
Performance analysis of constraint solvers for Coverage
Directed Test Generation

Jomu George Mani Paret and Otmane Ait Mohamed

Department of Electrical and Computer Engineering,
Concordia University, Montreal, Canada
{jo pare,ait}@ece.concordia.ca

Technical Report

January, 2012

Abstract

Coverage is a metric used to obtain information about execution of hardware description language (HDL)

statements. It helps to determine how well the test cases verified the design under verification. Coverage

directed test generation (CDTG) techniques analyze coverage results and adapt the test generation

process to improve the coverage. This step is iterated until the required coverage is attained. One of the

important components of CDTG technique is the constraint solver. The efficiency of CDTG depends on

the constraint solver used. In this report, a comparative study is conducted to measure the effectiveness

of VCS2009.06 against other commercially available constraint solvers. Our results are obtained by

solving N Queens problem and car sequencing problem using the different solvers.

1

Fig. 1: Coverage Driven Constraint Random Test Generator

1 Introduction

Simulation based verification (SV) is the most commonly used method for the verification
of large designs. SV tries to find errors in a design by using a directed or pseudo-random
simulation tests. Although SV can be very effective, its success depends heavily on the
quality of the tests in use. The number of test cases valid for a particular design is limited.
All the valid test cases are not of interest since the verification engineers are concentrating
on certain scenarios. In constraint random test (CRT) generation method the conditions for
valid test cases and conditions for the scenarios are specified. Solving the constraints will
give the required test case or cases. Hence out of the many test generation methods that
have been developed, constraint random test (CRT) generation is the most commonly used
for the verification of complex design. In CRT constraints are manually specified in order to
hit areas or specific scenarios in the design that are not covered. In order to find out whether
all the scenarios and corner cases are covered, coverage analysis has to be done. Coverage
data gives the necessary information regarding the completeness of the verification process.
Generating test cases to attain 100% coverage is a key challenge. Coverage Directed Test
Generation (CDTG) is a methodology which uses coverage data to direct the next round
of test generation towards producing tests that increase coverage percentage. This takes
large amount of engineering skill and is time-consuming. It is also an error prone process
and hence automation of this process is beneficial. This is achieved by studying existing
tests and the coverage percentage. Automated coverage directed constraint random test
generation is a technique to automate the feedback from coverage analysis to test generation
[1, 2, 3]. A large amount of work has been done in CDTG to find the best way to automate
the process of effective constraint generation. Nowadays data mining techniques and neural
networks are used for attaining 100% coverage [4, 5].

Although there are different features in different technologies developed by different group
independently, all of them agree on one point. The CDTG must have two parts:

• Constraint models or language used to describe the constraints.

• Constraint solver engine used to find the solution or solutions for the given constraints.

Research is going on to develop effective constraint solver for CDTG [6]. The test cases are
generated in CDTG by solving the constraints and then the results are used to generate more
constraints which will help to attain maximum coverage. Hence the test generation methods
of CDTGs are equivalent to a constraint satisfaction problem (CSP). Therefore the efficiency

2

of a CDTG is dependent on the constraint solver used. In this paper, we try to compare VCS
2009.06 with two different constraint solvers (engine) which are based on different constraint
models or languages and a constraint solver which uses the same constraint language. The
CSPs are in fact related to real life applications. So we are using N Queens problem and a
car sequencing problem which are example of CSP to do a comparative study between the
different constraint solvers.

The remainder of this paper is presented as follows. We will explain about coverage driven
test generation in section 2. In Section 3, we briefly explain the constraint satisfaction
problem. We then describe two CSP problems, a car sequencing problem and N Queens
problem. Section 4 describes the constraint solvers used in this work. Finally, we present
experimental results in Section 5, and give some concluding remarks in Section 6.

2 COVERAGE DRIVEN TEST GENERATION

The main challenge in using random or constraint random verification is that we have to
manually analyze the coverage report, find the untested scenarios and modify the test cases
to attain 100% coverage. The aim of automated coverage directed test generation is to allow
replacement of the above manual effort by an automatic method. There are two benefits
that can be achieved by applying CDTG or automated CDTG. The first is that unobserved
scenarios will be generated. The second benefit is that certain scenarios can be more easily
tested multiple times with different input parameters.

For automated coverage driven test generation first the coverage metric is defined, then
the constraints for random test generation. The tests are applied to the design to produce
simulation trace and coverage results. From the simulator the coverage report is extracted.
The results are analyzed by the tool. Targets that have been missed so far are identified.
New test cases and/or constraints will be added to target the coverage holes. This process
will be iterated until desired coverage is achieved.

An example where CDTG is applied is in the verification of a processor. Let the design
specification be as follows. The processor should be a 32 bit and can handle 10 basic
instructions like load, store, add, sub, jump, branch, move, compare equal to, compare less
than and compare greater than. Let one of the test case scenario be as follows. The test case
should have 25 instructions. It should contain 5 load instructions, 5 store instructions, 2 jump
and branch instructions, 3 add and sub instructions. There should be 2 move instructions
and 3 compare instructions. There should be 1 immediate instruction in every 5 instruction,1
register source in every 3 instruction,2 register destination in every 5 instruction...etc.

Let us consider another example where we are interested in verifying a particular property.
Let the property be the occurrence of data hazard read after write (RAW) in the pipelined
processor with five stages. To test data hazards of RAW, we randomly generate instructions
which depend on results of prior instructions which are still in the pipeline. The following
are the 2 main conditions for this scenario.

• The resource accessed by current instruction is the destination resource of prior instruc-
tion.

• The scenarios of data hazards should cover all of pipeline stages.

The first principle ensures that we can generate the condition of data hazards. We can get
complete coverage by using the final principle. The above test scenarios are equivalent to
constraint satisfaction problem (CSP). So a CSP is used to study the effectiveness of the
constraint solver of VCS 2009.06.

3

3 CONSTRAINT SATISFACTION PROBLEM

Constraint satisfaction problems or CSPs are mathematical problems defined as a set of
objects whose state must satisfy a number of constraints or limitations. CSPs are problems
we face in our everyday life. The most common examples for CSP in industry are the N
Queens problem and car sequencing problem.

3.1 N Queens problem

In the game of chess, a queen can move as far as she pleases, in the same row, in the
same column, or diagonally. It is often used as an example problem for testing various
programming techniques including constraint solvers. The N Queens problem is a CSP of
placing N chess queens on an NN chessboard so that no two queens attack each other. If we
assume the chess board as a NxN matrix and dij=1 for the presence of a queen and dij=0
for absence of queen, solving the below mathematical equation gives the solution for the N
queens problem.

Max

N∑
i=1

N∑
j=1

dij

N∑
i=1

dij ≤ 1 ∀j = 1,, N

N∑
j=1

dij ≤ 1 ∀i = 1,, N

N∑
i=1

N∑
j=1

dij ≤ 1 where i+ j = k ∀k = 2,2N

N∑
i=1

N∑
j=1

dij ≤ 1 where i− j = k ∀k = 1−N,N − 1

dijε(0, 1) ∀i, j = 1, ..., N

3.2 Car sequencing problem

The car-sequencing problem arises from the manufacture of cars on an assembly line. A
number of cars are to be made on a production line; they are not identical because different
options are available as variants on the basic model. We cannot have an assembly line to
allow sufficient time to put every possible option on every car in the line, since it is very ex-
pensive. So the assembly line is modified to predetermined number of cars with a particular
combination of requirements to predetermined number of cars without the particular com-
bination of requirements. Let us say the ratio of cars to have air conditioning be 2/3. Then
we can say that the assembly line has a capacity constraint of 2 out of 3 for air conditioning.

For our purpose we are taking a small car sequencing problem. The problem is described
in the following section. At first we will generate a sequence of 10 cars. Then for the same
constraints we will produce car sequences containing 20 cars, 30 cars and 40 cars. This is

4

done in order to check how the constraint solver will behave if the test case needed to be
generated is having large length.

It can be seen that the constraints for the car sequencing problem and that for the test
case scenario is similar. For example in test case scenario it was said that there should be 25
instructions which is similar to having 10 cars is the generated sequence for CSP. There were
10 different instructions for the processor which is similar to have 6 types of car in CSP. So
it is appropriate to see an actual test case scenario as a CSP problem. The car sequencing
problem we consider has the following conditions for a sequence of 10 cars:

Table 1: CAR SEQUENCING PROBLEM FOR A SEQUENCE OF 10 CARS
Properties No of Cars

TYPE A B C D E
0 1 0 1 1 0 1
1 0 0 0 1 0 1
2 0 1 0 0 1 2
3 0 1 0 1 0 2
4 1 0 1 0 0 2
5 1 1 0 0 0 2

Max. Capacity 2
out
of
3

2
out
of
3

1
out
of
3

2
out
of
5

1
out
of
5

4 CONSTRAINT SOLVER

Figure 2 is a simple representation of how a constraint solver works. The search element is
typically depth-first chronological backtracking by default, although a solver will often allow
different search algorithms. When searching, a variable and value must be selected. This can
be done statically or with a dynamic heuristic. The simplify component contains a queue
of constraints which need to be propagated. When a constraint is propagated, and removes
values from the variable domains, the domain events cause other constraints to be added to
the queue. Propagation of constraints on the queue is iterated until the queue is empty.

4.1 VCS 2009.06

VCS is an industry leading constraint solver. It is powered by multiple solver engines which
will simultaneously analyze all user specified constraints. These engines will find a solution
to user constraints, if one exists, minimizing constraint conflicts and maximizing verification
productivity. VCS is based on SystemVerilog. SystemVerilog has sometimes been called an
HDVL, since it combines the strengths of HDLs and HVLs. SystemVerilog is based on the
widely used Verilog HDL, but has new functionality for verification and high-level system
design. This makes it both powerful and easy to learn. Using the same language for both
design and verification also makes it easier to access the internals of the DUT, no special
interfaces are needed. We choose three other constraint solvers randomly for our comparison
purpose, namely, QUSETASIM, MINION, GECODE and ARTELYS KALIS (commercial
tool).

5

Fig. 2: Block diagram for a constraint solver

4.2 QUSETASIM

SystemVerilog LRM specifies the language only. It does not specify the constraint solver
algorithm. So different vendors use different solver engines, which is based on different algo-
rithms. Some vendor tools can solve the constraints quickly while some may not. Mentor’s
Questa products are based on a single-kernel verification engine that integrates an HDL
simulator, a constraint solver, an assertion engine, functional coverage and a common user
interface. Coverage-driven test generation (CDTG) is supported by using Questa’s high-
performance assertion engine, a modern high-performance constraint solver, and extensive
functional coverage features.

4.3 MINION

Minion is constraint solver based on interleave splitting (also called branching) and propaga-
tion. Propagation is the basic operation of search, and splitting simplifies the CSP instance.
The user can view the solution process as the repeated transformation of the CSP until a
solution state is reached. The main features are 1) fast and efficient for a wide range of prob-
lems 2) fixed implementations of memory management, propagation algorithms 3) tuning
only possible by adapting the input file.

4.4 ARTELYS KALIS

Artelys Kalis is a commercially available tool. Artelys Kalis is an open constraint program-
ming environment for solving constraint satisfaction problems through a C++ library. It
is based on propagation of constraint and other powerful optimization strategies. Artelys
Kalis has been completely designed in an object-oriented programming manner.

6

4.5 GECODE

Gecode is a toolkit for developing constraint-based systems and applications. Gecode is open
for programming. It supports the programming of new propagators (as implementation
of constraints), branching strategies, and search engines. New variable domains can be
programmed at the same level of efficiency as finite domain and integer set variables that
come predefined with Gecode. Gecode is implemented in C++ that carefully follows the
C++ standard and can be compiled with modern C++ compilers.

5 EXPERIMENTAL RESULT

In order to generate the solution for the N Queens problem first an array arr[N] of length
N is made. The content of the array can be between 1 and N. We simplified the problem
constraints for placing the queens on the board into two. The simplified constraints are

1. The content of all the arrays should be different from each other

2. For i = 1....N, j = i+ 1....N ; arr[i]− arr[j]! = |(i− j)|

Solving these two constraints gave the solution for the N Queens problem and we obtained
the following result.

Table 2: TIME IN SEC FOR SOLVING THE N QUEEN PROBLEM.
N=5 N=6 N=7

Time Constraint
number

Time Constraint
number

Time Constraint
number

VCS 0.008 6 0.017 7 0.023 8
QUESTA
SIM

0.01 6 0.139 7 0.143 8

MINION <0.001 25 <0.001 31 0.0156 45
ARTELY
KALIS

<
0.001
(2
soln)

3 <
0.001
(10
soln)

3 <
0.001
(4
soln)

3

The table 2 shows the time required to obtain the results for N Queens problem. We
can see that ARTELY KALIS was able to provide all possible results in small time when
compared to the other CDTG tools.

For modeling the car sequencing problem; first we assigned each type of car a number for
0 to 5. Then an array of size 10 is defined which should have value from 0 to 5. Similarly
we converted all the conditions into corresponding constraints. If a condition is not able
to be converted as a single constraint then a group of constraints is used to implement the
condition. Once all the conditions are converted to constraints the next step is to randomly
generate the sequence of car to fill the array. The constraint solver will generate the random
sequence which will satisfy all the applied constraints. Then by changing the array length
to 20, 30 and 40 all the other sequences were generated. With our experiment we obtained
the following result.

Car sequencing problem is a good example of CSP with a larger number of constraints
(constraints>50). From car sequencing problem results we can see that the time requirement

7

Table 3: TIME IN SEC FOR SOLVING THE PROBLEM.THE x DENOTES THAT THE
RESULT WAS NOT OBTAINED

10 cars 20 cars 30 cars 40 cars
GECODE 0.00005 0.0003 0.003 0.0181
VCS 0.035 0.054 0.085 0.137
QUESTA
SIM

0.053 0.096 0.130 0.182

MINION 0.015 8.432 45.058 71.412
ARTELY
KALIS

0.010 x x x

to generate the sequence increases for VCS and QUSETASIM as the constraint number
increases (Table 3). But for the GECODE based solver the time required to generate the
solutions where much less when compared to VCS and QUSETASIM.

The table 4 shows the memory consumption for VCS and GECODE based solver for the
car sequencing problem. From this we can see that VCS has high memory consumption.

Table 4: MEMORY USED FOR SOLVING THE CAR SEQUENCING PROBLEM
10 cars 20 cars 30 cars 40 cars

GECODE 49KB 308KB 484KB 1543KB
VCS 5072KB 74000KB 106000KB 126000KB

Uniformity of randomization is important. For example, suppose we have a simple con-
straint 0≤X≤10. If we randomize X a number of times and each time it may return the
value 0, this meets the constraint, but we are interested in different values for X. So if
we repeat the randomization process several times it doesn’t guarantee that a new solution
will be generated each time (if there is more than one solution). This will make attaining
maximum coverage very difficult.

Hence the problems with the constraint solvers of existing CDTG tools can be summarized
as follows:

1. Solving large complex constraint sets is a bottleneck in CDTG due to the large amount
of time spent solving these constraint sets.

2. Constraints with large domain of input requires huge amount of memory.

3. Only one solution is generated at a time.

4. There is no guarantee uniformity in randomization.

From car sequencing problem results we can see that the time requirement to generate
the sequence linearly increases for VCS and Questasim as the constraint number increases.
But for the other tools they have smaller time for small number of constraints, but as
the number of constraints increases time required increases exponentially. So VCS and
Questasim has better scalability. The same constraint language is used in Questasim and
VCS. But Questasim takes more time to produce the result than VCS. This proves that
the constraint solver of VCS is a very good solver engine. If contradicting constraints are
present constraint solver of VCS specifies which constraints are conflicting. This is very
useful for engineers who are using CDTG to get test cases. Based on our experiments we
can summarize our findings in table 5.

8

Table 5: COMPARISON BETWEEN THE TOOLS
MINION ARTELYS

KALIS
GECODE VCS

2009.06
QUESTA
SIM

Syntax Small and
simple

Simple and
rich

Simple and
rich

Simple and
rich

Simple and
rich

Scalability Poor Non Linear Linear Linear
Code size Large Medium Medium Small Small
Conflicting
constraints
are present

No solu-
tion

No solu-
tion

No solu-
tion

Shows
conflicting
constraints

No solu-
tion

We modeled the same car sequencing problem in SystemVerilog in two methods. In the
first method we needed 51 constraints and it took 0.088 seconds to generate the sequence.
In the second method we had 23 constraints and needed 0.0350 seconds to generate the
sequence. Hence we can see that the number of constraints is related to the time taken to
solve the problem. If we were able to implement the condition ’n’ out of ’m’ sequence should
contain ’x’ as a single constraint, the number of constraints require to generate the required
sequence will be less. This will make the time required to generate the required sequence
smaller. But for SystemVerilog there is no instruction to implement the constraint one out of
10 cars should be of type 0.This has to be implemented by using a combination of a number
of constraints. For example we specify that if the first car in the sequence is of type 0 then
others can’t be of type 0, and repeat it for all other combinations.

constraint p44{(any x[0] == 0)→{any x[1]! = 0;

any x[2]! = 0;

:

:

any x[9]! = 0}; }

But for the other tools they have instructions which will help to specify the above constraint.
For example in MINION the following instruction helps to implement the above constraint.

discrete q[10] (0..5)

occurrence (q, 0, 1)

6 CONCLUSION

A car sequencing problem and N Queens problem is modeled using VCS 2009.06, Questasim,
Minion, Gecode and Artelys Kalis. Then by generating the sequence(s) which satisfies the
constraint, the performance of the constraint solvers were analyzed. The results in the
previous section show that SystemVerilog is a powerful language for modeling constraints
and also the constraint solver of VCS 2009.06 is very powerful. Based on the results we
identified the areas which require improvement in order to get better coverage results. In

9

future we would like to propose a methodology which helps to attain the required coverage
with less time and memory consumption.

References

[1] W. Yingpan , A Coverage-Driven Constraint Random-Based Functional Verification
Method of Pipeline Unit, Computer and Information Science, ACIS International Con-
ference,2009 pp. 1049-1054.

[2] M. Benjamin, A study in coverage-driven test generation, Design Automation Conference,
1999. Proceedings. 36th Issue ,1999 pp. 970 - 975.

[3] S. Fine, Coverage Directed Test Generation for Functional Verification using Bayesian
Networks, Design Automation Conference, 2003. Proceedings Issue Date: 2-6 June
2003pp. 286 - 291.

[4] O. Guzey, Coverage-directed test generation through automatic constraint extraction,High
Level Design Validation and Test Workshop, 2007. HLVDT 2007. IEEE International
Issue Date: 7-9 Nov.2007 pp. 151 - 158

[5] M. Braun, Comparison of Bayesian Networks and Data Mining for Coverage Directed
Verification Category , Simulation-Based Verification Eighth IEEE International High-
Level Design Validation and Test Workshop (HLDVT’03)

[6] H. Shen , Designing an Effective Constraint Solver in Coverage Directed Test Generation,
Proceedings of the 2009 International Conference on Embedded Software and Systems,
2009, pp. 388-395.

10

	Introduction
	COVERAGE DRIVEN TEST GENERATION
	CONSTRAINT SATISFACTION PROBLEM
	N Queens problem
	Car sequencing problem

	CONSTRAINT SOLVER
	VCS 2009.06
	QUSETASIM
	MINION
	ARTELYS KALIS
	GECODE

	EXPERIMENTAL RESULT
	CONCLUSION

