and phe-
nomena, etc. Formal models of computation have in the past mostly been considered
independent of the continuous or unpredictable world. In classical formal verification
efforts, hardware and software are viewed as discrete models of computation. But due
to the dire need of accurate analysis in safety-critical domains, there is a growing trend
towards incorporating continuous and unpredictable physical realities in the formal
models of physical systems.

Lebesgue integration [1] is a fundamental concept in many mathematical theories,
such as real analysis [6], probability [7] and information, which are widely used to
model and reason about the continuous and unpredictable components of physical sys-
tems. The reasons for its extensive usage, compared to the commonly known Riemann
integral, include the ability to handle a broader class of functions, which are defined
over more general types than the real line, and its better behavior when it comes to
interchanging limits and integrals. In order to facilitate the formal analysis of physi-
cal systems, two higher-order-logic formalizations of the Lebesgue integral have been
recently reported [3, 17]. However, they either do not include, or have a very limited
support for the Borel algebra [2], which is a sigma algebra generated by the open sets.
These deficiencies restrict the formal reasoning about some very useful Lebesgue in-
tegral properties, which in turn limits the scope of formally analyzing physical systems.

In this report, we present a generalized formalization of the Lebesgue integral in
order to exploit its full potential for the formal analysis of other systems. We first
formalize the Borel algebra that provides a unified framework to prove the Lebesgue
integral properties and measurability theorems on any metric space, such as the real
numbers, the complex numbers or the n-dimensional Euclidean space. Building on top
of this formalization, we prove some of the key Lebesgue integral properties as well as
its convergence theorems. Similarly, we formalize the notion of “almost everywhere” [1]
and prove that the Lebesgue integral does not distinguish between functions which dif-
fer on a null set along with some other useful results based on the “almost everywhere”
relation. In order to illustrate the practical effectiveness of our work, we utilize it to
verify the Chebyshev and Markov inequalities and the Weak Law of Large Numbers
(WLLN) [16], which are widely used properties in probability and information theories.

We used the HOL theorem prover for the above mentioned formalization and ver-
ification tasks. The main motivation behind this choice was to build upon existing

formalizations of measure [11] and Lebesgue integration [3] theories.

The rest of the report is organized as follows: Section 2 provides a review of related



work. Some measure theory and Lebesgue integration preliminaries are given in Sec-
tion 3. In Section 4, we give an overview of main definitions of the measure theory [2].
Section 4.2 presents our formalization of the Borel theory, which is used in Section 5
to prove the main properties of the Lebesgue integral and its convergence theorems.
In Section 6, we use our formalization for verifying some important theorems from the
theory of probability. Finally, Section 7 concludes the report and provides hints to
future work.

2 Related Work

Coble [3] generalized the measure theory formalization by Hurd [11] and built on it to
formalize the Lebesgue integration theory. He proved some properties of the Lebesgue
integral but only for the class of positive simple functions. Besides, multiple theorems
in Coble’s work have the assumption that every set is measurable which is not correct
in most cases of interest. We propose to prove the Lebesgue integral properties and
convergence theorems for arbitrary functions by providing a formalization of the Borel
sigma algebra, which has also been used to overcome the assumption of Cobles’s work.

Based on the work of Hurd [11], Richter [17] also formalized the measure theory
in Isabelle/HOL, where he restricts the measure spaces that can be constructed. In
Richter’s formalization, a measure space is the pair (A, u1); A is a set of subsets of X,
called the set of measurable sets and p is a measure function. The space is implicitly
the universal set of the appropriate type. This approach does not allow to construct a
measure space where the space is not the universal set. The only way to apply this ap-
proach for an arbitrary space X is to define a new type for the elements of X, redefine
operations on this set and prove properties of these operations. This requires consid-
erable effort that needs to be done for every space of interest. The work we propose in
this report is based on the formalization of Coble [3] where we define a measure space
as a triplet (X, A, u); the set X being the space.

Richter [17] defined the Borel sets as being generated by the intervals. In the for-
malization we propose in this report, the Borel sigma algebra is generated by the open
sets and is more general as it can be applied not only to the real numbers but to
any metric space such as the complex numbers or R", the n-dimensional Euclidean
space. It provides a unified framework to prove the measurability theorems in these
spaces. Besides, our formalization allows us to prove that any continuous function is
measurable which is an important result to prove the measurability of a large class of
functions, in particular, trigonometric and exponential functions. To prove this result
we also formalize in this report key concepts of topology [15] in HOL.

In his work in topology in the PVS theorem prover, Lester [12] provided formal-
izations for measure and integration theories but did not prove the properties of the
Lebesgue integral nor its convergence theorems such as the Lebesgue Monotone Con-
vergence.



3 Preliminaries

3.1 Measure Theory

A measure is a way to assign a number to a set, interpreted as its size, a generaliza-
tion of the concepts of length, area, volume, etc. Two important examples are the
Lebesgue measure on a Euclidean space and the probability measure on a Borel space.
The former assigns the conventional length, area and volume of Euclidean geometry to
suitable subsets of R™, n = 1,2, 3 and the latter assigns a probability to an event and
satisfies the condition that the measure of the sample space is equal to 1.

A measure function is defined as a function that assigns a non-negative real number
to all the sets over which it is defined. It must also satisfy the countable additivity
condition. This condition states that the measure of the union of a collection of disjoint
sets is equal to the sum of their measures.

After the discovery of paradoxes in the naive set theory, various axiomatic systems
were proposed, the best known of which is the Zermelo-Fraenkel set theory [5] with
the famous Axiom of Choice (ZFC). This set theory is the most common foundation of
mathematics down to the present day. The Axiom of Choice, however, implies the ex-
istence of counter-intuitive sets and gives rise to paradoxes of its own, in particular, the
Banach-Tarski paradox [18]. The solution to this is to tag some sets as non-measurable
and to define the measure only on a class of subsets called the measurable sets.

As a consequence of the countable additivity condition, the measurable sets are
required to form a sigma-algebra, meaning that unions, intersections and complements
of sequences of measurable sets are measurable.

Definition 1. (Sigma Algebra)

Let A be a collection of subsets (or subset class) of a space X. A defines a sigma
algebra on X iff A contains the empty set (), and is closed under countable unions and
complementation within the space X.

The smallest sigma algebra on a space X is A = {0, X} and the largest is its
powerset, P(X), the set of all subsets of X. The pair (X, .A) is called a o-field or a
measurable space, A is the set of measurable sets.

For any collection G of subsets of X we can construct (X, G), the smallest sigma
algebra on X containing G. o(X, ) is called the sigma algebra on X generated by G.
There is at least one sigma algebra on X containing GG, namely the power set of X.
o(X,G) is the intersection of all those sigma algebras.

Definition 2. (Measure Space)
A triplet (X, A, p) is a measure space iff (X, A) is a measurable space and p: A — R
is a non-negative and countably additive measure function.

A probability space (2,4, p) is a measure space satisfying p(Q2) = 1.



There is a special class of functions, called measurable functions, that are structure
preserving, in the sense that the inverse image of each measurable set is also measurable.
This is analogous to continuous functions in metric spaces where the inverse image of
an open set is open.

Definition 3. (Measurable Functions)

Let (X1, A1) and (X2, A2) be two measurable spaces. A function f: X1 — Xy is called
measurable with respect to (A1, Aa) (or (A1, A2) measurable) iff f~1(A) € Ay for all
Ac .Ag.

In this definition, we did not specify any structure on the measurable spaces. If we
consider a function f that takes its values on a metric space, most commonly the set of
real numbers or complex numbers, then the Borel sigma algebra on that space is used.

Definition 4. (Borel Sigma Algebra)
The Borel sigma algebra on a space X 1s the smallest sigma algebra generated by the
open sets of X.

An important example, especially in the theory of probability, is the Borel sigma algebra
on R, denoted by B(R).

3.2 Lebesgue Integration

Lebesgue integration [1] is a fundamental concept in many mathematical theories, such
as real analysis [6], probability [7] and information, which are widely used to model and
reason about the continuous and unpredictable components of physical systems. The
reasons for its extensive usage, compared to the commonly known Riemann integral,
include the ability to handle a broader class of functions, which are defined over more
general types than the real line, and its better behavior when it comes to interchanging
limits and integrals, which is of prime importance, for instance, in the study of Fourier
series. Similar to the way in which step functions are used in the development of the
Riemann integral, the Lebesgue integral makes use of a special class of functions called
positive simple functions. They are measurable functions taking finitely many values.
In other words, a positive simple function g is represented by the triple (s,a,a) as
a finite linear combination of indicator functions of measurable sets (a;) that form a
partition of the space X.

Vo€ X, g(z) = Y aila(r) >0 (1)
1€S

The Lebesgue integral is first defined for those functions then extended to non-negative
functions and finally to arbitrary functions.

Definition 5. Let (X, A, ) be a measure space. The integral of the positive simple
function g with respect to the measure p is defined as

/X gdu=3" aua) @)

1ES



While the choice of ((«;), (a;),s) to represent g is not unique, the integral as defined
above is independent of that choice.

Definition 6. Let (X, A, 1) be a measure space. The integral of a non-negative mea-
surable function f is defined as

/ fdu = sup{/ gdu | g < f and g positive simple function} (3)
X X

Finally, the integral for arbitrary measurable functions is given in the following defini-
tion.

Definition 7. Let (X, A, 1) be a measure space. The integral of an arbitrary measur-
able function f is defined as

/deuz/Xﬁdu—/Xf_du (4)

where 1 and f~ are the non-negative functions defined by f*(x) = max(f(x),0) and
[~ (x) = max(—f(x),0).
We focus on Lebesgue integrable functions for which the integral exists and is finite.

Definition 8. (Integrable Functions)
Let (X, A, i) be a measure space, a measurable function f is integrable iff me dp < oo

or equivalently iff [ fdp < oo and [\ f~ dp < oo

The Lebesgue integral shares some key properties with the Reimann integral, such as,
the linearity and monotonicity properties. Let f and g be integrable functions and
¢ € R then

-V, 0< f(x) =0< fod,u

-V, f(2) <gl@) = [ fdu < [ygdu

- Jeddu=c [ fdu

- Sy Hgdn= [ fdut [ygdu

- A and B disjoint sets = fAude,u = fAfdu—f—fodu

4 Measure Theory

Parts of the measure theory were formalized in [11] and [3]. We make use of these
formalizations in our development and extend it by formalizing the Borel sigma algebra
and Borel measurable functions. This will allow us to define and manipulate random
variables defined on any topological space.

4.1 Basic Definitions

A subset class is collection of subsets of a space X and is formalized as

F VX A. subset_class X A =Vs. s € A= s CX

7



A set S is countable if its elements can be counted one at a time, or in other words, if
every element of the set can be associated with a natural number, i.e., there exists a
surjective function f: N — S.

F Vs. countable s = df. Vx. x € s = dn. f n = x

A subset class of a space X defines a sigma algebra on X iff it contains the empty set
(), and is closed under countable unions and complementation within the space X.

F VX A. sigma_algebra (X,A) =
subset_class X A A {} € A A
(Vs. s € A= X\s € &) A
Vc. countable ¢ A ¢ C A = Uc € A

where X\s denotes the complement of s within X, [ ¢ the union of all elements of c.
We define the space and subsets functions such that

= VX A. space (X,A) =X
F VX A. subsets (X,A) = A

The sigma algebra on X generated by a collection of subsets G is formalized in HOL
as

F VX G. sigma X G = (X,ﬂ{s | G C s A sigma_algebra (X,s)})

where (1) ¢ denotes the intersection of all elements of c.
A triplet (X, A, ) is a measure space iff (X,.A) is a measurable space and p: A — R
is a non-negative and countably additive measure function.

F VX A mu. measure_space (X,A,mu) =
sigma_algebra (X,A) A positive (X,A,mu) A
countably_additive (X,A,mu)

A measure function is countably additive when the measure of a countable union of
pairwise disjoint measurable sets is the sum of their respective measures.

F VX A mu. countably_additive (X,A,mu) =
VE. £ € (UNIV — A) A
(Vm n. m # n = DISJOINT (f m) (f n)) A
J (IMAGE f UNIV) € A =
mu o f sums mu (| J(IMAGE f UNIV))

Similarly, we define the functions m_space, measurable_sets and measure such that

F VX A mu. m_space (X,A,mu) = X
F VX A mu. measurable_sets (X,A,mu) = A
F VX A mu. measure (X,A,mu) = mu

Measurable functions satisfy the condition that the inverse image of a measurable set
is also measurable. The HOL formalization is the following.



F Va b f. f € measurable a b =
sigma_algebra a A sigma_algebra b A f € (space a — space b) A
Vs. s € subsets b = PREIMAGE f s N space a € subsets a

Notice that unlike Definition 3, the inverse image in the formalization (PREIMAGE f s)
needs to be intersected with space a because the functions in HOL are total, meaning
that they map every value of a certain HOL type (even those outside space a) to a
value of an appropriate type which may or may not be in space b. In other words, writ-
ing in HOL that f is a function from space ato space b (f € (space a -> space b)),
does not exclude values outside space a and hence the intersection is needed.

In this definition, we did not specify any structure on the measurable spaces. If we
consider a function f that takes its values on a metric space, most commonly the set of
real numbers or complex numbers, then the Borel sigma algebra on that space is used.
In the following, we present our formalization of the Borel sigma algebra in HOL.

4.2 Borel Sigma Algebra

Working with the Borel sigma algebra makes the set of measurable functions a vector
space. It also allows us to prove various properties of the measurable functions neces-
sary for the formalization of the Lebesgue integral and its properties in HOL.

To formalize as well as prove in HOL various properties of the Borel sigma algebra on
R, we need to formalize some topology concepts of R and also provide a formalization
of the set of rational numbers Q. A theory for the rational numbers was developed
in HOL but does not include the theorems that we need and is in fact unusable for
our development because we need to work on rational numbers as a subset of the real
numbers and not of a different HOL type. Some concepts of the topology of R were
formalized in HOL by Harrison [8] but his formalization does not use the set theory
and also lacks some of the important theorems that we need in our development.
Harrison, later, developed an extensive topology theory [9] in HOL-Light. Details of
our formalization of the topology of R as well as a theory of rational numbers can be
found in [14].
The Borel sigma algebra on a space X is the smallest sigma algebra generated by the
open sets of X.

- borel X = sigma X (open_sets X)

An important example, especially in the theory of probability, is the Borel sigma algebra
on R, denoted by B(R) which we simply call Borel in the sequel.

F Borel = sigma UNIV (open_sets UNIV)

where UNIV is the universal set of real numbers R. Details about our formalization of
the open sets and other aspects of the topology of the real line can be found in [14].

B(IR) is, by definition, generated by the open sets of R. In the following theorem we
prove that it is also generated by the open intervals ((c,d) for ¢,d € R). This was

9



actually used in many textbooks as a starting definition for the Borel sigma algebra
on R. While we will prove that the two definitions are equivalent in the case of the
real line, our formalization is vastly more general and can be used for any metric space
such as the complex numbers or R", the n-dimensional Euclidian space. We show that
B(R) is also generated by any of the following classes of intervals: (—oo,c), [¢, +00),
(¢, +00), (—o0, ], [¢,d), (¢,d], [¢,d], where ¢,d € R.

Theorem 1. B(R) is generated by the open intervals (¢, d) where ¢,d € R
I Borel = sigma UNIV (open_intervals_set)

where the open intervals set is formalized as

I open_intervals_set =
{{Ixla<xAx<b} | acUNIV A b € UNIV}

Proof. The sigma algebra generated by the open intervals, oj, is by definition the
intersection of all sigma algebras containing the open intervals. B(IR) is one of them
because the open intervals are open sets (Theorem 20). Hence, o7 C B(R). Now let
A € B(R), then A is an open set and since every open set on the real line is the union of
a countable set of open intervals (Theorem 22), A € o;. Consequently B(R) = o7. To
prove that B(R) is also generated by the other classes of intervals, it suffices to prove
that any interval ]a,b[ is contained in the sigma algebra corresponding to each class.
For the case of the intervals of type [c, d[, this follows from the following equation:

1
Ja, o = | la+ g5 bl (5)
n
For the open rays | — 0o, ¢ [, the result follows from the fact that [a, b[ can be written
as the difference of two rays, [a,b[ =] —o00,b[\ ] —00,a |.

In a similar manner, we prove in HOL that all mentioned classes of intervals generate
the Borel sigma algebra on R.

Another useful result, asserts that the singleton sets are measurable sets of B(R).

Theorem 2. Vc e R, {c} € B(R)
F Ve. {c} € subsets Borel

The proof of this theorem follows from the fact that a sigma algebra is closed under
countable intersection and the equation

VeeR {c} :ﬂ[c—Qin,Hi[ (6)

n

10



4.3 Real-Valued Measurable Functions

Recall that in order to check if a function f is measurable with respect to (A1, Asg), it is
necessary to check that for any A € A, its inverse image f~!(A) € A;. The following
theorem states that, for real-valued functions, it suffices to perform the check on the
open rays ((—oo,¢), ¢ € R).

Theorem 3. Let (X, A) be a measurable space. A function f: X — R is measurable
with respect to (A, B(R)) iff Ve € R, f~1((—o0,c)) € A

- Vf a.
f € measurable a Borel =
sigma_algebra a A f € (space a — UNIV) A
Ve. {x | £ x < c} N space a € subsets a

Proof. Suppose that f is measurable with respect to (A, B(R)), we showed in the
previous section that Ve € R, ] — oo, c[€ B(R). Since f is measurable then f~1(] —
00, c[) € A. Now suppose that Ve € R, f~1(] — 0o, c[) € A, we need to prove VA €
B(R), f~1(A) € A. This follows from Theorem 22 stating that A is a countable union of
open intervals and the equalities f (U, cny An) = U,en /1 (An) and f71(] —o0,¢]) =

UnEN fﬁl(] - n, CD

In a similar manner, we prove in HOL that f is measurable with respect to (A, B(R))
iff Ve, d € R the inverse image of any of the following classes of intervals is an element
of A: | — o0, ], [¢, 400, |e, +o0[, | — 00, ], [¢,d], |c,d], [c,d].

Every constant real function on a space X is measurable. The indicator function
on a set A is measurable iff A is measurable.
In the following, we prove in HOL various properties of the real-valued measurable
functions.

Theorem 4. If f and g are (A, B(R)) measurable and ¢ € R then cf, |f|, ", f+ 9,
f*g and max(f,g) are (A, B(R)) measurable.

- Va f gh c. sigma_algebra a A f € measurable a Borel A
g € measurable a Borel =
((\x. ¢ * £ x) € measurable a Borel) A
((\x. abs(f x)) € measurable a Borel) A
((\x. f x pow n) € measurable a Borel) A
((\x. f x + g x) € measurable a Borel) A
((\x. f x * g x) € measurable a Borel) A
((\x. max (f x) (g x)) € measurable a Borel)

The notation (\x. f x) is the lambda notation of f, used to represent the function
Theorem 5. If (fy,) is a monotonically increasing sequence of real-valued measurable

functions with respect to (A, B(R)), such that Vn,z, fn(x) — f(x) then f is also
(A, B(R)) measurable.

11



- Va f fi. sigma_algebra a A (Vi. fi i € measurable a Borel) A
(Vx. mono_increasing (\i. fi i x)) A
(Vx. x € m_space m = (\i. fi i x) — f x) =
f € measurable a Borel

Theorem 6. Every continuous function g : R — R is (B(R), B(R)) measurable.
- Vg. (Vx. g contl x) = g € measurable Borel Borel

Theorem 7. If g : R — R is continuous and f is (A, B(R)) measurable then go f is
also (A, B(R)) measurable.

I Va f g. sigma_algebra a A f € measurable a Borel A
(Vx. g contl x) = g o f € measurable a Borel

Theorem 6 is a direct result of Theorem 23 stating that the inverse image of an open
set by a continuous function is open. Theorem 7 guarantees, for instance, that if
f is measurable then exp(f), Log(f), cos(f) are measurable. This is derived using
Theorem 6 and the equality (go f)1(A) = f~1(g7'(A)). We now show how to prove
that the sum of two measurable functions is measurable.

Proof. We need to prove that for any ¢ € R, (f+g)~!(]—o0, ¢[) is a measurable set. One
way to solve this is to write it as a countable union of measurable sets. By definition of

the inverse image, (f +9¢) " '(] —o0o,c]) = {z: f(z)+g(z) < c} = {x: f(z) < c—g(x)}.
Using Theorem 18 we prove that it is equal to UTGQ{QE s f(x) <rand r<c—g(z)}.
We deduce that (f +g)~1(] — oo, c[) = U, Y] = oo, 7[) Ng~(] — 00,c —r[). The
right hand side is a countable union of measurable sets because QQ is countable and f
and g are measurable functions.

5 Lebesgue Integration

In this section we present the formalization of the Lebesgue integral and prove its main
properties as well as the Lebesgue monotone convergence theorem.

5.1 Lebesgue Integral

The Lebesgue integral is first defined for positive simple functions, then extended to
non-negative functions and finally to arbitrary functions. Let (X, A, 1) be a measure
space and g a positive simple function with respect to the measure p that is represented
by (s,a,x). The integral of ¢ is formalized as follows.

- Vm s a x. pos_simple_fn_integral m s a x =
SIGMA (\i. x i * measure m (a 1)) s

Next, the Lebesgue integral of a non-negative measurable function f is formalized as

12



- Vm f. pos_fn_integral m f =
sup {r | dg. r € psfism g A Vx. g x < f x}

where r € psfis m g is equivalent to r = pos_simple_fn_integral m s a x and g
is a positive simple function represented by (s,a,x).
Finally, the integral for an arbitrary measurable function is formalized in terms of the
integrals of f* and f~ where f* and f~ are the non-negative functions defined by
f1(z) = max(f(z),0) and f~(z) = max(—f(x),0).
- Vm f. fn_integral m f =
pos_fn_integral m (\x. if O < f x then f x else 0) -
pos_fn_integral m (\x. if f x < O then -f x else 0)

Various properties of the Lebesgue integral for positive simple functions have been
proven in HOL [3]. We mention in particular that the above integral is well-defined
and independent of the choice of (o), (a;),s. Other properties include the linearity
and monotonicity of the integral for positive simple functions. Another theorem that
was widely used in [3] has however a serious constraint, as was discussed in the related
work, where the author had to assume that every subset of the space X is measurable
which is equivalent to assuming that every function defined on that space is measurable.

Utilizing our formalization of the Borel sigma algebra and functions measurable
with respect to it, we have been able to prove that the functions used in the theorem
are in fact measurable without having to assume that every function is measurable. For
example we prove that a positive simple function is a measurable function as a linear
combination of indicator functions on measurable sets. We also use Theorem 1 to prove
that the sets used in the theorem are in fact measurable sets. The new theorem can
be stated as

Theorem 8. Let (X, A, n) be a measure space, f a non-negative function measur-
able with respect to (A, B(R)) and (f,) a monotonically increasing sequence of posi-
tive simple functions, pointwise convergent to f such that Vn,x, fo(x) < f(z) then

fxfd:u = limp—o0 fon dp.

F Vm f fi ri r. measure_space m A
f € measurable (m_space m,measurable_sets m) Borel A
(Vx. mono_increasing (\i. fi i x)) A
(Vx. x € m_space m = (\i. fi i x) — £ x) A
(Vi. ri i € psfism (fi 1)) A ri — r A
Vi x. fi i x <= f x) =
(pos_fn_integral m f = r)

where the notation x,, — x means that the sequence x,, converges to x.

5.2 Integrability

In this section, we provide the criteria of integrability of a measurable function and
prove the integrability theorem which will play an important role in proving the prop-
erties of the Lebesgue integral.

13



Definition 9. (Integrable Functions)
Let (X, A, p) be a measure space, a measurable function f is integrable iff fX|f| dp < oo
or equivalently iff fo+ dp < oo and fo_ dp < oo

- Vm f. integrable m f =
f € measurable (m_space m,measurable_sets m) Borel A
(3z. pos_fn_integral m (\x. if 0 < f x then f x else 0) < z) A
(3z. pos_fn_integral m (\x. if f x < O then -f x else 0) < z)

Next, we prove the integrability theorem which allows us to prove the properties of the
Lebesgue integral for arbitrary functions as an extension of the properties for positive
simple functions. This theorem provides also an alternative definition of the Lebesgue
integral.

Theorem 9. For any non-negative integrable function f there exists a sequence of pos-
itive simple functions (fy) such that Vn,z, fn(x) < fori(x) < f(z) andVz, fo(x) —

f(z). Besides
/fduzlim/fndu
X " Jx

For arbitrary integrable functions, the theorem is applied to f* and f~ and results in
a well-defined integral, given by

/fd,u:lim/f;rdu—lim/fn_du
X " Jx " Jx

- Vm f. measure_space m A integrable m f =

(3fi ri r. (Vx. mono_increasing (\i. fi i x)) A
(Vx. x € m_space m = (\i. fi i x) — fn_plus f x) A
(Vi. ri i € psfism (fi 1)) A ri — r A
(Vi x. fi i x <= fn_plus f x) A
(pos_fn_integral m (fn_plus f) = r)) A

Jgi vi v. (Vx. mono_increasing (\i. gi i x)) A
(Vx. x € m_space m = (\i. gi i x) — fn_minus f x) A
(Vi. vi i € psfism (gi 1)) A vi — v A
(Vi x. gi i x <= fn_minus f x) A
(pos_fn_integral m (fn_minus f) = v)

we show that the sequence (f,) satisfies the conditions of the theorem and use Theo-
rem 8 to conclude that fo dp = limy, fon du.

4" -1

k n
fo(z) = Z 2_"[{x:2in§f(x)<%} + 2 g < f(2)) (7)
k=0

First, we use the definition of (f,) to prove in HOL the following lemmas

Lemma 1. Vn,z, f(z) > 2" = f,(z) =2"
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Lemma 2. Vn,z, and k < 4", 2% < flz) < kggl = fu(z) = 2ﬁn

Lemma 3. Va, (f(z) >2") Vv (3k, k < 4" and £ < f(z) < EEL)

Next, we prove that the sequence is pointwise convergent to f, upper bounded by f
and monotonically increasing.

Convergence Vz, f,(z) — f(x)

Vz, 3N such that f(z) < 2. Then Vn > N, f(z) < 2" Using Lemma 3,
Vn > N, there exists a k < 4™ such that 2% < f(z) < kitbl. Then using Lemma 2,
Vn > N, fo(z) = £. Consequently, Vn > N, fu(z) < f(z) < folx) + 2 and

2
[fa(x) = f(2)] < 3.

Upper Bound Vn,z, f,(z) < f(x)

if f(x) > 2" then by Lemma 1 f,(z) = 2". Hence f,(z) < f(x)

if f(z) < 2" then by Lemma 3 there exists a k < 4™ such that 2% < f(z) < k;f} and
by Lemma 2 f,(z) = 4. Hence f,(z) < f(x).

Monotonicity Vn,z, fu(x) < fry1(z)

If f(z) > 2"*1 then fo(z) =2" and fri1(2) = 2"*t1. Hence fn(®) < fori(z).

if f(z) < 2"*! then using Lemma 3, there exists a k < 41 such that £+ < f(z) <
5:;11 and using Lemma 2, f,41(z) = % Now we need to determine f,(x) and

compare it to fp+1(z).

k k+1 K kL
ot S S@) < G = o Sf@) <

if k is even and § < 4" then f,(2) = girr = fot1(2)

if k is even and % > 4™ then f,(x) = 2" and f(z) < foy1(x)

if k is odd and £ < 4" then f,(v) = &=L < foa(2)

if k is odd and £51 > 4" then f,(2) = 2" and fo(z) < fos1(2)

5.3 Lebesgue Integral Properties

We formally verified in the HOL theorem prover some key properties of the Lebesgue
integral, such as the monotonicity and linearity. Let f and g be integrable functions
and ¢ € R then

FVx. 0 < fx= 0< fn_integral m f

FVx. fx< gx = fn_integral m f < fn_integral m g

F fn_integral m (\x. ¢ * f x) = a * fn_integral m f

F fn_integral m (\x. f x + g x) = fn_integral m f + fn_integral m g

15



We only show the proof for the linearity of the integral. We start by proving the
property for non-negative functions. Using the integrability property, given in The-
orem 9, there exists two sequences (f,) and (g,) that are pointwise convergent to f
and g, respectively, such that fo dp = limy, fon dp and fXg dp = lim, fXgn du. Let
hn = fn + gn then the sequence h,, is monotonically increasing, pointwise convergent
to f+gand Va hy(z) < (f+¢g)(x) and using Theorem 8, fo + gdp = lim, thn dp.
Finally, using the linearity of the integral for positive simple functions and the linearity
of the limit, fo + gdp = limy, fondp~|— hmangndu fodu + fngu Now we
consider arbitrary integrable functions. We first prove in HOL the following lemma.

Lemma 4. If fi and fo are positive integrable functions such that f = f1 — fo then
The definition of the integral is a special case of this lemma where f; = f* and
fo = f~. Going back to our proof, let fi = f* +g¢* and fo = f~ + ¢~ then f; and fo
are non-negative integrable functions satisfying f + g = f1 — f2. Using the lemma we
conclude that

fo+gdu_fo1d“ foQd“_ fo+d”+fX9+dN fxf+dﬂ+f gt dp) =
fo+dM fxf d,u fXg+d/~L fXg d/L fodu—i—fng,u

5.4 Lebesgue Monotone Convergence

The monotone convergence is arguably the most important theorem of the Lebesgue
integration theory and it plays a major role in the proof of the Radon Nikodym theo-
rem [2]. In this section, we present a proof of the theorem in HOL.

Theorem 10. Let f be an integrable function and (fy) be a sequence of functions such
that Vn,z, 0 < fu(z) < for1(x) < f(z) and Vi, fo(z) — f(x). Then

fdu— lim /fndu

n—oo

Proof. By the monotonicity of the integral, we deduce that Vn, f Sndp < f o dp.

Hence lim;, 00 fon du < fo dp. It remains to prove that fo dp < limy, 00 fon dpt.
From Theorem 9, there exists a sequence of positive simple functions (g,) such that

Vn,z, gn(r) < gnp1(z) < f(x) and YV, go(z) — f(z) satistying [y f dp = lim, o0 [ gn dp.
It is sufficient to prove that Vk € N, fng dp < limy, oo fon du. For a fixed k, since
g s a positive simple function then there exists («;), (a;) and a finite set s such that

On the other hand, splitting the integral of f,, and using the properties of the integral
and limit, we have



Consequently, it suffices to prove that Vi € s
a;p(a;) < hm / fnla; du
Or, equivalently, that V7 € s and z such that 0 < 2z < 1
zaip(a;) < hm / fnla, dp

Let b, = {t € a; : zoy < f,(t)} then |, by = a; and

zajp(a;) = zai,u(U bn) = za; li7rln,u(bn) = lign zap(by) = li7rln/ zagly, du

n X

Furthermore, from the definition of b, and the monotonicity of the integral

/Z@ijbn dué/fnfbn dﬂg/fn[ai dp
X X X

zaip(a;) < hm /fnfaz du

Concluding that

5.5 Almost Everywhere

In this section we will define the “almost everywhere” relation [1] and prove in HOL
some properties of the Lebesgue integral based on this relation. Consider a measure
space (X, A, p). A null set F is a measurable set of measure zero.

Definition 10. Almost Everywhere

Let A be a subset of X and P be a property about elements of A. We say that P is
true almost everywhere in A, abbreviated as “P a.e. in A”, relative to the measure pu,
if the subset of A where the property does not hold is a null set.

When A = X, we simply say “P a.e.”.
For example, f = g a.e. means that the set {x| f(x) # g(z)} is a null set.
Similarly, f,, — f a.e. means that there exists anull set ' such that Ve € X\E f,(z) —

f(z).
Theorem 11. If A is a null set then for any measurable function f, fAf dp =0

Theorem 12. If f and g are two integrable functions such that f = g almost every-
where, then fo dp = fXg dp

Theorem 13. If f and g are two integrable functions such that f < g almost every-
where, then fo dp < fXg du

We provide the proof of the first theorem as it is used to prove the last two.
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Proof. 1t suffices to prove the theorem for positive measurable functions as the integral
of an arbitrary function g is the difference of the integrals of g% and ¢~. By definition,
fAf dp = foIA dp = sup{fXg du | g < fla} where the functions g are positive
simple functions.

We will show that the set over which the supremum is taken is equal to {0}. For a
positive simple function ¢ such that ¢ < fI4 we show that g(z) = 0 outside of A.
Hence fXg dp = ng dp = fXgIA dp. Furthermore, there exists («;), (a;) and a finite
set s such that Vo € X, g(x) = > .. @il (r). The indicator function of A can be
split as [4 = ZiES I4nq,- Hence gl4 can be written as gl4 = ZiES il ang,. This
implies that [\ gladp = >, aip(ANa;). Since 0 < p(ANa;) < p(A) =0 and s is
finite, then fXg dp =0

6 Applications

In this section, we use our formalized Lebesgue integration theory to prove in HOL
some important properties from the theory of probability, namely, the Chebyshev and
Markov inequalities and the Weak Law of Large Numbers [16].

6.1 Chebyshev and Markov Inequalities

In probability theory, both the Chebyshev and Markov inequalities provide estimates
of tail probabilities. The Chebyshev inequality guarantees, for any probability distri-
bution, that nearly all the values are close to the mean and it plays a major role in the
derivation of the laws of large numbers [16]. The Markov inequality provides loose yet
useful bounds for the cumulative distribution function of a random variable.

Let X be a random variable with expected value m and finite variance 0. The
Chebyshev inequality states that for any real number k& > 0,
1
P(|X —m| > ko) < =) (8)

The Markov inequality states that for any real number k& > 0,

S|

p(x| > by < X (9

Instead of proving directly these inequalities, we provide a more general proof using
measure theory and Lebesgue integrals in HOL that can be used for both and a number
of similar inequalities. The probabilistic statement follows by considering a space of
measure 1.

Theorem 14. Let (S, S, 1) be a measure space, and let f be a measurable function
defined on S. Then for any nonnegative function g, nondecreasing on the range of f,

w({zes : f(x)zt})éﬁ/SQOfdu-
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The Chebyshev inequality is derived by letting t = ko, f = |X — m| and g defined as
g(t) = t?if t > 0 and 0 otherwise. The Markov inequality is derived by letting ¢ = k,
f =1X| and and g defined as g(t) = 2 if ¢t > 0 and 0 otherwise.

Proof. Let A={x €S :t< f(x)} and I4 be the indicator function of A.

Statement Justification
(1) Vz 0<g(t)la(x) g non-negative + definition of 4
(2) VeeA t<f(x) definition of A
(3) Vz g(t)Ia(x) < g(f(x))ls(z) g nondecreasing and (2)
(4) Vo g(f(@)a(z) < g(f(x)) definition of /4
(5) Vz gt)a(z) < g(f(x)) (3) + (4) + transitivity
6) AeS fis (S, B(R)) measurable
(7) x — g(t)Ia(x) is integrable integrability properties
(8) fS g(t) [ a(z)dp < fsg(f(x))d,u (5) + monotonicity of the integral
9) gt)u(A) < fS go fdu linearity of the integral

6.2 Weak Law of Large Numbers (WLLN)

The WLLN states that the average of a large number of independent measurements
of a random quantity converges in probability towards the theoretical average of that
quantity. Interpreting this result, the WLLN states that for a sufficiently large sample,
there will be a very high probability that the average will be close to the expected
value. This law is used in a multitude of fields. It is used, for instance, to prove the
asymptotic equipartition property [4], a fundamental concept in the field of information
theory.

Theorem 15. Let X1, Xo, ... be an infinite sequence of independent, identically dis-
tributed random variables with finite expected value E[X1] = E[X32] = ... = m and let

X = % Zfil X; then for any e > 0,

lim P(| X —m|<e¢)=1 (10)
n—oo
Besides the Chebyshev inequality, to prove this theorem in HOL, we need to formalize
and prove some key properties of the variance of a random variable. The main property
being that the variance of a sum of uncorrelated random variables is the sum of their
variances. Notice that the requirement of the random variables being independent in
the WLLN can be relaxed to simply requiring them to be uncorrelated.
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Let X and Y be random variables with expected values ux and py, respectively.

The variance of X is given by
Var(X) = E[|X — px|?]

and the covariance between X and Y is given by

Cov(X,Y) = E[(X — ux)(Y — py)]

X and Y are uncorrelated iff Cov(X,Y) = 0.
We prove the following properties in HOL.

Var(X) = BIX? - 13

Cou(X, ) E[XY] = pxpy

Var(X) >

Var(aX) = a2Va7"(X) Va € R

Var(X +Y) =Var(X) 4+ Var(Y) + 2Cov(X,Y)

Var(X +Y) =Var(X) + Var(Y) if X,Y uncorrelated

Var( Zizl X;) = 2121 Var(X;) Vi # j, Xi, X uncorrelated

Proof. Using the linearity property of the Lebesgue integral as well as the properties

of the variance we prove that

— 1
ElX| = N Z m=m
=1
o2
Var(X =32 Z Var(X =N
Applying the Chebyshev inequality to X, we get
2
o
(‘X m| > 8) < N_€2
Equivalently
o2
1—?<P(|X—m|<5)<1

It then follows that o
lim P(| X —m|<e)=1
n—oo

To prove the results of this section in HOL we used the Lebesgue integral properties,
in particular, the monotonicity and the linearity, as well as the properties of real-
valued measurable functions. All of this framework is not available in the work of
Coble [3] because his formalization does not include the Borel sets so he cannot prove
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the Lebesgue properties and the theorems of this section. The Markov and Chebyshev
inequalities were previously proven by Hasan and Tahar [10] but only for discrete
random variables. Our formalization allows us to provide a proof valid for both the
discrete and continuous cases. Richter’s formalization [17] only allows random variables
defined on the whole universe of a certain type. All of the mentioned formalizations

do not include the definition of variance and proofs of its properties and hence cannot
be used to verify the WLLN.

7 Conclusion

In this report, we have presented a formalization in HOL of the Borel algebra to
fill the gap in previous formalizations in higher-order-logic of the Lebesgue integral.
Our formalization is general as it can be applied on functions defined on any metric
space. Building on this framework, we proved important properties of the Lebesgue
integral, in particular, the monotonicity and linearity properties. We also proved in
HOL the Lebesgue monotone convergence, a key result of the Lebesgue integration
theory. Additionally, we formalized the concept of “almost everywhere” and proved
that the Lebesgue integral does not distinguish between functions which differ on a
null set as well as other important results based on the “almost everywhere” relation.
These features of the proposed approach facilitate the formal reasoning process for the
continuous and unpredictable components of a wide range of physical systems. For
illustration purposes, we proved in HOL key theorems from the theory of probability,
namely the Chebyshev and Markov inequalities as well as the WLLN. The HOL codes
corresponding to all the formalization and proofs, presented in this report, are available
in [13].

Overall our formalization required more than 7000 lines of code. Only 250 lines
were required to verify the key properties of the applications section. This shows the
significance of our work in terms of simplifying the formal proof of properties using
the Lebesgue integration theory. The main difficulties encountered were the multidis-
ciplinary nature of this work, requiring deep knowledge of measure and integration
theories, topology, set theory, real analysis and probability and information theories.
Some of the mathematical proofs also posed challenges to be implemented in HOL.

Our future plans include using the Lebesgue integral development to formalize
key concepts of the information theory. We will use the Lebesgue monotone con-
vergence theorem and the Lebesgue integral properties to prove the Radon Nikodym
theorem [2], paving the way to defining the probability density functions as well as the
Kullback-Leibler divergence [4], which is related to the mutual information, entropy
and conditional entropy [4].
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8 Appendix

8.1 Rational Numbers

A rational number is any number that can be expressed as the quotient of two integers,
the denominator of which is positive. We use natural numbers and express QQ, the set of
rational numbers, as the union of positive (Q%) and negative (Q7) rational numbers.

Qz{r|§|n,m.7“:£cmdm>0} U {T|E|n,m.r:_—nandm>0}.
m m

We prove in HOL an extensive number of reassuring properties on the set Q as well as
few other less straightforward ones, namely, QQ is countable, infinite and dense in R.

Theorem 16. Vn € N, n € Q and Vx,y € Q, —=, %, T4y, r—y, x*yand% 0)
A proof of this theorem in HOL is at the same time straightforward and tedious but it
is necessary to manipulate elements of the newly defined set of rational numbers and

prove their membership to Q in the following theorems.

A set S is countable if its elements can be counted one at a time, or in other words,
if every element of the set can be associated with a natural numbers, i.e. there exists
an injective function f : S — N, or equivalently, there exists a surjective function from
g : N — S. The next theorem states that the set of rational numbers Q is a countable
set. To prove this theorem, we start by proving the following lemma in HOL.

Lemma 5. There exists a bijection [ from the set of natural numbers N to the cross

product of N and N* (f : N — N x N*).

N* being N\{0}. This lemma is equivalent to the statement that there exists a bijection
g:NxN*— N

Proof. Using the Schroeder Berstein theorem stating that if there exists injective func-
tions f : s — t and g : t — s then there exists a bijective function h : s — ¢, it suffices
to prove that there exists an injective function f: N x N* — N and a surjective func-
tion ¢ : N x N* — N,

Surjection: Let g : N x N* — N such that g(z,y) = z. g is clearly a surjective
function because for any n € N, g(n,1) =n and (n,1) € N x N*,

Injection: Let f : N x N* — N such that f(x,y) = 2%(2y + 1). We prove in HOL
that f is an injection.

Theorem 17. The set of rational numbers Q is countable.

Proof. From Lemma 5, there exists a bijection f; from the set of natural numbers N
to Nx N* (fi : N = N x N*). Let fo : Nx N* = Q% such that fa(a,b) = ¢. and
f = fao fi. Then Vz € QT there exists n € N such that f(n) = z. This proves that
Q™ is countable. Similarly, we prove that Q~ is countable and that the union of two
countable sets is countable.

Theorem 18. Q is dense in R, i.e., Vo,y € R and © < y, there exists r € Q such
that © < r < y.
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Proof. Let z,y € R such that z < y. Define the ceiling of x as the smallest natural
number larger than z, denoted by [z]. The ceiling satisfies the following two properties:

Vo, z < [x]

Ve >0, [z] <z+1

We first consider the case where 0 < z.

If 1 <y—athen r =[z] —1 € Q and using the properties of the ceiling above, we
prove that z < r < y.

If on the other hand y — x < 1, using the Archimedean property for 0 < y — x, there
exists a natural number such that 1 < n(y —z). From the first case, there exists ro € Q
such that nx < ro < ny. Letr:%thenre(@andx<r<y.

Finally, we consider the case x < 0.

Using the properties of the ceiling 0 < x 4+ [—x], and since z < y, we also have
0 <z+[—x] <y+ [—z]. Then using the first case, there exists ro € Q such that
x4+ [—x] <rg <y+ [—2z]. Finally, r = ro — [—x] satisfies r € Q and = < r < y.

Another definition that will be useful in our development is the set of open intervals
with rational end-points I, = {]ry,ra[: r1,72 € Q}. We prove that I, is countable
by showing that the mapping I, — Q x Q that sends an open interval |ri,r3[€ I, to
the ordered pair of rational numbers (r1,r2) € Q x Q is injective, and that the cross
product of two countable sets, QQ in this case, is countable.

8.2 Topology

To define the Borel sigma algebra on R, we need some concepts of the topology of R
formalized in HOL. Some of this was already developed by Harrison [8] but his for-
malization in HOL does not use the set theory and also lacks some of the important
theorems that we need in our development. Harrison, later, developed an extensive
topology theory [9] in HOL-Light. In the following, we define the concepts of neigh-
borhood and open set in R and prove the required theorems.

Definition 11. Let a € A C R. A is a neighborhood of a iff there exists a real number
d >0 such thatVz. |v —a| < d= x € A. In other words, a is an interior point of A.

|- 1A a.
neighborhood_R A a <=>
7d. 0<d /\!'y.a-d<y/\Ny<a+d==>yINA

Definition 12. A set that is a neighborhood to all of its points in an open set. Equiv-
alently, if every point of a set is an interior point then the set is open.

|- 'A. open_set_R A <=> !x. x IN A ==> neighborhood_R A x
Theorem 19. The empty set and the Universe are open.

Theorem 20. Fvery open interval is an open set.
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Theorem 21. The union of any family of open sets is open. The intersection of a
finite number of open sets is open.

Theorem 22. Every open set in R is the union of a countable family of open intervals.

Proof. We only show the proof for Theorem 22. Let A be an open set in R, then by the
definition of open set, for all = in A there exists an open interval containing x such that
la,b[C A. Using the property of density of QQ in R, there exists ]a,, b,[C A containing
x, a, and b, being rational numbers. A is the union of family of elements of I, which
is then countable because I, is countable.

Theorem 23. The inverse image of an open set by a continuous function is open.

Proof. Let A be an open set in R. From the previous theorem, A is a countable union
of open intervals (4;). f~1(A) = f~H(JA:) = Uf (A;). Using Theorem 21, it
suffices to prove that the inverse image of an open interval is open. For this we use the
definition of a continuous function and the limit of a function to prove that any point
of f~1(A;) is an interior point.
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