
Formal Verification of a Protocol Converter

Memory Manager using FormalCheck

Jounaidi Ben Hassen and Sofiène Tahar

Electrical and Computer Engineering Department

Concordia University, Montreal, Canada

Email: {jounaidi, tahar}@ece.concordia.ca

Technical Report

April 2003

Abstract

We present in this report the formal specification and verification results of the Memory Man-
ager block of a System-on-a-Chip (SoC) platform Protocol Converter using the model checking
tool FormalCheck. The Memory Manager represents the main block of the protocol converter
system and is made of five modules, namely, a Memory Manager Controller, an Address Counter
Register, a Data Counter Register, a Packet Counter Register and a Packet Assembler. First,
we extracted some constraints to define the environment for the Memory Manager. Then we
specified a number of relevant liveness and safety properties expressible in FormalCheck and
accomplished their verification under the defined set of constraints. Through extensive verifica-
tion, we have been able to find a number of bugs in the design that were omitted by simulation.
This experience demonstrates the usefulness of formal verification techniques to complement
traditional verification by simulation.

1 Introduction

The increasing complexities of hardware designs have made verification and error detection on the
critical path of the design process. Moreover, some of these errors may, sometimes, cause catas-
trophic loss of money, time, or even human life. A major goal of designers is to construct systems
that operate reliably despite their complexity. The same complexities, however, are responsible
for the inability to achieve an integral verification of the design, and thus to gain a high degree of
confidence in its correctness. This is in particular a serious problem for System-on-a-chip (SoC)
designs which may contain processor cores, custom logic, memory and IP (Intellectual Property)
blocks on a single chip.

Traditionally, simulation is used to verify the “correctness” of a design, however, it is no more
able to keep pace with the increasing complexity of hardware designs. In fact, as an integrated
circuit functionality increases linearly, the amount of vectors required to fully test this functionality
increases exponentially. It therefore becomes impossible for a human being to fathom all vectors

1

required to fully test a circuit. To overcome this difficulty, formal hardware verification methods
[9] are now being deployed, and became useful tools for detection of functional design errors.
By using formal verification in parallel with the design efforts, the overall design cycle can be
reduced by insuring a maximum design coverage, while maintaining a high degree of confidence
in the verification result. For instance, the objective of formal verification is to verify that the
design model conforms to an abstract specification, consisting of a set of properties which together
describe partially the intended functionality of the design. Those techniques have proven their
efficiency to formally verifying industrial size systems.

This report aims to explore a case study on the model checking of the Memory Manager com-
ponent of an SoC platform Protocol Converter System and to show that formal methods are strong
enough for the verification of such complex design. The Memory Manager of the Protocol Con-
verter System [6], designed by the “Groupe de Recherche en Micro-électronique” at the École
Polytechnique de Montréal, was chosen to be verified as a research case to experiment the benefits
of formally verifying a design using model checking over using simulation to find bugs inside a
design. The model checking is based on the FormalCheck tool of Cadence [5]. The architecture
of the Memory Manager is described at the Register-Transfer Level (RTL) coded in VHDL (VH-
SIC Hardware Description Language). The Memory Manager represents the main block of the
protocol converter system and is made of five modules, namely, a Memory Manager Controller,
an Address Counter Register, a Data Counter Register, a Packet Counter Register and a Packet
Assembler. In a first step, we extracted some constraints to define the environment for the Memory
Manager. Then we specified a number of relevant liveness and safety properties expressible using
FormalCheck templates and accomplished their verification under the defined set of constraints.
Through extensive verification, we have been able to find a number of bugs in the design that
were not caught by simulation. This experience demonstrates the usefulness of formal verification
techniques to complement traditional verification by simulation.

The rest of the report is structured as follows: In Section 2, we give a brief overview of the
Formal verification techniques and we present the tool FormalCheck and its verification options.
In Section 3, we describe the behavior of the Memory Manager and its interaction with the other
components of the Protocol Converter System. In Section 4, we define the required set of constraints
on the Memory Manager. In Section 5, we specify the set of properties to be verified. In Section
6, we present our results of the formal verification using model checking. We discuss some related
work in Section 7 and conclude the report in Section 8.

2 Formal Verification Techniques

Formal verification techniques are based on the application of mathematical reasoning to the spec-
ification and validation of systems to insure the correctness of designs [9]. There are mainly two
techniques of formal verification, namely theorem proving and model checking. Although both of
these approaches are used to analyze a system for desired properties; there are many differences
between them.

Theorem proving is an approach where both the system and its desired properties are expressed
as formulas in some mathematical logic. This logic is given by a formal system, which defines a
set of axioms and a set of inference rules. Theorem proving is the process of finding a proof of a
property from the axioms of the system. Steps in the proof appeal to the axioms and rules, and
possibly derived definitions and intermediate lemmas.

Model checking is a technique that relies on building a model of a system and checking that
a desired property holds in that model by exploring a state space search in that model. Model

2

checking is mainly used in hardware and protocol verification. Two general approaches to model
checking are used in practice today. The first, temporal model checking, is a technique developed
in the 1980s by Clarke and Emerson [7] and by Queille and Sifakis [14]. In this approach specifi-
cations are expressed in a temporal logic [13] and systems are modeled as finite state systems. An
efficient search procedure is used to check if a given finite state transition system is a model for the
specification. In the second approach, the specification is given as an automaton; then the system,
also modeled as an automaton, is compared to the specification to determine whether or not its
behavior conforms to that of the specification.

In contrast to theorem proving, model checking is completely automatic and fast. It can be
used to check partial specification. Thus, it can provide information about a system’s correctness
even if the system has not been completely specified. In addition, it produces counterexamples,
which usually represent residual errors in design, and so can be used to aid in debugging.

In the work presented here, we have chosen model checking as formal verification method based
on the Cadence tool FormalCheck [5]. The choice of FormalCheck is based firstly on the simple fact
that this is a mature and commercial tool, and secondly that has a suitable user-friendly interface,
where properties can be expressed intuitively.

FormalCheck

FormalCheck, originally developed at Bell-Labs and now part of Cadence products, supports the
synthesizable subsets of Verilog and VHDL hardware description languages. As a model checker, it
verifies that a design model exhibits specific behaviors (properties) that are required by the design
specification. If an error is present, then FormalCheck displays a counterexample as a waveform
diagram. Often, a design model is expected to exhibit the stated properties only when components
of the model, such as primary inputs, satisfy stated constraints. Together, the properties and the
constraints that compromise one application of the model checker are called a query [5].

Properties that form the basis of a model checker’s query fall into two categories: safety or
liveness. Safety properties describe behaviors that can be shown to be false by a finite simulation
trace. In FormalCheck, they can be expressed using one of two formats: The always format and
the never format. Liveness properties describe behaviors that are eventually exhibited. They
cannot be checked with a simulation tool unless one knows the maximum number of steps before
the eventuality is fulfilled. Constraints can prevent the model checker from attempting to verify
properties with illegal combinations of inputs. Each constraint has a corresponding property and
falls into one of two categories: safety or fairness. A fairness constraint corresponds to a liveness
property. Properties and constraints are sometimes given using Boolean expressions and state
variables. Boolean expressions alone can only define an event that is true at a single point in
time. However, the condition to be checked is often the culmination of a sequence of events. Such
sequential conditions are defined in terms of state variables.

FormalCheck includes a number of verification modes. Typically, BDDs (Binary Decision Di-
agrams) [4] are used and verification is performed iteratively. Initially, FormalCheck reduces the
design model to only needed components for verifying the property. This version is called one-step
reduction. Sometimes, complex designs require more reduction. In this case, FormalCheck offers
an iterated reduction algorithm. The iterated reduction algorithm seeks to find a portion of the
design model on which it is sufficient to run verification. The portion by construction will be such
that if the query is verified on this portion, then it is guaranteed to be true on the original model.
Conversely, if the query fails on this portion, then the algorithm expands the error track to an
error track of the original one-step reduction model. This operation is called the reduction seed and

3

M

M

C O N T R O L L E R

ADRESS COUNTER

DATA COUNTER

PACKET COUNTER

ACR

DCR

PCR

A
I
N

M
E

O
R
Y

PHYSICAL INTERFACE

MEMORY MANAGER
CONTROLLER

PA

ACR: Address Counter Register
DCR: Data Counter Register
PCR: Packet Counter Register
PA: Packet Assembler

Figure 1: The Memory Manager Architecture

permits the definition of a suitable reduced model for the verification process [5].

3 The Memory Manager Block

The Protocol Converter System [6] is based on a System-on-Chip (SoC) platform. The main
advantage of such a plate-form is its flexibility. In fact, its modularity allows the addition, the
change or the drop of some modules without affecting the global architecture of the system. This
system accepts incoming packets from a physical bus, converts their protocols and then sends
them back through the physical interface. The Protocol Converter System is subdivided in three
blocks as shown in Figure 1. The first one, formed by the Memory Manager and the Controller, is
specialized in the reception of packets and preliminary treatments for the conversion. The second
one is specialized in the transmission of converted packets, while the third one is the block which
performs the conversion of packets coming from the first block and sends them back to the second
block.

Packets come through a physical interface which communicates with the Memory Manager
by transmitting data and some control signals. Upon reception, the Memory Manager stores
coming data in the Main Memory and transmits to the Controller characteristics of the packet in
transmission, including the address of the packet in the Main Memory, the protocol of the packet
and its size. The communication between the Memory Manager and the Controller is insured via
the Memory Manager Controller. Once the protocol conversion is done, the Controller asks the
Memory Manager, via the Memory Manager Controller, to remove the converted packet from the
Main Memory. So, the address of this packet and some other control signals are transmitted to the
Memory Manager.

The functionality of the Memory Manager is insured by its different components. Besides the
Memory Manager Controller, we can find three registers and the Packet Assembler. Intuitively, the
Memory Manager Controller is responsible for the communication between the Memory Manager
and the Controller; the registers are used as counters of addresses and packets; and the packet
assembler is a module that concatenates packet’s address and data.

Figure 2 presents the communication between the Memory Manager and the other system

4

C
O
N
T
R
O
L
L
E
R

M
A
I
N

M
E
M
O
R
Y

M

E

M
O
R
Y

A
N
A
G

R

M

E
Mgr_Sop

Mgr_Eop

Mgr_Busy

Mgr_Delack

Mgr_Bnb

Mgr_Addr Mgr_Addr

PHYSICAL INTERFACE

Mgr_Wrn

Mgr_Wrd

Mgr_Perr

Ph
yn

_S
op

Ctr_Delvalid

Ctr_Deladdr

Ph
yn

_W
rd

Ph
yn

_B
e

Ph
yn

_P
er

r

Ph
yn

_E
op

Ph
yn

_W
rv

al
id

M
gr

_E
na

bl
e_

O
k

Figure 2: The Memory Manager Block Communication

components. When the Memory Manager is available to receive a packet from the Physical Interface,
the signal Mgr_Enable_Ok is sampled to high. In this case, data are received by a 32-bit bus called
Phyn_Wrd. The number of valid bytes is given by the 4-bit bus Phyn_Be and the validity of the
transmitted word is given by the signal Phyn_Wrvalid. The signal Phyn_Sop, activated during
one cycle, starts the reception of the new packet and the signal Phyn_Eop, activated during one
cycle, indicates the end of transmission. If an error occurs during the transmission, then the signal
Phyn_Perr is activated during one cycle.

During the reception of packets, the Memory Manager activates writing in the Main Memory by
setting the signal Mgr_Wrn to 0. Data are transmitted by the 32-bit bus Mgr_Wrd, and the address
in which received data are stocked is defined by the 11-bit bus Mgr_Addr.

When the Memory Manager begins the reception of a packet, it informs the Controller by
setting its signal Mgr_Sop to 1 during one cycle and sends it the address of the first word of the
received packet via the bus Mgr_Addr. At the end of the transmission, the Controller is informed
via the signal Mgr_Eop which is activated in this case during one cycle. The Memory Manager
transmits to the Controller the total size of the received packet via the 11-bit bus Mgr_Bnb. If an
error occurs during transmission, then the Memory Manager informs the Controller by setting the
signal Mgr_Perr to 1 during one cycle.

Once the conversion done, the Controller asks the Memory Manager for the suppression of
the packet from the Main Memory. If the Memory Manager is available (Mgr_Busy=0), then the
Controller sends a suppression order via the port Ctr_Delvalid. The address of the packet to be
deleted is transmitted to the Memory Manager by the 11-bit bus Mgr_Deladdr. At the end of the
suppression, the Memory Manager sends an acknowledgment to the Controller by activating the
signal Mgr_Delack during one cycle. Table 1 presents a list of major signals used in the architecture
of the Memory Manager to provide control or to transmit data between the different components
of the Memory Manager [6].

5

Signal I/O Size Description
Sys_Clk IN 1 System Clock
Sys_Rst_N IN 1 System Reset
Phyn_Wrd IN 32 Data bus

P Phyn_Be IN 4 Number of valid bits in the data bus
H Phyn_Wrvalid IN 1 Validity of transmitted word
Y Phyn_Sop IN 1 Start reception of a new packet

Phyn_Eop IN 1 End of transmission
Phyn_Perr IN 1 Error during transmission
Mgr_Enable_Ok OUT 1 Availability to receive a packet
Mgr_Wrd OUT 32 Stored data in the Main Memory.

M Mgr_Addr OUT 11 Address bus
M Mgr_Wrn OUT 1 Activates writing in the Main Memory

Ctr_Delvalid IN 1 Suppression order from the Controller
C Ctr_Deladdr IN 11 Address of packet to be deleted
T Mgr_Addr OUT 11 Address of received packet
R Mgr_Sop OUT 1 Start of packet reception
L Mgr_Eop OUT 1 End of transmission
L Mgr_Perr OUT 1 Error during transmission
E Mgr_Bnb OUT 11 Size of the received packet
R Mgr_Busy OUT 1 Availability for a suppression request

Mgr_Delack OUT 1 Acknowledgment after suppression

Table 1: Description of Memory Manager signals

4 Environment Constraints

In FormalCheck, primary signals are assumed to be non-deterministic, meaning they could acquire
any value within their range on any edge of the clock. However, in most cases correct design
operation is allowed on a single edge of the clock. For this reason, properties should be observed
using the appropriate clock edge.

In our experiment, we defined the following Constraints as default for all properties used to
verify the Memory Manager:

• Constraint 1: We defined a clock constraint on the Sys_Clk signal, starting with low for
one crank and then high for one crank1. In formalCheck, this constraint can be defined as
follows:

Clock Constraint: System_Clock Signal: Sys_Clk
Extract:No
Default: Yes
Start: Low
1st Duration: 1
2nd Duration: 1

Sometimes FormalCheck can report an irrelevant failure caused by input changes that are
not on the relevant clock edge. These irrelevant failure can be eliminated by using the clock

1A crank in FormalCheck is considered as the propagation delay of a flip-flop. Since there is no concept of absolute
time, FormalCheck uses a crank as the unit of time and observes the events relative to this unit.

6

extraction feature. However, in our case we did not need this feature since the model con-
tains flip-flops with asynchronous preset. Thus, we should desactivate this feature and define
manually the system clock. When the Default option is activated, the constraint is defined
for every property. Since constraints will be used in the verification of all the queries, we
activate the Default option. Durations are given in number of cranks and mean that the
signal Sys_Clk is sampled to low for one crank (1st duration), then to high for one crank
(2nd Duration).

• Constraint 2: This is a reset constraint on the Sys_Rst_N signal, starting with low for two
cranks and then goes to high forever2.

Reset Constraint: System_Reset Signal: Sys_Rst_N
Default: Yes
Start: Low
Transition Duration Value
Start 2 0

forever 1

Since FormalCheck does not support signal initialization, this constraint is useful to assign
initial values to signals. To allow all input signals to take their initial value, the signal
Sys_Rst_N should be sampled to 0 during one clock cycle (2 cranks), then it is sample to 1
forever.

• Constraint 3: The signals Phyn_Sop, Phyn_Eop and Phyn_Perr are activated during one
cycle of the system’s clock rising edge (sys_Clk=rising). This can be expressed by these
safety Constraints:

Constraint OneClockSop
Type: Never
Assume Never:(Phyn_Sop = 1) and (WasSop = 1)
Option:Default

This constraint means that the signal Phyn_Sop can never be activated during two clock cycles,
where WasSop is a state variable that indicates if the signal Phyn_Sop is already activated:

WasSOP: Range 0 to 1
Initial: 0
if (Phyn_Sop = 1) and (Sys_clk = 0) then

WasSOP := 1;
else

WasSOP := 0;
end if;

The signal Phyn_Sop changes value only on the rising edge of system’s clock can be expressed
by the following safety constraint:

2Activities of the Memory Manager block are triggered by an active low asynchronous reset.

7

Constraint SyncSOP
Type: Always
Assume Always: (Sys_Clk = rising) or (Phyn_Sop = stable)
Options: Default

Saying that the signal Phyn_Sop changes value only on the rising edge of the system’s clock
means that if Phyn_Sop changes its value, forcibly Sys_Clk is rising. If it is not the case,
Phyn_Sop can only be stable. This is a safety constraint because it should always be verified.
Similarly, we define the four other constraints for Phyn_Eop and phyn_Perr as well as the
two state variables WasEOP and WasPERR.

• Constraint 4: A constraint that synchronizes the activation of the signal Ctr_Delvalid
with the falling edge of the system’s clock.

• Constraint 5: A constraint that synchronizes the falling edge of the signal Ctr_Delvalid
with the falling edge of the signal Mgr_Delack. This constraint guarantees that the signal
Ctr_Delvalid will stand active until the reception of the delete acknowledgment from the
Memory Manager.

• Constraint 6: A constraint that synchronizes the activation of the signal Phyn_Be with the
rising edge of the system’s clock. There is no constraint on the duration of activation.

• Constraint 7: When Phyn_Wrvalid = 1, Phyn_Be should indicate that at least one word
is valid in the transmitted packet. This is expressed by the following Constraint:

Constraint WrvalidNotPhynBe
Type: Never
Assume Never: (Phyn_Wrvalid = 1) and (Phyn_Be = 0)
Options: Default

• Constraint 8: The Physical Interface cannot send a packet while the Memory Manager is
receiving another packet. Therefore, two successive Phyn_Sop should be separated by either
Phyn_Eop or Phyn_Perr. Reciprocally, the activation of Phyn_Eop or Phyn_Perr should occur
to mark the end of a current transmission:

Constraint S_EorPerr_S
Type: Never
Assume Never: InTransmission = 1 and Phyn_Sop = rising
Options: Default

InTransmission is a state variable that indicates if the Memory Manager is currently receiv-
ing a packet from the Physical Interface:

InTransmission: Range 0 to 1
Initial 0
if Phyn_Sop = rising then
Intransmission := 1;

8

elsif (Phyn_Eop = rising or Phyn_Perr = rising) then
InTransmission := 0;

end if;

The second constraint can be written as follows:

Constraint EorPerr_S_EorPerr
Type: Never
Assume Never: (Phyn_Eop = rising or Phyn_Perr = rising) and
EndTransmission = 1
Options: Default

EndTransmission is a state variable that indicates if the Memory Manager had terminated
the reception of a packet from the Physical Interface:

EndTransmission: Range 0 to 1
Initial 1
if(Phyn_Eop = rising or Phyn_Perr = rising) then

Endtransmission := 1;
elsif Phyn_Sop = rising then

EndTransmission := 0;
end if;

• Constraint 9: We assume that a packet transmission should end. Thus, if the signal
phyn_Sop is activated, then eventually the signal phyn_Eop or phyn_Perr is activated. In
addition, the length of a packet should be respected. A packet need at least four clock cycles
and at most 380 clock cycles to be totally transmitted [6].

Constraint AfterSopEopOrPerr
Type: Eventually
After: Phyn_Sop = 1
Assume Eventually: (Phyn_Eop = 1) or (Phyn_Perr = 1)
Fulfill Delay: 4 Duration: 380
Of Edge: Sys_Clk = rising
Options: Default

Informally, this constraint means that after the start of a packet transmission, eventually the
transmission will end correctly or after an error detection, after at least 4 occurrences and at
most 380 occurrences of the rising edge of the system clock.

• Constraint 10: For simplification purposes, we assume that the two signals Phyn_Eop and
Phyn_Perr cannot be activated simultaneously. Thus, the safety constraint can be formalized:

Constraint EopAndPerr
Type: Never
Assume Never: (Phyn_Eop = 1) and (Phyn_Perr = 1)
Options: Default

9

• Constraint 11: To simplify further more our verification, we assume that neither Phyn_Eop
nor Phyn_Perr can be activated simultaneously with the signal Phyn_Sop. We expressed this
constraint as follows:

Constraint SopAndEopOrPerr
Type: Never
Assume Never: (Phyn_Sop = 1) and
(Phyn_Eop = 1 or Phyn_Perr = 1)
Options: Default

• Constraint 12: The two signals Phyn_Sop and Phyn_Wrvalid rise always simultaneously
and the two signals Phyn_Eop (respectively Phyn_Perr) and Phyn_Wrvalid fall always simul-
taneously:

Constraint SyncSopAndWrvalid
Type: Always
Assume Always: (not((Phyn_Sop = rising) or
(Phyn_Wrvalid = rising))) or
((Phyn_Sop = rising) and
(Phyn_Wrvalid = rising))
Options: Default

Constraint SynEop_PerrAndWrvalid
Type: Always
Assume Always: (Phyn_Eop /= falling and Phyn_Perr /= falling and
Phyn_Wrvalid /= falling) or
(Phyn_Eop = falling and Phyn_Wrvalid = falling) or
(Phyn_Perr = falling and Phyn_Wrvalid=falling)
Options: Default

Here, the symbol “/=” means in FormalCheck “different from”.

Sometimes the formulation of the constraint is trivial, but in other cases, some theoretical
background is required. The last two constraints are examples of such a case.

Proof:

We will give here a marginal proof of the last given constraint SynEop_PerrAndWrvalid. For
this, we we define first the following proposition:

Fall(X): The signal X is falling.

In our case, and for simplification reason, we will denote Phyn_Eop by e, Phyn_Perr by p and
Phyn_Wrvalid by w.

Signals Phyn_Eop (or Phyn_Perr) and Phyn_Wrvalid fall simultaneously means that if Phyn_Eop
or Phyn_Perr is falling then Phyn_Wrvalid is falling and reciprocally. This can be expressed
as follows:

10

C = ((Fall(e) ∨ Fall(p)) ⇒ Fall(w)) ∧ (Fall(w) ⇒ (Fall(e) ∨ Fall(p))).

Since A ⇒ B ≡ ¬A ∨B for any 2 propositions A and B , the constraint can be expressed as
follows:

C = ¬(Fall(e) ∨ Fall(p)) ∨ Fall(w) ∧ ¬Fall(w) ∨ (Fall(e) ∨ Fall(p)).

By using the distribution rule : (A ∨B) ∧ C ≡ (A ∧ C) ∨ (B ∧ C) for any propositions A, B
and C, we obtain:

C = (¬(Fall(e) ∨ Fall(p)) ∧ ¬Fall(w)) ∨ (Fall(w) ∧ ¬Fall(w)) ∨ (¬(Fall(e) ∨ Fall(p)) ∧
(Fall(e) ∨ Fall(p))) ∨ ((Fall(e) ∨ Fall(p)) ∧ Fall(w)).

Since for a given proposition A, ¬A ∧A = False and A ∨ False = A, last expression can be
simplified as follows:

C = ¬(Fall(e) ∨ Fall(p)) ∧ ¬Fall(w) ∨ ((Fall(e) ∨ Fall(p)) ∧ Fall(w)).

By applying one more time the distribution rule on the last expression, we obtain:

C = (¬(Fall(e) ∨ Fall(p)) ∧ ¬Fall(w)) ∨ (Fall(e) ∧ Fall(w)) ∨ (Fall(p) ∧ Fall(w)).

We know that ¬(A ∨B) ≡ ¬A ∧ ¬B. Thus, we deduce:

C = (¬Fall(e) ∧ ¬Fall(p) ∧ ¬Fall(w)) ∨ (Fall(e) ∧ Fall(w)) ∨ (Fall(p) ∧ Fall(w)).

In terms of FormalCheck, this expression can be written as:

Assume Always: (not(Phyn_Eop =falling) and
not(Phyn_Perr = falling) and
not(Phyn_Wrvalid =falling)) or
(Phyn_Eop = falling and
Phyn_Wrvalid = falling) or
(Phyn_Perr = falling and
Phyn_Wrvalid = falling)

which is equivalent to the expression of SynEop_PerrAndWrvalid 2.

5 Properties Specification

After establishing a proper environment, and define all needed constraints, we consider 10 queries
of the Memory Manager, including liveness and safety properties. The following properties have
been defined based on specification and test benches given in [6]. For all of them, we used Symbolic
(BDD) as algorithm and 1-Step as reduction technique [5].

11

• Query 1: First of all, we verified the global reset of the Memory Manager. During the
reset process, launched by the signal Sys_Rst_N, the output signals of the Memory Manager
should take their appropriate values. Thus, signals Mgr_Sop, Mgr_Eop, Mgr_Perr, Mgr_busy,
and Mgr_Delack should be sampled to low, whereas signals Mgr_enable_Ok and Mgr_wr_n
should be sampled to high. This query is composed of 7 properties. Each signal is verified by
an associated property. Exceptionally for this query, only the two constraints System_Clock
and System_Reset are included. Properties of this query are expressed as follows:

Query: Reset
PROPERTIES:

property: ResetMgr_Sop
Type: Always
After: Sys_Rst_N = rising
Always: Mgr_Sop = 0
Options: Fulfill Delay: 0

Duration: 1 counts of
Sys_Clk = rising

.... property: ResetMgr_Enable_Ok
Type: Always
After: Sys_Rst_N = rising
Always: Mgr_Enable_Ok = 1
Options: Fulfill Delay: 0

Duration: 1 counts of
Sys_Clk = rising

....

The options in these properties are used to define the time and the duration of verification.
The fulfill delay expresses the delay added between the enabling condition (Sys_Rst_N = rising)
and the checking of the fulfilling condition. In our case, the delay is zero which means that the
fulfilling condition is checked immediately after the enabling condition is true. The duration
of the verification is expressed by the duration option. In our case, the verification windows
terminates after one occurrence of the event Sys_Clk = rising.

• Query 2: According to the Memory Manager documentation, when the Memory Manager
begins the reception of a packet, it informs the Controller by sampling the signal Mgr_Sop to
high during one cycle starting at the falling edge of the system’s clock defined by the signal
Sys_Clk. In this query, we verify the duration of the signal Mgr_Sop (first property) and its
synchronization with the clock (second property). In FormalCheck, this query is expressed
as follows:

Query: Verif_Mgr_Sop
PROPERTIES:

property: OneClkMgr_Sop
Type: Never
Never: (Mgr_Sop = 1) and (WasMgr_Sop = 1)
Options: (None)

property: SyncMgr_Sop
Type: Always

12

Always: (Sys_Clk = falling) or (Mgr_Sop = stable)
Options: (None)

WasMgr_Sop: Range 0 to 1
Initial: 0
if (Mgr_Sop = 1) and (Sys_Clk = 1) then
WasMgr_Sop := 1;

else
WasMgr_Sop := 0;

end if;

where WasMgr_Sop is a state variable that indicates if the signal Mgr_Sop is already activated
or not.

• Query 3: Inspired by the specification given in the last query, we verified that the Controller
is informed when the Memory Manager is receiving a packet. In addition, from [6], Mgr_Sop
is sampled to high one clock cycle after the activation of the signal Phyn_Sop. We defined
this property as follows:

Query: Phyn_SopMgr_Sop
PROPERTIES:

property: PhynSop_MgrSop
Type: Eventually
After: (Phyn_Sop = 1 and Mgr_Enable_Ok = 1)
Eventually: Mgr_Sop = 1
Options: Fulfill Delay: 0
Duration: 1 counts of
Signal: Sys_Clk = rising

• Query 4: At the end of transmission (Phyn_Eop is sampled to high during one cycle), the
Memory Manager informs the Controller by sampling the signal Mgr_Eop to high during one
cycle starting at the falling edge of the system’s clock. In FormalCheck, this query is expressed
as follows:

Query: Verif_Mgr_Eop
PROPERTIES:

property: OneClkMgr_Eop
Type: Never
Never: (Mgr_Eop = 1 and WasMgr_Eop = 1)
Options: (None)

property: SyncMgr_Eop
Type: Always
Always: (Sys_Clk = falling or Mgr_Eop = stable)
Options: (None)

WasMgr_Eop: Range 0 to 1
Initial: 0
if(Mgr_Eop = 1 and Sys_Clk = 1) then
WasMgr_Eop := 1;

else
WasMgr_Eop := 0;

end if;

13

where WasMgr_Eop is a state variable that indicates if the signal Mgr_Eop is already activated
or not.

• Query 5: From the specification given in the last query, we conclude that the Controller
should be informed by the Memory Manager at the end of packet transmission. From the
Memory Manager documentation [6], The controller is informed one clock cycle after the
occurrence of Phyn_Eop event. We defined this property as follows:

Query: Phyn_EopMgr_Eop
PROPERTIES:

property: PhynEop_MgrEop
Type: Eventually
After: Phyn_Eop = 1
Eventually: Mgr_Eop = 1
Options: Fulfill Delay: 0 Duration: 1 counts of
Signal: Sys_Clk = rising

• Query 6: When an error is occurred during transmission (Phyn_Perr is sampled to high),
the Memory Manager informs the Controller by sampling the signal Mgr_Perr to high during
one cycle starting in the falling edge of the system’s clock. In FormalCheck, this query is
expressed as follows:

Query: Verif_Mgr_Perr
PROPERTIES:

property: OneClkMgr_Perr
Type: Never
Never: (Mgr_Perr = 1 and WasMgr_Perr = 1)
Options: (None)

property: SyncMgr_Perr
Type: Always
Always: (Sys_Clk = falling or Mgr_Perr = stable)
Options: (None)

WasMgr_Perr: Range 0 to 1
Initial: 0
if(Mgr_Perr = 1 and Sys_Clk = 1) then
WasMgr_Perr := 1;

else
WasMgr_Perr := 0;

end if;

where WasMgr_Perr is a state variable that indicates if the signal Mgr_Perr is already acti-
vated or not.

• Query 7: Inspired by the specification given in the last query, we conclude that the Controller
should be informed by the Memory Manager in case of error transmission. We know also
from [6], that the controller is informed after a delay of one clock cycle from the occurrence
of Phyn_Perr event. We defined this property as follows:

14

Query: Phyn_PerrMgr_Perr
PROPERTIES:

property: PhynPerr_MgrPerr
Type: Eventually
After: Phyn_Perr = 1
Eventually: Mgr_Perr = 1
Options: (None)

• Query 8: Similarly to signals Mgr_Sop, Mgr_Eop and Mgr_Perr, the signal Mgr_Delack is
activated during one cycle count from the falling edge of the system’s clock. We expressed
this query by the following two properties:

Query: Verif_Mgr_Delack
PROPERTIES:

property: OneClkMgr_Delack
Type: Never
Never: (Mgr_Delack = 1) and (WasMgr_Dealck = 1)
Options: (None)

property: SyncMgr_Delack
Type: Always
Always: (Sys_Clk = falling) or
(Mgr_Delack = stable)
Options: (None)

WasMgr_Perr: Range 0 to 1
Initial: 0
if(Mgr_Delack = 1) and
(Sys_Clk = 1) then
WasMgr_Delack := 1;

else
WasMgr_Delack := 0;

end if;

where WasMgr_Delack is a state variable that indicates if the signal Mgr_Delack is already
activated or not.

• Query 9: Every suppression request should be answered positively. This property can be
expressed by the following query:

Query: CtrDelvalidMgrDelack
PROPERTIES:

property: CtrDelvalMgrDelack
Type: Eventually
After: Ctr_Delvalid = 1
Eventually: Mgr_Delack = 1
Options: (None)

• Query 10: The Memory Manager can be available for packet reception or packet suppression
exclusively:

15

Query AfterDelandNoSopNoEnbl
PROPERTIES:

property: AfterDelandNoSopNoEnbl
Type: Eventually
After: (Ctr_Delvalid = 1) and (Phyn_Sop = 0)
Eventually Mgr_Enable_Ok = 0

This query means that if the Controller sends a suppression request and the Memory Manager
is not receiving a packet from the Physical Interface, then the signal Mgr_Enable_Ok should
be sampled to low to inform the Physical Interface that the Memory Manager is busy and
cannot receive packets for the moment

• Query 11: Similar to the last query, this query insures that when the Memory Manager is
busy with the suppression request, the signal Mgr_Enable_Ok remain sampled to low until
the suppression is finished.

Query NoEnableUntilDelack
PROPERTIES:

property: NoEnableUntilDelack
Type: Always
After: Ctr_Delvalid = 1 and Mgr_Busy = 0
Always: Mgr_Enable_Ok = 0
Unless: Mgr_Delack = 1

• Query 12: The following query is to insure that the signal Mgr_Delack cannot be sampled
to high without a suppression request from the Controller:

Query NoDelvalidDelack
PROPERTIES:

property: NoDelvalidDelack
Type: Never
Never: Ctr_Delvalid = 0 and Mgr_Delack = 1

• Query 13: The following query is introduced to insure that a suppression request should not
be answered during a packet reception:

Query NoDelWhenSop
PROPERTIES:

property: NoDelWhenSop
Type: Always
After: (Phyn_Sop = 1) and (Mgr_Enable_Ok = 1)
Always: Mgr_Delack = 0
Unless: (Phyn_Eop = 1) or (Phyn_Perr = 1)

• Query 14: When a packet is transmitted from the Physical Interface, the Memory Manager
activates writing in the Main Memory by setting the signal Mgr_Wrn to low. This property
can be expressed by the following query:

16

Query SopMgrWrn
PROPERTIES:

property: SopMgrWrn
Type: Eventually
After: (Phyn_Sop = 1) and (Mgr_Enable_Ok = 1)
Eventually: Mgr_Wrn = 0

• Query 15: When a packet transmission begins, the Memory Manager informs the Controller
about the transmitted packet and stores it into the Main Memory. This query is introduced
to know if each packet which the reception has been informed to the Controller is written in
the Main Memory

Query MgrSopMgrWrn
PROPERTIES:

property: MgrSopMgrWrn
Type: Eventually
After: Mgr_Sop = 1
Eventually: Mgr_Wrn = 0

• Query 16: In this query we want to know if the Memory Manager informs the Controller
about each written packet in the Main Memory:

Query MgrWrnMgrSop
PROPERTIES:

property: MgrWrnMgrSop
Type: Eventually
After: Mgr_Wrn = 0
Eventually: Mgr_Sop = 1

6 Experimental Results

All verifications in this project were executed on an Ultra 5 Sun workstation with 256 MB RAM and
UNIX operating system. For all properties, we used Symbolic (BDD) as algorithm and 1-Step as
reduction technique [5]. We found these modes effective enough to conduct the verification process.
The experimental results are shown in Table 2, including the status of the property verification,
the number of reached states (RS), the number of state variables in the model (SV), the average
state coverage (SC), the search depth (SD), the CPU time (real time) in seconds and the memory
usage in MB.

From Table 2, we can see that the system reset property and properties related to the duration
of signals’ activation are verified, but many others failed. Thus, when the Physical Interface starts
a packet transmission, there is no guarantee that this packet will be detected by the Memory
Manager and thereby will be stored in the Main Memory. In this case, the Controller will not be
informed about this transmission and the packet will be lost. Intuitively, it seems logic that if the
Memory Manager will not detect some packet transmissions, then it will not detect the end of these
transmissions or the occurrence of some errors. In such cases, the Controller will not be informed
by these activities performed by the Physical Interface since there is no direct dialogue between
the Controller and the Physical Interface, and all information concerning the packet transmission
are transmitted to the Controller by the Memory Manager.

17

In [6], there is an illustrated case in which packets are lost. Namely, when the Main Memory is
full and no more space is available to store incoming packets; the Memory Manager will simply reject
incoming packets without informing the Physical Interface. In this case, the Physical Interface will
continue sending packets to the Memory Manager. However, in [6], this situation was defined as
the only case in which packets are lost. In our work, FormalCheck gives a counterexample and
shows that in spite of memory space availability, incoming packets can still get lost.

Another example is Query 16, which failure means that some packets are stored into the Main
Memory by the Memory Manager, but the Controller does not know anything about them because
the Memory Manager does not inform the Controller once they are transmitted by the Physical
Interface. This means that some packets will remain in the Main Memory without conversion. Fur-
thermore, the Controller will never ask the Memory Manager for the suppression of these packets.

Table 2: Summary of Experimental Results
QUERY STATUS RS SV SC (%) SD CPU (s) Mem (MB)
Query 1 Verified 2.68+7 64 87.50 773 70 14.37
Query 2 Verified 3.21+3 15 96.77 38 10 2.32
Query 3 Failed 5.09+3 59 88.98 12 12 10.62
Query 4 Verified 3.14+3 31 96.77 38 9 2.32
Query 5 Failed 5.25+3 30 100 42 9 9.54
Query 6 Verified 7.85+6 51 97.06 803 9 2.32
Query 7 Failed 8.89+6 52 98.08 802 40 10.85
Query 8 Verified 3.08+3 31 96.77 39 8 2.32
Query 9 Verified 4.37+5 31 100 796 18 9.56
Query 10 Verified 5.98+5 33 96.97 798 15 9.66
Query 11 Verified 4.38+5 34 98.53 798 15 9.68
Query 12 Verified 2.15+5 32 100 844 18 9.66
Query 13 Verified 2.15+5 33 100 844 17 9.67
Query 14 Verified 2.82+9 46 98.41 844 12 2.34
Query 15 Verified 2.82+9 46 98.39 844 13 2.34
Query 16 Failed 2.82+9 64 98.44 844 192 16.63

7 Related Work

There exists a number of related work in the open literature on the use of model checking as a
technique to verify models of commercial products. These case studies are too numerous to be
listed here. In the following, we elaborate on a few of them. For instance, in [1], FormalCheck
was used to verify the implementation of a SCI-PHY (Saturn Compatible Interface for ATM-PHY
devices) Level 2 protocol engine, commercialized by PMC-Sierra, Inc. Some properties covering the
essential behavior of the SCI-PHY protocol are defined and then checked on an abstracted model
(8-PHY devices) as well as the original hardware model (32-PHY devices). The set of established
properties contains 11 properties. However, only one error has been detected. In comparison, the
design considered in our project is more complex and presents a generic behavior. In [10], VIS
(Verification Interacting with Synthesis) [3], a model checking tool, was adopted for the verification
of an Asynchronous Transfer Mode (ATM) switch used for real applications in the Cambridge
Fairisle network. Abstracted and reduced models of the switch at different levels of the design

18

hierarchy are established, then a set of typical properties of the switch and its components are
verified. The benefit of this work is that it shows how the VIS tool can partially verify large size
circuit design by using reduction, abstraction and property division. In [2], the same ATM switch
fabric design is verified in FormalCheck and a comparison between the two hardware verification
tools is given. From the experimental results in [2], it was shown that FormalCheck is faster than
VIS and that the memory usage of FormalCheck is less than that in VIS for all verified properties.
Moreover, no manual reduction or property composition were required in FormalCheck. This justify
again our choice of FormalCheck to verify our system. In [12], VIS was used for the verification
of an ATM ring (ATMR) media access control (MAC) protocol. Since VIS is a model checking
tool targeting synchronous hardware system, this report shows how to simulate the asynchronous
ATMR MAC in the synchronous VIS environment. However, this in turn has created a state space
explosion. In FormalCheck such environment can be modeled using a set of constraints as illustrated
in our project. VIS was also used in [11] to formally verify a commercial product of PMC-Sierra,
Inc. that processes Routing, Cell counting, Monitoring, Policing (RCMP) for the network port
interface of an ATM switch fabric. In this work, a design error which could lead the system to
a deadlock state was detected. However, properties that involve the introduction of time delays
were not verified because unlike FormalCheck, as used in our project, VIS does not support timed
Verilog models. In [16], MDG (Multiway Decision Graph) [8] was used in the formal verification
of a Telecom System Block commercialized by PMC-Sierra, Inc. which processes a portion of the
SONET (Synchronous Optical Network) line overhead of a received date stream. While the MDG
tool possesses efficient features for data abstraction, it does not support neither Verilog nor VHDL
to be considered in a complex project like ours.

8 Conclusion

In this study, we explored the formal verification by model checking of the Memory Manager Com-
ponent of the Protocol Converter system of a System-on-a-Chip platform. The Memory Manager is
the main block of the system and consists of five modules, namely, a Memory Manager Controller,
an Address Counter Register, a Data Counter Register, a Packet Counter Register and a Packet
Assembler. After establishing a proper environment for the Memory Manager, we specified some
relevant properties expressible in FormalCheck and accomplished their verification under the de-
fined set of constraints. Our experimental results demonstrated the presence of many residual bugs
in the design. The impact of these errors is very important since they cause, in some situations,
the non-conversion of received packets and the non-liberation of stored packets from the Main
Memory. Though the important effects of such situations on the functionalities of the Protocol
Converter system, these errors were not detected by extensive post-design simulation efforts. Since
all detected bugs represent serious problems, we informed the designers about them. By using test
benches, designers confirmed the presence of these bugs and proceeded to modify and debug their
design.

The main contribution of this work is the emphasis of the importance of formal methods for
design verification and validation. In our case, we were able to detect many errors that were not
detected by simulation. However, we should mention that formal techniques are not by themselves
an alternative to verify if a design is correct with respect to a specification, but should be used
with simulation as a complementary process to insure a maximum error detection.

When we deal with formal verification by model checking, we should pay a great attention to
the set of defined constraints. Constraints are generally used to simulate the environment on which
the system operates. They are the most delicate task since the set of constraints should be as
complete as possible to describe the exact behavior of the environment.

Our extensive experience shows that the developed set of constraints actually defines a set of

19

verifiable properties for the other components of the Protocol Converter system: the Controller
and the Main Memory, whereas our specified properties for the Memory Manager, can be used as
a the respective set of constraints for these two components. The principle benefits of permuting
the roles of properties and constraints are that we do not have to redo the formalization of the
system specification for each verified component and also we can be insured that all components
of the global system are verified under the same set of assumptions and the same protocol of
communication between each couple of interacting components.

In summary, our work joins other successful industrial-sized case studies in using model checking
for hardware verification. We believe to have contributed fostering the evidence that model checking
is now powerful enough to be widely used in industry to help in the verification of developed complex
hardware designs.

References

[1] L. Barakatain and S. Tahar. Functional Verification of a SCI-PHY Level 2 Protocol Engine.
In IEEE International Conference on Information, Communications and Signal Processing
(ICICS’01), October 2001.

[2] L. Barakatain and S. Tahar. Model Checking of the Fairisle ATM Switch Fabric using For-
malCheck. In Proc. IEEE Canadian Conference on Electrical and Computer Engineering,
Toronto, Canada, May 2001.

[3] R. K. Brayton and al. VIS: A System for Verification and Synthesis. In T. Henzinger and
R. Alur, editors, Eigth Conference on Computer Aided Verification (CAV’96), pages 428–432.
Springer-Verlag, Rutgers University, 1996. LNCS 1102.

[4] R. E. Bryant. Graph-based algorithms for boolean function manipulation. IEEE Transactions
on Computers, C-35(8):677–691, August 1986.

[5] Cadence. Formal Verification Using Affirma FormalCheck, version 2.4, Auguest 1999.

[6] S. Carniguian, J. Chevalier, M.M Mbaye, S. Regimbal, and J-L. Trépanier. Intégration et
vérification d’un convertisseur de protocoles. Rapport final, École Polytechnique de Montréal,
Département de génie életrique, 2002.

[7] E. M. Clarke and E. A. Emerson. Design and Synthesis of Synchronization Skeletons using
Branching Time Temporal Logic. In Proc. Logics of Programs Workshop, volume 131 of Lecture
Notes in Computer Science, pages 52–71, New York, 1981. Springer-Verlag.

[8] F. Corella, Z. Zhou, X. Song, M. Langevin, and E. Cerny. Multiway Decision Graphs for
Automated Hardware Verification. Formal Methods in Hardware Design, 10:7–46, February
1997.

[9] C. Kern and M. Greenstreet. Formal Verification in Hardware Design: A Survey. ACM
Transactions on Design Automation of Electronic Systems, Vol. 4:123–193, April 1999.

[10] J. Lu, S. Tahar, D. Voicu, and X. Song. Model Checking of a Real ATM Switch. In IEEE In-
ternational Conference on Computer Design (ICCD’98), pages 195–198, Austin, Texas, USA,
October 1998.

[11] P. Murugesh and S. Tahar. Formal verification of the RCMP Egress routing logic. In Proc.
IEEE 11th International Conference on Microelectronics, pages 89–92, Kuwait City, Kuwait,
November 1999.

20

[12] H. Peng and S. Tahar. Hardware modeling and verifiation of an ATM Ring MAC Protocol.
In Proc. IEEE 12th International Conference on Microelectronics, pages 21–24, Teheran, Iran,
November 2000.

[13] A. Pnueli. A temporal logic of concurrent programs. Theoretical Computer Science, 13(1):45–
60, January 1981.

[14] J. Queille and J. Sifakis. Specification and verification of concurrent systems in CAESAR.
In M. Dezani-Ciancaglini and U. Montanari, editors, Fifth International Symposium in Pro-
gramming, volume 137 of Lecture Notes in Computer Science, pages 337–351, New York, 1982.
Springer-Verlag.

[15] A. Rushton. VHDL for Logic Synthesis. John Wiley & Sons Ltd, second edition, 1998.

[16] M. H. Zobair and S. Tahar. Formal Verification of a SONET Telecom System Block. In Inter-
national Conference on formal Engineering Methods (ICFEM’02), Shangai, China, October
2002. Lecture Notes in Computer Science, Springer Verlag.

21

