
1

Modeling and Verification of the Fairisle ATM
Null Port Controller in VIS

Jianping Lu and Sofiène Tahar

Electrical & Computer Engineering Department, Concordia University
Montreal, Quebec, H3G 1M8 Canada
{jianping, tahar}@ece.concordia.ca

Technical Report

March 2003

Abstract. In this report, we present the practical formal verification of Fairisle ATM (Asyn-
chronous Transfer Mode) switch port controller using model checking. The ATM port controller is
part of the Cambridge Fairisle ATM network and plays a key role in the ATM switching process.
In particular, we present our experience on the model checking of the ATM port controller using
the VIS tool from UC Berkeley. To this end, we successfully modeled the port controller behavior
and structure in Verilog HDL, established the necessary verification environments and verified a
number of relevant temporal properties on the port controller.

1. Introduction
With the increasing reliance of digital systems, design errors can cause serious failures, resulting
in the loss of time, money, and long design cycle. Large amounts of effort are required to correct
design bugs, especially when the error is discovered late in the design process. For these reasons,
we need approaches that enable us to discover errors and validate designs as early as possible.
Conventionally, simulation has been the main debugging technique. However, due to the increas-
ing complexity of digital systems, it is becoming impossible to simulate large designs adequately.
Therefore, there has been a recent surge of interest in formal verification [3].

One very successful formal verification approach is model checking [3] which enables to
check a design model against temporal logic properties. Model checking is an automatic tech-
nique for verifying finite-state reactive systems, such as sequential circuit designs and communi-
cation protocols. Specifications are expressed in a propositional temporal logic, and the reactive
system is modeled as a state-transition graph. However, the specifications are not always easy to
be expressed in the given temporal logic. In this paper, we present our experience in the formal
specification using temporal logic and verification using model checking of the Fairisle [4] ATM
(Asynchronous Transfer Mode [2]) switch port controller using the VIS (Verification Interacting
with Synthesis) [1] tool from UC Berkeley. The Fairisle port controller (Figure 1) is a real design

2

from Cambridge University. It is at the heart of Fairisle ATM network switch [4]. In the ingress
[2], the port controller receives ATM cells from the transmission board and performs the ATM
switching on the received cells. It also sends the ATM cells to the switch fabric [5]. In the egress
[2], the port controller receives ATM cells from the fabric and sends the acknowledgment signals
to the switch fabric. The port controller assigns priorities to ATM cells, by preloading priority bits
into the memory. The priority bit will be used for arbitration in the switch fabric.

In this work, we modeled the port controller at the RTL (Register Transfer Level) by following
some documentation and incomplete structural code we have obtained from Cambridge. The RTL
description of the port controller is written in Verilog HDL (Hardware Description Language). To
verify the port controller in VIS, we established a proper environment, and defined a number of
related CTL (Computation Tree Logic [3]) properties.

In following sections, we will introduce the behavior and structure of the port controller in
Section 2. Section 3 describes the properties we established on the port controller. Section 4 illus-
trates a practical method on verifying CTL properties using model checking, and Section 5 sum-
marizes the paper.

 Figure 1. The Fairisle null port controller.

2. The Fairisle Null Port Controller
The Fairisle ATM switch [4] is a real ATM switch which was developed and used by Cambridge
University. The Fairisle ATM switch consists mainly of port controllers and a switching fabric. The
null port controller is a part of Fairisle ATM switch. Since it does only VCI (Virtual Channel Iden-
tifier) mapping and FIFO (First In First Out) queuing, it is called the null port controller. In the
original design, a Xilinx chip controls all its functions, and it uses triple ported DRAMs to look up
the new VCI. It also uses a FIFO to do speed matching with the transmission board. As shown in
Figure 1, the null port controller is connected to the Fairisle ATM switch fabric, transmits ATM
cells to the fabric and receives acknowledgment signals from it. Both the null port controller and
the switch fabric use the same framestart signal (Figure 1) to synchronize the overall behavior.

c
tr

_
s
z

c
tr

_
id

op controller op cell
counter

ip controller
ip cell

controller

address
accumulator

framestart

Input Port Controller

Output Port Controller
FIFO

Switch Fabric

DRAM

Transmission
Board

3

The null port controller consists of an input port controller and an output port controller. It is
able to transmit one cell every 128 clock cycle. With a clock frequency of 20 MHz, the maximum
bit rate is 80 MHz. There are no service classification, no scheduling or traffic shaping, no moni-
toring and policing in this port controller, but we can give a priority to an ATM cell, and this is
done by preloading the priority bit into the memory. The priority bit will be used for “arbitration”
in the switch fabric.

Figure 2 shows the format of an ATM cell. Received cells have 52 bytes: 48 data bytes, 2 VCI
(Virtual Channel Identifier) bytes and 2 FAS (Frame Assignment Sequence) bytes. Transmitted
cells have 54 bytes: 48 data bytes, 1 Fabric Routing Byte (FRB), 1 Port controller Routing Byte
(PRB), 2 VCI bytes and 2 FA bytes. Since each cell consumes 64 bytes memory, the memory,
which is 256k x 8 bit, can contain 4096 ATM cells. This means that the port controller supports
4096 connections. To prevent the two cells with the same VCI arriving at the memory consecu-
tively, only one cell is allowed in the memory

 Figure 2. Format of received and transmitted cells.

For this project, we obtained some documents and structural codes of the null port controller
from Cambridge University, but those were not complete. In this work, we implemented the null
port controller at the RTL (Register Transfer Level) according to its documents. The RTL descrip-
tion of the null port controller is written in Verilog HDL (Hardware Description Language). Our
implementation is based on the original design, and the main difference is that we used SRAM
instead of DRAM to store the cell because currently SRAM are being used in ATM hardware
designs. The only difference for using SRAM instead of DRAM was the memory interface, so it
did not affect the internal logic of the null port controller which was our main focus of the verifi-
cation. In following subsections, we will describe the behavior and structure of the port controller
in more detail.

2.1. Behavior of the Fairisle Port Controller
The Fairisle null port controller consists of input port controller and output port controller. The
input port controller receives ATM cells from the transmission board, and writes them into the
memory at an address based on the value of the VCI [2]. In addition, the input port controller
reads ATM cells out of the memory and transmits them into the switch fabric. Once it receives
positive acknowledgement signals, the input port controller will continue transmitting data; other-
wise, it will stop sending data. The output port controller receives data cells from the fabric, and

Memory setup via CPU Interface

FRB PRB NEW
VC10

NEW
VC11

FAS0PRB

FAS1

0000000

 Received Cell

FRB FAS1

FAS0

FAS0VC11VC10 FAS1

NEW
VC11

NEW
VC10

VC11VC10 Data

VCI used as memory lookup

Data

 Cell for Transmission

Data 0 0

 64 bytes

 48 bytes

 48 bytes

4

sends acknowledgment signals back to the fabric. If the output port controller receives a data cell,
it gives a positive acknowledgment signal; otherwise, it sends a negative acknowledgment.

The input port controller always monitors the framestart signal (Figure 1). On an active frame-
start signal, the input port controller will assert a write enable signal to the memory. After the
framestart signal is received, if the memory is empty and the transmission board read request is
asserted, the input port controller will assert a write enable signal to the transmission board. But
the data bytes transferred into the memory only after the input port controller receives the start of
cell (SOC) signal. Once the SOC signal is received, the input port controller will latch the first
two bytes which build the VCI field of the receiving cell. Table 1 is the conversion between the
VCI of the receiving cell and its memory location, where c means the column address and r means
the row address. The decimal digit indicates the position in the binary address (e.g., r4 means bit
4 of the row address). The whole VCI 0 byte and bits 4 to 7 of VCI 1 byte will become the row
address and the most 3 significant bits of the column address, and bits 3 to 0 of VCI 1 byte are
unused in the conversion. On the other hand, when the framestart signal is asserted and the input
port controller has a cell to send, the input port controller will read the data cell from the memory
into the fabric. After a certain number of clock cycles, if the input port controller receives the pos-
itive acknowledgment signal through the switch fabric, it will continue sending the ATM cell; oth-
erwise, it will stop the transmission.

While the input port controller receives data from the transmission board and transmits the data
into the fabric, the output port controller receives data from the switch fabric and gives the
acknowledgment signal to the input port controller through the switch fabric. After the framestart
signal is asserted, the output port controller will detect the active bit in the port controller header.
If the active bit is asserted, the output port controller will generate the positive acknowledgment
signal which will be transmitted into the input port controller through the fabric; otherwise, the
output port controller will generate the negative acknowledgment signal. If the output port con-
troller receives a data cell, it will write the data into the output FIFO, and the first byte of the data,
which is the Port controller Routing Byte (PRB), will be stripped.

The state transition of the input port controller with 8 states (ip_idle, rx_wait, rx_store1,
rx_store2, rx_data, tx_addr, tx_first_5 and tx_data) is shown in Figure 3. Basically, rx_idle is
“idle” state; rx_wait means the state of waiting for rx_ip_soc asserted; rx_store1 and rx_store2
indicate the states that the input port controller stores the first and second VCI byte, respectively;
rx_data is the state of data transfer from transmission board to the input port controller; tx_addr is
the state of setting the memory address; tx_first_5 means the state of transmitting the first 5 bytes
data to the fabric; tx_data indicates the state of transmitting the rest of data into the fabric.

Table 1. VCI to memory location conversion.

VCI 0 byte 0 1 2 3 4 5 6 7

addr_r r1 r2 r3 r4 r5 r6 r7 r8

VCI 1 byte 0 1 2 3 4 5 6 7

addr_r - - - - c6 c7 c8 r0

5

 Figure 3. State transition diagram of the input port controller.

2.2. Structure of the Fairisle Port Controller

Figure 4 shows the structure of the port controller. It consists of an input port controller and an
output port controller. The input port controller processes the signals from the transmission board,
the memory and the fabric. The output port controller interfaces with the signals from the fabric
and the output FIFO.

The input port controller consists of an ip controller, an ip cell counter and an address accumu-
lator. The ip controller, which coordinates the ip cell counter and the address accumulator, con-
trols the data reception, transmission, memory read and write. The ip cell count and address
accumulator are up counters that increment by 1 per data byte transfer. In Figure 4, the signals
ip_mem_data, ip_mem_wr_en, ip_mem_addr_r, ip_mem_addr_c, ip_mem_rd_req and
mem_ip_data are the interface signals between the input port controller and the cell memory. The
signals ip_mem_data and mem_ip_data mean the data outputs to the cell memory and the data
inputs from the cell memory, respectively. Both signals have 8-bit bus width. The signals
ip_mem_wr_en and ip_mem_rd_req are the memory write enable and memory read request sig-
nals, respectively. The memory row and column addresses are provided by ip_mem_addr_r and
ip_mem_addr_c, respectively. The rx_ip_data is an 8-bit data bus which is the data inputs from
the transmission board. The signals rx_rd_req and rx_ip_soc indicate cell availability in the trans-
mission board and the start of a cell, respectively. The rx_ip_soc signal corresponds to the frame-
start mentioned above. The signal ip_rx_wr_en demonstrates whether the input port controller is
able to accept a cell or not. The ip_fab_data is an 8-bit data bus which transfers data from the
input port controller to the fabric. The fab_ip_ack is the acknowledgment signal which indicates
whether the current cell succeeded the transfer to the destined output port controller. The
fab_op_data is an 8-bit data input from the fabric to the port controller and op_fab_ack is the
acknowledgment signal generated by this latter.

1: ip_empty = 1 * framestart = 1
 * rx_rd_req = 1 * ctr_id = 0
2: else
3: else
4: rx_ip_soc = 1
5:
6:
7: else
8: ip_cell_cnt = 1
9: ip_empty = 0 * framestart = 1
 * ctr_id = 0
10:
11: else
12:ip_cell_cnt = 49 * fab_ip_ack = 1
13: ip_cell_cnt = 1
14: else
15: ip_cell_cnt = 49 * fab_ip_ack = 0

3

4

5

11

rx_wait

ip_idle

tx_first_
5

rx_
store1

rx_data

tx_data

rx_
store2

tx_addr

15

1

2

6

7

89

10

12

13 14

6

The output port controller consists of an op controller and an op cell counter. The op controller
generates the acknowledgment and SOC signals, and controls op cell counter. The op cell counter,
which is very similar to the ip cell counter, increments by one per data transfer. In Figure 4,
op_fab_ack and fab_op_data are the signals in the interface between the output port controller
and the fabric. fab_op_data is an 8-bit data bus from the fabric to the output port controller.
fab_op_ack is an acknowledgment signal generated by the output port controller. In addition,
there are op_fifo_data, op_fifo_wr_en and op_fifo_soc signals between the output port controller
and the output FIFO. The op_fifo_data is an 8-bit datapath from the output port controller to the
FIFO. The op_fifo_wr_en is the write enable signal for the output FIFO. The signal op_fifo_soc
indicates the start of a cell, and it is asserted before the first byte data transfer. The npc_rst_n is
the reset signal.

Inside the port controller, there are two control registers (ctr_id and ctr_sz) and one status reg-
ister (ip_empty). The ctr_id disables the inputs when it is asserted. When ctr_id asserts, all the
inputs are disable. During the period of ctr_id =1, the microprocessor could pre-load the new
VCIs, FRB and PRB into the memory. The register ctr_sz is for debugging purposes. When ctr_sz
is high, the memory address of the incoming cell is not based on the old VCI values, instead, the
row address of the incoming cell is 0 and the column address is from 0 to 63. The register
ip_empty is used to indicate the status of the port controller. When it is asserted, the input port
controller can accept a cell from the transmission board; otherwise, a cell can be transmitted into
the fabric from the input port controller.

 Figure 4. Structure of the null port controller.

op controller op cell
counter

ip controller
ip cell

counter

address
accumulator

op_fifo_data
op_fifo_wr_en
op_fifo_soc
framestart

rx_ip_data

rx_rd_req

rx_ip_soc

ip_rx_wr_en

ip
_m

em
_d

at
a

ip
_m

em
_w

r_
en

ip
_m

em
_a

dd
r_

r

ip
_m

em
_a

dd
r_

c

ip
_m

em
_r

d_
re

q

m
em

_i
p_

da
ta

ip_fab_data

fab_ip_ack

fab_op_data

op_fab_ack

ct
r_

sz

ct
r_

id

Input Port Controller

Output Port Controller

7

3. Properties of the Null Port Controller
Before performing model checking, we must figure out the necessary properties of the null port
controller. This is similar to creating some scenarios before any simulation. The Fairisle null port
controller appends the new VCIs, FRB and PRB onto ATM cells and transfers them into the fab-
ric, so its major properties could include registers reset, memory addressing, cell counting, data
and acknowledgment transfer. Accordingly, we defined the following six major properties.

Property 1: The port controller will be reset properly when either the reset signal (npc_rst_n) is
zero or the null port controller input disable signal (ctr_id) is asserted.

Property 2: When the input port controller can accept a cell, the transmission board has a cell to
send, and the input port controller is in debugging state (ctr_sz = 1), then the cell will be trans-
ferred to the input port controller and stored in the memory at the right location.

Property 3: When the input port controller can accept a cell, the transmission board has a cell to
send, and the input port controller is in the normal operation state (ctr_sz=0), then the cell will be
transferred to the input port controller and stored in the memory at the right location.

Property 4: When the input port controller has a cell to send, it will send the cell to the fabric. If
the input port controller does not receive a positive acknowledgment signal, it will stop sending
the cell; otherwise, it will send the data cell completely.

Property 5: The memory cannot be read and write at the same time.

Property 6: The output port controller will send an acknowledgment signal after it detects an
incoming cell.

Each of the above properties will be described formally in CTL. In the next section, we will report
in detail the formal specification and verification of one sample property, Property 3. The specifi-
cation of the other properties can be found in [6].

4. Formal Specification and Verification Approach
In this section we will demonstrate by example (using Property 3) how the specification and veri-
fication is processed in a practical way. Property 3 states that

“When the null port controller can accept a cell, the transceiver board has a cell to send and
the null port controller is in normal operation state (ctr_sz=0), the memory address will be set up
and incremented properly, and data will be transferred correctly”.
This property has the following five assumptions:

1. The input port controller can accept a cell, expressed as “ip_empty = 1”;
2. The transmission board has a cell to send, expressed as “rx_ip_rd_req = 1”;
3. The port controller is in normal operation state, expressed as “ctr_sz = 0” and “ctr_id = 0”;
4. The port controller receives the framestart signal, expressed as “rx_ip_soc = 1”;
5. The input port controller is not in reset state, and it can be expressed as “npc_rst_n = 1”.

The input port controller first detects the signals ip_empty, rx_ip_rd_req, ctr_sz, npc_rst_n, and
ctr_id. If these signals are satisfied with the above assumptions, the null port controller will start

8

monitoring rx_ip_soc in the following clock cycles. If the rx_ip_soc is asserted as well, the cell is
transferred to the port controller. This behavior can be expressed formally in CTL as the follows1
AG(npc_rst_n=1 * ctl_id=0 * ctr_sz=0 * ip_empty=1 * rx_ip_rd_req=1 *
rx_ip_soc=1 -> AX AX ip_mem_addr_r[8:1] == rx_ip_data)

The above CTL expression is not fully correct because the assumptions (ip_empty=1 and
rx_ip_rd_req=1) do not happen at the same state as the fourth assumption (rx_ip_soc=1). There-
fore, we need to put the assumptions into the environment. In fact, because the port controller has
a cyclic period synchronized by the rx_ip_soc signal whose period is 64 clock cycles, we could
establish an environment state machine with 64 states (Figure 5).

Figure 5. Environment state machine for the port controller.

4.1. Property Environment
In Figure 5, S1 denotes the cycle that framestart is asserted. The behavior of the null port controller
can be divided into two parts: one is the data transmission which includes that the data is transferred
from the input port controller to the fabric and from output port controller to the output FIFO, and
the acknowledgment signal processing is also included in the data transmission process; the other is
that the data is transferred from the transmission board to the memory of the null port controller. So
the null port controller will have different behavior at each environment state between data trans-
mission and data reception process. If a cell is waiting to be transmitted in the input port controller
memory, S2 denotes that the input port controller is going to provide the address to the memory. In
S3, the memory address and memory read enable signals are given to the memory. S4, S5, S6, S7
and S8 denote that the first five bytes are transferred from the input port controller to the fabric. In
S9, the input port controller will detect the acknowledge signal (fab_ip_ack) it receives. If
fab_ip_ack is asserted, S10 to S57 will be the states where the input port controller transfers the rest
of the 48 bytes, then go into the “idle” state from S58 to S64; Otherwise, the input port controller
will stop sending data, and S10 to S64 will be in “idle” state. In the meantime, the output port con-
troller will detect the active bit of PRB at S9, if the active bit is asserted, the output port controller
will send an positive acknowledgement signal to the fabric, and the fabric will pass it to the input
port controller immediately. S10 to S61 will be the states that the input port controller forwards the
rest of 52 bytes data cell to the output FIFO. If the active bit is de-asserted, the output port controller
will always be in “idle” state in S1 to S64. On the other hand, if the memory is empty, the null port
controller will detect the rx_ip_soc signal. Once this latter is asserted, the next state will be the one
where the transmission board transfers the first data byte (VCI) to the input port controller. For
instance, assuming rx_ip_soc is asserted in S3, then ip_rx_wr_en will be asserted in S4, the first two
bytes (two VCI bytes) are transferred to ip_mem_addr in S5 and S6. S7 to S56 will be the states that
the null port controller transfers the rest of 50 bytes ATM cell to the memory. During these periods,
the ip_mem_wr_en signal will be asserted.

1. The symbols “*”, “+”, “->” represent logical “and”, “or” and “implication”, respectively, and the symbols “AG”
and “AX” are temporal operators meaning for all paths in all states and for all paths in next state, respectively.

9

The Verilog code for the above 64-state environment of the null port controller for Property 3
is shown in Figure 6. In this environment, the correct assumption npc_rst_n=1, ctl_id=0,
ctr_sz=0, ip_empty=1, rx_ip_rd_req=1, and rx_ip_soc=1 are set properly.

Figure 6. Verilog code of the environment of the port controller for Property 3.

In Figure 6, line 1 enumerates the 64 states of the null port controller, and line 4 to 11 lists the
transfer of the 64 states. Since one state is correspondent to a clock cycle, states will be trans-
ferred from S1 to S64 consecutively. Line12 to 15 defines that the framestart signal which is
asserted in S1 and de-asserted at other states. Line 20 to 24 represent the above 1 to 5 assump-
tions, respectively. Line 25 assigns the input signal rx_ip_data as 8-bit random value. Line 26
stores the value of rx_ip_data in state S4 as rx_ip_data_s4; Likewise, line 27 to 28 store the val-
ues of rx_ip_data in state S5 and S6 as rx_ip_data_s5 and rx_ip_data_r6, respectively. Similarly,
we could store the value of rx_ip_data in any states. The stored rx_ip_data values will be applied
to verify if the data are transferred coherently.

1. typedef num {S1, S2, S3, …, Si, … , S64} state;
2. assign rx_ip_data_ran = $ND(0, 1, 2, …, 255);
3. always @ (posedge clock) begin
4. case (state)
5. S64: state = S1;
6. S1: state = S2;
7. S2: state = S3;
8. S3: state = S4;
9. ……
10. Si: state = Si+1;
11. …
12. S63: state = S64;
13. endcase;
14. if (state== S1)
15. framestart = 1;
16. else
17. framestart = 0;
18. if (state == S3)
19. rx_ip_soc = 1;
20. else
21. rx_ip_soc = 0;
22. ip_empty = 1;
23. rx_ip_rd_req=1 ;
24. ctr_sz = 0;
25. ctr_id = 0;
26. npc_rst_n = 1;
27. rx_ip_data = rx_ip_data_ran;
28. if (state = S4) rx_ip_data_s4 = rx_ip_data_ran;
29. else if (state=S5) rx_ip_data_s5 = rx_ip_data_ran;
30. else if (state=S6) rx_ip_data_s6 = rx_ip_data_ran;
31. end

10

4.2. Property Assumptions and Conclusions
Using the above environment, Property 3 is now more accurately expressible. We divide the veri-
fication into the two steps. The first step is to verify whether the environment represents the
assumption, and the second step is to check if the conclusion is valid.

Step 1. Verify the assumptions
The above five assumptions are expressed using the following CTL expressions:

AG(npc_rst_n=1 * ctr_id=0 * ctr_sz=0) (1)

AG(state=S1 -> ip_empty =1 * rx_ip_rd_req=1) (2)

AG(state=S3 -> rx_ip_soc=1) (3)

Formulae (1) and (2) express that the null port controller is not in program or debugging mode
and is going to receive an ATM cell. It also ensures that the transmission board has a cell available
to send. In formula (3), we define “rx_ip_soc=1” at state S3, but the actual “rx_ip_soc” signal can
be asserted 1 to 11 clock cycles after S1. Because such assumption does not affect the behavior of
the null port controller, the assumption is valid. Finally, since we use “AG” (which means that the
formula will be valid in any states and any paths), we must be careful of the initial state. For
example, if we give the initial state as npc_rst_n = 0, formula (1) will not be valid.

Step2. Verify the conclusions.
In Property 3, we have to verify two aspects: one is to ensure that two bytes of VCI become the
memory address and the memory address is incremented by 1 per byte data transfer. And the other
is to verify that the data is transferred from transmission board to the memory with one clock
cycle delay and the memory write enable signal is asserted during the data transfer. The formulae
(4) and (5) below specify that the two bytes of VCI are transferred to be memory address cor-
rectly.

AG(state=S5 -> ip_mem_addr_r[8:1]==rx_ip_data_s4) (4)

AG(state=S6 -> ip_mem_addr_r[8:1]== rx_ip_data_s4 *
ip_mem_addr_r[0]==rx_ip_data_s5[7] * ip_mem_addr_c[8:6]==rx_ip_data_s5[6:4]
* ip_mem_addr_c[5:0]=6’b000100) (5)

The correct memory addresses increment can be specified by formulae (6), (7), (8) and (9)
below. Formulae (6) to (8) express that the memory row address is remained, but the memory col-
umn address is incremented by 1 per clock cycle until the total 50 bytes data (except two bytes
VCIs) have been transferred. The CTL properties for the address increment between S8 and S56
are not listed in here, but they are very similar to (7) and (8), except that we have to give the cor-
respondent values for ip_mem_addr_c[5:0]. Formula (9) represents that the memory address will
be pointed to the first byte of a new VCI ATM cell so that the ATM cell will be transferred imme-
diately after the next asserted framestart signal.

AG(state=S7 -> ip_mem_addr_r[8:1]== rx_ip_data_s4 *
ip_mem_addr_r[0]==rx_ip_data_s5[7] * ip_mem_addr_c[8:6]==rx_ip_data_s5[6:4]
* ip_mem_addr_c[5:0]=6’b000100) (6)

AG(state=S8 -> ip_mem_addr_r[8:1]==rx_ip_data_s4 *
ip_mem_addr_r[0]==rx_ip_data_s5[7] * ip_mem_addr_c[8:6]==rx_ip_data_s5[6:4]
* ip_mem_addr_c[5:0]=6’b000101) (7)

11

AG(state=S56 -> ip_mem_addr_r[8:1]==rx_ip_data_s4 *
ip_mem_addr_r[0]==rx_ip_data_s5[7] * ip_mem_addr_c[8:6]==rx_ip_data_s5[6:4] *
ip_mem_addr_c[5:0]= 6’b110101) (8)

AG(state=S57 + …… + state=S64 -> ip_mem_addr_r[8:1]==rx_ip_data_s4 *
ip_mem_addr_r[0]==rx_ip_data_s5[7] * ip_mem_addr_c[8:6]==rx_ip_data_s5[6:4]
* ip_mem_addr_c[5:0] = 6’b000000) (9)

Next, we verify that the data is transferred from the transmission board to the memory with one
clock cycle delay and the memory write enable signal is asserted during data transfer process.
This sub-property involves two signals. One is the memory write enable signal (ip_mem_wr_en)
and the other is the data output signal (ip_mem_data). The ip_mem_wr_en signal, which should
be asserted during the data transfer period (S7 to S56), is expressed by formulae (10) and (11)
below. Also during the data transfer period, the ip_mem_data should equal the value of
rx_ip_data with one clock cycle delay. The first and last byte data transfers are represented by for-
mulae (12) and (13) below. The CTL properties for the rest of data transfer are not enumerated in
here, but they are very similar to (12) and (13).

AG(state=S1 + state=S2 + … + state=S6 + state=S57 + … + state=S64 -> ip_mem_wr_en=0)(10)

AG(state=S7 + state=S8 + … + state=S56 -> ip_mem_wr_en=1) (11)

AG(state=S7 -> ip_mem_data==rx_ip_data_s6) (12)

AG(state=S56 -> ip_mem_data==rx_ip_data_s55) (13)

Through the combination of the established environment with the null port controller model,
the assumptions and conclusion of Property 3 are successfully verified through model checking in
VIS. We hence conclude formally that the assumptions imply the conclusion2. Following the
above method, all other five properties of the port controller have been similarly specified and
verified. However, we had to do minor modification to the environment when verifying each
property. Besides, using this method, a lot of CTL formulae needed to be specified for every prop-
erty because we have to verify the behavior at each environment state.

4.3. Property Division
To improve/ease the formal verification (model checking) of the above CTL expressions, we
propose to use the idea of property division [6], which is based on using internal signals of the
design to derive sub-properties (expressions) that can be combined to form back the original
property (expression). At first, we have to establish an environment which is similar to Figure 6,
but we do not need specify the value of ip_empty, npc_rst_n, rx_ip_soc, rx_ip_rd_req, ctr_id and
ctr_sz signals, instead, they are assigned as non-deterministic variables [1]. Figure 7 is the
proposed modified environment of the null port controller for Property 3.

2. The proof is fairly simple, a proposition A is true and a proposition B is true, then the proposition A → B is true.

12

 Figure 7. Verilog code of the modified environment for property division

Since we can only compare the equivalence between two signals or between one signal and a
certain value in model checking, we propose to build some assistant signals (variables) to ease
property expression in model checking. For instance, in Figure 7, line 29 to 31 is to create the
assistant signal ip_mem_addr_c_plus1 which is always equal to “ip_mem_addr_c[5:0] + 1” with
one clock cycle delay. This signal will be used in the CTL formulae to follow. Similar to Section
4.2., we first verify the proper address transfer and increment, and then verify the correct data
transfer. To verify the proper address transfer and increment, we need to prove the following three
consecutive sub-properties:
Sub-property 3a: The null port controller uses the two bytes VCI as the initial memory address

two clock cycle after rx_ip_soc asserts;
Sub-property 3b: After Sub-property 3a, the memory address is incremented by 1 per clock cycle

until the 50 bytes data have been completely transferred;
Sub-property 3c: After Sub-property 3b, the memory address will point to the first byte of the

ATM cell.

1. typedef num {S1, S2, S3, …, Si, … , S64} state;
2. assign rx_ip_data_ran = $ND(0, 1, 2, …, 255);
3. always @ (posedge clock) begin
4. case (state)
5. S64: state = S1;
6. S1: state = S2;
7. S2: state = S3;
8. S3: state = S4; ……
9. Si: state = Si+1; ……
10. S63: state = S64;
11. endcase;
12. if (state== S1)
13. framestart = 1;
14. else
15. framestart = 0;
16. rx_ip_soc = rx_ip_soc_ran;
17. ip_empty = ip_empty_ran;
18. rx_ip_rd_req =rx_ip_rd_req_ran;
19. ctr_sz = ctr_sz_ran;
20. ctr_id = ctr_id_ran;
21. npc_rst_n = npc_rst_n_ran;
22. rx_ip_data = rx_ip_data_ran;
23. if (state = S4) rx_ip_data_s4 = rx_ip_data_ran;
24. else if (state=S5) rx_ip_data_s5 = rx_ip_data_ran;
25. else if (state=S6) rx_ip_data_s6 = rx_ip_data_ran; ……
26. always @(posedge clock) begin
27. ip_mem_addr_c_r1[5 : 0] = ip_mem_addr_c[5:0];
28. end
29. always @(posedge clock) begin
30. ip_mem_addr_c_plus1 = ip_mem_addr_c_r1[5:0] + 1;
31. end
32. always @(posedge clock) begin
33. rx_ip_data_r1 = rx_ip_data;
34. end

13

The following formulae (14) to (21) are the CTL expressions of the above three sub-properties:

AG (framestart = 1 -> ip_state_i = idle) (14)

AG (framestart = 1 * npc_rst_n = 1 * ip_state_i = idle * ip_empty = 1 *
rx_ip_rd_req = 1 * ctr_id = 0 -> AX (ip_state_i = rx_wait)) (15)

AG (ip_state_i = rx_wait * rx_ip_soc = 1 -> AX(ip_state_i = rx_store1)) (16)

AG (ip_state_i = rx_store1 * ctr_sz = 0 -> AX(ip_state_i = rx_store_2 *
ip_mem_addr_r[8:1] == rx_ip_data_s4)) ((17)

AG(ip_state_i = rx_store2 * ctr_sz = 0 -> AX (ip_state_i = rx_data *
ip_mem_addr_r[8:1]==rx_ip_data_s4 * ip_mem_addr_r[0] ==
rx_ip_data_s5[7] * ip_mem_addr_c[8:6] == rx_ip_data_s5[6:4] *
ip_mem_addr_c[5:0] = 6’b000100 * ip_cell_cnt = 50) (18)

AG(ip_state_i = rx_data -> (ip_mem_addr_r[8:1]==rx_ip_data_s4 *
ip_mem_addr_r[0] == rx_ip_data_s5[7] * ip_mem_addr_c[8:6] ==
rx_ip_data_s5[6:4] * ip_mem_addr_c[5:0] == ip_mem_addr_c_plus1 *
ip_cell_cnt == cell_cnt_minus1)) (19)

AG(ip_state_i = rx_data * ip_cell_cnt = 1 -> AX (ip_state_i = ip_idle *
ip_mem_addr_r[8:1]==rx_ip_data_s4 * ip_mem_addr_r[0] ==
rx_ip_data_s5[7] * ip_mem_addr_c[8:6] == rx_ip_data_s5[6:4] *
ip_mem_addr_c[5:0] = 53) (20)

AG(ip_state_i = rx_data * ip_cell_cnt = 1 -> AX AX(ip_state_i = ip_idle
* ip_mem_addr_r[8:1] == rx_ip_data_s4 * ip_mem_addr_r[0] ==
rx_ip_data_s5[7] * ip_mem_addr_c[8:6] == rx_ip_data_s5[6:4] *
ip_mem_addr_c[5:0] = 0) (21)

We use the internal signal ip_state_i to help us express sub-properties in CTL. ip_state_i is a
state variable which has. The state transition of the input port controller with 8 states (ip_idle,
rx_wait, rx_store1, rx_store2, rx_data, tx_addr, tx_first_5 and tx_data) is shown in Figure 3.
Accordingly, Sub-property 3a can be deduced by (14) to (18), where the deduction is based on
property division [6]. In fact, Sub-property 3a is obtained through the combination of the follow-
ing formulae (22) and (23), where (22) is deduced from (14) and (15), and (23) from (16), (17)
and (18), respectively.

AG(framestart = 1 * npc_rst_n = 1 * ip_empty = 1 * rx_ip_rd_req = 1 *
ctr_id = 0 -> AX (ip_state_i = rx_wait)) (22)

AG(npc0.ip_state_i = rx_wait * rx_ip_soc = 1 * ctr_sz = 0 -> AX
AX(ip_state_i = rx_data * ip_mem_addr_r[8:1] ==rx_ip_data_s4 *
ip_mem_addr_r[0] == rx_ip_data_s5[7] * ip_mem_addr_c[8:6] ==
rx_ip_data_s5[6:4] * ip_mem_addr_c[5:0] = 6’b000100 * ip_cell_cnt =
50 (23)

In formula (19), we use two assistant signals: ip_mem_addr_c_plus1 and cell_cnt_minus1. As
shown in Figure 7, ip_mem_addr_c_plus1 is always equal to “ip_mem_addr_c[5 :0] + 1” with
one clock cycle delay, so “ip_mem_addr_c[5:0] = ip_mem_addr_c_plus1” represents that
ip_mem_addr_c[5:0] will increment by one each clock cycle. Similarly, we can build up the sig-
nal cell_cnt_minus1. Since cell_cnt_minus1 is an internal signal, cell_cnt_minus1 has to be
defined inside the null port controller.

14

Sub-property 3b can be deduced from expressions (18), (19) and (20). (18) implies that
ip_cell_cnt = 50 and the memory address points to the first data byte in the first clock cycle of
rx_data state; (19) means that ip_cell_cnt decrements by 1 and ip_mem_addr_c increments by 1
per clock cycle during rx_data state; (20) indicates that when ip_cell_cnt reaches 1, ip_state_i
will become “idle”, and the least significant bits of ip_mem_addr_c will be 54 which points to the
last data byte of an ATM cell. The deduction is also based on property division [6]. Formula (19)
represents the general behavior of ip_mem_addr_c, ip_mem_addr_r and ip_cell_cnt, while (18)
and (20) give the lower and upper boundary of ip_mem_addr_c and ip_mem_cnt. Since the three
CTL expressions are relatively complicated, we use the following simple example to illustrate
how the deduction works.

Supposed we have the following three valid CTL expressions (24), (25) and (26), T1, T2, T3
expresses three different environment states, addr is a variable, and addr_plus1 is the variable
which is always greater than addr by 1 at the previous clock cycle. Formula (24) and (26) have a
similar formats. Formula (25) is a general expression, however. Hence, we could convert (25) into
(27) which includes 49 CTL expressions which have the same style as formula (24) or (26). By
(24), (25) and (27), we can infer that addr will be incremented by 1 per clock cycle during state
T2 and T2 state will last for 50 clock cycles to allow addr increment from 4 to 53. In this example,
a simple inference rule is applied.

AG (state = T1 -> AX (state = T2 * addr = 4) (24)

AG (state = T2 -> AX (addr == addr_plus1) (25)

AG (state = T2 * addr = 53 -> AX (state = T3 * addr = 54)) (26)

AG (state = T2 * addr = 4 -> AX (addr = 5))

AG (state = T2 * addr = 5 -> AX (addr = 6))

……
AG (state = T2 * addr = 52 -> AX (addr = 53)) (27)

Obviously, the formulae (18), (19) and (20) are very similar to (24), (25) and (26), respectively.
We hence use a similar conversion to infer Sub-property 3b.

Finally, expression (21) indicates that after 50 bytes data are transferred, the memory address
will point to the first byte of an ATM cell with a new VCI and header. This is actually Sub-prop-
erty 3c.

Using the above formulae, we realize that rx_data state will keep for 50 clock cycles which
allow to transfer 50 bytes data cell to the memory. So the data transfer state can be easily
expressed by ip_state_i = rx_data. To prove the correct data transfer, we only need to prove that
ip_mem_wr_en is asserted and the data are transferred from the transmission board to the memory
only during rx_data state. (28), (29) and (30) express this property. In (30), rx_ip_data_r1, which
is also an assistant signal, denotes the value of rx_ip_data with one clock cycle delay.

AG (ip_state_i = rx_data -> AX(ip_mem_wr_en = 1)) (28)

AG (!(ip_state_i = rx_data)-> AX(ip_mem_wr_en = 0)) (29)

AG (ip_state_i = rx_data -> AX (ip_mem_data ==rx_ip_data_r1)) (30)

15

4.4. Datapath Reduction
In property 3, 50 bytes data are transferred from transmission board to the input port controller.
Because a byte of data transfer has the same behavior as the data transfer of other 49 bytes, we
could reduce the number of data transfers in the verification. In the null port controller, the num-
ber of data transfer is controlled by counters, so we propose to reduce the scale of the counter to
simplify our verification. In the null port controller, the acknowledge signal should be available at
5 clock cycles after the input port controller sends the first byte data to the fabric, so we could
apply 12 bytes data in a cell which includes 2 bytes VCIs, 2 bytes FAS and 8 bytes data). Accord-
ingly, the counter size should be reduced by 40 (52-12). Then we have to change our environment
machine from 64 state to 15 states (10 states for data transfers and 5 states for handshaking).

 Figure 8. Modified environment of null port controller for datapath reduction

 Figure 8 is the new environment. If we consider the receiving process of the null port control-
ler, S1 and S2 are correspondent to framestart and rx_ip_soc assertions, S3, S4 are corresponding
to the state rx_store1 and rx_store2, respectively, S5 to S14 are for rx_data state, S15 is for
ip_idle. After reducing the environment states and the counter sizes, we could use either of the
methods described in the previous sections. We have used the combination of all approaches to
maximize performance. The experiment results are present in the next subsection.

4.5. Experimental Results
Experimental results on the model checking of all 6 properties are shown in Table 2, including CPU
time, memory usage and number of BDD nodes generated. The experiments were performed using
VIS-3.1 on a Sun Ultra Sparc (300MHz/500 MB) machine and using the verification approaches
described above for Property 3. The environments and CTL formulae of all properties are described
in [6]. Generally, in terms of machine time, model checking on the null port controller gives accept-
able verification performance compared to simulation. In fact, we did run simulation on the null
port controller before the model checking, where we have been able to detect a number of syntax
errors, mistaken variable names and wrong counter numbers. By model checking, we detected some
logic errors such as the memory write and read incoherence, and a misbehavior of the signals ctr_sz
and ctr_id. The errors were traced by the counterexamples generated by VIS.

 Table 2. Model checking experimental results
Properties CPU time (sec.) Memory (MB) BDD Nodes (K)
Property 1 52 92 203,493
Property 2 256 198 284,563
Property 3 209 156 293, 354
Property 4 378 201 304,731
Property 5 34 77 153,980
Property 6 76 89 197,091

S1 S3S2 S4 Si Si+1 Si+2 S12 S13 S14 S15

16

5. Conclusions
In this report, we have presented the modeling and formal verification by model checking of an
ATM switch port controller. This is a real design of a telecommunications component used in the
Cambridge Fairisle ATM network. While some specification properties cannot be concisely
expressed using single temporal logic formulae, we have shown how we make use of an environ-
ment state machine to enable a proper specification. To enable the model checking process, prop-
erties are further subdivided into a set of assumption and conclusion sub-formulae which are
combined by conjunction. Using such an approach, we succeeded the model checking of all spec-
ification properties of the port controller within the reasonable time. The method presented could
be enough in order to verify larger designs. To this end, we may have to apply some more
advanced techniques, such as symmetry reduction or compositional verification [5].

References
[1] R. Brayton et al., “VIS: A system for Verification and Synthesis”, Technical Report UCB/ERL

M95, Electronics Research Laboratory, University of California, Berkeley, December, 1995.
[2] H.D. Ginsburg, “ATM Solutions for Enterprise Internetworking”, Addison-Wesley, 1996.
[3] C. Kern and M. Greenstreet, “Formal Verification in Hardware Design: A Survey”, ACM

Trans. on Design Automation of Electronic Systems, Vol. 4, April 1999, pp. 123-193.
[4] I. Leslie and D. McAuley, “Fairisle: An ATM Network for the Local Area”, ACM Communi-

cation Review, Vol. 19, No. 4, Sep. 1991, pp. 327-336.
[5] J. Lu and S. Tahar, “Practical Approaches to the Automatic Verification of an ATM Switch

Fabric using VIS”, Proc. IEEE 8th Great Lakes Symposium on VLSI, Lafayette, Louisiana,
USA, Feb. 1998, pp. 368-373.

[6] J. Lu, “On the formal Verification of ATM Switches”, M.A.Sc. Thesis, Department of Electri-
cal and Computer Engineering, Concordia University, Canada, May 1999.

